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Abstract

We propose a version of the follow-the-perturbed-leader online prediction algorithm in
which the cumulative losses are perturbed by independent symmetric random walks. The
forecaster is shown to achieve an expected regret of the optimal order O(

√
n logN) where

n is the time horizon and N is the number of experts. More importantly, it is shown
that the forecaster changes its prediction at most O(

√
n logN) times, in expectation. We

also extend the analysis to online combinatorial optimization and show that even in this
more general setting, the forecaster rarely switches between experts while having a regret
of near-optimal order. This is the first forecaster with such a proven property.

Keywords: Online learning, Follow the Perturbed Leader, random walk

1. Preliminaries

In this paper we study the problem of online prediction with expert advice, see Cesa-
Bianchi and Lugosi (2006). The problem may be described as a repeated game between
a forecaster and an adversary–the environment. At each time instant t = 1, . . . , n, the
forecaster chooses one of theN available actions (often called experts) and suffers a loss `i,t ∈
[0, 1] corresponding to the chosen action i. We consider the so-called oblivious adversary
model in which the environment selects all losses before the prediction game starts and
reveals the losses `i,t at time t after the forecaster has made its prediction. The losses
are deterministic but the forecaster may randomize: at time t, the forecaster chooses a
probability distribution pt over the set of N actions and draws a random action It according
to the distribution pt. The prediction protocol is described in Figure 1.
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The usual goal for the standard prediction problem is to devise an algorithm such that
the cumulative loss L̂n =

∑n
t=1 `It,t is as small as possible, in expectation and/or with high

probability (where probability is with respect to the forecaster’s randomization). Since we
do not make any assumption on how the environment generates the losses `i,t, we cannot
hope to minimize the above the cumulative loss. Instead, a meaningful goal is to minimize
the performance gap between our algorithm and the strategy that selects the best action
chosen in hindsight. This performance gap is called the regret and is defined formally as

Rn = max
i∈{1,2,...,N}

n∑
t=1

(`It,t − `i,t) = L̂n − L∗n,

where have we also introduced the notation L∗n = mini∈{1,2,...,N}
∑n

t=1 `i,t. Minimizing the
regret defined above is a well studied problem. It is known that no matter what algorithm
the forecaster uses,

lim inf
n,N→∞

sup
ERn√

(n/2) lnN
≥ 1

where the supremum is taken with respect to all possible loss assignments with losses in
[0, 1] (see, e.g., Cesa-Bianchi and Lugosi (2006)). On the other hand, several prediction
algorithms are known whose expected regret is of optimal order O(

√
n logN) and many of

them achieve a regret of this order with high probability. Perhaps the most popular one
is the exponentially weighted average forecaster (a variant of weighted majority algorithm
of Littlestone and Warmuth (1994), and aggregating strategies of Vovk (1990), also known
as Hedge by Freund and Schapire (1997)). The exponentially weighted average forecaster
assigns probabilities to the actions that are inversely proportional to an exponential function
of the loss accumulated by each action up to time t.

Another popular forecaster is the follow the perturbed leader (fpl) algorithm of Hannan,
1957. Kalai and Vempala (2003) showed that Hannan’s forecaster, when appropriately
modified, indeed achieves an expected regret of optimal order. At time t, the fpl forecaster
adds a random perturbation Zi,t to the cumulative loss Li,t−1 =

∑t−1
s=1 `i,s of each action and

chooses an action that minimizes the sum Li,t−1 + Zi,t. If the vector of random variables
Zt = (Z1,t, . . . , ZN,t) have joint density (η/2)Ne−η‖z‖1 for η ∼

√
logN/n, then the expected

regret of the forecaster is of order O(
√
n logN) (Kalai and Vempala (2003), see also Cesa-

Bianchi and Lugosi (2006), Hutter and Poland (2004), Poland (2005)). This is true whether
Z1, . . . ,Zn are independent or not. It they are independent, then one may show that the
regret is concentrated around its expectation. Another interesting choice is when Z1 =
· · · = Zn, that is, the same perturbation is used over time. Even though this forecaster has
an expected regret of optimal order, the regret is much less concentrated and may fail with
reasonably high probability.

Small regret is not the only desirable feature of an online forecasting algorithm. In
many applications, on would like to define forecasters that do not change their prediction
too often. Examples of such problems include the online buffering problem described by
Geulen et al. (2010) and the online lossy source coding problem of György and Neu (2011).
A more abstract problem where the number of abrupt switches in the behavior is costly is
the problem of online learning in Markovian decision processes, as described by Even-Dar
et al. (2009) and Neu et al. (2010).
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Parameters: set of actions I = {1, 2, . . . , N}, number of rounds n;
The environment chooses the losses `i,t ∈ [0, 1] for all i ∈ {1, 2, . . . , N} and t = 1, . . . , n.
For all t = 1, 2, . . . , n, repeat

1. The forecaster chooses a probability distribution pt over {1, 2, . . . , N}.

2. The forecaster draws an action It randomly according to pt

3. The environment reveals `i,t for all i ∈ {1, 2, . . . , N}.

4. The forecaster suffers loss `It,t.

Figure 1: Prediction with expert advice.

To be precise, define the number of action switches up to time n by

Cn = |{1 < t ≤ n : It−1 6= It}| .

In particular, we are interested in defining randomized forecasters that achieve a regret Rn of
the order O(

√
n logN) while keeping the number of action switches Cn as small as possible.

However, the usual forecasters with small regret–such as the exponentially weighted average
forecaster or the fpl forecaster with i.i.d. perturbations–may switch actions a large number–
typically Θ(n)–times. Therefore, the design of special forecasters with small regret and small
number of action switches is called for.

The first paper to explicitly attack this problem is by Geulen et al. (2010), who propose
a variant of the exponentially weighted average forecaster called the “shrinking dartboard”
algorithm and prove that it provides an expected regret of O(

√
n logN), while guaranteeing

that the number of switches is at most O(
√
n logN) with high probability. A less conscious

attempt to solve the problem is due to Kalai and Vempala (2005b); they show that the
simplified version of the fpl algorithm with identical perturbations (as described above)
guarantees an O(

√
n logN) bound on both the expected regret and the expected number

of switches. propose a method based on fpl in which perturbations are defined by inde-
pendent symmetric random walks. We show that this, intuitively appealing, forecaster has
similar regret and switch-number guarantees as shrinking dartboard and fpl with identical
perturbations. A further important advantage of the new forecaster is that it may be used
simply in the more general problem of online combinatorial—or, more generally, linear—
optimization. We postpone the definitions and the statement of the results to Section 4
below.

2. The algorithm

To address the problem described in the previous section, we propose a variant of the Follow
the Perturbed Leader (fpl) algorithm. The proposed forecaster perturbs the loss of each
action at every time instant by a symmetric coin flip and chooses an action with minimal
cumulative perturbed loss. More precisely, the algorithm draws the independent random
variables Xi,t that take values ±1/2 with equal probabilities and Xi,t is added to each loss
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`i,t−1. At time t action i is chosen that minimizes
∑t

s=1 (`i,t−1 +Xi,t) (where we define
`i,0 = 0).

Algorithm 1 The algorithm.

Initialization: set Li,0 = 0 and Zi,0 = 0 for all i = 1, 2, . . . , N .
For all t = 1, 2, . . . , n, repeat

1. Draw Xi,t for all i = 1, 2, . . . , N such that

Xi,t =

{
1
2 with probability 1

2

−1
2 with probability 1

2 .

2. Let Zi,t = Zi,t−1 +Xi,t for all i = 1, 2, . . . , N .

3. Choose action
It = arg min

i
(Li,t−1 + Zi,t) .

4. Observe losses `i,t for all i = 1, 2, . . . , N , suffer loss `It,t.

5. Set Li,t = Li,t−1 + `i,t for all i = 1, 2, . . . , N .

Equivalently, the forecaster may be thought of as an fpl algorithm in which the cumula-
tive losses Li,t−1 are perturbed by Zi,t =

∑t
i=1Xi,t. Since for each fixed i, Zi,1, Zi,2, . . . is a

symmetric random walk, cumulative losses of the N actions are perturbed by N independent
symmetric random walks. This is the way the algorithm is presented in Algorithm 1.

A simple variation is when one replaces random coin flips by independent standard nor-
mal random variables. Both have similar performance guarantees and we choose ±(1/2)-
valued perturbations for mathematical convenience. In Section 4 we switch to normally
distributed perturbations–again driven by mathematical simplicity. In practice both ver-
sions are expected to have a similar behavior.

Conceptually, the difference between standard fpl and the proposed version is the way
the perturbations are generated: while common versions of fpl use perturbations that
are generated in an i.i.d. fashion, the perturbations of the algorithm proposed here are
dependent. This will enable us to control the number of action switches during the learning
process. Note that the standard deviation of these perturbations is still of order

√
t just

like for the standard fpl forecaster with optimal parameter settings.

To obtain intuition why this approach will solve our problem, first consider a problem
with N = 2 actions and an environment that generates equal losses, say `i,t = 0 for all i and
t, for all actions. When using i.i.d. perturbations, fpl switches actions with probability
1/2 in each round, thus yielding Ct = t/2 + O(

√
t) with overwhelming probability. The

same holds for the exponentially weighted average forecaster. On the other hand, when
using the random-walk perturbations described above, we only switch between the actions
when the leading random walk is changed, that is, when the difference of the two random
walks–which is also a symmetric random walk–hits zero. It is a well known that the number
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of occurrences of this event up to time t is Op(
√
t), see, Feller (1968). As we show below,

this is the worst case for the number of switches.

3. Performance bounds

The next theorem summarizes our performance bounds for the proposed forecaster.

Theorem 1 The expected regret and expected number of switches of actions of the forecaster
of Algorithm 1 satisfy, for all possible loss sequences (under the oblivious-adversary model),

ERn ≤ 2ECn ≤ 8
√

2n logN + 16 log n+ 16 .

Remark. Even though we only prove bounds for the expected regret and the expected
number of switches, it is of great interest to understand upper tail probabilities. However,
this is a highly nontrivial problem. One may get an intuition by considering the case
when N = 2 and all losses are equal to zero. In this case the algorithm switches actions
whenever a symmetric random walk returns to zero. This distribution is well understood
and the probability that this occurs more than x

√
n times during the first n steps is roughly

2P{N > 2x} ≤ 2e−2x2 where N is a standard normal random variable (see (Feller, 1968,
Section III.4)). Thus, in this case we see that bot the number of switches and the regret

are bounded by O
(√

n log(1/δ)
)

, with probability at least 1− δ. However, proving analog

bounds for the general case remains a challenge.
To prove the theorem, we first show that the regret can be bounded in terms of the

number of action switches. Then we turn to analyzing the expected number of action
switches.

3.1 Regret and number of switches

The next simple lemma shows that the regret of the forecaster may be bounded in terms of
the number of times the forecaster switches actions.

Lemma 2 Fix any i ∈ {1, 2, . . . , N}. Then

L̂n − Li,n ≤ 2Cn + Zi,n+1 −
n+1∑
t=1

XIt−1,t .

Proof We apply Lemma 3.1 of Cesa-Bianchi and Lugosi (2006) (sometimes referred to
as the “be-the-leader” lemma) for the sequence (`·,t−1 + X·,t)

∞
t=1 with `j,0 = 0 for all j ∈

{1, 2, . . . , N}, obtaining

n+1∑
t=1

(`It,t−1 +XIt,t) ≤
n+1∑
t=1

(`i,t−1 +Xi,t)

= Li,n + Zi,n+1 .

Reordering terms, we get

n∑
t=1

`It,t ≤ Li,n +

n∑
t=1

(
`It,t − `It+1,t

)
+ Zi,n −

n+1∑
t=1

XIt,t . (1)
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The last term can be rewritten as

−
n+1∑
t=1

XIt,t = −
n+1∑
t=1

XIt−1,t +
n+1∑
t=1

(
XIt−1,t −XIt,t

)
.

Now notice that XIt−1,t −XIt,t and `It−1,t−1 − `It,t−1 are both zero when It = It−1 and are
upper bounded by 1 otherwise. That is, we get that

n+1∑
t=1

(
`It−1,t−1 − `It,t−1

)
+

n+1∑
t=1

(
XIt−1,t −XIt,t

)
≤ 2

n+1∑
t=1

I {It−1 6= It} = 2Cn .

Putting everything together gives the statement of the lemma.

3.2 Bounding the number of switches

Next we analyze the number of switches Cn. In particular, we upper bound the marginal
probability P [It+1 6= It] for each t ≥ 1. We define the lead pack At as the set of actions
that, at time t, have a positive probability of taking the lead at time t+ 1:

At =

{
i ∈ {1, 2, . . . , N} : Li,t−1 + Zi,t ≤ min

j
(Lj,t−1 + Zj,t) + 2

}
.

We bound the probability of lead change as

P [It 6= It+1] ≤ 1

2
P [|At| > 1] .

The key to the proof of the theorem is the following lemma that gives an upper bound for
the probability that the lead pack contains more than one action. It implies, in particular,
that

E [Cn] ≤ 4
√

2n logN + 8 log n+ 8 ,

which is what we need to prove the expected-value bounds of Theorem 1.

Lemma 3

P [|At| > 1] ≤ 4

√
2

logN

t
+

8

t
.

Proof Define pt(k) = P
[
Zi,t = k

2

]
for all k = −t, . . . , t and we let St denote the set of

leaders at time t (so that the forecaster picks It ∈ St arbitrarily):

St =

{
j ∈ {1, 2, . . . , N} : Lj,t−1 + Zj,t = min

i
{Li,t−1 + Zi,t}

}
.
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Let us start with analyzing P [|At| = 1]:

P [|At| = 1] =

t∑
k=−t

N∑
j=1

pt(k)P
[

min
i∈{1,2,...,N}\j

{Li,t−1 + Zi,t} ≥ Lj,t−1 +
k

2
+ 2

]

≥
t−4∑
k=−t

N∑
j=1

pt(k + 4)P
[

min
i∈{1,2,...,N}\j

{Li,t−1 + Zi,t} ≥ Lj,t−1 +
k + 4

2

]
pt(k)

pt(k + 4)

=

t∑
k=−t+4

N∑
j=1

pt(k)P
[

min
i∈{1,2,...,N}\j

{Li,t−1 + Zi,t} ≥ Lj,t−1 +
k

2

]
pt(k − 4)

pt(k)
.

Before proceeding, we need to make two observations. First of all,

N∑
j=1

pt(k)P
[

min
i∈{1,2,...,N}\j

{Li,t−1 + Zi,t} ≥ Lj,t−1 +
k

2

]
≥ P

[
∃j ∈ St : Zj,t =

k

2

]

≥ P
[
min
j∈St

Zj,t =
k

2

]
,

where the first inequality follows from the union bound and the second from the fact that
the latter event implies the former. Also notice that Zi,t + t

2 is binomially distributed with
parameters t and 1/2 and therefore

pt(k) =

(
t
t+k

2

)
1

2t
.

Hence

pt(k − 4)

pt(k)
=

(
t+k

2

)
!
(
t−k

2

)
!(

t+k
2 − 2

)
!
(
t−k

2 + 2
)
!

=
(t+ k)(t+ k − 2)

(t− k + 2)(t− k + 4)

=
t2 + 2tk + k2 − 2k − 2t

t2 − 2tk + k2 − 6k + 6t+ 8

= 1 +
4(t+ 1)(k − 2)

(t− k + 2)(t− k + 4)
.

It can be easily verified that

4(t+ 1)(k − 2)

(t− k + 2)(t− k + 4)
≥ 4(t+ 1)(k − 2)

(t+ 2)(t+ 4)

holds for all k ∈ [−t, t]. Putting these observations together, we get

P [|At| = 1] ≥
∑
j

t∑
k=−t+4

pt(k)P
[

min
i∈{1,2,...,N}\j

{Li,t−1 + Zl,t} ≥ Lj,t−1 +
k

2

]
pt(k − 4)

pt(k)

≥
t∑

k=−t+4

P
[
min
j∈St

Zj,t =
k

2

]
pt(k − 4)

pt(k)
.
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This implies

P [|At| > 1] ≤1−
t∑

k=−t+4

P
[
min
j∈St

Zj,t =
k

2

]
pt(k − 4)

pt(k)

≤1−
t∑

k=−t
P
[
min
j∈St

Zj,t =
k

2

](
1 +

4(t+ 1)(k − 2)

(t+ 2)(t+ 4)

)

=
t∑

k=−t
P
[
min
j∈St

Zj,t =
k

2

](
4(2− k)(t+ 1)

(t+ 2)(t+ 4)

)
=

8(t+ 1)

(t+ 2)(t+ 4)
− 8

t+ 1

(t+ 2)(t+ 4)
E
[
min
j∈St

Zj,t

]
≤8

t
+

8

t
E
[

max
j∈{1,2,...,N}

Zj,t

]
.

Now using

E
[
max
j
Zj,t

]
≤
√
t logN

2

implies

P [|At| > 1] ≤ 4

√
2 logN

t
+

8

t

as desired.

4. Online combinatorial optimization

In this section we study the case of online linear optimization (see, among others, Gentile
and Warmuth (1998), Kivinen and Warmuth (2001), Grove et al. (2001), Takimoto and
Warmuth (2003), Kalai and Vempala (2005a), Warmuth and Kuzmin (2008), Helmbold
and Warmuth (2009), Hazan et al. (2010), Koolen et al. (2010), Audibert et al. (2011)).
This is a similar prediction problem as the one described in the introduction but here each
action i is represented by a vector vi ∈ Rd. The loss corresponding to action i at time
t equals v>i `t where `t ∈ [0, 1]d is the so-called loss vector. Thus, given a set of actions
S = {vi : i = 1, 2, . . . , N} ⊆ Rd, at every time instant t, the forecaster chooses, in a possibly

randomized way, a vector V t ∈ S and suffers loss V >t `t. We denote by L̂n =
∑n

t=1 V
>
t `t

the cumulative loss of the forecaster and the regret becomes

L̂n −min
v∈S

v>Lt

where Lt =
∑t

s=1 `t is the cumulative loss vector. Of course, one may treat each vi ∈
S as a separate action and the results of the previous section hold but one may gain
important computational advantage by taking the structure of the action set into account.
In particular, as Kalai and Vempala (2005a) emphasize, fpl-type forecasters may often be
computed efficiently. In this section we propose such a forecaster which adds a random-walk
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perturbation to each component of the loss vector. To gain simplicity in the presentation, we
restrict our attention to the case of online combinatorial optimization in which S ⊂ {0, 1}d,
that is, each action is represented a binary vector. This special case arguably contains most
important applications such a the online shortest path problem. In this example, a fixed
directed acyclic graph of d edges is given with two distinguished vertices u and w. The
forecaster, at every time instant t, chooses a directed path from u to w. Such a path is
represented by it binary incidence vector v ∈ {0, 1}d. The components of the loss vector
`t ∈ [0, 1]d represent losses assigned to the d edges and v>`t is the total loss assigned to the
path v.

Another (non-essential) simplifying assumption is that every action v ∈ S has the same
number of 1’s: ‖v‖1 = m for all v ∈ S. The value of m plays an important role in the
bounds below.

The proposed prediction algorithm is defined as follows. Let X1, . . . ,Xn be independent
Gaussian random vectors taking values in Rd such that the components of each Xt are i.i.d.
normal Xi,t ∼ N (0, η2) for some fixed η > 0 whose value will be specified later. Denote

Zt =
t∑

s=1

Xt .

The forecaster at time t, chooses the action

V t = arg min
v∈S

{
v> (Lt−1 + Zt)

}
,

where Lt =
∑t

s=1 `t for t ≥ 1 and L0 = (0, . . . , 0)>.
The next theorem bounds the performance of the proposed forecaster. Again, we are

not only interested in the regret but also the number of switches
∑n

t=1 I {V t+1 6= V t}.
The regret of similar order–roughly m

√
dn–as that of the standard fpl forecaster, up to

a logarithmic factor. Moreover, the expected number of switches is O
(
m2(log d)5/2√n

)
.

Remarkably, the dependence on d is only polylogarithmic and it is the weight m of the
actions that plays an important role.

Theorem 4 The expected regret and the expected number of action switches satisfy (under
the oblivious adversary model)

EL̂n − v>Ln ≤ m
√
n

(
2d

η
+ η
√

2 log d

)
+
md(log n+ 1)

η2

and

E
n∑
t=1

I {V t+1 6= V t} ≤
n∑
t=1

m2
(

1 + 2η
(
2 log d+

√
2 log d+ 1

)
+ η2

(
2 log d+

√
2 log d+ 1

)2)
4η2t

+

n∑
t=1

m2
(
1 + η

(
2 log d+

√
2 log d+ 1

))√
2 log d

η2
√
t

.

In particular, setting η =
√

2d√
2 log d

yields

EL̂n − v>Ln ≤ 4m
√
dn 4
√

log d+m(log n+ 1)
√

log d.
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and

E
n∑
t=1

I {V t+1 6= V t} = O
(
m2(log d)5/2√n

)
.

The proof of the regret bound is quite standard, similar to Audibert et al. (2011),
and it is omitted. The more interesting part is the bound for the expected number of
action switches E

∑n
t=1 I {V t+1 6= V t} =

∑n
t=1 P [V t+1 6= V t]. It follows from the lemma

below and the well-known fact that the expected value of the maximum of the square of d
independent standard normal random variables is at most 2 log d +

√
2 log d + 1 (see, e.g.,

Boucheron et al. (2013)). Thus, it suffices to prove the following:

Lemma 5 For each t = 1, 2, . . . , n,

P [V t+1 6= V t |Xt+1 ] ≤
m2 ‖ht‖2∞

4η2t
+
m2 ‖ht‖∞ E [‖Zt‖∞]

η2t
.

Proof We use the notation Pt [·] = P [· |Xt+1 ] and Et [·] = E [· |Xt+1 ]. Also, let

ht = `t + Xt+1 and Ht =
t−1∑
s=0

ht.

Define the set At(c) as the “lead pack of width c”:

At(c) =
{
w ∈ S : (w − V t)

>Ht ≤ c
}
.

where c is a positive number that we choose later. (It is allowed to depend on Xt+1.)
Observe that c ≥ maxw∈S |(w − V t)

>ht| guarantees that no action outside At(c) can take
the lead at time t+ 1, since if w 6∈ At, then

(w − V t)
>Ht ≥ max

w∈S
|(w − V t)

>ht|

so (w − V t)
>Ht+1 ≥ 0 and w cannot be the new leader. For w ∈ At, we use the trivial

bound Pt [V t+1 = w] ≤ 1, thus we have the bound

Pt [V t+1 6= V t] ≤ Pt [|At(c)| > 1] ,

which leaves us with the problem of bounding Pt [|At(c)| > 1]. Similarly to the proof of
Lemma 3, we start analyzing Pt [|At(c)| = 1]:

Pt [|At(c)| = 1] =
∑
v∈S

Pt
[
∀w 6= v : (w − v)>Ht ≥ c

]
=
∑
v∈S

∫
y∈R

fv(y)Pt
[
∀w 6= v : w>Ht ≥ y + c

∣∣∣v>Ht = y
]
dy,

(2)
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where fv is the distribution of v>Ht. Next we crucially use the fact that the conditional
distributions of correlated Gaussian random variables are also Gaussian. In particular,
defining k(w,v) = (m− ‖w − v‖1), the covariances are given as

cov
(
w>Ht,v

>Ht

)
= η2(m− ‖w − v‖1)t = η2k(w,v)t.

Let us organize all actions w ∈ S\v into a vector W = (w1,w2, . . . ,wN−1). The conditional
distribution of W>Ht is an (N − 1)-variate Gaussian distribution with mean

µv(y) =

(
w>1 Lt−1 + y

k(w,v)

m
, . . . , w>N−1Lt−1 + y

k(w,v)

m

)>

and covariance matrix Σv, given that v>Ht = y. Defining K = (k(w1,v), . . . , k(wN−1,v))>

and using the notation ϕ(x) = 1√
(2π)N−1|Σv |

exp(−x2

2 ), we get that

Pt
[
∀w 6= v : w>Ht ≥ y + c

∣∣∣v>Ht = y
]

=

∞∫
· · ·
∫

zi=y+c

φ

(√
(z − µv(y))>Σ−1

y (z − µv(y))

)
dz

=

∞∫
· · ·
∫

zi=y+c
(

1+
k(wi,v)

m

)φ
(√(

z − µv(y)− c

m
K
)>

Σ−1
y

(
z − µv(y)− c

m
K
))

dz

=

∞∫
· · ·
∫

zi=y+c
(

1+
k(wi,v)

m

)φ
(√

(z − µv(y + c))>Σ−1
y (z − µv(y + c))

)
dz

= Pt
[
∀w 6= v : w>Ht ≥ y + c

(
1 +

k

m

) ∣∣∣v>Ht = y + c

]
,

11



where we used µy+c = µy + c
mK. Using this, we rewrite (2) as

Pt [|At(c)| = 1] =
∑
v∈S

∫
y∈R

fv(y)Pt
[
∀w 6= v : w>Ht ≥ y + c

k(w,v)

m

∣∣∣v>Ht = y

]

−
∑
v∈S

∫
y∈R

(fv(y)− fv(y − c))Pt
[
∀w 6= v : w>Ht ≥ y + c

k(w,v)

m

∣∣∣v>Ht = y

]

≥
∑
v∈S

∫
y∈R

fv(y)Pt
[
∀w 6= v : w>Ht ≥ y + c

m− 1

m

∣∣∣v>Ht = y

]

−
∑
v∈S

∫
y∈R

(fv(y)− fv(y − c))Pt
[
∀w 6= v : w>Ht ≥ y + c

k(w,v)

m

∣∣∣v>Ht = y

]

=Pt
[∣∣∣∣At(cm− 1

m

)∣∣∣∣ = 1

]
−
∑
v∈S

∫
y∈R

(fv(y)− fv(y − c))Pt
[
∀w 6= v : w>Ht ≥ y + c

k(w,v)

m

∣∣∣v>Ht = y

]
,

where we used k(w,v) ≤ m − 1 in the inequality. After reorganizing, we obtain an upper
bound for

Pt [|At (c)| > 1]− Pt
[∣∣∣∣At(cm− 1

m

)∣∣∣∣ > 1

]
,

which is the probability that there are actions in the “outer ring” of the lead pack. Intro-
ducing the notation

Bt(a, b) =
{
w ∈ S : (w − V t)

>Ht ∈ [a, b]
}
,

we may write

Pt [|At (c)| > 1]− Pt
[∣∣∣∣At(cm− 1

m

)∣∣∣∣ > 1

]
= Pt

[∣∣∣∣Bt(cm− 1

m
, c

)∣∣∣∣ > 0

]
.

To treat the remaining term, we use that v>Ht is Gaussian with mean v>Lt−1 and
standard deviation η

√
mt and obtain

fv(y)− fv(y − c) =fv(y)

(
1− fv(y − c)

fv(y)

)
≤fv(y)

(
c2

2η2mt
− c(y − v>Lt−1)

η2mt

)
.

12



Thus,

∑
v∈S

∫
y∈R

(fv(y)− fv(y − c))Pt
[
∀w 6= v : w>Ht ≥ y + c

k(w,v)

m

∣∣∣v>Ht = y

]

≤
∑
v∈S

∫
y∈R

fv(y)

(
c2

2η2mt
− c(y − v>Lt−1)

η2mt

)
Pt
[
∀w 6= v : w>Ht ≥ y + c

k(w,v)

m

∣∣∣v>Ht = y

]

≤
∑
v∈S

∫
y

(
c2

2η2mt
+

∣∣∣∣c(y − v>Lt−1)

η2mt

∣∣∣∣) fv(y)Pt
[
∀w 6= v : w>Ht ≥ y + c

k(w,v)

m

∣∣∣v>Ht = y

]

≤
∑
v∈S

∫
y

(
c2

2η2mt
+

∣∣∣∣c(y − v>Lt−1)

η2mt

∣∣∣∣) fv(y)Pt
[
∀w 6= v : w>Ht ≥ y

∣∣∣v>Ht = y
]

=
c2

2η2mt
+
cE
[
|V >t Zt|

]
η2mt

≤ c2

2η2mt
+
cmE [‖Zt‖∞]

η2mt
,

where we used k(w,v) ≥ 0 in the third inequality. Eventually, we obtain

Pt
[∣∣∣∣Bt(cm− 1

m
, c

)∣∣∣∣ > 0

]
≤ c2

2η2mt
+
cE [‖Zt‖∞]

η2t
. (3)

Now observe that the lead pack can be decomposed into disjoint layers as

At(c) \ V t =

∞⋃
s=0

Bt

(
c

(
m− 1

m

)s+1

, c

(
m− 1

m

)s)

Using the union bound, we obtain

Pt [|At(c)| > 1] ≤
∞∑
s=0

Pt

[∣∣∣∣∣Bt
(
c

(
m− 1

m

)s+1

, c

(
m− 1

m

)s)∣∣∣∣∣ > 0

]

≤
∞∑
s=0

((
m− 1

m

)2s c2

2η2mt
+

(
m− 1

m

)s cE [‖Zt‖∞]

η2t

)

≤ m2

2m− 1
· c2

2η2mt
+
cmE [‖Zt‖∞]

η2t

Using c = m‖ht‖∞ proves the theorem:

Pt [|At(c)| > 1] ≤m
2
·
m2 ‖ht‖2∞

2η2mt
+
m2 ‖ht‖∞ E [‖Zt‖∞]

η2t

≤
m2 ‖ht‖2∞

4η2t
+
m2 ‖ht‖∞

√
2 log d

η2
√
t

.

(4)
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