Flow Networks

A flow network is a directed graph G = (V, E) and:

- a specified source vertex s
- a sink vertex t

• and a given capacity,
$$C(u,v) \ge 0$$
, for each edge $[u,v) \in E$.

We assume:

• each vertex lies on a path from s to t

· NO Self-loops 1

Flow function:

a function that defines the *flow* across each edge.

The flow function can be defined as *non-negative*, (as in the textbook).

$$f(u,v) \ge 0$$
, ex , $u \xrightarrow{f=5} v$ Positive net flow from u to J.

The opposite flow from v to u is denoted f(v, u).

ex
$$(1) \leftarrow f^{\frac{2}{3}}$$
 (1) if positive flow goes $\gamma \rightarrow u$.

The flow function can also be defined as the net-flow between 2 vertices, in which case

In the following notes, we use the notation which assumes that $f(u, v) \ge 0$.

In either definition, the flow function must be **bounded** and **conservative** at each node:

• bounded:

$$(u) = 10^{-1} \text{ f}(u, v) \leq c(u, v)$$

• conservation: in flow = outflow for all vertices except S.t.

The value of the flow on G: How much flow is leaving s and arriving at t:

Example:

The flow function will be extended to sets A and B in the following way:

•
$$f(A, B) = \sum_{u \in A} \sum_{v \in B} f(u, v) - \sum_{u \in \delta} \sum_{v \in A} f(u, v)$$

 $u \in \delta \quad v \in A$.
• $f(A, A) = 0$

• f(A,B) = -f(B,A)

- $f(s, V) = f(s, V \{s\})$
- if ANB = \$, then !

$$f(AVB, C) = f(A, C) + f(B, C)$$

Towards a greedy algorithm for finding the maximum flow...

First attempt: start by finding paths along which we can *push* more flow...

- Start with f(u, v) = 0 for each edge bottleneck". • Find a path that can take more flow 6/7 2/10 Can "push" one more unit of flow along this path. • Augment the flow along that path 3_{l_0} , 4_{5} , 7_{7} • Continue until you get stuck.. (\$) 16 Capacities. Ex: *no more pathis. 10 818 Flow is (6) yellow path: augment by 8 8/8 10% E. Pink paths ang. by 6. 42 818
 - green path augment by 2.

Notice that above there are no more paths where we can push more flow. However the max flow is not 16. It is 19!!

The problem:

By selecting paths like this, we have no way to *undo* a decision that might have been the wrong one...

Solution:

We need to develop a method to *remove* flow. Suppose we have the edge in G:

Build a **Residual Network**, G_f with edges as follows:

$$f_{f}: \bigcup \xrightarrow{c} C_{f}(u,v) = \text{Residual capacity}.$$

$$f_{f}: \bigcup \xrightarrow{c} C_{f}(u,v) = C(u,v) - f(u,v) = 15 - 10 = 5.$$

$$C_{f}(v,u) = 10.$$

$$C_{f}(v,u) = 10.$$

Note that $|E_f| \leq 2|E|$. Another example of an edge in G and G_f :

The FORD FULKERSON METHOD:: For finding maximum flows.

- Similar to the above greedy approach, but will look for paths in the **residual network**.
- Start with all flows f(u, v) = 0.
- While there exists an augmenting path from s to t in G_f , identify the *capacity* of that path. Let f^* be the flow in G_f along this path.

• Continue until there are no more paths in G_f from s to t.

Let's look at the previous example where we were unable to find the maximum flow: .

Here is an example with a double edge:

Notice that this is just a path in the graph G_f from s to t. Any traversal algorithm that can search from s to t will work. Ex. DFS.

Cuts in the Network:

A CUT is a partition (A, B) of the vertices V such that $s \in A, t \in B$.

In the above example, there is another cut of size 28. It is in fact the minimum of all cuts.

Relationship between Cuts and flows:

1. If f is any flow, and (A, B) is any cut, then:

$$val(f) = f(A, B)$$

$$\underbrace{Pf: val(f) = \leq f(S, V) - \leq f(V, S)}_{(dufin) \quad V \in V} f(S, V) - \leq f(V, S)$$

$$= \leq \left[\leq f(U, V) - \leq f(V, U) \right]_{V \in V} \quad \text{this will de 0 for all } U$$

$$= \left[\leq f(U, V) + \left[\leq f(U, V) \right]_{V \in V} \quad \text{this will de 0 for all } U$$

$$= \left[\leq f(U, V) + \left[\leq f(U, V) \right]_{U \in A} \quad V \in S \right]_{V \in B} \quad \text{together this makes } V \in V.$$

$$= f(A, B) \quad = 0.$$

2. If f is any flow, then its value is bounded by the capacity of any cut.

$$VAI(f) \leq cap(A_1B)$$

$$\frac{Pf!}{u \in A} \quad v \in B \quad u \in A \quad u \in A \quad v \in B \quad u \in A \quad u \in$$

3. If for some flow f and some (A, B) cut,

$$val(f) = cap(A, B)$$

MAX-FLOW MIN-CUT.

flow.

then f is a maximum flow and the cut is the minimum of all cuts.

The above properties will be used to prove the following theorem:

Theorem: A flow f is maximal if there are no augmenting paths in the residual network.

We shall prove that the following are equivalent:

- cap(A, B) = val(f) ①
 f is a maximum flow ②
 No augmenting paths in Gf ③
 Pf: ① = ② max flow, min cut steerens. √
 ② = ③ if there were more augmenting paths, then the flow would not have been optimal.
 ③ = ①.
 -). Assume I has no aug. paths in Gf. (ie: no s->t paths).

Theor let
$$A$$
 be the vertices we have reachs from s_{r}
in the graph G_{F} : no edger $A \rightarrow B$ in G_{F}
otherwise stare would
have been a
 G_{F}
 $Val(f) = \sum_{u \in A} f|_{U,V}) - \sum_{u \in A} f(V, u)$
 $u \in A$
 $Ve B$
The flow over
 a_{r} edge $A \rightarrow B$
 vi G must
 $uguel uts$
 $capacity!$
 $IG = A + B$
 $in G = must$
 $uguel uts$
 $capacity!$
 $IG = A + G$
 $in G_{F}$.
 $in G_{F}$
 $in G_{F}$.
 $in G_{F}$
 $in G_{F}$.
 $in G_{F}$

•

. Complexity:

Note that IVI is O(IEI) for these connected graphs.

- · Algorithm repeatedly performs DFS until there are no more aug. pather.
- " The time to update Gf after each iteration is O(IEI).
- · Thus we need to sound the # of interactions.
- Graph traversal (DFS) and edge updates take O(|E|).
- The number of iterations can be as much as the value of f:

The complexity above assumes integer capacities. If the capacities are *rational* the algorithm is guaranteed to finish, however for some irrational capacities, it is non-terminating.

There are several methods to find *better* augmenting paths...

Edmonds-Karp algorithm ('72) referrs to using BFS instead of DFS to find the augmenting paths. In this case, each BFS takes O(|E|) time, as with DFS, however the number of iterations is bounded by $O(|V \cdot E|)$.