Flow Networks

A flow network is a directed graph G = (V, E) and:
e a specified source vertex s

e a sink vertex t

e and a given capacity | C(u,V) 20, for wadv uja lu,V) € E.

EY O — O
\I/ / Tﬂ— s\ruc \
Sow‘co
/K’ Clkpat‘ufa,‘
We assume:
e cach vertex lies on a path from s to t ¢ (o Self- loops J
o !
7
® Pl e ®
/ Jor ea\Ju Yat
don - enist

* it edge (u,v) €&, thev Ser Clu,y) =0.

Flow function:
a function that defines the flow across each edge.

@
/\/\) writev as o~ f
@ ey

The flow function can be defined as non- negatz've (as in the textbook).

m . @ @ Positne. Nt fod Fowv U T V-

The opposite flow from v to u is denoted f(v,u).

&L @Q’&é’— @ i~ positive fow 8\1(,5‘ V2 w-
The flow function can also be defined as the net-flow between 2 vertices, in which case

fu,v) = —f(v,u) 5 Nagehve oo 3063 e ofhes

W
[lj ;
Tn Huo d\l{w\(ﬁoﬂ, we RfSwre [@_5—9@
Hao o waplies @)D

In the following notes, we use the notation which assumes that f(u,v) > 0.

In either definition, the flow function must be bounded and conservative at each node:

e bounded:

O <o

N fuv) £ clu,v)

e conservation: . o = aurflow for ol Vertices et St

Vo 2wt S
(&St) !E\]/\—/ \)L\/owl—

The value of the flow on G: How much flow is leaving s and arriving at ¢:

> Vai () = |F)
NG 20 " A
\' 7 vev

fovs ourof Sama @mount™ =Z HV)JG)
S fows wio b vy
Example:
__Slg
0 O O < ¥ Gt B Hoo is
/IO i o/g\‘K (onSuw/iadive. od 2ado nade -
S(¢ v /8) s vV (0, @
—> O : > o __ho—>
o
IO/IS' O/Lf /G %g 10
S V4 \V; /(o~
O - O
of,
The flow function will be extended to sets A and B inthe following way:

° f(4,B) = é Hu,v) — 22?(&17\/) _
uen Veb Ued Ve @ @
— >
nat vp(;oQ A —

o f(5,V)=[f(s,V —{s})
it AnB =0 tuwu !

® @ Havg ¢ = face) + £8C)
Y

Towards a greedy algorithm for finding the maximum flow...

First attempt: start by finding paths along which we can push more flow...

e Start with f(u,v) = 0 for each edge
Jottlenea !
e Find a path that can take more flow /

@V&?V@

%9

e Augment the flow along that path 3 Vs QMQ/} >®
-

e Continue until you get stuck.. ®"

Ex: y
272 ° &« Cayacihe s
10 _7 0 -
\)

ol N Je -

R > o 19 o ¢ Jots .
T4 o y N Fiow 15 (©),
I ® Z{Lk/wg)}l“/ ®

Y09 ——L ' % \O[m] \
® \ ® @ 3 ‘ gy T b
% : X/b « \ f/\ /O/I;

0[’1

Notice that above there are no more paths where we can push more flow. However the max flow
is not 16. It is 19!!

The problem:
By selecting paths like this, we have no way to undo a decision that might have been the wrong

one...
Ex: A

IF we ~f(€1<,
7 of
O . O Yo fodhs o—%> ®
2. A (M Qe v ve =2 Ay ety ke
h _ = wll nedes hnd f. 4 S X"L 91:::3 Wil
@ > 0 e max B0) —0 3, dout
= /2. e may P 1oy .

Solution:
We need to develop a method to remove flow.
Suppose we have the edge in G:

O—5— @)

Build a Residual Network, Gy with edges as follows:
/ C—F(UI\I) = Qapidag Capaes

bt @ @ L0 TiEne o

\
1O

Note that |E| < 2|E].
Another example of an edge in G and G/y:

Hio 3C
Gl/ @< 7@ — Gﬂc_ @Qf ’@
O
/\

The FORD FULKERSON METHOD:: For finding maximum flows.

e Similar to the above greedy approach, but will look for paths in the residual network.

e Start with all flows f(u,v) = 0.

e While there exists an augmenting path from s to ¢ in Gy, identify the capacity of that path.
Let f* be the flow in Gy along this path.

K%}“k%@‘@@?§¢%$ww

=) Celupn) =
(W E p

Augment the flow in G by f*.
(bove , \£3(=]

23 e YO e 7€

The o v G 1§ viovwased x9>J IKe Oumoum |~ Hl*[,

e Continue until there are no more paths in Gy from s to t.

Let’s look at the previous example where we were unable to find the maximum flow: .

© \o[, O 2O (o

L%NT /@ Ho e 1. (oor o marc)

/ >O "/—7@ l0/(()

O—s O,
®/' \o/ﬁ\@ Ouig. patto han Capucity &

O=——- 0 u

&Q N5 @

|
07 O =
\C/\ @%ZJ/ \ \@ (Y £Lov =)b‘i‘2_+)
\Q O T

X N0 more PadhgS!

Here is an example with a double edge:

O —%z 5, o

Yie 15700
@ ®/°“Vq Yy }\}/*\@ flow =9,

@

9
Ay
\—C\i’] §/70<- 1z O 5 O‘Mj l"J L{”
®/u 7 < ’ k\/ © |
. | 9
7; \—' O — 3 > O Lf \
> " —— D
. Cp Vamo vi Gp pathy
How do we find the augmenting paths: ofter MJ.mmhva L{j 4

Notice that this is just a path in the graph Gy from s to . Any traversal algorithm that can
search from s to t will work. Ex. DFS.

Cuts in the Network:
A CUT is a partition (A, B) of the vertices V such that s € A, t € B.

BT g Mmoo

The capacity of the CUT is definited as :

Cop(AB) = S Cluv)
e L.
VEB

S sthese Capackties .on

Example
. 1 S Ie -&gkdu A—B .
0.
/iq\ J/Jg\ A ;S/%:\Jr
@ 2 >
xd s 7 @ CQPU“\@\ = Q;ntjw A =R

)0
A
\\ L[X llg/ :)01_8_*_‘(0

@ - = 3.

In the above example, there is another cut of size 28. It is in fact the minimum of all cuts.

Relationship between Cuts and flows:

ilola.

1. If f is any flow, and (A, B) is any cut, then:
val(f) = f(A, B)

ﬁ: VM('FS = é_ ‘P(§1\/> . 2_@(%3") St wwwt pacs
(M'\’) v ey ey ‘U\rouaw these QdJoS,
= é_ Lé_ HVNB . 2{:(\/)%)]
Uepc V[—\/ \{&V
wupt Ww=S
2. If f is any flow, then its value is bounded by the capacity of any cut.
[vae) £ wc@
P ovat) = £ S) - 5 5 tww
A VEQR WeA Vig
£ 5 é_?(u,\f) = ZZ Cluy) = copta,g)
wes Ve UEA VEB
3. If for some flow f and some (A, B) cut, max- o)
val(f) = cap(A, B) T

then f is a maximum flow and the cut is the minimum of all cuts.

'P ' { .
PEL (mswme £ i Some Wowne (A€ (5 Some ot/ cud .. -

ot/ Hpw.
NaI(F') £ cap(a, @) by P @ Thew Cap(A'6') 2 val (f) 5 0
= Vi) - Gpa,€)
So £ N0 o P! So (A8 is Hthe
MM cud.
Example: ?l‘i
o o) ——— O y A= sk of ad.
10) \ C‘O"P(A16> =
0 s 0 > 10+ 108 & = 28
- (@8
O, v > Y % @
-> O o 13 sk mup Gt
\g/ls 0 z/c’ l de So B v
0 %o o is also 28.
- R
S —
@ IZ/’L @ Hod w0 £ 15 28 .

The above properties will be used to prove the following theorem:
Theorem: A flow f is maximal if there are no augmenting paths in the residual network.

We shall prove that the following are equivalent:
e cap(A, B) = val(f) ©
& f is a maximum flow @&

¢—®» No augmenting paths in Gy @
Pf:
®:@ Mae FOW, mur Gt Sreeery. /
O = it R wear mew O\Mgmmﬁr}a_ ot | dheo e Flow
W, ot Jhawt ey optmial .

& =0
Assume + “hao o OMg. Podhy Cr;-("e/" No S—a{,—upod‘rus),

Thery MbE A be B Vrhites we o Azads howu S
v gk, Zr“—f”\? GFF ho *ages A->R w Gr,p
O/ 138 dkaar Woukdo

A /M @=\//A e, bees o
Yoo $—=2 6 -
7‘@

\ed (£) = Zﬁlu,v) — 21C(V/\/L>

W ek WEA
VE B VER .
- >
The flow over

The Flow ovr v 2dge B—=A

G et Le O, oheswice
e would Jee o A =R {dje o G»—{L

G ti(f]@, A -0

*Sﬁmk e

Capa wj) @ " -

*U{Jc weud
NG CE Jn G_ﬂ-

SN (FY = S CuN) —o - cop(h,B)

WEeA
VeR

. Complexity:
© NoG aharly| is OCIEI) for Hhese Gomesied gruphos.

’ QKZMWU /\QNU\LJ peqormn DES wunt| B e
no ML M\ﬂ ueodiw,

The g T wpdan Gp A wads deationod 35 O0E)).

T We ned do dound otke F of Skvadion.
e Graph traversal (DFS) and edge updates take O(|E|).

e The number of iterations can be as much as the value of f:

{000 J
/ % IF oS V[Ziooo

® 9 B wrere O /,>@

Ve \faﬂd

\ D Q)/looo
°/ Jo0D ’——V 1000
e oo)

Ld m \
a ey Mose #awd)¢ 2000 T wll YaXe (999 wew sdanoedions
(T cld S Asadhade 1w 2 WJnodtons | wnv';a, Frase paty wwh| we fivds ave

Yol
e Total: ool

The complexity above assumes integer capacities. If the capacities are rational the algorithm is

guaranteed to finish, however for some irrational capacities, it is non-terminating.

There are several methods to find better augmenting paths...

Edmonds-Karp algorithm ('72) referrs to using BFS instead of DFS to find the augmenting
paths. In this case, each BFS takes O(|E|) time, as with DFS, however the number of iterations

is bounded by O(|V - EY).
- Toral i plity ¢ Of W |- 1E1\>
‘ ﬂxq,id.m)x}wffw‘%?wm(}’ BES
TN
P And dhe Shodust pate S—E) we cav
od, ke #oof hmy, otk (5 wad WV

Thaae o W\qma otha, vroSIiBLo l/\m,n(JTA 91, \f)iCng,
. aood/" mebn'ﬁ ok,

