
Graph Algorithms
Josef Barabash, Will Zahary Henderson

April 2, 2022

This is an augmented transcript of two lectures given by Luc Devroye
on the 29th and 31st of March 2022 for the Honours Algorithms and
Data Structures class (COMP 252, McGill University). The subject was
graph algorithms.

a b

c

d e

f g

vertex/node

edge

label

Figure 1: A graph with seven vertices
and seven edges. The degree of c is 3.

Graph Definitions

Definition 1. A graph, G = (V, E), is an abstract data type made up
of a set of vertices (also called nodes) denoted V, and a set of edges
denoted by E.

a b c

Figure 2: A connected component; also
a path from a to c.

Definition 2. An edge can be thought of as a connection between a
pair of vertices.

Definition 3. A path from vertex a to vertex b is a subset of distinct
edges that connect the two vertices. A path is called a cycle when it
starts and ends at the same vertex.

Figure 3: The cycle C5.

Definition 4. A complete graph of n vertices, denoted Kn, is a graph
where all pairs of vertices have an edge, giving (n

2) total edges.

Figure 4: The complete graph K4.

Definition 5. An undirected graph has edges that do not specify
directions. If i and j are two connected vertices in an undirected
graph, (i, j) and (j, i) represent the same edge. Note that |E| ≤ (|V|2).

Definition 6. A directed graph has edges with directions indicating
a “to” and “from” relationship between a pair of vertices. The edge
from vertex i to vertex j is denoted (i, j), and (i, j) ̸= (j, i).

Definition 7. The degree of a vertex i, di, is equal to the number of
neighbors it has. Note the relationship ∑i∈V di = 2|E|. In a directed
graph, we specify the in-degree for edges pointing toward a vertex,
and the out-degree for edges pointing away from a vertex.

A B

Figure 5: C4 is an example of a bipartite
graph.

Definition 8. A graph is bipartite if the set of vertices V can be
constructed as the disjoint union A ⊔ B and the set of edges E is a
subset of the Cartesian product A× B.

Remark 9. For the rest of this document, and in general, “linear time”
in the context of graphs refers to O(|V|+ |E|).

graph algorithms 2

Implementations

We can implement a graph with a few different data structures.
Namely, adjacency matrices and adjacency lists.

Adjacency Matrix

1

2

3

4

1 2 3 4

1 0 1 1 0
2 1 0 1 1
3 1 1 0 1
4 0 1 1 0

Figure 6: A graph and its correspond-
ing adjacency matrix implementation.

1 1 0
1 1

1

≡ (110111)2 = (55)10

Figure 7: Rewriting the adjacency ma-
trix in fig. 6 as a binary vector and as a
decimal vector.

An adjacency matrix A stores whether or not an edge is present
between two vertices i and j in the form of a two-dimensional matrix.
Where n = |V|, we define A as

A = {A[i, j]}n
i,j=1

such that

A[i, j] =

1 edge (i, j) present

0 otherwise
.

Example 10. See fig. 6 for an example of an adjacency matrix for an
undirected graph. Notice that this matrix is symmetric; this is true
of all undirected graphs. Notice also that the main diagonal is filled
with zeroes; this is true of all graphs where loops are not allowed.

Any adjacency matrix with the same symmetric property as in
Example 9 (i.e., an adjacency matrix for an undirected graph) can be
represented linearly in the form of a binary vector. See fig. 7 for the
binary vector representation of Example 9.

Exercise 11. Using the binary vector representation, perform:

1. Is edge (i, j) present?

2. Add edge (i, j).
3. Delete edge (i, j).
4. Find all neighbors of node i. a b

c

d

Figure 8: Vertex c is a sink.

Exercise 12. A sink has in-degree n− 1 and out-degree 0 (see fig. 8).
Given an adjacency matrix, determine in O(|V|) time whether some
graph G has a sink.

graph algorithms 3

Adjacency List

The standard implementation of an adjacency list is an array of size
|V| of pointers to linked lists containing the neighbors of each vertex.

1 2 3 ∅

2 1 4 3 ∅

3 4 1 2 ∅

4 2 3 ∅

array of
size |V|

Linked lists of neighbors

Figure 9: The adjacency list implemen-
tation of the graph from fig. 6.

Remark 13. It is important to note that the adjacency matrix uses
Θ(|V|2) space, while the adjacency list only requires O(|V| + |E|)
space.

Exercise 14. Order these linked lists in linear time.

Huge Graphs

When graphs reach a particularly large scale, it may be impossible to
store them as an adjacency matrix or an adjacency list. In these cases,
we often have only local information:

∀v ∈ V, we know the neighbors of v.

Some examples of such a situation are as follows.

Example 15. Let V be the set of all websites. On a webpage v, every
link from v to another webpage w forms the directed edge (v, w) on
the web graph.

Example 16. There is a bipartite graph between the set of Facebook
groups and Facebook users; edges are shared between a user and the
groups to which it belongs.

Example 17. There is a directed graph mapping “follower” relation-
ships on social media. If user a follows user b, the edge (a, b) exists.

Example 18. All positions in a strategy game (e.g., chess) can be
seen as a graph, where V is the set of all possible game states, and E
corresponds to the set of moves. Note that Claude Shannon devised a
lower bound of 10120 possible games of chess.1 1 Shannon [1950]

graph algorithms 4

Depth-First Search

Definition 19. A depth-first search follows a strategy whereby the
order of vertex traversal is determined by visiting the next not-yet-
visited vertex connected to the current vertex.2 2 Cormen et al. [1989]

For every vertex u ∈ V, the following attributes will be stored:

• color[u]: the color of a vertex belongs to the set {white, gray,
black} and represents its “status” of visitation in the traversal.
A white vertex has not yet been visited, a gray vertex has been
iterated over once, and a black vertex has been iterated over
twice (and will not be visited again).

• d[u]: the time of discovery of u.

• f[u]: the time when finished with u.

• p[u]: the parent vertex of u.

When performing a depth-first search, a “clock” is running; at
every iteration in the search, this clock is incremented. This is where
the notion of time arises for the attributes d[u] and f[u].

d[u] f[u]
time

Figure 10: Visualizing color and time in
a depth-first search.

1

25 4

3 6

79 8

(a) Initial graph

1

25 4

3 6

79 8

1

2

3 4

5

7

6

(b) DFS state at time 7

1

25 4

3 6

79 8

1

2

3 4

5

78 10

16
6

9 1112

13
14

15
17

18

(c) End of traversal

Figure 11: An example of a depth-first
search traversal. Purple text represents
d[u], magenta text represents f[u]. The
order of this DFS is determined by the
d[u] values, and is {1, 5, 3, 6, 2, 7, 9, 8, 4}.
Note that all times, the gray nodes form
a chain as each gray node represents a
recursive call.

1

5

3

6

2 7

9 8

4
Figure 12: The depth-first search tree
corresponding to the traversal in fig. 11.

graph algorithms 5

The Algorithm

The setup for the algorithm requires initializing the time to zero,
setting all vertex colors to white, and setting all parent pointers to nil.
To perform a depth-first search, we make sure to visit all connected
components.

1 time← 0
2 ∀ u do: (color[u], p[u])← (white, nil)
3 ∀ u do: if color[u] = white then DFS(u)

DFS(u):
1 time← time+1
2 color[u]← gray
3 d[u]← time
4 ∀ v adjacent to u do
5 if color[v] = white then
6 p[v]← u
7 DFS(v)
8 time← time+1
9 color[u]← black
10 f [u]← time

done once

done once
done degree[u]
times

done once

It is clear that the bottleneck in this algorithm occurs at line 5. Thus,
the total cost of this operation is ∑u∈V (degree[u]+1). Because each
edge is counted twice when summing the degrees of all nodes, the
resulting cost is 2|E|+ |V| = Θ(|E|+ |V|).

Theorem 20 (White path theorem). v is a descendant of u in the DFS
tree ⇐⇒ at time d[u], there exists a white path connecting u to v.

Remark 21 (Nesting). Let u and v be two vertices in a graph such that
d[u] > d[v] in a depth-first search. The interval where u is gray is
either disjoint from the interval where v is gray (i.e., d[v] < f[v] < d[u]
< f[u]), or is nested within the interval where v is gray (i.e., d[v] <
d[u] < f[u] < f[v]). Nesting is understood by considering the recursive
nature of depth-first search.

graph algorithms 6

Edge Classification

For an edge (u, v), we classify the edge when it is considered for the
first time in the DFS traversal.

Remark 22. Every edge is looked at once in a directed graph and twice
in an undirected graph.

Let u and v be connected vertices such that d[u] < d[v]. Without loss
of generality, we define the following classes:

• If v is white, (u, v) is a tree edge.

• If v is gray, (u, v) is a back edge.

• If v is black, (u, v) is a cross edge or a forward edge3. 3 Specifically, (u, v) is a forward edge if
v is a non-child descendant of u.

DFS order
1
2
3
6
7
4
5
8

1

2

3 7

6

5

4

8

Figure 13: Edge classification in a
directed graph. See color legend below.

tree edge

back edge

cross edge

forward edge

Theorem 23. In an undirected graph, all edges are tree or back edges.

Proof. Let u and v be vertices such that d[u] < d[v], so v is a descen-
dant of u. If v is looked at for the first time from u, then (u, v) is a
tree edge. Otherwise, if u is looked at for the first time from v, then
(u, v) is a back edge since u is gray at this time.

Theorem 24. In a directed graph,

a cycle exists

⇐⇒ there exists one DFS with a back edge

⇐⇒ for all DFS, there exists a back edge.

v

u

Figure 14: The cycle C. u is the first
node discovered in the cycle.

Proof. We will prove the implication that if G has a cycle, then every
DFS traversal has a back edge. The two other implications are trivial.
Let u and v be two adjacent vertices in a cycle C such that at time
d[u], there exists a white path from u to v, and so v is a descendant
of u. Since u is visited first, it is already gray when the edge (v, u) is
traversed. Thus, (v, u) is a back edge.

graph algorithms 7

Euler Graphs

Definition 25. An Euler tour is a cyclical tour that visits all edges in
a graph exactly once, and returns to the starting point of the tour. If
such a tour exists in a graph G, then G is said to be Eulerian.

vu

Figure 15: A non-Eulerian, undirected
graph. Vertices u and v have odd de-
grees.

Figure 16: An Eulerian, undirected
graph. All vertices have even degrees.

Remark 26. The following properties are true of Euler tours:

• In an undirected graph, an Euler tour exists if and only if all
degrees are even

• In a directed graph, an Euler tour exists if and only if the in-
degree equals the out-degree for all vertices in the graph

Definition 27. An Euler walk is a walk that is not allowed to visit an
edge twice, and returns to the start node.

Remark 28. Every Euler walk started at vertex u must return to u.

EULERWALK(u): / returns a queue Q = u, . . . , u /
1 MAKENULL(Q) / initializes a queue Q /
2 ENQUEUE(u, Q); v ← u
3 repeat
4 v ← DELETE−FROM−FRONT−OF(adjacency list of v)
5 ENQUEUE(v, Q)

6 until v = u
7 return Q

EULERTOUR(G):
1 MAKENULL(S) / initializes a stack S /
2 PUSH(1, S) / 1 is the start of the Euler tour /
3 while |S| > 0:
4 u ← POP(S)
5 if degree[u] = 0 then output u
6 else PUSH(EULERWALK(u), S) / push elements onto S /

The complexity of this algorithm is linear, O(|V|+ |E|).

1

2 3 4 5

678

9 10

first
cycle

second
cycle

third
cycle

fourth
cycle

Stack contents

1 2 3 4 5 6 7 8 1

1 2 3 9 10 4 3 4 5 6 7 8 1

1 2 3 8 3 9 10 4 3 4 5 6 7 8 1

1 2 3 8 3 9 10 4 6 5 4 3 4 5 6 7 8 1

1 2 3 8 3 9 10 4 6 5 4 3 4 5 6 7 8 1

Figure 17: An example of the euler-
tour algorithm on a graph. At each
row, the contents left of the vertical line
have been outputted.

graph algorithms 8

Breadth-First Search

Definition 29. A breadth-first search follows a strategy whereby
the order of vertex traversal is determined in a level-by-level order,
traversing from shortest to longest path distance from the starting
vertex.

Figure 18: A visualization of the idea
of “levels” in a graph, where the center
vertex is the starting point.

In a breadth-first search on the graph in fig. 18, the order of traversal
depends on each “level” (visualized as a ring) of the graph. First, the
three vertices on the innermost ring will be visited, then the three on
the second ring, and then finally the two on the outermost ring. To
achieve this, we use a queue Q.

For every vertex u ∈ V, the following attributes, much alike those
of the depth-first search, will be stored:

• color[u]: the color of a vertex belongs to the set {white, gray,
black} and represents its “status” of visitation in the traversal. A
white vertex has not yet been visited, a gray vertex is being dealt
with, and a vertex we are done with is black.

• d[u]: the minimal path distance of u from the starting point s,
i.e., the “level” on which u is located with respect to s.

• p[u]: the parent vertex of u.

Remark 30. To further understand the notion of levels, note that the
starting vertex is on level 0, the direct children of the starting vertex
are on level 1, the grandchildren of the starting vertex are on level 2,
and so on.

1

2 3

4 5 6

7 8

9 10 11

Done

In queue Q

Undiscovered

distance 1

distance 2

distance 3

distance 4

Figure 19: The status of a breadth-first
search after having visited vertices
1, 2, 3, 4.

graph algorithms 9

The Algorithm

The setup for the algorithm is very similar to that of the depth-first
search. We initialize the graph by setting all vertex colors to white,
setting all parent pointers to nil, and setting all distances to ∞.

BFS(s): / s is the starting vertex /
1 ∀ u do: (color[u], p[u],d[u])← (white, nil, ∞)
2 d[s]← 0; color[s]← gray
3 MAKENULL(Q); ENQUEUE(s, Q)

4 while |Q| > 0
5 v ← DEQUEUE(Q)

6 for all neighbors w of v do
7 if color[w] = white then
8 color[w]← gray
9 ENQUEUE(w, Q)

10 d[w]← d[v] + 1
11 p[w]← v
12 color[v]← black

Similarly to depth-first search, the breadth-first search algorithm is
Θ(|E|+ |V|) as the if statement on line 7 is performed 2|E| times.

Note that breadth-first search also constructs a breadth-first search
tree, i.e., a tree in which the path from node u to root s is the (possi-
bly not unique) shortest path from u to s. Its length is d[u].

Exercises

000

001

100

101

010 110

011 111

Figure 20: The hypercube H3.

Exercise 31. Determine in O(|V|+ |E|) time if a graph G is bipartite.
Hint: use BFS.

Exercise 32. The hypercube Hd is a graph with V = {0, 1}d (all bit
vectors of length d), and E = {(u, v) ∈ V ×V : Hamming(u, v) = 1}4. 4 Recall that the Hamming distance is the

number of bits that differ position-wise
between two binary numbers.

Show that Hd is bipartite.

graph algorithms 10

References

T.H Cormen, C.E. Leiserson, R.L.Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 3rd edition, 1989. ISBN 9780262033848.

C. E. Shannon. Programming a computer for playing chess. Philosoph-
ical Magazine, 41:4, March 1950.

	Graph Definitions
	Implementations
	Depth-First Search
	Euler Graphs
	Breadth-First Search
	Exercises

