
Random Trees

A Cartesian tree is a binary tree, introduced by Vuilleman (1980) for geometric range search-
ing.

Ex.

Build a BST on the keys by inserting them in the order given by their priorities.

Note that the tree has min heap priority based on the Time stamps/priorities

The inorder traversal of the tree results in the sorted keys. This is equivalent to BSTs.

DEFINITION: Cartesian tree

Fact: Given data (x1, y1,) . . . (xn, yn), the cartesian tree is unique.

1

Suppose given : A list of keys and associated priorities :

=

keys :
A B C D E F f .

priorities : 4]
①

" £

amps
"

.

t

Priorities ⇒ also called
" time

C
,①

← mini priority of the tree .

B.③
/ \

E ,②

I
' '

A
D.⑥

F
, ⑤
'

G. ⑦

- =
.

Given a set ly , y ,) ,
(Xn , yn)

T T
priority Chine stamp) .

Key

A cartesian tree is a B. S - T . with respect to the keys
and a min . heap with respect to the priorities

.

* The choice of root is unique , the LIR subtrees are

determined by the root .

A Cartesian tree can be built on a sequence of items y1, . . . , yn by using the y0s as the priorities
and the order of the items as the keys:

Application: Range Searching: Given 2 elemens in the above sequence/array, the minimum
value in the sbuarray is the lowest common ancestor in the tree.

Application:Cartesean trees can be used to store 2-dim data:
BST keys: x-coord
Priorities: y-coord

Ex : I 2 3

04
5 6 7 8

← l7nda7ray
. . .)

9 3 7 I 8 12 10 20 } y ;Grein :

Root .

Left Right .

* The /
Keys are 2¥" sorted "

. ⑥ ↳ '
o⑦

ere
.

9 ③ t ① 8 120 to 20

X
min . element

. * see above .

i i

c l
i

'
*

•

: :

! c
&

•
* "

" :#
Right subtree (x - word)

- ⑨ Root . (min
y word)

Left subtree (X word)

Suppose we have keys x1, . . . , xn for a Binary search tree. To build a Cartesian tree, we would
need priorities. We could use the priorities 1, . . . , n.

In a Random binary search tree the keys are inserted in Random order. This could be
achieved by permuting the data and the inserting them one by one into the Cartesean tree with
priorities 1, . . . , n.

The above construction of a Cartesean tree is equivalent to a Random binary search tree. So
it’s depth is logarithmic with high probability!.

Problem: How could we maintain this randomized property as items are added/removed from
the tree? This happens if we receive only 1 item at a time...

TREAPS

First introduced by Aragon, Seidel (1989). It is a Cartesean tree where each node received a
Randomly chosen priority

X
,

- Xn keys
2g

The result ⇒ Keys get inserted into

1
. . .

. .
no priorities .

BST in order x
,

→ Xn
.

Could be

unbalanced ! !

Keys : Xo
,

- - -
- -

X on

ly
⇒ The result ⇒ Keys are

(after permutation) inserted into the tree in

priorities : l -
- - . .

N
random order

.

• Givin keys X
,

-
- - - XN

• Assign priority Ti to each Xi .

t
Random value (ex .

uniform # in CO
,
17)

.

I

exe Keys A B C D
B

,
.
21

assign priorities . 4 - 21 - 73 . 66 } / \
A
,
-4 D

,
-66

/
Troops are easy to maintain at

C
, -73

,

new items are added tremor ed . - -

Operations:

Insert:

The insert operation:

• assigns the new node a random priority

• searches for the position according to the BST

• performs a sequence of roations to maintain the heap property

The rotate operation:

4

Goal is to
"

maintain " the random BST relationship . . .

=
ELI G , 4 Insert ' D '

:

I \ →

assign priority (random) 9
.

13,74 H
,
5

→ B.S .
to insert D into tree .

I l l
K

, 65
→

Perform rotations to fix
A. 10 23 / the heap -

-

C
,
25 I

,
73

I
f. 4

Rotate 6 - G
, I s

(Bl i
. B ,f

It , 5
A

✓ E ,
23

-

ppg
/ \

K
, 65

④ Rotate .

A' ' O
,

C
,

2€ C
,

2/5 \
El 23 I

,
73

.

•

g
egg

(
•

- ra 9 B
wt :

A laid a 'D

%
Right :

£ .gg?B-B.D?QB
.

Pseudocode for Moving node u up:

Delete a node:

Split a treap:

5

(Rotate up) .

while UF root ee trine [parent CUT] > time [w]

Before :

w f
w =

parent [w]
if right Cw]

= - u then :

I '
w

right Cw]
-

- left few ?

lghttjfan.me
.

A-
b. '

b

I
left ku] = W

parent (u] =

parent few]-after :

u parent (right [WII = w

w/ l
parent [w] -

- U
l B

① the Use (right notation - - - -) * see notes
.

w

u
' l

l l 3
o

l Z

(\
.
I

- this node
, make his priority to

.

{ I #
Jaune

'

Perform rotations (down) to maintain the heap .

=

µ f) Node will go to leaf !

fix
\¥

Now chop off leaf ! !

Given a value X
,

we wish to split the trap into 2 traps
,
Tl

,
T2

where :

Keys (Tt) L x L keys (T2) .

How ?

(x ,

o)

(→ insert IX. a) → →
X

- -

original trap will become
£€

root .

These are your 2 Heaps .

Join 2 Treaps:

6

- Assume we are given 2 Heaps
,
Tl

,
T2 such that

keys (Tl) h keys (T2) .

- Want to join the 2 traps into one trap .

- How ?

- Create a node with key
'

K
' such that

keys CTI) L K L keys (T2) .

- Join the 2 traps by fist placing K at the

root
,
with priority - D :

(K ,
- d) * trap

man
→ miffed,Y → /)

using above T
K

/ (N ,
- a)

technique .

EE f ,
15 TR

,
23

l l

Tl (
(120 mail 8 0,3€

\

431,4
,

} TZ
-

I
A. 21

TB
, 25

¥22
1374

G-

Now
f

,
15 , \

delete @ ,
-8) : / \ c

M ,l8

c ④ → a l '
N

l l / TR
,
23

K "
R
, 23

A B
Yi 's ↳

'
u.az Kp

-

Yu)14,22 s
"
P
, 74

440
E

f-
9315 /

y
l l C M

,
18

c M
,
18 /)

/ l l

A
"

B K R
, 23 A- A B £22

\
R

,
23

/
'
l l l
U ,

32
N U

1930 '
V

,
40 '

O
T

delete !
'
p

,
74 hp V

Recall the Cartesian tree, given a sequence of priorities:

The tree can also be constructed sequentally in linear time, using the above insert algorithm:

7

-

keys : ④ 2 34s-gzkfg.tt#24 20 35 30 100 60 18
priorities ! ' 2 ①

,

yields
, ,
}

4,20

Building this starting at the roots

I '

, etc

- - -

• Inset the items one by ones
maintaining a Cartesian tree at

eachgtep
. . .

° The new key will be inserted as the right child of the last
element

.

① (1,12)

② (1,12) R
(2,10)

→ I
\
(2,10) (1,12)

② (2,10)
/

(1,12)
\
(3,24)

④ (2,10) (2,10)

(1,1)
)
(3,24) th c ,

!,z
)
)
(4,20)

\ /
(4,20) (3,24) (2,10)

⑤ - ⑧
(2,10) (2,10)

(1,125 114,20)
/ \ R R

(1,12) (4120) →

(↳ \
(4,20) →

(3,24%6,30)

(3,14)
)
(5135) (3,24 ,

'

(6,30) (
5,355¥60)

\ /
(6,30) (5,55)

)
(7,100) (7100)

\
(8,60)

ETC . . .

A Cartesean tree on the sequence above can be pictured on an abacus...

Towards the analysis of treap depth:

Recall that for a discrete Random Variable,

Assume that the data of our treap is (1, T1), . . . , (n, Tn). In other words, our keys are 1 . . . n for
simplicity.

Let the depth of node k be Dk:

8

The final tree can be drawn on vertical lines (keys)
where the

'

height
'

represents the time stamp (priority . . .)
I 2 3 4 5 6 7 8 9

I #

it #HT
"

• 35

| 1.60

1,11

=

EL X) = Exnpcx -
- xn)

N

T t
time stamps .

(random)
.

-
-

keys

" " ¥. Xix
o . !÷÷

° ⑨

Xjk =

{
I if j is ancestor of kKOotherwise . depths of K =3

= { Xjr
= If I tf to tot Ot Oto

To find the Expected depth we sum up the chance that each node in the tree is an ancestor of
k:

9

E (Dk) = { Pcj is ancestor of K)
j # k

eye = j§µPlj is ancestor of K)
tg§µPCj is ancestor of K)

*
is~

= MT "

If .at?stpaot)tj.EPCTjisgsmauest
/ \ Tk . - - Tj)

13,5 17,6
j - 15

/) / * Note 15 is ancestor of 11 because I

"
o (I mini "

12,17 Kill

G- ¥ . IF ,

t

§ . Ftl
=

(Yz t - - - t 4k) t (Yat - - - t kn - Kt Il)
= Ha - I t Hn - KH

- l

=

IHhtttn.at#-ElDk).*
.

I 21mW 21.39104-0-0

The insert operation:

Recall it first searches through the BST to insert the key as a leaf, and the rotates up to maintain
the heap property of the priorities.

How deep is the leaf expected to be? The expected depth of a leaf is computed in the same
way, however we assume it’s priority is 1 since it is at the bottom of the tree.

After the node is rotated up to its finial position, its depth is that of a typical random node:

Thus the number of rotations is the di↵erence between these 2 paths:

10

- -

↳ step ①

and inserted position , eco . ,

← Step ②

.
e(step 1)

-

E(depth of leaf) =L 1- t E 1-

[LK
K -

J j > K .

j - K

o - -

\ PC Tj is the) PC Tj is the

,

" m¥¥. mist :*
. ÷÷÷ ,

\ =

Hk
.

,
t Hn

- k
step 2

•
'

'

-7¥
,
+ Hn

- K .

El Dk) = Hkt Hn
- Kt ,

- Z
-

O
red purple

Green (Hk - i
t Hn

- K) - (Hk t Hn - ist ,
-2)

The insert time is bounded by the expected depth of the leaf.

Similary, delete in a treap is O(log n).

Note that the expected height of the treap is O(log n), (not shown).

QuickSort:

Note that the algorithm for quicksort is essentially the same as building a RBST.

The number of comparisons is thus the same as those made when building a BST:

-

~ 2nd NN -

-

-

. Pick pivot → like picking root of RBST .

-

Partition into HR → Partitions into 4k Subtrees .

in quick sort

-

N
• insert i :

comp
= { Di v

in-

in {.TT#m:m.:ElEompj=EECDi
) =

Di
i' - i

n ne t
= { Hi t Hn - it ,

-2 ④
ex .

if n =3 . . .

-

= i = ,
-

#
(Hit Hs) tf Hztttz) t (Hast H ,) = (2 { Hi) - 2N

9=1 q

= 2 EE j - 2N
, j '

un

I t (If 42) t (Lt Yz t Yz) t - - - .
-

- Z -

@

~ ←
Collect terms . . .

= 22 ⑤ In - j ti) - 2N
(j y l -

.

12

← tr →
=

@ n Hn - 2 Ecl) t 22 Yj) - 2N

= 2N Hw - 2N t 2 Hw - 22

= 2N Hn t ZHN - 4W

FEW
inns tt-38wlog

.

13

