
Priority Queues
A Priority Queue is an ADT, like a regular queue but each element has a priority associated

with it. Typically the PQ will remove items with the highest(or lowest) priority first.

Assume min-PQ. The Operations are:

MAKENULL(PQ)

INSERT(k,PQ)

DELETEMIN(PQ)

DECREASEKEY(x,k,PQ)

DELETE(x,PQ)

The Priority Queue can be implemented with a variety of implementations:

• Sorted Linked List

• Unsorted L.L.

• Balanced Search tree

• Tournament Tree

• BEAP

• Fibonacci Heap
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Applications:

1. Operation Systems: scheduling of jobs

2. Construction of hu↵man tree

3. Discrete event simulation

4. Sorting: heapsort

BINARY HEAP:

• Complete Binary Tree

• Each node has the heap property

• Height:

The implementation could be array-based or pointer-based. Assume for the following operations
it is array-based.
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Operations:

1. Siftup(x): Moves element at position x up the heap until it respects the heap property.

2. Heapify(x) Element at position x moves down the array until the heapify property is
maintained.

3. Insert(k,H):
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4. Deletemin(H)

Compleixty:

• Insert:

• Deltemin:

Buildheap(H) Given an array H of keys, turn H into a heap.
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Cost for heapify[x]:

Overall cost:

Entropy of the data:

HeapSort: Given an array H of unsorted elements (n), sort them in place:
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Algorithm:

Number of comparisons:

Bottom-up Heapsort: *Reduces the number of comparisons.

• Builds heap as before

• The delete min operation is performed bottom-up, which means there is no call to Heapify.
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Above, we can see that the new delete-min will insert the last key k into the heap as follows:

• Step 1) Find the path from the root following smallest children

• Step 2) Search up from the bottom leaf of this path until you find the position to insert the
key, k.

Cost:

Faster Variation of delete-min:

Notice that the path of smallest children is sorted.
We can find the insert position of key k using Binary Search!
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Cost of delete min with this fast variation:

Comparisions in Bottom-up Heapsort:

k-ary HEAPS:
Complete k-ary tree has height:

The positions in an array are given by:

Delete min:

Bottom-up (fast) delete-min:

Insert:
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What is the best k-value?

Tournament Trees

• Complete Binary tree

• Data in leaves

• Represents outcomes of tournament

• Internal nodes point to smallest descendant leaf: pointer called �.

Number of nodes:

OPERATIONS:

1. Update(i,k): Leaf i gets new key k:
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2. Insert(k,n): insert key k into a tree with n leaves:

3. Deletemin:

4. MakeTree(n): Create a tournament tree for n given keys.

• Create arrays of size 2n� 1 for �[] and key[].

• Algorithm:

Number of comparisons:
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Tournament Tree Sort:
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