
Graphs

A Graph G = (V,E) consists of a set of vertices and Edges. The edges represent a relation
between 2 vertices:

Definitions related to graphs:

What happens if we sum up all the degrees? Notice the number of ”dots” above:

Complete Graph:

Directed Graph:

1

•

EEVXV

⇐
÷
.

ii. " s
.

•

EI ①•-•④ ④L⑥
A graph /

¥: . i÷÷÷±÷÷
components . ⑨ rlrertex

•

of ② is # of neighbours .

=3
.\

sum of
degrees Its +777273=12--2*1

.

•

-1| deglu) = 21 El (Each edge is counted twice)
.

-

•

IEI -
- (2)

•

every edge between avenues is mended
? }%YYEu%eY

.

• → •

,
• # •

I
loop .

(
edges have

a direction

Storage Options Graphs:

1. Adjacency matrix

Notice that the matrix is symmetric and has 0’s along the diagonal. So we only need to store:

This number uniquely represents the undirected graph!
Questions...

1. Is there an edge from 2-5?

2. How to remove the edge 2- 5?

3. Exercise: how to find all the neighbours of a node, using the binary representation.

2

Graphs : I - Z

- Eri
6

matrix of Nl by Nl : O : no edge ,
d : edge .

I 2 3 4 5 6
-

-

I 0 I O O O O

:/ : ::o⇒÷÷ : : :c .in
4 O l O O l O

5 O l l l O
OO f diagonal

.

entries are

6 O O l O O

Upper triangle I O O O O O l ① O O l l l O O

written as - F F F FO
.

sequence : ①

-

✓ 4167961 .
.

IF WI -

- w then ex 46796)
,o

mod 28=(010011/00)
the position of the bit z

for edge @ v) is :

T bit for edge
2. → 5

.

It Lt . - t Cn - 2) - W - U - l) = (n - 2) In - t)
-

- 2-
- W - u - t)

.

block 5-2 - l -

for vertex ② .

= 2
.

= 8
= 10

.

46796)
, o

- 27 = I O O O O O l ⑥ O O l l l O O

T
bit is changed to 0

.

2. Adjacency List

How does the storage compare?

Depth First Search (DFS) Text book C22.
Algorithm for traversing/searching a graph. Originally introduced for solving mazes.
Intro animation:

Before looking at the exact algorithm, let look at the information we will store along the way.
We need to keep track of :

For each vertex v, define:

3

I → ② i - z

z → ① → ④ → ⑤ 4¥ !
3 → ⑤ → ⑥
a
, → ② → ⑤

)
ga , remex was a med , , ,

5 → ② → ③ → ④ to the neighbours .

6 → ③

• matrix : OCN 14 ← Each edge is stored twice in

• List : OWI) t Od El) undirected graphs .

note : IE I E CL)
.

(on a maze with Start - fend)
.

Red : forward Start . 6 7h . . so idea :
goes

"

as far
"

Green : Backtrack
• I •• '

" ••-•• •
as it can

we :O . ¥q¥÷⇐t. ÷ :* :* :*
search

. • -

ftp.end .

hid unexplored
• - • it 12 path

-

• parent pointers ? • time steps ? . if a node is visited ?

• plv] : pointer to the parent of V in the resulting
DFS tree .

• DEV] : the
" time "

at which V was discovered .

• f- (v] : the
'

time '
at which the search is finished

exploring paths out of V
.

• colour Lv] : White / grey 1 black
.

.

The vertices all start out as white. The time is 0. The above properties are updated in DFS in
the following way:

The Algorithm::

4

What do the colours mean ?

OE ④ E) T.in?d.:vena*ofura
¥ .
?

" "

WE : DFS Grey : node is node

has not yet discovered discovered
,
but finished

.

this node . not finished

• Illustrate the algorithm or the graph below
.

• Continues until ay
,

vertices are finished (black) .

Start
.

g
,
,o The Resulting

µ) (¥ DFS tree :

Be 2
, start . -

•④#--t*#*s ,
" IFT !

3,4 '

T tfnisw
145 ④ Snapshot

. °

discovery time .

' b

% " (at time 12)
time

(turns
black)

time = Of time variable

- For all vertices VTV
initialize }qq.mg?nnj-.whw0CNl)
time .

ppg ,u given a start node
.

-

:
.

tinie = bine t I

OCWD { Wu] = time
tfrwdeseenuehhsh's covered

.
overall -

colour Lw] -

grey .

Executed

{ f v adjacent to w :

OILED tinier
if colour Ev] = white M

.

Note: The results depend on the order in which the neighbours are visited.

Complexity:

Properties of the DFS algorithm:

1. Vertex v is a descendent of vertex u if and only if it was discovered while u was grey:

2. Nested Property: the intervals (d[u], f [u]) are either:

5

pcv] = u
.

DFS (V)
.

owuwvalhe
.

{
TITO LIF -

-

Tha
node uisnoo"finisn

flu] = time -

EI

Et

2,3

OF *
.
. . } news :ism:m's www..is?.?n::eEw.:e

.

•
u

5.6

• Initialize OC N1)
• Constant work per node (green above) : OCN))
• work done over the edges : (yellow above) i: OCI El)

.

Total : O (Nlt IEI)
.

Since u is grey ,
DFS is still

tyres raw . } TIE :S III "

III. III.
u .

✓

discovered for the first time by DFS ! !

qY.'
' °

ie
N¥ : or Disjoint .

;_._z#H £-7 F- To
.

-

4,5 -

,
12 ' 7 3 .↳ [

Represents descendent .

We can draw these intervals on the time line:

3. White path theorem:
Vertex v is a descendent (DFS tree) of u if and only if
at time d[u] there is a white path from u to v in the graph.

6

For the example above :

time →

µ .
12

I I

:-, IT ,I I
3

. - if6 9 10
• →

4 5
The nested intervals represent
children in DFS tree .

④ U
time is dlu]

.

/ DFS will proceed from

① U
,
and will either follow

and 1mF
's :D '

is ::::::± : : :
paths in / whee it finds V

, it will

¥ be a descendent of U
.

(not %DFS ! !)

-
* Both properties 1

,
and 3 are used to determine if V is a

descendent of U
.

PRO P 1) Time is DEV] PROP 3) Time is DCU]
.

④ u
g④u

) DFS
.

path in G .

¥
,

discovered ! Lov

Note that in DFS on undirected graphs, each edge is explored twice.

Consider DFS on possible directed graphs.

• There is no exact notion of a connected component (for now).

• The algorithm will restart at a new node if DFS(u) completes before all the nodes are coloured
white. The result is a DFS forest.

Edge Classification:

Consider DFS on possible directed graphs. There are 3 di↵erent types of edge that are explored
during the execution:

Tree edges:

Back edges:

Forward/cross edges:

These edges are shown in the following DFS on a directed graph:

7

start

•-••
•

star at "!.
Start 3

• •
•

DFS forest .

. •#IE Dfs has found a tree edge .

•→y#Yjfs
has found an edge to ancestor .

• black .

(
edge to " dead "

node .

⇐
For : Two ÷:& :

(run through) ¥1
← Gaekwad

, cross
.

I ⑤ DFS visits :

⑥ I
, 2,3 , 6,7 .

.
Restarts ! 4,5 ,

8
.

Note that only the tree edges represent the DFS forest. The other edges are part of the graph
and are classified during execution.

Theorem: Undirected graphs have no forward/cross edges.

Consider some edge (u, v) in the graph and assume u was discovered first.

8

I µ
(From above example) .

^
to

DFS forest .

mx
DFS .

v .

<

CASE I) DFS could follow edge CU ,
v) :

nx④u#④v .

tree
DFS

edge ! !

CASE 2) DFS follows some other path that leads to V
.

④#-⑤vME
¥ ienrowwv

is a descendent

•

Before finishing V
, DFS

will explore edge CV, w) .

After , V turns black
,

- Classified : Baek
edge .

then u will turn black
. . .

Result for undirected graphs :

q.%aF.gg#yDFS tree t back edges .

