Flow Networks

A flow network is a directed graph G = (V, E) and:
e a specified source vertex s

e a sink vertex t

e and a given capacity | C(u,V) 20, for wadv uja lu,V) € E.
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We assume:
e cach vertex lies on a path from s to t ¢ (o Self- loops J
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Flow function:
a function that defines the flow across each edge.
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The flow function can be defined as non- negatz've (as in the textbook).
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The opposite flow from v to u is denoted f(v,u).
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The flow function can also be defined as the net-flow between 2 vertices, in which case

fu,v) = —f(v,u) 5 Nagehve oo 3063 e ofhes

W
[lj ;
Tn Huo d\l{w\(ﬁoﬂ, we RfSwre [ @_5—9@
Hao o waplies @)D

In the following notes, we use the notation which assumes that f(u,v) > 0.



In either definition, the flow function must be bounded and conservative at each node:

e bounded:
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The value of the flow on G: How much flow is leaving s and arriving at ¢:
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The flow function will be extended to sets A and B inthe following way:
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o f(5,V)=[f(s,V —{s})
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Towards a greedy algorithm for finding the maximum flow...

First attempt: start by finding paths along which we can push more flow...

e Start with f(u,v) = 0 for each edge
Jottlenea !
e Find a path that can take more flow /
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e Augment the flow along that path 3 Vs QMQ/} >®
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e Continue until you get stuck.. ®"
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Notice that above there are no more paths where we can push more flow. However the max flow
is not 16. It is 19!!



The problem:
By selecting paths like this, we have no way to undo a decision that might have been the wrong

one...
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Solution:
We need to develop a method to remove flow.
Suppose we have the edge in G:
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Build a Residual Network, Gy with edges as follows:
/ C—F(UI\I) = Qapidag Capaes

bt @ @ L0 TiEne o

\
1O

Note that |E| < 2|E].
Another example of an edge in G and G/y:
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The FORD FULKERSON METHOD:: For finding maximum flows.

e Similar to the above greedy approach, but will look for paths in the residual network.

e Start with all flows f(u,v) = 0.

e While there exists an augmenting path from s to ¢ in Gy, identify the capacity of that path.
Let f* be the flow in Gy along this path.
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Augment the flow in G by f*.
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e Continue until there are no more paths in Gy from s to t.

Let’s look at the previous example where we were unable to find the maximum flow: .
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Here is an example with a double edge:

O —%z 5, o

Yie 15700
@ ®/°“Vq Yy }\}/*\@ flow =9,

@

9
Ay
\—C\i’] §/70<- 1z O 5 O‘Mj l"J L{”
®/u 7 < ’ k\/ © |
. | 9
7; \—' O — 3 > O Lf \
> " —— D
. Cp Vamo vi Gp pathy
How do we find the augmenting paths: ofter MJ.mmhva L{j 4

Notice that this is just a path in the graph Gy from s to . Any traversal algorithm that can
search from s to t will work. Ex. DFS.

Cuts in the Network:
A CUT is a partition (A, B) of the vertices V such that s € A, t € B.
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The capacity of the CUT is definited as :
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In the above example, there is another cut of size 28. It is in fact the minimum of all cuts.

Relationship between Cuts and flows:

ilola.

1. If f is any flow, and (A, B) is any cut, then:
val(f) = f(A, B)
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2. If f is any flow, then its value is bounded by the capacity of any cut.
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3. If for some flow f and some (A, B) cut, max- o)
val(f) = cap(A, B) T

then f is a maximum flow and the cut is the minimum of all cuts.
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The above properties will be used to prove the following theorem:
Theorem: A flow f is maximal if there are no augmenting paths in the residual network.

We shall prove that the following are equivalent:
e cap(A, B) = val(f) ©
& f is a maximum flow @&
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. Complexity:
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e Graph traversal (DFS) and edge updates take O(|E|).

e The number of iterations can be as much as the value of f:
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The complexity above assumes integer capacities. If the capacities are rational the algorithm is

guaranteed to finish, however for some irrational capacities, it is non-terminating.

There are several methods to find better augmenting paths...

Edmonds-Karp algorithm ('72) referrs to using BFS instead of DFS to find the augmenting
paths. In this case, each BFS takes O(|E|) time, as with DFS, however the number of iterations

is bounded by O(|V - EY).
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