
Graphs

A Graph G = (V,E) consists of a set of vertices and Edges. The edges represent a relation
between 2 vertices:

Definitions related to graphs:

What happens if we sum up all the degrees? Notice the number of ”dots” above:

Complete Graph:

Directed Graph:
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Storage Options Graphs:

1. Adjacency matrix

Notice that the matrix is symmetric and has 0’s along the diagonal. So we only need to store:

This number uniquely represents the undirected graph!
Questions...

1. Is there an edge from 2-5?

2. How to remove the edge 2- 5?

3. Exercise: how to find all the neighbours of a node, using the binary representation.
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2. Adjacency List

How does the storage compare?

Depth First Search (DFS) Text book C22.
Algorithm for traversing/searching a graph. Originally introduced for solving mazes.
Intro animation:

Before looking at the exact algorithm, let look at the information we will store along the way.
We need to keep track of :

For each vertex v, define:
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The vertices all start out as white. The time is 0. The above properties are updated in DFS in
the following way:

The Algorithm::
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Note: The results depend on the order in which the neighbours are visited.

Complexity:

Properties of the DFS algorithm:

1. Vertex v is a descendent of vertex u if and only if it was discovered while u was grey:

2. Nested Property: the intervals (d[u], f [u]) are either:
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We can draw these intervals on the time line:

3. White path theorem:
Vertex v is a descendent (DFS tree) of u if and only if
at time d[u] there is a white path from u to v in the graph.
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Note that in DFS on undirected graphs, each edge is explored twice.

Consider DFS on possible directed graphs.

• There is no exact notion of a connected component (for now).

• The algorithm will restart at a new node if DFS(u) completes before all the nodes are coloured
white. The result is a DFS forest.

Edge Classification:

Consider DFS on possible directed graphs. There are 3 di↵erent types of edge that are explored
during the execution:

Tree edges:

Back edges:

Forward/cross edges:

These edges are shown in the following DFS on a directed graph:
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Note that only the tree edges represent the DFS forest. The other edges are part of the graph
and are classified during execution.

Theorem: Undirected graphs have no forward/cross edges.

Consider some edge (u, v) in the graph and assume u was discovered first.
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