
Priority Queues
A Priority Queue is an ADT, like a regular queue but each element has a priority associated

with it. Typically the PQ will remove items with the highest(or lowest) priority first.

Assume min-PQ. The Operations are:

MAKENULL(PQ)

INSERT(k,PQ)

DELETEMIN(PQ)

DECREASEKEY(x,k,PQ)

DELETE(x,PQ)

The Priority Queue can be implemented with a variety of implementations:

• Sorted Linked List

• Unsorted L.L.

• Balanced Search tree

• Tournament Tree

• BEAP

• Fibonacci Heap

1

✓ TQ
.

④ PQ

" "

O O

coff Knew
x

key .

h¥x
The obvious choice is the cheap . . .

Insert Delete mini -

N l

l N

logan logan
l l l l

rn rn

I *
login

*

* : Amortized ( discussed ) .



Applications:

1. Operation Systems: scheduling of jobs

2. Construction of hu↵man tree

3. Discrete event simulation

4. Sorting: heapsort

BINARY HEAP:

• Complete Binary Tree

• Each node has the heap property

• Height:

The implementation could be array-based or pointer-based. Assume for the following operations
it is array-based.

2

~ > Remove JOB

⑨ www.stnoig
.

JOBS
.

I og a :oo

SEE a :c ÷:p
a 6

ab✓
O 5 e lo¥i→ → imam

'

e

0 I a

* store frequencies mi PQ
Code !

✓ 0 I

* Remove 2 mins
,

sum freq . to make
e : I

new node . . .

U : 0001

PQ : future events
.

\
Remove the

keys : time . µ event that has the

next time an event

should be

executed .

( mN PQ )

X key Lx ] < keyly ]

/ # t y in subtree

-

Recall
. . . Hogan )

j# Heap size ( H )
.It : #%



Operations:

1. Siftup(x): Moves element at position x up the heap until it respects the heap property.

2. Heapify(x) Element at position x moves down the array until the heapify property is
maintained.

3. Insert(k,H):

3

µ while X > I and Hlparentcx ) ) > HEX ]
6 -

X #X move up if parent is

• . bigger .

/ ) 11/4*7/1
°

Swap keys of parents
•

and X

Efx . x -
- parental ]

.10

free .

u

⑦ ← ×

white Xs Heap size fit ) do :

# Y
-

-

argminlttlx ] , Hcleftcx ) )
,

y -72 4

/ Hcnnghtcx ) ) )

3. 1) o

G " ?
note

if y
- X halt

that the Use

Iq argmniop swap keys y , X

/ takes

x. → ⑦ '
4

→ 3%4
2 comparisons !

X -

Y '

yes
To f 's ¥10

1-
A

•
z

21-41516*8137-1 insert key K=3
.

€15 Heapsixeltt ) + =/

/ ) / )
key [ Heap size CHIT - K

le 9 7 8| Sift up ( Heapsiae CHI )3
1
.



.

4. Deletemin(H)

Compleixty:

• Insert:

• Deltemin:

Buildheap(H) Given an array H of keys, turn H into a heap.

4

2

4
' t

s I

10^9 f 's
IT

,

a-

8
8T¥y¥⇐

E TE
"

%§ riuyttif.tk?yIiieapsiaeCHD

↳ µ⑧ abt " { Heap size CHI - =

I

f. Heapifycl ) .

4

⑧
' ' s → Is

6 /( tg f ⑧ '
g t

# comparisons . - -

I Llogzn ) } Ine comp . for each tree depth .

7z 240820¥ old size .

B
uses heapify ,

which needs 2 comp . as it calls ay mind .

Naive # comparisons = Olntogw)
-µ heap ify each node

.

µ µ - cost for heapifylx ) E 2 heighten ] .

'Ein
mango . swim . .

M
height 1

, ( red ) subtrees of height
2C yellow ) ,

etc . - -



Cost for heapify[x]:

Overall cost:

Entropy of the data:

HeapSort: Given an array H of unsorted elements (n), sort them in place:
Ex.

5

x

2. height ( x ] . / ) } height Cx ) .

{ 2. e.
← height of ¥
0 • ( # no¥ti )

9=1
° ( 2h - i )= E.

, -
time to

heiney!! If ,

# nodes -

- 2h - Z
'

heapity .

I
* nodes = 2h - i

=2ht÷ .
. . .

. . . . . >
Iii - II
LE

O Ziyi - I
=Lz 2h "

Iq
,

Yai i c- x )
'

w Lexi = I
Note : Otr ) is £2 '

C - x )
'

much Better
= 2kt ! z

-

thaw X -

- 42
.

= 4.2 " E 4N . tofu ) .

I

Recall HE @ garb

° .

m.ES#FBSTlordeud ) .

= M¥¥¥ • Switw min . with last

4/24,9 T sorted . element .

£42 lotta



.

Algorithm:

Number of comparisons:

Bottom-up Heapsort: *Reduces the number of comparisons.

• Builds heap as before

• The delete min operation is performed bottom-up, which means there is no call to Heapify.

6

a-

÷÷÷ :{ Ii:
¥EiE
- w

12 4) z

Heap .

Sort .

b I7- ← Heap .

. soon .

Build heap ( H )

Heap size ( H ) - N .

* Note that the

For X - n down to 2 do "
fouled " elements

swap key Lx ] and key Ll ] are still in the

Heap size CH ) - =/ array ( back )
Heapifycl ) but are no longer

part of heap .

Build heap cost t Eheapify cost .

Tin
. + a ?÷iog wstot.TEY.g.is ,

a heap of
⇐ Oln ) t @ logan . size i

→
G

( Smail subtrees → bigger subtrees )



.

Above, we can see that the new delete-min will insert the last key k into the heap as follows:

• Step 1) Find the path from the root following smallest children

• Step 2) Search up from the bottom leaf of this path until you find the position to insert the
key, k.

Cost:

Faster Variation of delete-min:

Notice that the path of smallest children is sorted.
We can find the insert position of key k using Binary Search!

7

Ex
- 2X delete '

Suppose we found ether yellow path
= # that is the path that

4 it follows the thin

A. A m .

AN N w
IO k 15

A HAT era r④
-

30 35 ④ I
✓ K -

- 16
.

30

insert 16 ( last item wi heap )
on this path . . .

instead of placing it at the root and calling heapify .

Cogan )

E login )
.

Total : E ② login )
.

&
we can do better ! !

Simply find a faster way to insert K

on the
'

yellow
'

path .

might:{ ¥÷④ " "

Y ::c 'The,Egoyan )
.

Size



Cost of delete min with this fast variation:

Comparisions in Bottom-up Heapsort:

k-ary HEAPS:
Complete k-ary tree has height:

The positions in an array are given by:

Delete min:

Bottom-up (fast) delete-min:

Insert:

8

Loyang ) t toga ( logon )

Finding the
~

path of mine .

Binary Search .

Children .

Build heap t delete mints .

←
flu ) t n ( login t 10gal login ))

ru

nlog * Big improvement .

D

( log ,cN ) =

logy →
kchiid

.

logzk .

jXy • parent LX ] = Xt K - 2 e. Right Kxt I[ IT ) child
!

-

µ§ .

• htt and
' ) za ,

168 4 7
# comparisons

( ⑤ 11 . . .

min
=

Kllogkro )
of Ktl . .

# ← height

e

£tmp arison :

OKEY @ sans )

Tty're to find the path
of smallest children :

( Ofk N )
. min of k children .



What is the best k-value?

Tournament Trees

• Complete Binary tree

• Data in leaves

• Represents outcomes of tournament

• Internal nodes point to smallest descendant leaf: pointer called �.

Number of nodes:

OPERATIONS:

1. Update(i,k): Leaf i gets new key k:

9

* Trade - off insert t delete .

÷:# aunt :*
. :c :*

.

-
-

O

^

ow . . . .ws#..nmsuns .

8 4 6 73 2 I 9

9 29
,j

n leaves .

M
Internews

.

} Zn - I total
.

•

"
% ÷

.

"

o¥¥÷
,

while i * I do

j =

sibling Ci ]

if Keycocj Dl key loci ] ]
OC parent Ci ) ) = ocj ]

else ②



.

2. Insert(k,n): insert key k into a tree with n leaves:

3. Deletemin:

4. MakeTree(n): Create a tournament tree for n given keys.

• Create arrays of size 2n� 1 for �[] and key[].

• Algorithm:

Number of comparisons:

10

i . .
:L : " " " ?

:

Ex . K=5 Key ( Zntl ]
- K . } * new key

• I

KeyL2n ] =

Key LN ] } copy internal\ .

Glen ] - zu .

node
. . .

Ha as:÷÷:P .ci
. .

6 3 2 7 80
"

O
- 2 new leaves .

Eroticism
.
. .

"

3
.

::i÷ . .
.

•

,

for i -
- no to 2n -

µ
leaf pointers

.pet / \ o Cid - i

2g

fill wi€1 Keyes -

-

- teymasycsw
,

/
V data .

µ µ 3 7 For i -

-

n - l down to 1 :

f fo f ) if key ( oui ) ) L key Loflin ]]
Of 4020 ⑥ otmi { Oli ] -

- oui ]
,

children - "

else • Li ] = 8 [ Ziti ]

① ( # games in tournament ) .



Tournament Tree Sort:

11

As w/ cheap sort , we can create a tree and

then delete the min over and over

to sort the data . . .

# comp .

= make tree t n - delete mind .

-
-

Alg . above
40gal tree height ) )does '

N
'

comparisons in the

foo loop !

I # nodes in tree .

= N t
n -dogs ( Ln - t ) )



.

12



.

13


