
The Hungarian Method
Jake R. Gameroff, Jonathan Campana

March 15, 2024

This is the augmented transcript of a lecture on the Hungarian method
given by Professor Luc Devroye on April 8, 2024 for Computer Science
252, Honours Algorithms and Data Structures.

The Assignment Problem

Our general objective is to develop an O(n3) algorithm which solves
the n × n assignment problem.

We are provided as input a set W = {1, 2, . . . , n} of workers and
another set J = {1, 2, . . . , n} of available jobs. We also have a cost
function C : W × J → R≥0, where for i, j ∈ {1, 2, . . . , n}, the value
C(i, j) is the cost of giving the job j to worker i.



1 2 3 4 5
1 3 8 1 9 6
2 2 11 4 15 3
3 7 2 8 8 10
4 4 10 12 7 8
5 5 6 6 11 9


Figure 1: Example of a minimal weight
matching in a 5 × 5 matrix.

Hence, we wish to minimize the cost of hiring each worker. For-
mally, we wish to find a bijection f : W → J such that ∑w∈W C(w, f (w))

is minimal.
We may compactly represent this problem with an n × n matrix

M, where M[i, j] ≥ 0 represents the cost of giving job i to worker j.
Formulated in this way, we seek a permutation (σ1, σ2, . . . , σn) such
that

n

∑
i=1

M[i, σi]

is minimal. The pairs (i, σi) then form a minimal weight matching.

Perfect Matchings

Definition 1. A matching in a graph G is a subset M ⊆ E(G) of
edges such that every vertex in G is incident to at most one edge in
M. A matching M is called a perfect matching if every vertex in G is
incident to exactly one edge in M.

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5

Jobs A B Workers

Figure 2: A perfect matching (cyan
edges) in a graph.

A special case of the assignment problem regards finding a perfect
matching in a bipartite graph G whose partite sets each have n nodes.
In this case, M is an adjacency matrix representation of G, where
M[i, j] = 0 if there is an edge between vertices i and j, and M[i, j] = 1
otherwise. A perfect matching in G corresponds to the solution of the
assignment problem in M. Formally, G has a perfect matching if and
only if

min
σ

n

∑
i=1

M[i, σi] = 0,

where the min is taken over all permutations σ = (σ1, σ2, . . . , σn).



b1 b2 b3 b4 b5

a1 0 1 0 1 0
a2 0 1 1 1 1
a3 1 1 0 1 1
a4 1 0 1 1 0
a5 1 1 1 0 1


Figure 3: A perfect matching corre-
sponding to the graph in Figure 2.
The ai are the jobs, and the bi are the
workers

the hungarian method 2

The Potential

We use a graph algorithm to solve the assignment problem in O(n3)

time. Consider a graph complete bipartite G with vertex set W ∪ J
(workers and jobs as vertices) and where two vertices are adjacent if
and only if one is a worker and the other a job. This graph is bipar-
tite, then, with bipartition (W, J); and it has 2n nodes and n2 edges.

We assign to each worker or job i a potential pi ≥ 0 with the
requirement that

∀i ∈ W, ∀j ∈ J : pi + pj ≤ M[i, j].

Initially we set pi = 0 for every i ∈ W ∪ J.
Consider a matching E∗ ⊆ W × J.1 We say that E∗ is a full match- 1 Note that W × J represents E(G)

where the pair (i, j) represents the edge
between worker i and job j.

ing if |E∗| = n.2 Note that by construction

2 When G has n edges, a matching is
full if and only if it is perfect.∑

i∈W∪J
pi ≤ min

E∗ :|E∗ |=n
∑

(i,j)∈E∗
M[i, j], (∗)

where the left hand side is called the global potential and the right
hand side is the minimal weight of any matching in G.

We say that an edge (i, j) in G is tight if pi + pj = M[i, j]. The
following algorithm finds a full matching E∗ such that every edge in
G is tight; this must be optimal as we obtain equality in (∗).

E∗ = ∅
for i = 1 to n do

let Ai = {1, 2, . . . , i} 3

update E∗ so that it is a subset of Ai × B, and |E∗| = i
3 before this step E∗ is a vertex-disjoint
subset of Ai−1 × B with only tight
edges; |E∗| = i − 1.Note that if the i-th update of E∗ takes time O(n2), then the overall

time is O(n3). We now turn to the algorithm for updating E∗.

Figure 4: Updating E∗. The edges of E∗

are those pointing from B to A.

Ai = {1, 2, . . . , i}
Z = {i}
while true

∆ = mink∈Z∩Ai , ℓ∈B\Z (M[k, ℓ]− pk − pℓ)
(k∗, ℓ∗) = argmin(M[k, ℓ]− pk − pℓ)
∀ℓ ∈ Z ∩ B : pℓ = pℓ − ∆
∀k ∈ Z ∩ Ai : pk = pk + ∆
if ℓ∗ is matched (i.e. ∃m∗ : (m∗, ℓ∗) ∈ E∗)

Z = Z ∪ {m∗} ∪ {ℓ∗} (green example)
else (purple example)

∃ path in Z following only edges of E∗ or newly added
edges of E∗ from ℓ∗ to i. On that path, flip all edges
to obtain a new E∗, now with |E∗| = i and halt.

the hungarian method 3

Augmenting Path

If one starts at i = 6 in the example of figure 5, following the arrows,
Z is the set of nodes that can be reached from i.

Figure 5: Augmenting path

From the terminal l∗ = 16, follow the arrows backwards to get
back to i:

Figure 6: Reversed edges

16 2 12 4 21 6 called the augmenting path

Reverse the edges get a new matching E∗. Note that |E∗| = i after
this operation.

Checking Things

Note that updating the potentials is okay: after processing (k∗, ℓ∗),
only the vertices in Z are affected (Note also that k∗ ∈ Z and ℓ∗ /∈ Z).
We also have the following clarifying remarks:

(1) If k, ℓ /∈ Z or k, ℓ ∈ Z: pk + pℓ remain the same so that pk + pℓ ≤
M[k, ℓ];

(2) If k /∈ Z and ℓ ∈ Z: pk + pℓ decreases by ∆ so that pk + pℓ ≤
M[k, ℓ];

(3) k ∈ Z and ℓ /∈ Z: pk + pℓ increases by ∆, but by the choice of
which, we still have pk + pℓ ≤ M[k, ℓ];

(4) (k, ℓ) ∈ E∗: we are in case (1), and thus, pk + pℓ = M[k, ℓ] before
and after the update of the potentials; and

(5) After the update, if ℓ∗ is not part of the vertices of E∗, then pk∗ +

pℓ∗ increases by ∆ (case (3)), so after the update, pk∗ + pℓ∗ =

M[k∗, ℓ∗], so that the edge (k∗, ℓ∗) becomes tight.

Therefore, the potential condition holds, and all edges added to form
the augmenting path are tight, and tight edges remain tight!

Time Complexity Analysis

The step to go from Ai−1 to Ai starts by building a set Z, which can
grow to at most size i on the A-side. Each step requires at most O(n)
work to update the potentials. Hence, in O(n · i) = O(n2) time, we
obtain a matching E∗ ⊆ Ai × B from a matching E∗ ⊆ Ai−1 × B.

The Hungarian method for the assignment problem goes back to
Kuhn (1955), who proposed an O(n4) algorithm. The O(n3) version
presented here is due to Tomizawa (1971) and Edmonds and Karp
(1972). Kuhn named the method after Hungarian mathematicians
Kőnig and Egervary. It should be noted that a similar algorithm was
already known by Jacobi before 1890.

the hungarian method 4

References

Jack Edmonds and Richard M Karp. Theoretical improvements in
algorithmic efficiency for network flow problems. Journal of the
ACM (JACM), 19(2):248–264, 1972.

Harold W. Kuhn. The Hungarian method for the assignment prob-
lem. Naval Research Logistics Quarterly, 2(1-2):83–97, 1955.

Nobuaki Tomizawa. On some techniques useful for solution of trans-
portation network problems. Networks, 1(2):173–194, 1971.

	The Assignment Problem

