RED-BLACK TREES

(Notes by Henri Mertens)
Binary search trees

Nodes are colored: \(\text{color}[x] \in \{\text{red, black}\} \)

Nodes have a rank: \(\text{rank}[x] \geq 0 \) (related to height)
Rules:

- **External nodes of rank 0**: Black.
- For black: \(\text{rank}[\text{parent}[x]] = \text{rank}[x] + 1 \)
- For red: \(\text{rank}[\text{parent}[x]] = \text{rank}[x] \)

 \(\text{color}[\text{parent}[x]] = \text{black} \)

\(m \) internal modes (with keys)

\(\text{Not allowed} \)
PROPERTIES

m internal nodes
$m+1$ external nodes

If a node has rank r, then

1. $2 \leq m + 1 \leq 4^r$
2. $r \leq R \leq 2r$

Therefore, for the root,

$L \leq 2r \leq 2 \log_2 (m + 1)$.

\rightarrow Red-Black trees are balanced search trees.
Proof of (i):

- $\tau = 0$:

 \[2^\tau = 1 \leq n+1 = 1 \leq 4^\tau. \]

- For general $\tau > 0$, assuming (i) for smaller values:

There exist modes of rank $\tau - 1$ in left and right subtrees, so the number of external nodes, $n+1$, is

\[\geq 2^{\tau-1} + 2^{\tau-1} = 2^\tau. \]

Also, we can find at most 4 modes of rank $\tau - 1$ that are not ancestors of each other. So,

\[\text{# External nodes} = n+1 \leq 4^{\tau-1} + 4^{\tau-1} + 4^{\tau-1} + 4^{\tau-1} = 4^\tau. \]

Proof of (ii): A similar induction (exercise!).
The 2-3-4 tree view of a red-black tree

Pods:

Place all black nodes of rank r at same level.
OPERATIONS

INSERT, DELETE as for binary search trees
Fix to restore the red-black tree property

Total time $O(d \log n)$
Fix (after INSERT)

Before:

After:

Let \(x \) be (a pointer) to the new mode.
Increase rank of grandparents recursively until a black parent is reached

OR

A red parent / Black uncle
while \(p[x] \neq \text{nil}, p^2[x] \neq \text{nil} \),
\[\text{color}[p[x]] = \text{red}, \text{color}[v[x]] = \text{red} \]
do:

\[x \leftarrow p^2[x] \]
\[\text{color}[\text{left}[x]] = \text{black} \]
\[\text{color}[\text{right}[x]] = \text{black} \]
\[\text{rank}[x] \leftarrow \text{rank}[x] + 1 \]
\[\text{color}[x] \leftarrow \text{red} \]

\[\text{case} \]
\[p[x] = \text{nil} : \{ \text{do nothing} \} \]
\[p[x] \neq \text{nil}, p^2[x] = \text{nil} : \]
\[p^2[x] \neq \text{nil}, \text{color}[p[x]] = \text{black} : \{ \text{do nothing} \} \]
\[p^2[x] = \text{nil}, \text{color}[p[x]] = \text{red}, \text{color}[v[x]] = \text{black} : \]

\[\text{perform local fix} \]

if root is \(\circ \), then increase rank root by 1 to get

// a is the new node //
\[\text{write} \]
\[p[a] \]
\[p^2[a] \]
\[v[a] \]

uncle

\[\text{while} \]
\[\text{if} \]
Case 1

- **Fix**:

 - **Root Fix**
 - **Case 2**
 - **DONE**

 - **Root**:
 - **x**
 - **r**

 - **Rank** \([p(x)]\) + = 1

 - **Only way to increase the rank of the root**

- **Bank** \([\text{plate} \text{t} = I] \text{te}\) \(\text{Elon}\) \(\text{only way to root})
LOCAL Fix

\[x \]

or

\[a \quad \text{or symmetric} \]
Deletion

Similar principle: Standard deletion + Fix tree from bottom up by demotions

Lazy deletion: Leave node as is. Mark it "deleted".

When # of marked nodes is > 50%, store the nodes in an ordered list L. Make a fresh red-black tree in time $O(n)$. (Exercise.)

Also see question 2 of assignment 4.
ADDITIONAL OPERATIONS: SPLIT, JOIN

\[T \]

SPLIT \((t, R)\):
- Split the tree into \(T_1 \) and \(T_2 \).
- Ensure keys of \(T_1 \) are less than keys of \(T_2 \).

JOIN \((t_1, t_2)\):
- Combine \(T_1 \) and \(T_2 \) to form a new tree.

Time: \(O(\log n) \)
JOIN \((t_1, t_2)\)

Step 1: \(\alpha = \text{MAXIMUM}(t_1)\)

Step 2: \(\text{DELETE}(A_1, \alpha)\)

Step 3: Find highest node of rank \(r_2 = \text{rank}(t_2)\) on the right roof of \(t_1\), say \(z\).

Step 4: Create \(t_1\).

Step 5: Update the tree starting at \(x\).
Split (A, R)

Step 1.

Decompose T into the components of T_1, T_2

$(Time = O \log n)$

Make T_1

Make T_2

Decompose T

value k

Tinto

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T

$q\#$

D

D

value k

root

Make T_1

External mode

value R

Decompose T
Exercise. Convince yourself that the total time is $O(bpm)$.
Lists: \textsc{concatenate} / \textsc{sublist}

- \textit{List}
 - \textit{Sublist} → \textsc{split}
 - \textit{List1} \quad \textit{List2} → \textsc{join}

All operations are \(O(\log n)\).

Implement by red-black tree. Must keep track of position in the list (see next chapter).

Recall: Arrays have \(O(n)\) \textsc{join}

Linked lists have \(O(n)\) \textsc{split}