
HIPSTER RANDOM WALKS

LOUIGI ADDARIO-BERRY, HANNAH CAIRNS, LUC DEVROYE, CELINE KERRIOU,
AND RIVKA MITCHELL

Abstract. We introduce and study a family of random processes on trees we call hipster random
walks, special instances of which we heuristically connect to themin− plus binary trees introduced
by Pemantle [8] and studied by Auffinger and Cable [1], and to the critical random hierarchical
lattice studied by Hambly and Jordan [4]. We prove distributional convergence for the processes
by showing that their evolutions can be understood as a discrete analogues of certain convection-
diffusion equations, then using a combination of coupling arguments and results from the numerical
analysis literature on convergence of numerical approximations of pdes.

1. Introduction

Let T denote the complete rooted infinite binary tree. The root receives label ∅; children of node
v receive labels v0 and v1. In this way generation-n nodes of T are labeled by the setLn := {0, 1}n.
For n ≥ 1, write Tn for the binary tree consisting of the root of T and its first n generations of
descendants. The leaves of Tn are the nodes Ln in generation n; its internal nodes are precisely the
nodes of Tn−1.

Fix any assignment F = (fv, v ∈ T ) of binary functions fv : R × R → R to the nodes of
T . Then for any n ≥ 1, the functions Fn = (fv, v ∈ Tn) may be viewed as turning Tn into a
recursively constructed function of arity 2n, with inputs at the leaves of Tn and output at the root
of Tn. More precisely, given real values z⃗ = (zv, v ∈ T ) for n ≥ 1 let F z⃗

n : Tn → R be given by

F z⃗
n(v) =

{
zv if v ∈ Ln

fv(F
z⃗
n(v0), F

z⃗
n(v1)) if u ∈ Tn−1 .

(1.1)

When either the functions comprising F are random, or the inputs are random (or both), then Fn is
itself a random function; a large number of problems in probability can be phrased in terms of such
random functions. As a very simple example, fix p ∈ (0, 1), and independently for each v ∈ T
define fv by

fv(x, y) =

{
1 with probability p,
x+ y + 1 with probability 1− p.

ThenF 1⃗
n(∅) is distributed as the total number of individuals in the first n generations of a branching

process with offspring distribution given by p0 = p, p2 = 1− p. Here 1⃗ assigns value 1 to all nodes
of T ; below we likewise write 0⃗ for the vector assigning values 0 to all nodes of T .

This work establishes two distributional limit theorems for the output of systems of random func-
tions on T which we dub hipster random walks.
Hipster random walk. Let (Av, v ∈ T ) be independent Bernoulli(1/2) random variables, and
let (Dv, v ∈ T ) be iid random variables, independent of (Av, v ∈ T ). Then set

fv(x, y) = xAv1[x ̸=y] + y(1−Av)1[x≠y] + (x+Dv)1[x=y]. (1.2)

In other words, if x ̸= y then fv(x, y) flips a fair coin to decide whether to output x or y. If x = y
then fv(x, y) outputs x+Dv. We call (Dv, v ∈ T ) the steps of the hipster random walk.

Date: August 28, 2019.
2010 Mathematics Subject Classification. Primary: 60F05,60K35; Secondary: 65M12,35K65.

1



2 L. ADDARIO-BERRY, H. CAIRNS, L. DEVROYE, C. KERRIOU, AND R. MITCHELL

The name is inspired by the following intuitive picture, which is based on the stereotype that
hipsters don’t want to be observed liking popular things. In our setting, the “things” in question are
potential random walk locations. Imagine that for each node v, one of v0 or v1 is hipper than the
other; which one is hipper is determined randomly using Av. If x ̸= y then the hipper individual
doesn’t have any new company at their current location and stays put. If x = y then the hipper
individual detects new company, takes this as a sign that their current location is becoming popular,
and so decides to leave (moves to x+Dv ). The output of fv(x, y) is the new location of the hipper
of v0 and v1.

In this work we focus on two specific choices for the common law of the steps.
Totally asymmetric q-lazy simple hipster random walk. This is the hipster random walk
with steps (Cv, v ∈ T ) which are independent Bernoulli(q) random variables. In this case, defini-
tion (1.1) yields functions Bz⃗

n : Tn → R given by

Bz⃗
n(u) =


zu if u ∈ Ln

Bz⃗
n(v0)Av +Bz⃗

n(v1)(1−Av) if u ∈ Tn−1, B
z⃗
n(v0) ̸= Bz⃗

n(v1)

Bz⃗
n(v0) + Cv if u ∈ Tn−1, B

z⃗
n(v0) = Bz⃗

n(v1) .

(1.3)

Symmetric simple hipster randomwalk. This is the hipster randomwalk with steps (Rv, v ∈
T ) satisfying P {Rv = 1} = P {Rv = −1} = 1/2. In this case, definition (1.1) yields functions
Gz⃗

n : Tn → R given by

Gz⃗
n(u) =


zu if u ∈ Ln

Gz⃗
n(v0)Av +Gz⃗

n(v1)(1−Av) if u ∈ Tn−1, G
z⃗
n(v0) ̸= Gz⃗

n(v1)

Gz⃗
n(v0) +Rv if u ∈ Tn−1, G

z⃗
n(v0) = Gz⃗

n(v1) .

(1.4)

Our main results are contained in the following two theorems.

Theorem 1.1. Let Z⃗ = (Zv, v ∈ T ) be iid integer random variables. Next fix q ∈ (0, 1), and for n ≥ 1 let
Bn = BZ⃗

n (∅) be the output of the n-step totally asymmetric q-lazy hipster random walk on input (Zv, v ∈ Ln).
Then

Bn

(4q · n)1/2
d−→ B ,

where B is Beta(2, 1)-distributed.

Theorem 1.2. Let Z⃗ = (Zv, v ∈ T ) be iid integer random variables, and for n ≥ 1 let Gn = GZ⃗
n (∅) be

the output of the n-step symmetric simple hipster random walk on input (Zv, v ∈ Ln). Then

(36n)−1/3Gn + 1/2
d−→ G ,

where G is Beta(2, 2)-distributed.

Related work. Fix p ∈ (0, 1) and independently for each v ∈ T , define fv by

fv(x, y) =

{
x+ y with probability p,
min(x, y) with probability 1− p.

Write M z⃗
n for the resulting random functions (again obtained by applying definition (1.1). The

study of this model was proposed by Robin Pemantle [8], who conjectured that when p = 1/2,

logM 1⃗
n(∅)

(π2n/3)1/2
d−→ B, (1.5)

where B is Beta(2,1)-distributed. This conjecture was recently proved by Auffinger and Cable [1],
who dubbed this model Pemantle’s min-plus binary tree.

There is an obvious similarity between (1.5) and the convergence in Theorem 1.1 and, indeed,
there is a heuristic connection between the models. By (1.5), we know that Mn is growing at a
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stretched exponential rate. In view of this, it is natural to consider what is happening at a log scale.
Write β0 = logM 1⃗

n(0) and β1 = logM 1⃗
n(1) for the log (base 2) of the inputs to the root.

Most of the time logM 1⃗
n(0) and logM 1⃗

n(1) take radically different values (since they are iden-
tically distributed and exhibit random fluctuations on the scale n1/2). In this (typical) case, with
β∅ = logM 1⃗

n(∅) we have

β∅ =

{
log(M 1⃗

n(0) +M 1⃗
n(1)) ≈ max(β0, β1) with probability 1/2,

logmin(M 1⃗
n(0),M

1⃗
n(1)) ≈ min(β0, β1) with probability 1/2.

In other words, when M 1⃗
n(0) and M 1⃗

n(1) are extremely different, the output at the root just looks
like the value of a random child.

On the other hand, will occasionally have M 1⃗
n(0) ≈ M 1⃗

n(1). In this case, the dynamics look
rather different; for example, whenM 1⃗

n(0) = M 1⃗
n(1) we have

β∅ =

{
log(M 1⃗

n(0) +M 1⃗
n(1)) = β0 + 1 with probability 1/2,

logmin(M 1⃗
n(0),M

1⃗
n(1)) = β0 with probability 1/2.

So in this case, at the log scale, the output of the min-plus binary tree just looks like the common
value of the children plus a Bernoulli(1/2) increment. This looks very much like the dichotomy
for the totally asymmetric hipster random walk: when the children have different values, output
the value of a random child; when they have the same value, output that value plus a random
increment.

The analogy isn’t perfect, because when M 1⃗
n(0) and M 1⃗

n take similar but not identical values,
the behaviour of the min-plus binary tree interpolates between the two cases. This “smearing out”
creates a slight speed-up relative to the totally asymmetric 1/2-lazy simple hipster random walk
(the constants in the rescaling are

√
π2/3 and

√
2, respectively).

Another related model, called the random hierarchical lattice, was proposed by Hambly and Jordan
[4], which in the language of this work may be described as follows. Fix p ∈ (0, 1), and indepen-
dently for each v ∈ T , define fv by

fv(x, y) =

{
x+ y with probability p,
xy
x+y with probability 1− p.

A natural interpretation of this is as follows. View the inputs to v as electrical networks with effec-
tive resistances x and y. Then at node v the resistors are combined in series or in parallel, with
probability p or 1− p respectively; the output is the new, combined network.

Write Rz⃗
n for the resulting random functions. Hambly and Jordan show that almost surely,

R1⃗
n(∅) → ∞ when p > 1/2 and R1⃗

n(∅) → 0 when p < 1/2, and conjecture that Rn(p) almost
surely grows exponentially when p = 1/2.

By analogy with the min-plus tree, it seems plausible to conjecture that when p = 1/2, the
random variables R1⃗

n(∅) are again growing at a stretched exponential scale. In order to make a
more precise guess at the phenomenology, we reprise the argument from the case of the min-plus
binary tree.

In the current setting, if | log x − log y| is large then log(x + y) ≈ max(log(x), log(y)), and
log(xy/(x + y)) ≈ min(log(x), log(y)). In this case, log fv(x, y) just looks like the value of a
random child. On the other hand, when x = y then log(x+y) = log(x)+1 and log(xy/(x+y)) =
log(x)−1, so log fv(x, y) looks like the common log-value of the children plus a random walk step.
Again, there is an interpolation between these two extremes, but the heuristic suggests that at a log
scale, when p = 1/2 the random hierarchical lattice should look somewhat like a symmetric simple
hipster random walk. In view of the validity of such a heuristic in the case of Pemantle’s min-plus
binary tree, we are led to conjecture that there exists c > 0 such that (in the case p = 1/2), with
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Rn = R1⃗
n(∅),

Rn

(cn)1/3
d−→ R,

where R is Beta(2, 2)-distributed. This is in slight disagreement with a prediction of Hambly and
Jordan MR2079916, who write “In the case p = 1/2 ... we also believe that there is an almost
sure exponential growth rate for the resistance”. Our conjecture is that the growth rate is in fact
stretched exponential. However, even the weaker conjecture that

Rn
d→ 1

2
δ0 +

1

2
δ∞,

i.e. that P {Rn ≤ r} → 1/2 for any r ∈ (0,∞), is open at this point.

Our approach. Recall that Bz⃗
n and Gz⃗

n are our notation for the totally asymmetric and simple
hipster random walks, respectively. For a probability measure µ supported by Z we write Pµ for
the probability measure under which the the entries of z⃗ are iid with law µ, independent of all the
other random variables describing the system.

The utility of taking random input values z⃗ is that the measuresPµ endow the random functions
Bz⃗

n andGz⃗
n with a sort of projective consistency: underPµ, for all 0 ≤ j ≤ n, the random variables

(Bz⃗
n(v), v ∈ Lj) are iid with the law of Bz⃗

n−j(∅). An exactly analogous statement holds for Gz⃗
n.

This allows us to write recurrences in n for the output distribution at the root in both models.
We first derive the recurrence for the totally asymmetric q-lazy simple hipster random walk.

Write

pnj (µ) = Pµ

{
Bz⃗

n(∅) = j
}
.

Providedwe assume thatµ is supported onZ, then the distribution ofBz⃗
n(∅) underPµ is determined

by the values (pnj (µ))n∈Z.
In what follows, we’ll write Bn(v) = Bz⃗

n(v) when the law of z⃗ is clear from context. By consid-
ering the values at the children of the root, using (1.3) we have

pn+1
j (µ) = Pµ {Bn+1(∅) = j}

=
1

2
Pµ {Bn+1(0) = j}Pµ {Bn+1(1) ̸= j}+ 1

2
Pµ {Bn+1(0) ̸= j}Pµ {Bn+1(1) = j}

+ q ·Pµ {Bn+1(0) = Bn+1(1) = j − 1}+ (1− q) ·Pµ {Bn+1(0) = Bn+1(1) = j}
= pnj (µ)(1− pnj (µ)) + q · (pnj−1(µ))

2 + (1− q) · (pnj (µ))2.

For the second equality we use the fact that, under Pµ, Bn+1(0) and Bn+1(1) are independent
and have the law of Bn(∅). After rearrangement this yields the identity

pn+1
j (µ)− pnj (µ) = −q · (pnj (µ)2 − pnj−1(µ)

2). (1.6)

This is a discrete analog of the inviscid Burgers’ equation,

∂tu = −q · ∂x(u2). (1.7)

Next consider the symmetric simple hipster random walk, and write

qnj (µ) = Pµ

{
Gz⃗

n(∅) = j
}
.
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We again writeGn(v) = Gz⃗
n(v)when the law of z⃗ is clear. By considering the values at the children

of the root, using (1.4) have

qn+1
j (µ) = Pµ {Gn+1(∅) = j}

=
1

2
Pµ {Gn+1(0) = j}Pµ {Gn+1(1) ̸= j}+ 1

2
Pµ {Gn+1(0) ̸= j}Pµ {Gn+1(1) = j}

+
1

2
·Pµ {Gn+1(0) = Gn+1(1) = j − 1}+ 1

2
·Pµ {Gn+1(0) = Gn+1(1) = j + 1}

= qnj (µ)(1− qnj (µ)) +
1

2
qnj−1(µ)

2 +
1

2
qnj+1(µ)

2,

where for the second equality we have again used projective consistency. Rearrangement now gives

qn+1
j (µ)− qnj (µ) =

1

2

(
(qnj+1(µ))

2 − 2(qnj (µ))
2 + (qnj+1(µ))

2
)
, (1.8)

a discrete analogue of the porous medium equation for groundwater infiltration [9],

∂tu =
1

2
· ∂xx(u2) . (1.9)

The preceding development shows that for both of the models under consideration, the evolution
of the probability distribution as n varies is a discrete analogue of a pde. As such, it’s natural to
expect the behaviour of the pde to predict that of the finite system. Indeed, if B is Beta(2, 1)-
distributed then (4qt)1/2B has density

x

2qt
1[0≤x≤(4qt)1/2] , (1.10)

which solves (1.7) at its points of differentiability. Similarly, if G is Beta(2, 2)-distributed then
(36t)1/3(G− 1/2) is supported by [−(36t)1/3, (36t)1/3] and has density

1

(36t)1/3
· 6
(
1

2
+

x

(36t)1/3

)(
1

2
− x

(36t)1/3

)
=

3

4

(( 2

9t

) 1
3 −

(2x2
9t

))
(1.11)

on that interval; this solves (1.9) wherever it is differentiable.
It isn’t a priori obvious that this perspective is useful, for multiple reasons. First, the pdes un-

der consideration are degenerate convection-diffusion equations, for which neither existence nor
uniqueness of solutions is clear. (The “solutions” above already have points of non-differentiability
so do not make sense classically; on the other hand, once one abandons classical solutions unique-
ness is in general lost.) Second, even if one can identify the “correct” pde solutions, it isn’t obvious
that the behaviour of the finite systems will correctly approximate the limiting pdes.

Showing that a discrete difference equation provides a good approximation for an associated
pde is a problem that sits squarely within the area of numerical analysis. It turns out that, by
viewing (1.6) and (1.8) as numerical approximation schemes we are able to use results from the
rigorous numerical analysis literature to prove distributional convergence of the associated random
variables.

In fact, in their initial form the numerical analysis results are not strong enough for our purposes,
as they establish convergence in an integrated sense which doesn’t give us access to the distribution
of the hipster random walks at fixed times. However, we are able to strengthen the numerical
approximation theorems using coupling arguments together with carefully chosen initial conditions
for the hipster random walks. The coupling arguments are slightly surprising, so we briefly describe
them. Write µ for the law of the entries of the input field Z⃗. Suppose Z⃗ is replaced by another input
field W⃗ whose entries have some law ν, and that for some α ∈ (0, 1) there exists a coupling (z, w)
of µ and ν such thatP {z > w} ≤ α. Then the totally asymmetric dynamics (1.3) may be coupled
so that for any n,

P
{
BZ⃗

n > BW⃗
n

}
≤ α,
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and likewise the symmetric dynamics (1.4) may be coupled so that for any n,

P
{
GZ⃗

n > GW⃗
n

}
≤ α.

For the precise statements, see Lemmas 4.1 and 4.2, below.
The remainder of the paper is structured as follows. In Section 2 we describe the setting of the

numerical approximation theorem we will use, as well as the theorem itself (Theorem 2.1). We also
state propositions which verify that the dynamics we study may be recast within the framework of
Theorem 2.1; the proofs of these propositions appear in Appendix A. In Section 3 we prove “inte-
grated” versions of Theorems 1.1 and 1.2. In Section 4 we state the coupling lemmas mentioned
above (their proofs are also deferred to Appendix A), and use them to prove Theorems 1.1 and 1.2.
Finally, Section 5 contains several suggestions for interesting avenues of research related to hipster
random walks and their ilk.

Acknowledgements. We thank Lia Bronsard for directing us to the reference [2]. We further
thank Rustum Choksi, Jessica Lin, Pascal Maillard and Robin Vacus for useful conversations.

2. Finite approximation schemes for degenerate convection-diffusion equations

This section summarizes the principal result of [2], which is the main tool we use to study the
asymptotic behaviour of the recurrence relations (1.7) and (1.9). In [2], Evje and Karlsen consider
convection-diffusion initial value problems of the form{

∂tu+ ∂xf(u)− ∂xxK(u) = 0, (x, t) ∈ R× (0, T )

u(x, 0) = u0(x).
(2.1)

The problem is specified by the choice of the (measurable) functions f : R → R and K : R →
[0,∞), which are respectively called the convection flux and the diffusion flux, and by the choice of
initial condition u0 : R → R. Burgers’ equation (1.7) is obtained by taking f(u) = f

(q)
B (u) := qu2

and K = K
(q)
B ≡ 0. The porous membrane equation (1.9) is obtained by taking f = fP ≡ 0 and

K(u) = KP(u) :=
1
2u

2.
Evje and Karlsen provide sufficient conditions for the convergence of certain numerical approxi-

mation schemes to solutions of (2.1). The “solutions” in question are not everywhere differentiable,
so must be understood in a weak sense, which we now explain in detail. (We impose stronger con-
ditions on our solutions than those in [2], since they are easier to state and hold in the cases we
consider in the current work.)

Recall that for a signed measure µ on a measurable space (M,B), there are unique non-negative
measures µ+, µ− on (M,B) such that µ = µ+−µ−; this is the Jordan decomposition of µ. The variation
of µ is the (unsigned) measure |µ| := µ+ + µ−.

A measurable function z : R × [0, T ] is locally integrable if for all compact sets S ⊂ R × [0, T ],
the function z|S is integrable. It has bounded variation if it is locally integrable and its partial deriva-
tives ∂xz and ∂tz, considered as signed Borel measures, satisfy |(∂xz)(R × (0, T ))| + |(∂tz)(R ×
(0, T ))| < ∞. Finally, z lies in the Hölder space C1, 1

2 (R× [0, T ]) if it is bounded and additionally
there is C > 0 such that for all (x, s), (y, t) ∈ R× [0, T ],

|z(x, s)− z(y, t)| ≤ C(|y − x|+ |t− s|1/2) .

Let u : R× [0, T ] → R be a bounded measurable function. We say u is a solution of (2.1) if the
following conditions hold.

(1) The function u|R×(0,T ) has bounded variation and u(·, 0) ≡ u0.
(2) The function K(u) is bounded and Lipschitz continuous on R× [0, T ].
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(3) For all non-negative ϕ ∈ C∞(R× (0, T )) with compact support and with ϕ|t=T ≡ 0, and
for all c ∈ R,∫
R

∫
(0,T )

((u− c) · ∂tϕ+ (f(u)− f(c)− ∂xK(u)) · ∂xϕ) · sgn(u− c)dtdx

+

∫
R
|u0 − c|ϕ(x, 0)dx ≥ 0 (2.2)

Here and elsewhere, sgn(x) := 1[x>0]−1[x<0]. In [2], such a function u is called a BV entropy weak
solution of (2.1).

The following may help understand the content of (2.2). Imagine that a smooth solution u of
(2.1) existed, and fix any bounded smooth function ϕ : R × (0, T ) → R with compact support.
Using integration by parts, we have∫

R

∫
(0,T )

u · ∂tϕdtdx =

∫
R
[u(x, ·)ϕ(x, ·)]Tt=0 dx−

∫
R

∫
(0,T )

ϕ · ∂tudxdt.

By (2.1) we also have ∂tu = ∂xxK(u)− ∂xf(u). Thus, if ϕ|t=T = 0 then the right-hand side is

−
∫
R
u0 · ϕ(x, 0)dx−

∫
(0,T )

∫
R
ϕ · (∂xxK(u)− ∂xf(u)) dx

= −
∫
R
u0 · ϕ(x, 0)dx−

∫
(0,T )

∫
R
∂xϕ · (∂xK(u)− f(u))dtdx,

the equality following from integration by parts and the fact that ϕ has compact support. This
yields the identity∫

R

∫
(0,T )

u · ∂tϕ+ (f(u)− ∂xK(u)) · ∂xϕ dtdx+

∫
R
u0 · ϕ(x, 0)dx = 0, (2.3)

which is an integrated form of (2.1). Unfortunately, for many pdes, there is no solution of (2.1) in
the classical sense as the “obvious” candidate is non-differentiable. On the other hand, passing to
the integrated form yields too much flexibility — solutions exist but are not unique.

One common way to single out a “physically relevant” solution of (2.1) is to first add a diffusive
term ϵuxx to the pde in (2.1), and find integrated solutionsu(ϵ) to themodified pde. The smoothing
effect of the diffusive term will often yield uniqueness of u(ϵ); one may then hope to define u :=
limϵ↓0 u

(ϵ). Informally, the addition of such a viscosity term is meant to enforce that any “shocks”
(discontinuities of the solution or of its derivatives) propagate at “physically meaningful speeds”.

There are many versions of such arguments for different families of pdes; one of the casualties
of this approach is that the that the equality in (2.3) does not always persist in the ϵ → 0 limit. Its
replacement by an inequality in some sense encodes the idea that shocks inhibit information trans-
mission (i.e. they are entropy increasing), but we have not found a convincing informal explanation
of why this is so. For further details on and applications of this perspective, we refer the reader to
[3, 5–7, 10, 11].

For a given initial condition u0 : R → R and real ∆x,∆t > 0, we define (Un
j )n∈N,j∈Z =

(Un
j (u0,∆x,∆t))n∈N,j∈Z via the following discretization of (2.1).

Un+1
j − Un

j

∆t
= −

f(Un
j )− f(Un

j−1)

∆x
+

K(Un
j+1)− 2K(Un

j ) +K(Un
j−1)

(∆x)2
, j ∈ Z, n ≥ 1

U0
j =

1

∆x

∫ (j+1)∆x

j∆x

u0(x)dx, j ∈ Z .

(2.4)

We refer to this as an approximation scheme for (2.1). Given an interval I ⊆ R, we say the approxima-
tion scheme is monotone on I if the function S : R3 → R defined by
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S(u−, u, u+) =
u

∆t
− 1

∆x
(f(u)− f(u−)) +

1

(∆x)2
(K(u+)− 2K(u) +K(u−)) (2.5)

satisfies S(I × I × I) ⊆ I × I × I , and is non-decreasing in each argument on I × I × I .
Equivalently, in the first equation in (2.4), the value of Un+1

j is a monotone function of Un
j+1, U

n
j

and Un
j−1, provided those values all lie in I .

Theorem 2.1 ([2]). Suppose f : R → R and K : R → R are continuously differentiable. Fix a bounded
variation function u0 : R → R with compact support and such that f(u0)−K ′(u0) also has bounded variation.
Then there is a unique BV entropy weak solution u of the corresponding convection-diffusion equation (2.1).

Next, fix sequences (∆M
x )M≥1 and (∆M

t )M≥1 decreasing to zero, such that the corresponding approximation
schemes (Un

j (u0,∆
M
x ,∆M

t ))n∈N,j∈Z are monotone on an interval I ⊆ R. Let uM : R × [0,∞) → R be
the function which takes the value Un

j (u0,∆
M
x ,∆M

t ) on the half-open rectangle

[j∆M
x , (j + 1)∆M

x )× [n∆M
t , (n+ 1)∆M

t ).

If u0(R) ⊆ I , then um converges pointwise almost everywhere to u, and for all compacts C ⊂ R× [0,∞),∫
C |uM − u|dxdt → 0 asM → ∞. Moreover, the sequence of functions (K(uM ))M≥1 converges uniformly

on compacts to K(u).

In [2], the approximation schemes are required to be monotone on R; however, the above for-
mulation is in fact an immediate consequence of the proof in [2].

The next two propositions verify that (1.10) and (1.11) indeed describe the the BV entropy so-
lutions of the convection-diffusion equation 2.1, for the relevant choices of f and K, and that the
corresponding approximation schemes are monotone provided we take a suitably fine-meshed dis-
cretization. The proofs of these propositions, which boil down to careful applications of the diver-
gence theorem together with case analysis (based on the value of c in (2.2)), appear in Appendix A.

The first of the propositions relates to Burgers’ equation, which corresponds to the totally asym-
metric hipster random walk. For this model f(u) = fB(u) := q · u2 and K = KB ≡ 0.

Proposition 2.2. Let q ∈ (0, 1). Fix ε > 0 and T > 0 and define uB : R× [0, T ] → R by

uB(x, t) =
x

2q(t+ ε)
1
[x∈[0,

√
4q(t+ε)]]

Then uB is the BV entropy weak solution to the initial value problem
∂tu+ ∂x(q · u2) = 0,

with initial condition u0(x) = uB(x, 0). Moreover, the following holds. Fix M > 0, let ∆M
x = 1

M and
∆M

t = 1
M2 , and consider the approximation scheme (Un

j (u0,∆
M
x ,∆M

t ))n∈N,j∈Z given by

Un+1
j − Un

j

∆M
t

= −q ·

(
(Un

j )
2 − (Un

j−1)
2

∆M
x

)
, j ∈ Z, n ≥ 1

U0
j =

1

∆M
x

∫ (j+1)∆M
x

j∆M
x

u0(x)dx, j ∈ Z

(2.6)

which is obtained from (2.4) by taking K ≡ KB and f ≡ fB. Then for M sufficiently large, the approximation
scheme (Un

j (u0,∆
M
x ,∆M

t ))n∈N,j∈Z is monotone on [0, (qε)−1/2].

The second of the propositions concerns the porous medium equation, which corresponds to
the symmetric simple hipster random walk. For this model we defined f = fP ≡ 0 and K(u) =
KP(u) =

1
2u

2.

Proposition 2.3. Fix ε > 0 and T > 0 and define vP : R× [0, T ] → R by

vP(x, t) = max

(
3

4

((
2

9(t+ ε)

) 1
3

−
(

2x2

9(t+ ε)

))
, 0

)
.
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Then vP is the BV entropy weak solution to the initial value problem

∂tv − ∂xx
v2

2
= 0,

with initial condition v0(x) = vP(x, 0). Moreover, the following holds. Fix M > 0, let ∆M
x = 1

M and
∆M

t = 1
M3 , and consider the approximation scheme (Un

j (v0,∆
M
x ,∆M

t ))n∈N,j∈Z given by

Un+1
j − Un

j

∆M
t

=
(Un

j+1)
2 − 2(Un

j )
2 + (Un

j−1)
2

2(∆M
x )2

, j ∈ Z, n ≥ 1

U0
j =

1

∆M
x

∫ (j+1)∆M
x

j∆M
x

v0(x)dx, j ∈ Z
(2.7)

which is obtained from (2.4) by taking K ≡ KP, and f ≡ fP. Then for M sufficiently large, the approximation
scheme (Un

j (v0,∆
M
x ,∆M

t ))n∈N,j∈Z is monotone on [0, (3/4)(2/(9ε))1/3].

3. Integrated versions of Theorems 1.1 and 1.2

The approximation schemes in Propositions 2.2 and 2.3 differ from the recurrences for the hip-
ster random walks, namely (1.6) and (1.8), by factors involving the spatial and discretizations, ∆M

x

and∆M
t . However, the form of those factors is such that we still have easily verified exact relations

between the values valuesUn
j and the distributions of the hipster randomwalks. These relations are

summarized in the next two propositions. Fix a non-negative measurable function ρ : R → [0,∞)
with

∫
R ρ(x)dx < ∞. For M > 0 and j ∈ Z, define a measure ρM on Z by

ρM ({j}) = M

∫ (j+1)/M

j/M
ρ(x)dx. (3.1)

Next, for j ∈ Z let u0j = u0j (ρ,M) = ρM ({j}), and for n ≥ 1 define (unj )j∈Z = (unj (ρ,M))j∈Z
via the recurrence

M · (un+1
j − unj ) = −q ·

(
(unj )

2 − (unj−1)
2
)
.

Note that this is equivalent to the recurrence in (2.6) since, in that recurrence, ∆M
x = 1/M and

∆M
t = 1/M2. The following proposition connects the evolution of unj with the totally asymmetric

hipster random walk. Its proof is a straightforward inductive argument and is omitted.

Proposition 3.1. Suppose that ρ is a probability density function on R. Fix M > 0 and define a measure
µ = µρ,M on Z by µ({j}) =

∫ (j+1)/M
j/M ρ(x)dx. Then for all n ∈ N and j ∈ Z,

unj (ρ,M) = M ·Pµ

{
Bz⃗

n(∅) = j
}
.

Next, fix M and ρ as above, and for j ∈ Z let v0j = v0j (ρ,M) = ρM ({j}), where ρM ({j}) is
again given by (3.1). Then, for n ≥ 1, define (vnj )j∈Z = (vnj (ρ,M))j∈Z by the recurrence

M · (vn+1
j − vnj ) =

1

2

(
(vnj+1)

2 − 2(vnj )
2 + (vnj−1)

2
)
.

This is equivalent to the recurrence in (2.7), as in (2.7) we have ∆M
x = 1/M and ∆M

t = 1/M3.

Proposition 3.2. Suppose that ρ is a probability density function. Fix any M > 0 and define a measure
µ = µρ,M on Z by µ({j}) =

∫ (j+1)/M
j/M ρ(x)dx. Then for all n ∈ N and j ∈ Z,

vnj (ρ,M) = M ·Pµ

{
Gz⃗

n(∅) = j
}
.

The proof of Proposition 3.2 is also an easy induction and is omitted.
Having stated these results, we are prepared to prove weakenings of Theorems 1.1 and 1.2.

We must weaken the theorems in two ways. First, rather than starting from arbitrary inputs, we
choose initial distributions which are fine-mesh discretization of the initial conditions for which we
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understand the solutions to the associated initial value problems. In other words, in the totally
asymmetric case we will start from a discretization of a scaled Beta(2, 1) distribution, and in the
symmetric case we will start from a discretized Beta(2, 2) distribution. Second, our conclusions
concern the distribution of trees of a random rather than fixed height. The reason for this is that
the almost sure convergence provided by Theorem 2.1 is two-dimensional (it concerns the space-
time field of values (Un

j )n≥0,j∈Z). Fixing the height of the tree corresponds to considering the
pde approximation at a fixed time; but Theorem 2.1 doesn’t a priori guarantee the absence of
“pathological” times at which the discrete approximations are badly-behaved.

Proposition 3.3. Fix q ∈ (0, 1) and ε ∈ (0, 1). Then for M > 0 let µM = µM
ε be the probability

measure on Z defined by

µM ({j}) =
∫ (j+1)/M

j/M

x

2qε
1[x∈[0,

√
4qε]]dx .

Next fix 0 ≤ ℓ < r and, under PµM , let W be a Uniform[ℓ, r] random variable, independent of z⃗. Then

Bz⃗
⌊WM2⌋

(4q(W + ε))1/2M

d→ B as M → ∞

where B is a Beta(2, 1) random variable.

The joint law of W and Bz⃗
⌊WM2⌋ can be given explicitly as

PµM

{
Bz⃗

⌊WM2⌋ = j,W ∈ dt
}
=

dt

r − ℓ
PµM

{
Bz⃗

⌊tM2⌋(∅) = j
}
1[t∈[ℓ,r]].

Proof of Proposition 3.3. In the proof we write P instead of PµM and Bk instead of Bz⃗
k(∅), for suc-

cinctness. For b ∈ (0, 1), we have

P
{
B⌊WM2⌋ ≤ (4q(W + ε))1/2Mb

}
=

∫ r

ℓ
P
{
B⌊WM2⌋ ≤ (4q(W + ε))1/2Mb,W ∈ dt

}
=

1

r − ℓ

∫ r

ℓ
P
{
B⌊tM2⌋ ≤ (4q(t+ ε))1/2Mb

}
dt . (3.2)

Define u0(x) = (x/(2qε))1[x∈[0,
√
4qε]] and for 0 ≤ t ≤ 4q let

u(x, t) =
x

2q(t+ ε)
1
[x∈[0,

√
4q(t+ε)]]

.

Then u ≡ uB and u0(x) = uB(x, 0), where uB is as in Proposition 2.2, applied with T = 4q
and t0 = ϵ. Also write Un

j = Un
j (u0,∆

M
x ,∆M

t ), where (Un
j (u0,∆

M
x ,∆M

t ))n∈N,j∈Z is again as in
Proposition 2.2.

Note that µM ({j}) =
∫ (j+1)/M
j/M u0(x)dx, and by Proposition 3.1, for all n ∈ N and j ≥ 0 we

have Un
j = M ·P {Bn = j}. Now let uM : R× [0,∞) → R be the function which takes the value

Un
j on [j/M, (j + 1)/M)× [n/M2, (n+ 1)/M2) for n, j ∈ N. Then for b ∈ [0, 1] we have

r∫
ℓ

b(4q(t+ε))1/2∫
0

uM (x, t)dxdt =

r∫
ℓ

b(4q(t+ε))1/2∫
0

M ·P
{
B⌊tM2⌋ = ⌊Mx⌋

}
dxdt ,

so
r∫

ℓ

b(4q(t+ε))1/2∫
0

uM (x, t)dxdt ≥
r∫

ℓ

P
{
B⌊tM2⌋ < ⌊Mb(2(t+ ε))1/2⌋

}
dt (3.3)
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and
r∫

ℓ

b(4q(t+ε))1/2∫
0

uM (x, t)dxdt ≤
r∫

ℓ

P
{
B⌊tM2⌋ ≤ ⌊Mb(2(t+ ε))1/2⌋

}
dt . (3.4)

Since uB is the solution to the initial value problem ∂tu + q∂xu
2 = 0 with initial condition

u0 = uB,0, it follows by Theorem 2.1 that

lim
M→∞

r∫
ℓ

b(4q(t+ε))1/2∫
0

uM (x, t) dxdt =

r∫
ℓ

b(4q(t+ε))1/2∫
0

u(x, t)dxdt =

r∫
ℓ

b2 = (r − ℓ)b2 .

Combining this with (3.2), (3.3) and (3.4), we obtain that for all b ∈ (0, 1),

lim
M→∞

P
{
B⌊WM2⌋ ≤ (4q(W + ε))1/2Mb

}
= b2.

For B a Beta(2, 1) random variable, P {B ≤ b} = b2, so the result follows. □

Proposition 3.4. Fix ε ∈ (0, 1). For M > 0 let νM = νMε be the probability measure on Z defined by

νM ({j}) =
∫ (j+1)/M

j/M
max

(
3

4

((
2

9ε

)1/3

−
(
2x2

9ε

))
, 0

)
dx.

Next fix 0 ≤ ℓ < r and, under PνM , let W be a Uniform[ℓ, r] random variable, independent of z⃗. Then

Gz⃗
⌊WM3⌋

(36(W + ε))1/3M
+

1

2

d→ G as M → ∞

where G is a Beta(2, 2) random variable.

Similarly to the previous case, the joint law ofW and Gz⃗
⌊WM3⌋ is given by

PνM {Gz⃗
⌊WM3⌋ = j,W ∈ dt} =

dt

r − ℓ
PνM

{
Gz⃗

⌊tM3⌋(∅) = j
}
1[t∈[ℓ,r]].

Proof of Proposition 3.4. Again, we write P instead of PνM and Gk instead of Gz⃗
k(∅). For 0 ≤ a <

b ≤ 1, we have

P

{
G⌊WM3⌋

(36(W + ε))1/3M
+

1

2
∈ [a, b]

}
=

1

r − ℓ

∫ r

ℓ
P
{
G⌊tM3⌋ ∈ [⌊M(a− 1/2)c⌋, ⌊M(b− 1/2)c⌋]

}
dt, (3.5)

where c = (36(t+ ε))1/3.
Define v0(x) = max

(
3
4

((
2
9ε

)1/3 − (2x2

9ε

))
, 0
)
and for t ∈ [0, ⌈r⌉] let

v(x, t) = max

(
3

4

((
2

9(t+ ε)

)1/3

−
(

2x2

9(t+ ε)

))
, 0

)
.

Then v ≡ vP and v0(x) = vP(x, 0), where vP is as in Proposition 2.3, applied with T = ⌈r⌉,
say. We also let Un

j = Un
j (v0,∆

M
x ,∆M

t ) be as defined in Proposition 2.3.
Note that νM ({j}) =

∫ (j+1)/M
j/M v0(x)dx, and by Proposition 3.2, for all n ∈ N, and j ∈ Z we

have that Un
j = M ·P{Gn = j}. Let vM : R× (0,∞) → R be the function which takes the value
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Un
j on [j/M, (j + 1)/M)× [n/M3, (n+ 1)/M3) for n ∈ N, j ∈ Z. Then for 0 ≤ a < b ≤ 1,

r∫
ℓ

(b−1/2)(36(t+ε))1/3∫
(a−1/2)(36(t+ε))1/3

vM (x, t)dxdt =

r∫
ℓ

(b−1/2)(36(t+ε))1/3∫
(a−1/2)(36(t+ε))1/3

M ·P{G⌊tM3⌋ = ⌊Mx⌋}dxdt.

As in the proof of Proposition 2.3 it follows that

r∫
ℓ

(b− 1
2)(36(t+ε))1/3∫

(a− 1
2)(36(t+ε))1/3

vM (x, t)dxdt ≥
r∫

ℓ

P
{
G⌊tM3⌋ ∈ (⌊M(a− 1/2)c⌋, ⌊M(b− 1/2)c⌋)

}
dt,

(3.6)

and

r∫
ℓ

(b− 1
2)(36(t+ε))1/3∫

(a− 1
2)(36(t+ε))1/3

vM (x, t)dxdt ≤
r∫

ℓ

P
{
G⌊tM3⌋ ∈ (⌊M(a− 1/2)c⌋, ⌊M(b− 1/2)c⌋]

}
dt.

(3.7)
By Proposition 2.3 vP is the BV entropy weak solution to the initial value problem ∂tv−∂xxv

2/2 =
0 with initial condition v0, by Theorem 2.1,

lim
M→∞

r∫
ℓ

(b− 1
2)(36(t+ε))1/3∫

(a− 1
2)(36(t+ε))1/3

vM (x, t)dxdt =

r∫
ℓ

(b− 1
2)(36(t+ε))1/3∫

(a− 1
2)(36(t+ε))1/3

v(x, t)dxdt

=

r∫
ℓ

3(b2 − a2)− 2(b3 − a3)dt

= (r − l)(3(b2 − a2)− 2(b3 − a3)).

Combining this with (3.5), (3.6), (3.7), we obtain that for all b ∈ (0, 1),

lim
M→∞

P

{
G⌊WM3⌋

(36(W + ε))1/3M
∈ [a, b]

}
= 3(b2 − a2)− 2(b3 − a3) =

∫ b

a
6x(1− x)dx.

Since the density for a Beta(2, 2) random variable is 6x(1− x)1[x∈[0,1]], the result follows. □

4. Proofs of Theorems 1.1 and 1.2.

In order to strengthen Propositions 3.3 and 3.4 to remove the time averaging, we shall use the
following coupling lemmas.

Lemma 4.1. Fix two probability distributions µ, ν on Z and a coupling (X,Y ) of µ and ν, and write
α = P(X > Y ). Fix k ≥ 1, let µk be the law of Bz⃗

k(∅) under Pµ and let νk be the law of Bz⃗
k(∅) under

Pν . Then there exists a coupling (X ′, Y ′) of µk, νk such that P(X ′ > Y ′) = α.

Lemma 4.2. Fix two probability distributions µ, ν on Z and a coupling (X,Y ) of µ and ν, and write
α = P(X > Y ). Fix k ≥ 1, let µk be the law of Gz⃗

k(∅) under Pµ and let νk be the law of Gz⃗
k(∅) under

Pν . Then there exists a coupling (X ′, Y ′) of µk, νk such that P(X ′ > Y ′) ≤ α.

Both lemmas are proved by the explicit construction of a coupling with the claimed property. In
Appendix A we prove Lemma 4.2 in detail, then briefly explain how to modify the construction to
prove Lemma 4.1, since the constructions are nearly identical.
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Proof of Theorem 1.2. We aim to prove that for any field of IID random variables Z⃗ = (Zv, v ∈ T ),
we have

(36n)−1/3GZ⃗
n (∅) + 1/2

d−→ G∞ ,

where, here and later in the proof, G∞ denotes a Beta(2, 2)-distributed random variable. We first
handle the case that Z⃗ = 0⃗, or equivalently that the random variables Zv are δ0-distributed. At the
end of the proof we explain how to extend from this case to general input distributions.

Fix ε ∈ (0, 1) and let U be a Uniform[1, 1 + ε] random variable, independent of all other
randomness in the system. We recall the definition of νM from Proposition 3.4: for M > 0, νM is
the probability measure on Z such that for all j ∈ Z

νM ({j}) =
∫ (j+1)/M

j/M
max

(
3

4

((
2

9ε

)1/3

−
(
2x2

9ε

))
, 0

)
dx.

Now for M > 0 such that M3 ∈ N, let πM be the law of G⌊UM3⌋−M3 := Gz⃗
⌊UM3⌋−M3(∅)

under PνM ; for v ∈ LM3 , this is also the law of Gz⃗
⌊UM3⌋(v) under PνM . We will use the fact that

the law of G⌊UM3⌋ = G⌊UM3⌋(∅) under PνM is the same as the law of GM3 = GM3(∅) under
PπM ; see Figure 1.

bUM3c M3

bUM3c −M3

πM

νM

Figure 1. If the level-⌊UM3⌋ inputs are νM -distributed then the resulting level-
M3 outputs are πM -distributed. In other words, for all ℓ ∈ N and v ∈ LM3

we have PνM

{
Gz⃗

⌊UM3⌋(v) = ℓ
}

= πM{ℓ} = PπM {xv = ℓ}, and so also

PνM

{
Gz⃗

⌊UM3⌋(∅) = ℓ
}
= PπM

{
Gz⃗

M3(∅) = ℓ
}
.

Since U − 1 is Uniform[0, ε], by Proposition 3.4 applied with ℓ = 0, r = ε we have that
G⌊UM3⌋−M3

(36(U − 1 + ε))1/3M
+

1

2

d→ G∞ (4.1)

as M → ∞ along values with M3 ∈ N. Therefore

PνM

{
G⌊UM3⌋−M3 >

(36 · 2ε)1/3M
2

}
≤ PνM

{
G⌊UM3⌋−M3 >

(36(U − 1 + ε))1/3M

2

}

= PνM

{
G⌊UM3⌋−M3

(36(U − 1 + ε))1/3M
+

1

2
> 1

}
.

By (4.1), the final probability tends to 0 as M → ∞, so

PνM

{
G⌊UM3⌋−M3 >

(36 · 2ε)1/3M
2

}
→ 0 as M → ∞,
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and by a similar analysis one finds that

PνM

{
G⌊UM3⌋−M3 < −(36 · 2ε)1/3M

2

}
→ 0 as M → ∞.

Fixing α > 0, we can therefore choose M0 large enough that forM ≥ M0,

PνM

{
G⌊UM3⌋−M3 >

(36 · 2ε)1/3M
2

}
≤ α, (4.2)

and

PνM

{
G⌊UM3⌋−M3 < −(36 · 2ε)1/3M

2

}
≤ α.

Using the definition of πM , the second inequality implies that forM ≥ M0, underPπM , the inputs
(zv, v ∈ LM3) =: (GM3(v), v ∈ LM3) are such that

PπM

{
xv < −(36 · 2ε)1/3M

2

}
= PνM

{
G⌊UM3⌋−M3 < −(36 · 2ε)1/3M

2

}
≤ α (4.3)

Note that we may view (4.3) as stating that that there exists a coupling (X,Y ) of δ0, a Dirac mass
at 0, and πM , such that P

{
Y + (36·2ε)1/3M

2 < X
}
≤ α. We can then apply Lemma 4.2 to find a

coupling (XM , YM ) of GM3 under Pδ0 and GM3 under PπM such that

P

{
YM +

(36 · 2ε)1/3M
2

< XM

}
≤ α.

For all x ∈ R, this gives

lim sup
M→∞

Pδ0

{
GM3

(36)1/3M
+

1

2
> x

}
= lim sup

M→∞
P

{
XM > (36)1/3M

(
x− 1

2

)}
≤ α+ lim sup

M→∞
P

{
YM +

(36 · 2ε)1/3M
2

≥ XM > (36)1/3M

(
x− 1

2

)}

≤ α+ lim sup
M→∞

P

{
YM +

(36 · 2ε)1/3M
2

> (36)1/3M

(
x− 1

2

)}

= α+ lim sup
M→∞

P

{
YM

(36)1/3M
+

1

2
> x− (2ε)1/3

2

}

= α+ lim sup
M→∞

PπM

{
GM3

(36)1/3M
+

1

2
> x− (2ε)1/3

2

}

= α+ lim sup
M→∞

PνM

{
G⌊UM3⌋

(36)1/3M
+

1

2
> x− (2ε)1/3

2

}
.
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Combining this result with the fact that (1 + 2ε)/(U + ε) > 1, we get that for all x ∈ R,

lim inf
M→∞

Pδ0

{
GM3

(36)1/3M
+

1

2
≤ x

}
≥ lim inf

M→∞
PνM

{
G⌊UM3⌋

(36)1/3M
+

1

2
≤ x− (2ε)1/3

2

}
− α,

≥ lim inf
M→∞

PνM

{
(1 + 2ε)1/3

(
G⌊UM3⌋

(36(U + ε))1/3M
+

1

2

)
≤ x− (2ε)1/3

2

}
− α

= P

{
G∞ ≤ 1

(1 + 2ε)1/3

(
x− (2ε)1/3

2

)}
− α ; (4.4)

the last equality follows from Proposition 3.4.
Similarly, we may view (4.2) as stating that forM sufficiently large there exists a coupling (X,Y )

withX having distributionπM andY having distribution δ0, such thatP
{
X − (36·2ε)1/3M

2 > Y
}
≤

α. For M large we may thus apply Lemma 4.2 to find a coupling (XM , YM ) of GM3 under PπM

and GM3 under Pδ0 such that

P

{
XM − (36 · 2ε)1/3M

2
> YM

}
≤ α. (4.5)

This is a different coupling from the one used just above, but we allow ourselves to recycle the
notation (XM , YM ) as the previous coupling plays no further role. (Note that the marginals of the
coupling have switched places.)

It follows from (4.5) that for all x ∈ R,

lim sup
M→∞

Pδ0

{
GM3

(36)1/3M
+

1

2
≤ x

}
= lim sup

M→∞
P

{
YM ≤ (36)1/3M

(
x− 1

2

)}
≤ α+ lim sup

M→∞
P

{
XM − (36 · 2ε)1/3M

2
< YM ≤ (36)1/3M

(
x− 1

2

)}

≤ α+ lim sup
M→∞

P

{
XM ≤ (36)1/3M

(
x− 1

2

)
+

(36 · 2ε)1/3M
2

}

= α+ lim sup
M→∞

PπM

{
GM3

(36)1/3M
+

1

2
≤ x+

(2ε)1/3

2

}

≤ α+ lim sup
M→∞

PνM

{
G⌊UM3⌋

(36(U + ε))1/3M
+

1

2
≤ x+

(2ε)1/3

2

}

= α+P

{
G∞ ≤ x+

(2ε)1/3

2

}
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where the final inequality holds since U + ϵ > 1, and the last equality again holds by Proposition
3.4. Using this in combination with (4.4) gives

P

{
G∞ ≤ 1

(1 + 2ε)1/3

(
x− (2ε)1/3

2

)}
− α ≤ lim inf

M→∞
Pδ0

{
GM3

(36)1/3M
+

1

2
≤ x

}
≤ lim sup

M→∞
Pδ0

{
GM3

(36)1/3M
+

1

2
≤ x

}
≤ α+P

{
G∞ ≤ x+

(2ε)1/3

2

}
,

for all x ∈ R. Since ε ∈ (0, 1) was arbitrary we can let ε → 0 to obtain that for all x ∈ R

P{G∞ ≤ x} − α ≤ lim inf
M→∞

Pδ0

{
GM3

(36)1/3M
+

1

2
≤ x

}
≤ lim sup

M→∞
Pδ0

{
GM3

(36)1/3M
+

1

2
≤ x

}
≤ α+P {G∞ ≤ x} .

Since α > 0 was also arbitrary, we may take α → 0 to get that under Pδ0 , as M → ∞ along
M3 ∈ N,

GM3

(36)1/3M
+

1

2

d→ G∞ .

This handles the case that Z⃗ = 0⃗; we finish the proof by explaining how to extend to general
input distributions. It’s useful to first note that in any case where all inputs take the same value, the
result follows immediately from the case of all-zero inputs, since shifting all quantities in the process
by a fixed finite value does not affect the distributional convergence.

Now suppose the entries of Z⃗ are iid with some common law ξ. Fix β > 0 and let K = K(β)
be large enough that ξ([−K,K]) > 1− β. Then for all v ∈ T we have P {Zv > K} < β, so by
Lemma 4.2, for all x ∈ R,

lim sup
M→∞

P

{
GZ⃗

M3

(36)1/3M
+

1

2
≤ x

}
= lim sup

M→∞
Pξ

{
GM3

(36)1/3M
+

1

2
≤ x

}
< lim sup

M→∞
PδK

{
GM3

(36)1/3M
+

1

2
≤ x

}
+ β

= P {G∞ ≤ x}+ β ,

the last equality holding since we already established distributional convergence for constant input.
It likewise follows that

lim inf
M→∞

P

{
GZ⃗

M3

(36)1/3M
+

1

2
≤ x

}
= lim inf

M→∞
Pξ

{
GM3

(36)1/3M
+

1

2
≤ x

}
> lim inf

M→∞
Pδ−K

{
GM3

(36)1/3M
+

1

2
≤ x

}
− β

= P {G∞ ≤ x} − β ;

combining the two preceding displays and taking β → 0, the result follows. □

Proof of Theorem 1.1. We aim to prove that for any field of IID random variables Z⃗ = (Zv, v ∈ T ),
we have

(4qn)−1/2BZ⃗
n (∅)

d→ B∞ ,

where, here and later in the proof, B∞ denotes a Beta(2, 1)-distributed random variable. We
restrict our attention to the case that Z⃗ = 0⃗; the extension to general input distributions proceeds
exactly as in the proof of Theorem 1.2, using Lemma 4.1 in place of Lemma 4.2.
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Fix ε ∈ (0, 1), and recall the definition of µM from Proposition 3.3: for M > 0, µM is the
probability measure on Z such that for all j ∈ Z

µM ({j}) =
∫ (j+1)/M

j/M

x

2qε
1[x∈[0,

√
4qε]]dx.

Next, let U be a Uniform[1, 1 + ε] random variable, and for M > 0 such that M2 ∈ N, let πM

be the law of B⌊UM2⌋−M2 under PµM ; this is also the law of BZ⃗
⌊UM2⌋(v) under PµM for nodes

v ∈ LM2 . Also, the law of B⌊UM2⌋ under PµM is the same as the law of BM2 under PπM . (We
have used the shorthand Bn = BZ⃗

n (∅) repeatedly in this paragraph.)
Since U − 1 is Uniform[0, ε], by Proposition 3.3 applied with ℓ = 0, r = ε we have that

B⌊UM2⌋−M2

(4q(U − 1 + ε))1/2M

d−→ B, (4.6)

as M → ∞ along values with M2 ∈ N where B is a Beta(2, 1) random variable. Therefore

PµM

{
B⌊UM2⌋−M2 > (4q · (2ε))1/2M

}
≤ PµM

{
B⌊UM2⌋−M2 > (4q(U − 1 + ε))1/2M

}
= PµM

{
B⌊UM2⌋−M2

(4q(U − 1 + ε))1/2M
> 1

}
.

By (4.6), the final probability tends to 0 as M → ∞ along values with M2 ∈ N, so

PµM

{
B⌊UM2⌋−M2 > (4q · (2ε))1/2M

}
→ 0 as M → ∞. (4.7)

Therefore, for any α > 0, we can choose M0 large enough such that for M ≥ M0,

PµM

{
B⌊UM2⌋−M2 > (4q · (2ε))1/2M

}
≤ α.

Also, since the dynamics are monotone non-decreasing, for all M we have

PµM

{
B⌊UM2⌋−M2 < 0

}
= 0. (4.8)

Under PπM , for M ≥ M0 the inputs (zv, v ∈ LM2) =: (BM2(v), v ∈ LM2) are such that

PπM

{
zv > (4q · (2ε))1/2M

}
= PµM

{
B⌊UM2⌋−M2 > (4q · (2ε))1/2M

}
≤ α, (4.9)

and
PπM {zv < 0} = PµM

{
B⌊UM2⌋−M2 < 0

}
= 0. (4.10)

By (4.9) we can apply Lemma 4.1 to find a coupling (XM , YM ) of BM2 under PπM and BM2

under Pδ0 such that
P
{
XM > (4q · (2ε))1/2M + YM

}
≤ α.

Then for all x ∈ R, we obtain the bound

lim sup
M→∞

Pδ0

{
BM2

(4q)1/2M
≤ x

}
= lim sup

M→∞
P

{
YM

(4q)1/2M
≤ x

}
≤ α+ lim sup

M→∞
P

{
XM

(4q)1/2M
− (2ε)1/2 <

YM
(4q)1/2M

≤ x

}
≤ α+ lim sup

M→∞
P

{
XM

(4q)1/2M
< x+ (2ε)1/2

}
= α+ lim sup

M→∞
PπM

{
BM2

(4q)1/2M
< x+ (2ε)1/2

}
= α+ lim sup

M→∞
PµM

{
B⌊UM2⌋

(4q)1/2M
< x+ (2ε)1/2

}
.
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Using that U + ϵ > 1, then using Proposition 3.3 applied with ℓ = 1, and r = 1 + ε, this gives

lim sup
M→∞

Pδ0

{
BM2

(4q)1/2M
≤ x

}
≤ α+ lim sup

M→∞
PµM

{
B⌊UM2⌋

(4q(U + ϵ))1/2M
< x+ (2ε)1/2

}
= α+P

{
B∞ ≤ x+ (2ε)1/2

}
. (4.11)

Likewise, using (4.10) and Lemma 4.1 we may find a (different) coupling (XM , YM ) of BM2

under Pδ0 and BM2 under PπM such that P {XM > YM} = 0. In other words, BM2 under Pδ0

is stochastically dominated by BM2 under PπM . It follows that for all x ∈ R,

lim inf
M→∞

Pδ0

{
BM2

(4q)1/2M
≤ x

}
≥ lim inf

M→∞
PπM

{
BM2

(4q)1/2M
≤ x

}
.

Using that (1 + 2ϵ)/(U + ϵ) > 1, then using Proposition 3.3 applied with ℓ = 1, and r = 1 + ε,
we get that for all x ∈ R,

lim inf
M→∞

Pδ0

{
BM2

(4q)1/2M
≤ x

}
≥ lim inf

M→∞
PπM

{
(1 + 2ϵ)1/2

BM2

(4q(U + ϵ))1/2M
≤ x

}
= lim inf

M→∞
PµM

{
(1 + 2ϵ)1/2

B⌊UM2⌋

(4q(U + ϵ))1/2M
≤ x

}
= P

{
(1 + 2ϵ)1/2B∞ ≤ x

}
.

Combining this with (4.11) gives

P
{
(1 + 2ϵ)1/2B∞ ≤ x

}
≤ lim inf

M→∞
Pδ0

{
BM2

(4q)1/2M
≤ x

}
≤ lim sup

M→∞
Pδ0

{
BM2

(4q)1/2M
≤ x

}
≤ α+P

{
B∞ ≤ x+ (2ε)1/2

}
.

Since α > 0 and ϵ ∈ (0, 1) were arbitrary, it follows that ((4q)1/2M)−1B0⃗
M2

d→ B∞, as required.
□

5. Conclusion

There are several natural avenues for extensions of our results which are deserving of study. The
first three points below relate specifically to hipster random walks.

• The robustness of Theorems 1.1 and 1.2 with respect to the law of the inputs is due to the
fact that, by the coupling lemmas, changes to the input law have an essentially additive effect
on the dynamics, and this effect vanishes after rescaling.

We can say less about robustness with respect to changes in the step distribution. In
general, for a hipster random walk with bounded steps (Dv, v ∈ T ), we would expect that
if the steps are centred then one should expect a version of Theorem 1.2 to hold (with a
normalizing constant depending on the step distribution), whereas if the steps have non-
zero mean then a version of Theorem 1.1 should hold.

As a special case of the second assertion, one might try to extend Theorem 1.1 to hip-
ster random walks with non-negative, bounded integer steps. If the steps take values in
{0, 1, . . . ,M} with

P {Dv = i} = ci,

then one would obtain the recurrence

rn+1
k = rnk (1− rnk ) +

M∑
i=0

ci(r
n
k−i)

2.

Another natural special case to consider is that of asymmetric simple randomwalk, where
P {Dv = 1} = q = 1−P {Dv = −1}, for q ̸= 1/2. This case may even be accessible with
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a variant of the techniques of the current work, since the resulting finite difference scheme
appears to fit within the framework of [2]. However, although the resulting pde has the
same long-term behaviour as Burgers’ equation, at any finite time the solution behaves
like a mixture of Burgers’ equation and the porous membrane equation, and this seems to
complicate the analysis.

• For unbounded step distributions – and in particular for heavy-tailed step distributions –
one should be able to construct more exotic behaviour. It would be quite interesting to
understand whether there is a dictionary between the possible behaviours of the hipster
random walk and the various solutions of the associated pdes.

We conclude with some further potential research directions, in the spirit of this work but not specif-
ically related to hipster random walks.

• Instead of a hipster random walk, one may consider a fomo random walk (fomo stands for
“fear of missing out”). Here the combination rule is

fv(x, y) =

{
x if x = y

xAv + y(1−Av) +Dv if x ̸= y ,

where as before theAv are Bernoulli(1/2)-distributed. For this dynamics, walkers are happy
when they have company, and only move when they find themselves alone. The recurrence
relation for the fomo symmetric simple random walk (when theDv are centred±1 random
variables) can be written as

rn+1
k − rnk =

1

2

(
rnk−1 − 2rnk + rnk−1

)
− 1

2

(
(rnk−1)

2 − 2(rnk )
2 + (rnk+1)

2
)
,

which one may suppose converges to a solution of the pde ∂tu = (∂xxu−∂xx(u
2))/2. The

presence of a diffusive term should make this model’s analysis somewhat more straightfor-
ward.

• More generally, what conditions on a discrete difference equation imply that it can be inter-
preted as describing the evolution of the distribution function for an integer-valued recursive
distributional equation? Conversely, which integer RDEs yield difference equations which
may be interpreted as numerical schemes (and fruitfully analyzed using techniques from
numerical analysis)? Also: can this approach be of any use in settings where integrality is
not preserved (such as that of the random hierarchical lattice)?

• This paper imports theorems from numerical analysis to prove probabilistic results; perhaps
information can also flow in the other direction. The development of any reasonably gen-
eral techniques for analyzing such probabilistic systems would seem likely to simultaneously
establish new stability/convergence results for numerical approximations of pdes. Thus
far, we are not aware of any theorems in the numerical analysis literature which have been
proved in such a way.

Appendix A. Proofs of Propositions 2.2 and 2.3

Proof of Proposition 2.2. We first verify monotonicity. Since KB ≡ 0, the function S : R3 → R
defined by (2.5) is

S(u−, u, u+) =
u

∆M
t

− q

∆M
x

(u2 − (u−)2) = M2 · u− qM · (u2 − (u−)2).

The function S is nondecreasing in all of its arguments on [0,M/(2q)], so forM sufficiently large,
the approximation scheme (Un

j (u0,∆
M
x ,∆M

t ))n∈N,j∈Z is monotone on [0, 1/(
√
qε)].

We now turn to the first claim of the proposition. The function u = uB is clearly of bounded
variation since it has bounded Lipschitz constant in the compact region

{(x, t) : 0 ≤ x ≤
√
4q(t+ ε), 0 ≤ t ≤ T}
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t

xx =
√
4qε

t = T

t = x2−ε
4q

, x ≥
√
4qε

Figure 2. The region of integration and different “sign-change” regimes for
different values of c. Read from left to right, the straight green lines represent
equations of the form t = x/(2qc) − ε for c ≤ 0, c ∈ (0, 1/

√
q(t+ ε)], c ∈

(1/
√
q(t+ ε), 1/

√
qε] and c > 1/

√
qε, respectively.

and is zero outside this region. Also, by definition u(·, 0) ≡ u0 and it is clear that f(u0)−K ′(u0)
is of bounded variation. To prove the proposition, it then remains to show that∫

R×[0,T ]
sgn(u− c) ·

(
(u− c)∂tϕ+ q(u2 − c2)∂xϕ

)
dtdx+

∫
R
|u0 − c|ϕ(x, 0)dx ≥ 0 . (A.1)

for all c ∈ R and all non-negative ϕ ∈ C∞(R× [0, T ]) with compact support such that ϕ|t=T ≡ 0.
Before beginning the analysis, note that ϕ, ∂tϕ, ∂xϕ and u are all bounded on R × [0, T ] hence
there is no issue when changing the order of integration. The proof naturally splits into four cases
according to whether c ≤ 0, c ∈ (0,

√
1/(q(t+ ε))], c ∈ (

√
1/(q(t+ ε)),

√
1/(qε)], and c >√

1/(qε); see Figure 2.

The most involved case is when c ∈
(

1√
q(t+ε)

, 1√
qε

]
. We will provide a full proof only for this

case. Define the two regions

R− :=
{
(x, t) : x ≤ min(2qc(t+ ε),

√
4q(t+ ε)), t ∈ [0, T ]

}
,

and

R+ :=
{
(x, t) : 2qc(t+ ε) ≤ x ≤

√
4q(t+ ε), t ∈ [0, T ]

}
,

and write nR− , nR+ for their respective outward normal vectors.
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For a C1 function F = (F (x), F (y)) : R2 → R2 we write ÷(F ) = ∂xF
(x) + ∂yF

(y) : R2 → R
for the divergence of F . Remark that for (x, t) lying in the interior of either R+ or R−,

div
(
q(u2 − c2)ϕ, (u− c)ϕ

)
= ∂x

(
q(u2 − c2)ϕ

)
+ ∂t((u− c)ϕ)

= ∂x(q · u2 · ϕ) + q(u2 − c2) · ∂xϕ+ ∂tu · ϕ+ (u− c) · ∂tϕ
= q(u2 − c2) · ∂xϕ+ (u− c) · ∂tϕ.

We can therefore rewrite the left hand side of (A.1) as∫
R+

div
(
q(u2 − c2)ϕ, (u− c)ϕ

)
−
∫
R−

div
(
q(u2 − c2)ϕ, (u− c)ϕ

)
+

∫
R
|u0 − c|ϕ(x, 0)dx,

and by applying the divergence theorem, this can in turn be written as∫
∂R+

(
q(u2 − c2)ϕ, (u− c)ϕ

)
· nR+ −

∫
∂R−

(
q(u2 − c2)ϕ, (u− c)ϕ

)
· nR− +

∫
R
|u0 − c|ϕ(x, 0)dx

≥
∫
T+

(
q(u2 − c2)ϕ, (u− c)ϕ

)
· nR+ +

∫
L

(
q(u2 − c2)ϕ, (u− c)ϕ

)
· nR+ (A.2)

−
(∫

T−

(
q(u2 − c2)ϕ, (u− c)ϕ

)
· nR− +

∫
L

(
q(u2 − c2)ϕ, (u− c)ϕ

)
· nR−

)
,

where

L :=

{
(x, t) : x = 2qc(t+ ε), 0 ≤ t ≤ 4q

c2
− ε

}
,

T+ :=

{
(x, t) : x =

√
4q(t+ ε), 0 ≤ t ≤ 1

c2q
− ε

}
,

and

T− :=

{
(x, t) : x =

√
4q(t+ ε),

1

c2q
− ε < t ≤ T

}
.

Note that u− c ≡ 0 on L, and therefore we can rewrite (A.2) as∫
T+

(
q(u2 − c2)ϕ, (u− c)ϕ

)
· nR+ −

∫
T−

(
q(u2 − c2)ϕ, (u− c)ϕ

)
· nR− .

On T+ and T− we have nR+ = nR− , where nR+ =
(
| (t+ε)
t+ε+q |

1
2 , − | q

t+ε+q |
1
2

)
. This yields∫

T+

(
q(u2 − c2)ϕ, (u− c)ϕ

)
· nR+ −

∫
T−

(
q(u2 − c2)ϕ, (u− c)ϕ

)
· nR−

=

∫
T+

c · ϕ
|t+ ε+ q|1/2

(√
q − qc

√
(t+ ε)

)
−
∫
T−

c · ϕ
|t+ ε+ q|1/2

(√
q − qc

√
(t+ ε)

)
≥
∫
T+

c · ϕ
|t+ ε+ q|1/2

(
√
q − q

√
1

q

)
−
∫
T−

c · ϕ
|t+ ε+ q|1/2

(
√
q − q

√
1

q

)
= 0.

The final inequality holds because c · |4(t + t0) + 4q|−
1
2ϕ > 0, on T+ we have c

√
t+ ε ≤

√
1
q ,

and on T−, c
√
t+ ε ≥

√
1
q . From this result we conclude that inequality (A.1) holds in the case

c ∈
(√

4q
t+ε ,

√
4q
ε

]
.

As inequality (A.1) is satisfied for all cases of c ∈ R, we conclude that uB is the BV entropy weak
solution to (2.1) with f = fB, K = KB and u0 = uB(·, 0). □
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x

t

t = T

t = − 2x3

9 − ε,
t = 2x3

9 − ε,
|x| ≥ (9ε/2)1/3

|x| ≥ (9ε/2)1/3

Figure 3. The region of integration and different “sign-change” regimes for dif-
ferent values of c. The green curves represent equations of the form x = (((9(t+

ε))/2)2/3 − 6c(t+ ε))1/2, where for the outermost curves in the upper quadrants
c < 0, for the innermost curves in the upper quadrants c ∈ (0, A(T + ε)−1/3),
and for the curve in the lower quadrants c ≥ A(T + ε)−1/3.

Proof of Proposition 2.3. Again, we begin by verifying monotonicity. Since fP ≡ 0, the function S :
R3 → R defined by (2.5) is

S(v−, v, v+) =
v

∆M
t

+
1

2(∆M
x )2

((v+)2 − 2v2 + (v−)2)

= M3v − v2

2
M2 +

M2

4
((v+)2 + (v−)2).

The function S is non-decreasing in all of its arguments on [0,M ], so for sufficiently large M the
approximation scheme (Un

j (v0,∆
M
x ,∆M

t ))n∈N,j∈Z is monotone on [0, (3/4) (2/(9ε))1/3].
We now turn to the first claim of the proposition. Similarly to in the proof of (2.2) it is clear that

the functions, v ≡ vP, and f(v0)−∂xK(v0)with v(·, 0) ≡ v0 are of bounded variation. Therefore,
it remains to show that∫

R×[0,T ]
sgn(v − c) · ((v − c)∂tϕ− vvx∂xϕ) dtdx+

∫
R
|v0 − c|dx ≥ 0, (A.3)

for all c ∈ R and all non-negative ϕ ∈ C∞(R× [0, T ]) with compact support such that ϕ|t=T ≡ 0.
The proof splits into three cases: c ≤ 0, c ∈ (0, A(T + ε)−

1
3 ), and c ≥ A(T + ε)−

1
3 where

A = (92)
2
3 · 1

6 ; see Figure 3. In this setting the most involved case under consideration is when
c ∈ (0, A/(T + ε)−

1
3 ]. We provide a full proof for this case, with the other cases following by

similar arguments.
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Let ϕ ∈ C∞(R× [0, T ]) be a non-negative function with compact support such that ϕ|t=T ≡ 0
and define the regions

R+ :=

(x, t) : |x| ≤

((
9(t+ ε)

2

)2/3

− 6c(t+ ε)

)1/2

, 0 ≤ t ≤ T

 ,

R− :=

(x, t) :

((
9(t+ ε)

2

)2/3

− 6c(t+ ε)

)1/2

≤ |x| ≤
(
9(t+ ε)

2

)1/3

, 0 ≤ t ≤ T

 ,

and

R0 :=

{
(x, t) : |x| ≥

(
9(t+ ε)

2

)1/3

, 0 ≤ t ≤ T

}
.

Observe for (x,t) in the interior of any of R+, R− or R0.

div(−vvxϕ, (v − c)ϕ) = ∂x(−vvxϕ) + ∂t((v − c)ϕ)

= −(vx)
2 · ϕ− vvxx · ϕ− vvx∂xϕ+ vt · ϕ+ (v − c)∂tϕ

= −
(
∂xx

(
v2

2

))
· ϕ− vvx∂xϕ+ vt · ϕ+ (v − c)∂tϕ

= −vvx∂xϕ+ (v − c)∂tϕ.

We can therefore rewrite the left hand side of (A.3) as∫
R+

div (−vvxϕ, (v − c)ϕ)−
∫
R−

div (−vvxϕ, (v − c)ϕ)

−
∫
R0

div (−vvxϕ, (v − c)ϕ) +

∫
R
|v0 − c|ϕ(x, 0)dx.

Applying the divergence theorem, this can in turn be written as∫
∂R+

(−vvxϕ, (v − c)ϕ) · nR+ −
∫
∂R−

(−vvxϕ, (v − c)ϕ) · nR−

−
∫
∂R0

(−vvxϕ, (v − c)ϕ) · nR0 +

∫
R
|v0 − c|ϕ(x, 0)dx, (A.4)

where nR+ , nR− and nR0 are the outward normal vectors on R+, R−, and R0 respectively. Now,
let

L+ :=

(x, t) : x =

((
9(t+ ε)

2

)2/3

− 6c(t+ ε)

)1/2

, 0 ≤ t ≤ T

 ,

L− :=

(x, t) : x = −

((
9(t+ ε)

2

)2/3

− 6c(t+ ε)

)1/2

, 0 ≤ t ≤ T

 ,

T+ :=

{
(x, t) : x =

(
9(t+ ε)

2

)1/3

, 0 ≤ t ≤ T

}
,

T− :=

{
(x, t) : x = −

(
9(t+ ε)

2

)1/3

, 0 ≤ t ≤ T

}
.
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Note that on the regions L+ and L− we have that v − c ≡ 0, and on the regions T+ and T−,
v ≡ 0. We can then bound (A.4) from below by(∫

L+

(−vvxϕ, 0) · nR+ +

∫
L−

(−vvxϕ, 0) · nR+

)
−
(∫

L+

(−vvxϕ, 0) · nR− +

∫
L−

(−vvxϕ, 0) · nR− +

∫
T+

(0,−cϕ) · nR− +

∫
T−

(0,−cϕ) · nR−

)
−
(∫

T+

(0,−cϕ) · nR0 +

∫
T−

(0,−cϕ) · nR0

)
=

(∫
L+

(−vvxϕ, 0) · nR+ −
∫
L+

(−vvxϕ, 0) · nR−

)
+

(∫
L−

(−vvxϕ, 0) · nR+ −
∫
L−

(−vvxϕ, 0) · nR−

)
+

(∫
T+

(0,−cϕ) · nR− −
∫
T+

(0,−cϕ) · nR0

)
+

(∫
T−

(0,−cϕ) · nR− −
∫
T−

(0,−cϕ) · nR0

)
= 2 ·

∫
L+

(−vvxϕ, 0) · nR+ + 2 ·
∫
L−

(−vvxϕ, 0) · nR+ .

The last equality follows from the fact that

nR− = nR+

(
−1 0
0 1

)
on L+, L−

and

nR0 = nR−

(
−1 0
0 1

)
on T+, T−.

Direct calculation gives that nR+ =
(
B−1, DB−1

)
on L+, and nR+ =

(
−B−1, DB−1

)
on L−,

where

B =

9

4

((
2

9(t+ ε)

)1/3

− 2c

)2

·

((
9(t+ ε)

2

)2/3

− 6c(t+ ε)

)−1
1/2

and

D =
3

2

((
2

9(t+ ε)

)1/3

− 6c

)
·

((
9(t+ ε)

2

)2/3

− 6c(t+ ε)

)−1/2

.

We thus have (−vvxϕ, 0) ·nR+ = −vvxϕB
−1 ≥ 0 on L+, and (−vvxϕ, 0) ·nR+ = vvxϕB

−1 ≥ 0
on L−. Combining the above results, it follows that for all non-negative ϕ ∈ C∞(R× [0, T ]) with
compact support such that ϕ|t=T ≡ 0, and for all c ∈ (0, 4q(T + ε)−

1
3 ),∫

R×[0,T ]
sgn(v − c) · ((v − c)∂tϕ− vvx∂xϕ)dtdx+

∫
R
|v0 − c|dx ≥ 0.

The same inequality follows for the other ranges of c, and by similar arguments, and we can there-
fore conclude that vP is the BV entropy weak solution to (2.1) with f = fP, K = KP, and
v0 = vP(·, 0). □

Proof of Lemma 4.2. By induction, it suffices to prove the lemma when k = 1, and we now restrict
our attention to this setting.

Let (A,B) and (C,D) be independent of one another, with each pair distributed according to
the coupling (X,Y ). ThenA andC are independent and µ-distributed, andB andD are indepen-
dent and ν-distributed. We shall couple the symmetric simple hipster random walk dynamics with
input (A,C) to those with input (B,D), via a case-by-case construction of the coupling dynamics.

Define the events E1 = {A ≤ B,C ≤ D}, E2 = {A ≤ B,C > D}, E3 = {A > B,C ≤ D},
and E4 = {A > B,C > D}. For i ∈ {1, 2, 3, 4} we consider the following sub-cases:
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(i) Ei ∩ {A = C} ∩ {B ̸= D} (ii) Ei ∩ {A ̸= C} ∩ {B ̸= D}
(iii) Ei ∩ {A ̸= C} ∩ {B = D}, and (iv) Ei ∩ {A = C} ∩ {B = D}.

We begin by constructing the coupling for E1. In case (i), we construct the coupling (X ′, Y ′) as{
Y ′ = max(B,D) ⇐⇒ X ′ = A+ 1

Y ′ = min(B,D) ⇐⇒ X ′ = A− 1,

which gives P{X ′ > Y ′ | E1 ∩ {A = C} ∩ {B ̸= D}} = 0.
For case (ii), we construct the coupling as{

Y ′ = D ⇐⇒ X ′ = C

Y ′ = B ⇐⇒ X ′ = A,

giving that P{X ′ > Y ′ | E1 ∩ {A ̸= C} ∩ {B ̸= D}} = 0.
Further, for case (iii) the coupling is{

Y ′ = D + 1 ⇐⇒ X ′ = max(A,C)

Y ′ = D − 1 ⇐⇒ X ′ = min(A,C),

which again gives P{X ′ > Y ′ | E1 ∩ {A ̸= C} ∩ {B = D}} = 0.
Lastly, for case (iv), the coupling is{

Y ′ = D + 1 ⇐⇒ X ′ = A+ 1

Y ′ = D − 1 ⇐⇒ X ′ = A− 1,

giving that P{X ′ > Y ′ | E1 ∩ {A = C} ∩ {B = D}} = 0.
Combining cases (i) through (iv) for i = 1, we obtain that

P{X ′ > Y ′ | E1} = 0. (A.5)

Note that for i ∈ {2, 3, 4}, the event Ei ∩ {A = C} ∩ {B = D} is empty, so it suffices to study
sub-cases (i) through (iii).

We next construct the coupling on E2. For case (i), we note that E2 ∩ {A = C} ∩ {B ̸= D} =
{D < A = C ≤ B}. In this case the coupling is{

Y ′ = D ⇐⇒ X ′ = A+ 1

Y ′ = B ⇐⇒ X ′ = A− 1,

which gives P{X ′ > Y ′ | E2 ∩ {A = C} ∩ {B ̸= D}} = 1/2.
For case (ii) the coupling is {

Y ′ = D ⇐⇒ X ′ = C

Y ′ = B ⇐⇒ X ′ = A,

which gives P{X ′ > Y ′ | E2 ∩ {A ̸= C} ∩ {B ̸= D}} = 1
2 .

Next, for case (iii), E2 ∩ {A ̸= C} ∩ {B = D} = {A ≤ B = D < C}, and the coupling is{
Y ′ = D + 1 ⇐⇒ X ′ = A

Y ′ = D − 1 ⇐⇒ X ′ = C,

which gives P{X ′ > Y ′ | E2 ∩ {A ̸= C} ∩ {B = D}} = 1/2.
Combining cases (i) through (iii) with i = 2, we obtain that

P{X ′ > Y ′ | E2} =
1

2
. (A.6)
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We now construct the coupling on the event E3. For case (i), E3 ∩ {A = C} ∩ {B ̸= D} =
{B < A = C ≤ D}. The coupling is{

Y ′ = D ⇐⇒ X ′ = A− 1

Y ′ = B ⇐⇒ X ′ = A+ 1,

giving P{X ′ > Y ′ | E3 ∩ {A = C} ∩ {B ̸= D}} = 1/2.
For case (ii), the coupling is {

Y ′ = D ⇐⇒ X ′ = C

Y ′ = B ⇐⇒ X ′ = A,

which gives P{X ′ > Y ′ | E3 ∩ {A ̸= C} ∩ {B ̸= D}} = 1
2 .

Lastly, for case (iii), E3 ∩ {A ̸= C} ∩ {B = D} = {A > B = D ≥ C}. The coupling is{
Y ′ = D + 1 ⇐⇒ X ′ = C

Y ′ = D − 1 ⇐⇒ X ′ = A,

which gives P{X ′ > Y ′ | E3 ∩ {A ̸= C} ∩ {B = D}} = 1/2.
Combining cases (i) through (iii) with i = 3, we obtain that

P{X ′ > Y ′ | E3} =
1

2
. (A.7)

Finally, we construct the coupling on the event E4 arbitrarily (for example, by making indepen-
dent choices for the two processes). This gives

P{X ′ > Y ′ | E4} ≤ 1. (A.8)

Since both (A,B) and (C,D) are distributed according to the coupling (X,Y ), we haveP(A >
B) = α = P(C > D). Since (A,B) and (C,D) are independent, we also have that

P{E2} = P{A ≤ B,C > D} = P{A > B,C ≤ D} = P{E3} = α(1− α),

and P{E4} = P{A > B,C > D} = α2. Combining this with (A.5), (A.6), (A.7) and (A.8), and
using the law of total probability, we obtain that

P{X ′ > Y ′} =

4∑
i=1

P{X ′ > Y ′ | Ei} ·P{Ei}

≤ α(1− α) + α2 = α ,

as required. □

Proof of Lemma 4.1. As noted above, the construction of a coupling with the claimed property is
essentially identical to the construction from the proof of Lemma 4.2. To obtain it from that con-
struction, simply replace all instances of A− 1 by A (in cases E1(i), E1(iv), E2(i) and E3(i)) and all
instances ofD−1 byD (in casesE1(iii),E1(iv),E2(iii) andE3(iii)). We leave the detailed verification
to the reader. □
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