Random Trees
A Cartesian tree is a binary tree, introduced by Vuilleman (1980) for geometric range search-
ing.

EE,f_; 5“"?()0% gW‘{Ni ALk ofF KegS Owde asSomoeadl priovities
s P £ lch o F ¢
Prioviries: 1 3 | 6 L o) +

Priccties & ouso comude " hme Stmps”.

Build a BST on the keys by inserting them in the order given by their priorities.
L= iy priocthy of FRe R -
C,) 't
8 (3) =2
/N

5 &)
N
©®

Note that the tree has min heap priority based on the Time stamps/priorities

The inorder traversal of the tree results in the sorted keys. This is equivalent to BSTs.

DEFINITION: Cartesian tree
C\:NW o Sk [Y'l)‘%)) o ({Y’m%m}
Kﬂ; \ Wﬁoﬂ'h& (hrw S+awv(9).
A wrkesian tvee 18 o B.ST wity Avpey o e KM(JLS
G O M. hw Wiy Yerpeeh fo the, prionifics

Fact: Given data (z1,41,) ... (T, yn), the cartesian tree is unique.

¥ The dwiw of roob s ‘-km‘fbt\/\l7 Y L/K Subivees GAL
duummed by SFRL Aootb

A Cartesian tree can be built on a sequence of items v, ..., y, by using the y/s as the priorities
and the order of the items as the keys:

ey’ | 2 X L S 6 g 8 (W wp%(__)
oo 4 S F)8 2 o 2033;

— e
s 2 ™ D,
Y o>

Application: Range Searching: Given 2 elemens in the above sequence/array, the minimum
value in the sbuarray is the lowest common ancestor in the tree.

vy, 4 G F ()8 (U 1w 20
L/—’\/___————ﬂﬁ

Application:Cartesean trees can be used to store 2-dim data:
BST keys: x-coord

Priorities: y-coord

4

\/ L
\
Cahr Subbree (-coord,)

I ®Q®®b' Cmuwn 4 Coord)
LUO*- Swbivee, (% wowk)

Suppose we have keys x1, ..., x, for a Binary search tree. To build a Cartesian tree, we would

need priorities. We could use the priorities 1,...,n.
R Y w The refunf = Kua! (CIJ- w S teds wto
[L o Tn‘o\f“—i(’s) ES’I_ 12) OS“_L/ 7(, — Yy CO\M \IDO

Uwbahan ted. | |
In a Random binary search tree the keys are inserted in Random order. This could be
achieved by permuting the data and the inserting them one by one into the Cartesean tree with
priorities 1,...,n.

(S Kq—l e - 'K,o’m =) The reSundt = Kuﬁ(0N
ol pUf n whakiony) MS i o U e
L,‘)n“o(\‘h"(} ” \ . _ ... ru Féndow) Ocd .

The above construction of a Cartesean tree is equivalent to a Random binary search tree. So
it’s depth is logarithmic with high probability!.

Problem: How could we maintain this randomized property as items are added /removed from
the tree? This happens if we receive only 1 item at a time...

TREAPS

First introduced by Aragon, Seidel (1989). It is a Cartesean tree where each node received a
Randomly chosen priority

7 GV“[VO KU‘A(S oo Ry
‘ P«ss.-gm *?n‘on‘hbt T; h gy Y.

$

RandowD Vv ame (. wni Bvmo 195 CO))7>
99 KH,?fS 2 g C D
WS3i4 priioeihis YHoo2t bl AN

Treaps oa sy o mamtav) s
N e o cddid/ AumaNd -

Operations: fook s o mawmtowy T ML Candoro BST Adafrovshnp - .

Insert: E_:: Cr, H Thasr (D' -
/ \ — C\,SSiaV\) fmovmat (rmdnm) 9.
B
/El '\\g - S o st D vito bree.
) K65 T e antadions b iy
R 10 E,2% / _
/ / dok J’W-
a5 T+
(5> &
n-/ \ . B}\i H~) S_
N
B A [/O D, K 6g
&, 2 N /
C zé ¢, 25 B123 T 33

1

The insert operation:
e assigns the new node a random priority
e searches for the position according to the BST

e performs a sequence of roations to maintain the heap property

The rotate operation:

Pseudocode for Moving node u up: (fotafL <).

While, w# oot 2z hig L?w\mﬂw'.l] 7 o Lw]

b W e)
W

if r\‘jhrﬁw] == v !
w%m—[bal = Jeddfuw . Loy

l@,f’“‘(_\,&,’l - LJ" A0fohon .
Parent (W) = <p aunt L]
Y orent U\'ghﬂ_uﬂl = o

W OV\M’\A‘LUJ'S =
/ \ @ F W
AN £ Ve (gt wetations > ¥ <or nobes
/u)
Delete a node: w’ N\

/N T
[L

/\ . To dltf% thio mede | make, Wis sfwu‘oq? 6 |
" Padsuy Aobabong (d00rv) B manotanl Ha hop -
/ /\ Nede wil Go to leat |
AWA
/ \%/

Split a treap: Gwvu woVOML ¥, Wit wisy Tt gplit SRe Saeey b 2 breaps, T T2
Where

Now Cwp off leaf ||

Koy s (T1) 4 2 < KaysCT2D.

tow !
(=)
A T et) = — N
[N S
OYTj\hl\L w Wil bewwe, N T2
oo £ 2%

Tase one s L breagr

Join 2 Treaps: .
PSSt Assunne WCQM/?NMJZ.Umﬁ)TUTZ Sudy Hhat

@yCTD QK%:UYD.
- Want o 80\./\/ T 2 Brwaps v o bruap .
" fou?
cCuad e node witho R%‘K' SuUo Shab
Ku%;crl) £ K <& K%MTZB_

Jor dfe 2 brape by KAl plawng Kook e
amok, Wlds MOy -0

(KI'OZS) OMW—P
— W dhut
—l—[/\m o ek — ii
\M’(uha, obo\e,
Jf’CC}:u'\/\%\/\L K
- ///'Q&~m)\\\
_ Q\”)\'D Q\ZK
/N /N
U 2
1| ClLO ™, (g 0,30 32 TZ2.
/ N\ { \ ™ G
Yllll gll‘; 22)
G
Now G5 7\
dnre (N =) / N\ c "8
G§> — /N 4R
/ \ / K 23 K \@)Z_Z
A 5 M & Y, | /N
/ 03 U, 32 4
K22 ! N \d
P 2y V,\H0 P
s /("’
VAR C \m
C Mg / Y
n B K Ra23 — W B Kz, Rz2Z
O 2o U\\EZ N U
4)\ \izHD \0 A
dhuiz | N/ P, Y \p

Recall the Cartesian tree, given a sequence of priorities:

\(su.&,st
Paoriies ! |12 24 2o 35 s o0 ko 18

Buldung, i Souhing of T b, yiods /ZQ
4.2

A

7

A 3§ G
The tree can also be constructed sequentally in linear time, using the above insert algorithm:

> Tasert #Re tkws ong b\& ong, MtV Lanestan) tre b /ayw

= The Kué\ Wil e wsaded on She /sz}hr il o . Skep....
Uuments.
© (y12)
2 (2)|o)
& (\\\) 2 /
(2,10) ((,12)
@ (2,10)
7N\
C\,\g) CZ;LLO
& (2,00) (2,109
7N\ X
G,12)) C\,/w_) N (4,20
N /
Hhee) (3,24) (20)
7N\
(
o0 4 s TR
N i < .
Ch12) (4.20) ~ Cl,/|1) (4,20) — (3,24) /((n.\:?a)
: \(939 o (5,38) QL
CZ,UO N (329> (6,30) =)
(6,30 Cg)g/g—) A (F @o) (F,109)
h C&QO)

ETC-..

A Cartesean tree on the sequence above can be pictured on an abacus...

Te fnad dee a0 bu dnawd sV ool i CKudf)
W e (N/ﬁ?h\" J\l(’/\wQ/\B Fw e Smng (\()/\A‘D‘f\"]'j,,.)

l
z 3‘ 1 ¢ 3 ¢ q
- T \.
426 '8
4 |
\ T30
\3 S
1 6o
& loo
Towards the analysis of treap depth:
Recall that for a discrete Random Variable,
OO = 2 % POX= %)
n
Assume that the data of our treap is (1,77), ..., (n,T,). In other words, our keys are 1...n for
simplicity. R
T e Stounp S (randa)
Let the depth of node k be Dy: VM%S
s
3 X
;\ #FK

\L&K: L il [18 wueste of €
O sHwvuwite.

To find the Expected depth we sum up the chance that each node in the tree is an ancestor of

k:
(D) = Z ?Cd IS onteshr of K)
| #¥
i - 2Pl s e oF) e SR 5 e oK)
10, (SR JeE
/ \ = = é ?[TJ 1§ Smaklest 6P> r 2?(’5 i€ Smankel”
Y (<K 1:1 Tx i *R of
/S)
135 V0
/ \ / X Notw 1S 10 st of | ncause |

\) \7,) \\‘Z} lﬂj) -r(’s_

The insert operation:

Recall it first searches through the BST to insert the key as a leaf, and the rotates up to maintain

the heap property of the priorities.

Step ()
Fnal wasorted. vpostio0, (O)

T\

—

-
— L J

dw »

How deep is the leaf expected to be? The expected depth of a leaf is computed in the same
way, however we assume it’s priority is oo since it is at the bottom of the tree.

Rloapwo of wal) = 5 1 e

e 5 e 3
\ POT e) PO s A
Wi 0? v Oﬂ
(0, © L Ter TenT)

\ HV\"] + Hn—v\.

After the node is rotated up to its finial position, its depth is that of a typical random node:
E(D) = HK%- H -2 .

n-g +|

Thus the number of rotations is the@between these 2 paths:

N
Green) = (HK’\ + H"“K> - (\’\Ki\/\gt&(ﬂ ~Z>@

The insert time is bounded by the expected depth of the leaf.

~ Zr\/\tfvn)«
Similary, delete in a treap is O(logn).

Note that the expected height of the treap is O(logn), (not shown).

QuickSort:

Note that the algorithm for quicksort is essentially the same as building a RBST.

. Vi Q\\fob — Ko &p(‘(/lbwi% et of CBRST
C Paditiod w0 2 2 Poaditod wito

W WSM

Ll Subtnees .

The number of comparisons is thus the same as those made when building a BST:

Foowmp = 2D

= a/ %H CD*'VP.
W)™ & B00) NI

® =D
. 0 A
= B+ H _9 -2
en. of rf_=_5_ LZ:{ l N

2 ©
(HH— H‘-A l-(l+z+HL\) 1-({43{-9\) - <‘;L’g [_&(> — 20

¢ =

7

- Y,
e

(/Y\j

\;4‘ (L‘F ’/2> + CL{_ I/){*“/g) T
lolleck Jawns -- .
~
- ’2’2 "L(n—JH) ALY
((j / \ \

_ / ‘ ~>
ﬂ(lrvk[\’m — Z—Z(\) 27 ‘{]> — Zr0
= 2oV, - 20 ¥ 24, — 2.0

= ZNHV\) +2_\Afr\7" q,/[)
I~~~

2m Vg & \‘ZBWing"’J

12

