
Flow Networks

A flow network is a directed graph G = (V,E) and:

• a specified source vertex s

• a sink vertex t

• and a given capacity

We assume:

• each vertex lies on a path from s to t

•

Flow function:
a function that defines the flow across each edge.

The flow function can be defined as non-negative, (as in the textbook).

The opposite flow from v to u is denoted f(v, u).

The flow function can also be defined as the net-flow between 2 vertices, in which case

f(u, v) = �f(v, u)

In the following notes, we use the notation which assumes that f(u, v) � 0.
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In either definition, the flow function must be bounded and conservative at each node:

• bounded:

• conservation:

The value of the flow on G: How much flow is leaving s and arriving at t:

Example:

The flow function will be extended to sets A and B in the following way:

• f(A,B) =

• f(A,A) = 0

• f(A,B) = �f(B,A)
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• f(s, V ) = f(s, V � {s})

• .

Towards a greedy algorithm for finding the maximum flow...

First attempt: start by finding paths along which we can push more flow...

• Start with f(u, v) = 0 for each edge

• Find a path that can take more flow

• Augment the flow along that path

• Continue until you get stuck..

Ex:

Notice that above there are no more paths where we can push more flow. However the max flow
is not 16. It is 19!!
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The problem:
By selecting paths like this, we have no way to undo a decision that might have been the wrong

one...
Ex:

Solution:
We need to develop a method to remove flow.
Suppose we have the edge in G:

Build a Residual Network, Gf with edges as follows:

Note that |Ef |  2|E|.
Another example of an edge in G and Gf :

The FORD FULKERSON METHOD:: For finding maximum flows.

• Similar to the above greedy approach, but will look for paths in the residual network.

• Start with all flows f(u, v) = 0.

• While there exists an augmenting path from s to t in Gf , identify the capacity of that path.
Let f ? be the flow in Gf along this path.
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Augment the flow in G by f ?.

• Continue until there are no more paths in Gf from s to t.

Let’s look at the previous example where we were unable to find the maximum flow: .

5

Above
,
Ift I =/

Ed Ei±⑤Y④
⑤

The flow in G- is increased by the amount If
*
I

.

How was 16 . hot yet max . . . )

TGIF lo O - O

of to aug . pawnees capacity a .

o o
H

'⇒
so am . ramus capacity .

.

o o H

KI
so to and two

giant
O O

* no more paths !



Here is an example with a double edge:

How do we find the augmenting paths:

Notice that this is just a path in the graph Gf from s to t. Any traversal algorithm that can
search from s to t will work. Ex. DFS.

Cuts in the Network:

A CUT is a partition (A,B) of the vertices V such that s 2 A, t 2 B.

The capacity of the CUT is definited as :
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In the above example, there is another cut of size 28. It is in fact the minimum of all cuts.

Relationship between Cuts and flows:

1. If f is any flow, and (A,B) is any cut, then:

val(f) = f(A,B)

2. If f is any flow, then its value is bounded by the capacity of any cut.

3. If for some flow f and some (A,B) cut,

val(f) = cap(A,B)

then f is a maximum flow and the cut is the minimum of all cuts.
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Example:

The above properties will be used to prove the following theorem:

Theorem: A flow f is maximal if there are no augmenting paths in the residual network.

We shall prove that the following are equivalent:

• cap(A,B) = val(f)

• f is a maximum flow

• No augmenting paths in Gf
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. Complexity:

• Graph traversal (DFS) and edge updates take O(|E|).

• The number of iterations can be as much as the value of f :

• Total:

The complexity above assumes integer capacities. If the capacities are rational the algorithm is
guaranteed to finish, however for some irrational capacities, it is non-terminating.

There are several methods to find better augmenting paths...

Edmonds-Karp algorithm (’72) referrs to using BFS instead of DFS to find the augmenting
paths. In this case, each BFS takes O(|E|) time, as with DFS, however the number of iterations
is bounded by O(|V · E|).

• Note that W1 is OCIEI ) for these connected graphs .

•

Algorithm repeatedly performs DFS until there are

no more ang . paths .

• The time to update Gf after each iteration is OCIEI )
.

• Thus we need to abound the # of iterations .
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