
A Lecture on the Lempel-Ziv Compression Method
Jacob Bettencourt

March 30, 2018

This is the augmented transcript of a lecture given by Luc Devroye
on the 15th of March 2018 for a Data Structures and Algorithms class
(COMP 252) at McGill University. The subject was the Lempel-Ziv
method of compression.

Lempel-Ziv Method

Definition 1. The Lempel-Ziv (LZ) Method is a method of compres-
sion that can be used on any alphabet of any size.

Introduced in 1977 by Abraham Lempel and Jacob Ziv in their
paper ”A Universal Algorithm for Sequential Data Compression,”
the LZ algorithm self-adjusts so it can be used on a variety of input
data using a digital search tree data structure, described below[1].
To apply the method we parse each input symbol into the smallest
unseen sequence of symbols, as in the following example:

Example 2. Given alphabet: a, b, c.
Input:

abaabcaaabbcaaaa

Parsed input:

_ a b aa bc aaa bb c aaaa
0 1 2 3 4 5 6 7 8

The parsed input consists of "pieces", numbered consecutively, start-
ing with 1. Piece 0 corresponds to the empty set. Observe that each
piece consists of a previous piece and precicely one new symbol.
We can replace it by an integer (the number of that embolded piece)
followed by a symbol, as shown below:

_ 0a 0b 1a 2c 3a 2b 0c 5a

Next, we construct the bit sequence in the output. The number of
bits needed for the coded output seqence is the minimal number of
bits needed to code the integer pointing to the prefix of the current
piece plus the number of bits required to code one symbol, B1, as 1 B is the number of bits required to

encode a symbol from an alphabet of
size k:

B = dlog2 ke

seen below:

_ 0a 0b 1a 2c 3a 2b 0c 5a
0 0+B 1+B 2+B 2+B 3+B 3+B 3+B 3+B



a lecture on the lempel-ziv compression method 2

In the example above, piece number 8, "aaaa", is to be coded as "5a",
which in turn causes 3 bits to be reserved for the "5" (as that integer
ranges from 0 to 7) and B bits for "a" according to a fixed-width code
for symbols.

Digital Search Tree (DST)

Definition 3. A digital search tree is a k-ary tree where k is the size
of the input alphabet, and each edge corresponds to one of k sym-
bols.

(0)

(1)
(2)

(7)

(6)

(3)
(4)

(5)

(8)

a b

a
c

a

a

b

c

The digital search tree for the Lempel-Ziv code associates one
”piece” with each node, starting with the piece ”o” as the root. The
edge values seen on the path from the root to piece ”i” describe the
symbols of piece ”i”. Thus, if piece ”i” is the concatenation of piece
”j” and symbol S, then j is the parent of i in the DST, and the edge
value of (i, j) is S.

Coder

The coder creates the above digital search tree while parsing the
input string by processing each symbol to trace the correct path in
the DST, until a nil is reached or a new branch is necessary, in which
case the coder inserts the corresponding node in the tree. Since each
input symbol causes one step in the coder it is clear that this takes
O(n) time, where n is the number of input symbols. After the coder
has finished encoding it can discard the DST, as the compressed
information is contained entirely in the output sequence, described
above. Equivalently, one can think of the encoded sequence as the
DST itself.



a lecture on the lempel-ziv compression method 3

Decoder

The decoder for the Lempel-Ziv method observes that the coded
data is the digital search tree with parent pointers, and so an array
implementation can be applied to reconstruct the data:

pointer parent edge value
1 0 a
2 0 b
3 1 a
4 2 c
5 3 a
6 2 b
7 0 c
8 5 a

The time taken to decode the compressed information from the
LZ method is O(n) since, as with the coder, each symbol is decom-
pressed one at a time by reverse-engineering the DST as an array.
Each array index has a pointer to its parent, which allows the de-
coder to recreate the original information in O(n) time.

Remark: Assume that under a probabilistic model the input se-
quence has entropy E . Then for a wide variety of models (thus, as-
sumptions), the expected length of the output sequence is very close
to its theoretical lower bound, E . Models covered include a stream of
independent words taken from a set of words with given probabil-
ities. Interestingly, unlike in prefix coding, we do not need to know
these probabilities beforehand, as the Lempel-Ziv method automati-
cally adjusts itself.

References

(i) Jacob Ziv, Abraham Lempel. A Universal Algorithm for Sequential
Data Compression. IEEE Transactions on Information Theory Vol.
23 Issue 3, pg. 337-343, May 1977.


	Lempel-Ziv Method
	Digital Search Tree (DST)
	Coder
	Decoder
	References

