
Notes on Lower Bounds
Jinho Yoon

March 14, 2022

This is the augmented transcript of lectures given by Luc Devroye on
February 1st and February 3rd, 2022 for an Honours Data Structure
and Algorithms class (COMP 252). The subject was regarding lower
bounds and methods of attaining them.

Lower Bounds: An Introduction

An oracle is an abstract device that outputs an answer for
some given input. Examples of oracles are:

• Binary comparison oracle: the oracle takes two inputs x and
y, and answers "yes" if x < y, and "no" otherwise.

• k!-oracle for sorting k keys: the oracle takes k inputs,
x1, . . . , xk and returns the inputs sorted in order.

This model is appropriate when we have access to a special chip
capable of sorting.

• Binary identification oracle: the oracle takes two inputs x
and y, and returns the answer to "is x = y?"

This oracle is used in algorithms that verify passwords.

• Ternary comparison oracle (a scale): the oracle takes in-
puts x and y and returns one of three potential answers: x < y, x =

y, and x > y.

The complexity of an algorithm can be defined as the number
of times an oracle has been used.

Say the time complexity of a given algorithm A on input x1, . . . , xn

is given as T(A, x1, ...xn).
Then, the worst-case time complexity of an algorithm is

Tn(A) = max
x1,...,xn

T(A; x1, . . . , xn),

where we manipulate the inputs x1, ...xn.

The lower bound complexity of a problem is the time com-
plexity of the fastest algorithm on the worst-case input. In equation
form, we write,

min
A

Tn(A) = min
A

max
x1,...,xn

T(A; x1, . . . , xn).

notes on lower bounds 2

In other words, we are getting the minimum of a maximum.
If Tn(A) = Θ(n), Tn(A) ≥ c × n, this means that for all algorithms,

there are worst-case inputs that lead to a time complexity of ≥ c × n.

3 techniques for calculating the lower bound:

• The method of decision trees (information theoretic lower bounds)

• The method of witnesses

• The method of adversaries

We will first discuss the method of decision trees.

The Method of Decision Trees

Every oracle-based algorithm can be visualized as a decision tree1. 1 Luc Devroye. Chapter 2. Lower
bounds. McGill University, February
2022

Each node in a decision tree corresponds to one usage of the oracle,
and the k replies possible by the oracle correspond to the k subtrees.
A leaf indicates that an answer has been reached and the algorithm
has halted.

The lower bound of an algorithm corresponds to the height h
of the decision tree by the formulas:

h ≥ logk L, min
A

Tn(A) ≥ ⌈logk L⌉.

Theorem: Any k-ary decision tree with L leaves has height h ≥
logk L.

Proof: We use induction to show that L ≤ kh.

• Base case: For h = 0, there is only one leaf. Thus L = 1 ≤ kh.

• Induction hypothesis: Assume L ≤ kh is true up to h − 1,
(h > 0).

h − 1

k

≤ kh−1

Figure 1: Visualization of proof of lower
bound formula. Add a new root at the
top with k subtrees of h − 1 height. It
is clear that the new total number of
leaves ≤ k × kh−1.

• Inductive step: Create a decision tree with a root and k subtrees
each of height h − 1. The new decision tree has height h. As there
are ≤ kh−1 leaves in each k subtree, for the entire decision tree,
L ≤ k × kh−1 = kh.

Remark: when doing induction on trees, add to the root, not at the
bottom, as the tree may be imbalanced, not "flush", at the bottom.

• Conclusion: L ≤ kh for all h ≥ 0. □

Applying logk to both sides, you get h ≥ logk L.

notes on lower bounds 3

1. Sorting a list of numbers

Sorting a, b, and c

Problem: Sort the numbers a, b, and c using a binary comparison
oracle.
Analysis: Using a binary comparison oracle, we can make the deci-
sion tree as shown below:

a < b?

a < c?

b < c?

a < b < c

yes

a < c < b

no

yes

c < a < b

no

yes

. . .

no

Once fully expanded, the decision tree has 6 leaves, for the 3! = 6
permutations of a, b, and c.

Using our theorem from above, we get

min
A

Tn(A) ≥ ⌈log2 3!⌉ = 3.

Our lower bound of 3 steps corresponds to the height of the deci-
sion tree.

Sorting n numbers

Problem: Sort a list of n numbers.
Analysis: For sorting a list of n numbers, there are n! (permu-

tations) possible answers. Thus, there are n! leaves. With a binary
comparison oracle, k = 2 (a binary decision tree).

Using our theorem from above, we get, 2 2 Remark: There is no sorting algorithm
as of yet that matches this ⌈log2 n!⌉
lower bound for all n.min

A
Tn(A) ≥ ⌈log2 n!⌉.

Note that, using logarithm arithmetic and integrals,

log2 n! = log2

n

∏
i=1

i =
n

∑
i=1

log2 i ≥
∫ n

1
log2 x dx

= n log2 n − (n − 1) log2 e.

Therefore, we have

min
A

Tn(A) ≥ n log2 n − (n − 1) log2 e.

notes on lower bounds 4

Effective sorting algorithms like mergesort take n log2 n + O(n)
comparisons, and are thus close to our lower bound.

2. Mastermind

(i) The Game

Mastermind is a game in which one player (the codemaker) makes a
sequence of 4 pegs (that can each be one of 6 colors), and the other
player (the codebreaker) must guess this sequence in 12 tries.

The game is illustrated in Figure 2 on the right: the first row of
circles is the code created by the codemaker, and the second row is the
codebreaker’s guess.

Figure 2: The game of Mastermind
visualized.

For every guess, the oracle tells the codebreaker the number of
pegs with the right color and position, and the number of pegs with
the right color but in the wrong position.

(For the guess in Figure 2, the oracle would give an answer (2, 1):
the 2nd and 3rd pegs are in the right position, while the 4th one is in
the wrong position.)

(ii) Lower Bound by Method of Decision Trees

There are 14 possible answers that the oracle can give:

(right, wrong)

(0, 0)

(0, 1) (1, 0)

(0, 2) (1, 1) (2, 0)

(0, 3) (1, 2) (2, 1) (3, 0)

(0, 4) (1, 3) (2, 2) (3, 1) (4, 0)

= 14 possible answers.

The answer (3,1) is impossible as if 3 pegs are in the right position,
then the last peg cannot be in the wrong position.

Therefore, with k = 14, we have a 14-ary decision tree. The num-
ber of leaves = 64 as there are 6 colors and 4 pegs. Thus, our lower
bound3 is 3 Luc Devroye. Chapter 2. Lower

bounds. McGill University, February
2022

min
A

Tn(A) ≥ ⌈log14 64⌉ = ⌈4 log14 6⌉ = 3.

As Mastermind requires one more guess to be made as our correct
answer, we need 3 + 1 = 4 steps to win.

notes on lower bounds 5

3. Simple Problems

The table below lists the lower bounds of some simple problems
involving n inputs consisting of numbers, using a binary compari-
son oracle. Each lower bound is acquired by applying the formula
⌈log2 L⌉ where L = the number of leaves / answers.

Problem # of answers Lower bound

Report all numbers 2n n

Search for x (successful) n ⌈log2 n⌉

Search for x (unsuccessful) n + 1 ⌈log2(n + 1)⌉

Search for x (general) 2n + 1 ⌈log2(2n + 1)⌉

Sorting n! ⌈log2 n!⌉

Remark: a search is successful when x is in the list of n numbers.
Therefore, there are n possibilities. A search is unsuccessful when x
is not in the list; therefore x is either smaller than the smallest input,
larger than the largest input, or in between the n inputs. There are
n + 1 possibilities. A general search is a search that can be successful
or unsuccessful. Therefore there are n + (n + 1) = 2n + 1 possible
answers.

4. Merging two sorted sets

Problem: There are two sorted sets, set X with n elements x1 <

· · · < xn, and set Y with m elements y1 < · · · < ym. Assume m ≤ n
and assume that all elements are different.

(i) Non-Optimal Solutions

Standard merge approach: Iterate through all elements in both
sets in order and use a similar merge method as in a mergesort algo-
rithm. As each element is visited once, the worst-case time taken is
= n + m − 1.

Repeated binary search: If m is relatively small, we have a faster
algorithm than the standard merge approach by doing binary search
for elements of Y to locate where each element should be placed in
X.

As there are n + 1 possible places yi can be placed in X (see unsuc-
cessful search above), one binary search can be done using not more

notes on lower bounds 6

than ⌈log2(n + 1)⌉ comparisons. For all m elements, thus, the time
taken is ≤ m⌈log2(n + 1)⌉ = m + m log2(n + 1).

However, the repeated binary search approach only works when
m is small. In order to find an algorithm for general m, we will take
inspiration from the lower bound.

(ii) Lower Bound

The number of possible answers (leaves) is

L =

(
m + n

m

)
as there are m elements being inserted into a new merged list of

m + n elements.
Thus, with a binary comparison oracle, we have a lower bound of

min
A

Tn(A) ≥ ⌈log2

(
m + n

m

)
⌉.

As (
m + n

m

)
=

(m + n)(n + m − 1) . . . (n + 1)
m(m − 1) . . . 1

,

if we split up the fraction as seen below, we can derive a lower
bound for L with the smallest fraction (m+n)

m .

(
m + n

m

)
=

smallest

(m + n)
m

× (m + n − 1)
(m − 1)

× . . .
(n + 1)

1

≥ (
m + n

m
)m.

Therefore, our updated lower bound is

min
A

Tn(A) ≥ m log2(1 +
n
m
).

Sometimes the lower bound can inspire the optimal solution. The n
m

in our lower bound indicates to us that perhaps we divide our list of
n elements in to m groups.

(iii) Optimal Solution

1. Create a "finger list" that contains the elements in X that have
position that is a multiple of n

m .

In other words, add x n
m

, x 2n
m

, . . . , x m−1
m n to the finger list.

fingers n
m

Figure 3: Repeated binary search into
the ranges defined by the finger list.
The merged list from Step 2 tell us
which range the the element belongs to.

2. Merge the set Y and the finger list (using the standard merge
method).

3. Insert the elements of Y by repeated binary search into the respec-
tive ranges defined by the finger list as shown in Figure 3.

notes on lower bounds 7

Time complexity: Each step of the algorithm costs:

1. Creating the finger list: ≤ m − 1.

2. Merging the set Y and the finger list: ≤ 2m.

3. Inserting Y by repeated binary search: ≤ m × ⌈log2(1 +
n
m)⌉.

In total, the time complexity of our algorithm is

Tn ≤ (m − 1) + 2m + (m × ⌈log2(1 +
n
m
)⌉)

≤ m⌈log2(1 +
n
m
)⌉+ 3m − 1.

Our time complexity is close but still greater than our lower bound
of m log2(1 +

n
m).

5. Median of 5 numbers

There are examples where the method of decision trees does not
provide us with the proper lower bound. Such an example is the
median-of-5-numbers problem.

Without decision trees, we know there are 5 × (4
2) = 30 possible

answers. Each of the five numbers can be the median, and the order
of the numbers smaller or larger do not matter. As there are two
numbers smaller than the median, there are (4

2) permutations for each
5 possible medians. Hence, the formula 5 × (4

2) = 30. The lower
bound is thus ⌈log2 30⌉ = 5.

The decision tree, however, using a binary comparison oracle has
36 leaves, which gives the lower bound of ⌈log2 36⌉ = 6. The lower
bound we derived without decision trees is smaller!

The Method of Witnesses

The witness is the proof provided as evidence for having achieved
the correct output. It is a rather weak method.

Problem: Find the maximum of n numbers using a binary compari-
son oracle.

a

b

c

d

e

f

Figure 4: A comparison graph of 6

numbers. We can see that the maximum
number is a. The graph is our "witness".

Analysis: Make a comparison graph between vertices of all the
numbers and let each comparison draw an edge from i to j if i < j.
This graph is a directed acyclic and connected graph.

A graph that connects all n numbers must have at least n − 1
vertices, and all the edges will be pointed towards the root. The root
is the maximum. See Figure 4.

notes on lower bounds 8

Hence, this graph is a "witness" of the maximum. As there are at
least n − 1 comparisons,

min
A

max
x1,...,xn

T(A; x1, . . . , xn) ≥ n − 1.

The Method of Adversaries

The adversary, also referred to as "the devil"4, controls the oracle 4 Sally A. Goldman and Kenneth J.
Goldman. Adversary Lower Bound
Techniques. Washington University in
St. Louis, 2007

in the hopes of slowing the algorithm down as much as possible.
The adversary achieves this by assigning certain values to the

input items while replying to queries in a consistent manner. In other
words, the adversary constructs a bad input on the spot. 5 5 Remark: the method of adversaries can

give a different lower bound than the
method of decision trees.

The user/algorithm has no idea that the values of the inputs are
being decided on the spot as the oracle is being used.

It is a frequent misconception that the adversary knows what
the algorithm does. This is not the case. Do not make your adversary
as according to some algorithm you already have in mind.

1. Guessing a password

Problem: guess a password x that has n bits and can be the binary
expansion of any integer between 0 and 2n − 1. We have a binary
identification oracle.

Adversary strategy: the adversary can always answer "wrong
password" for the first 2n − 1 guesses, and finally declaring "correct
password" on the last 2nth guess. The password x is decided as the
2n-th guess.

We thus have a lower bound of

min
A

max
x

T(A; x) ≥ 2n.

2. Another Proof for Decision Tree Lower Bound

With a k-ary decision tree, we know the following to be true:

Size of subtree at the root (level 1): ≥ L
k

Size of subtree at level l: ≥ L

kl .

The adversary can force the algorithm to take l steps, or l
levels down the decision tree as long as L

kl ≤ 1. In other words, the

adversary forces the algorithm to take a number of steps l until it
reaches a leaf (≤ 1).

notes on lower bounds 9

Therefore, we get the equation

As
L
kl ≤ 1, l ≥ ⌈logk L⌉.

As l = the number of calls the algorithm makes to the oracle,

min
A

Tn(A) ≥ ⌈logk L⌉.

3. Finding Largest and Smallest

Problem: given a binary comparison oracle, find the largest and
smallest of n items.

Let us first devise an effective algorithm before analyzing the
lower bound.

(i) Algorithm

Naive approach: Iterate through the list and find the largest el-
ement in n − 1 comparisons. Then, iterate through the list again
(excluding the newly found largest element), and find the smallest
element in n − 2 comparisons.

Tn(A) = (n − 1)︸ ︷︷ ︸
largest

+ (n − 2)︸ ︷︷ ︸
smallest

= 2n − 3.

But we can do better than 2n − 3 with divide-and-conquer.

Divide-and-conquer approach:
First, compare all n items in pairs as shown in Figure 5. Then com-
pare all the "winners" (the larger item in the pair) to find the largest
value, and compare all the "losers" (the smaller item in the pair) to
find the smallest value.

"winners"

"losers"

Figure 5: the divide-and-conquer
approach; pair up the items, and find
the largest of the "winners" and the
smallest of the "losers".

The complexity of the algorithm is:

• Pairwise comparisons: ⌊ n
2 ⌋ comparisons,

• Compare "winners"/"losers": 2 × (⌊ n
2 ⌋ − 1) comparisons.

In total 6, 6 If n = odd, then, at the end, compare
the odd one out with the largest from
the "winners" and the smallest from the
"losers". This adds 2 comparisons.

Tn(A) =
⌊n

2

⌋
+ 2 × (

⌊n
2

⌋
− 1) + (2 if n = odd)

= 3
⌊n

2

⌋
− 2 + (2 if n = odd).

We will see that this complexity is close to our lower bound de-
rived by the method of adversaries.

notes on lower bounds 10

(ii) Adversary’s Strategy

Here the adversary assigns values to an element as soon as that ele-
ment is first presented to the oracle. The values are set by the "clock"
variable t, which is the number of uses of the oracle at that time.

Remember that the elements are initially all unvalued, and are
assigned values by the adversary over time to ensure the worst-case
inputs. The adversary’s rules, visualized in Figure 6, are:

Input Adversary’s
Actions

Output
(largest)

– –

+ +
nothing truth

–
-v

+
+t

–
-v

+
+v

+
+v

–

-t
+

+v
+

+v

+
+t

–

-t
+
+t

Figure 6: The adversary’s rules depend-
ing on input. The value of an item, if
known, is shown under the item. The
sign inside the item indicates what
group the item is put in (+ for group P,
– for group N). The oracle outputs the
larger of the two inputs.

1. If the algorithm asks for a comparison between two unvalued
elements at time t, assign values +t and -t.

2. If the algorithm asks for a comparison between one unvalued ele-
ment and one with value +v, assign the value −t on the unvalued
element. (If input −v, then assign value +t).

3. If the algorithm asks for a comparison between two valued ele-
ments, reply truthfully.

Remark: what is meant by "reply truthfully" is that the adversary
cannot assign any new values, or lie.

Every time a new element is given a value, place that element
in its respective group P or N: P holds all elements that have positive
values, while N holds elements that have negative values. Each time
a comparison is made between two elements of the same sign (+ and
+ or – and –), an edge is drawn between the elements to indicate a
comparison, as in a comparison tree. This process is visualized in
Figure 7. A comparison tree with all elements in the group has the
maximum / minimum element as its root.

P N

+ max

+

+

–

– min

–

Figure 7: The groups P and N contain
comparison trees.

The number of comparisons forced to be made by the adver-
sary on the algorithm: at least ⌈ n

2 ⌉ comparisons of rules 1 or 2 must
be made in order to "empty" the original bag of n numbers into P and
N.

A comparison tree in P with all elements of P requires |P| − 1
comparisons, while a comparison tree in N with all elements of N
requires |N| − 1 comparisons.

Therefore, the lower bound, or total number of comparisons, is

min
A

Tn(A) ≥
⌈n

2

⌉
+ (|P| − 1) + (|N| − 1)

=
⌈n

2

⌉
+ n − 2 [as |P|+ |N| = n]

= 3
⌊n

2

⌋
− 2 + (2 if n = odd).

notes on lower bounds 11

4. Finding the Largest and 2nd Largest

Problem: Find the largest and second largest element out of n ele-
ments.
Naive Approach: Use n − 1 comparisons to find the largest ele-
ment, and then use n − 2 comparisons (excluding the largest) to find
the second largest. Time complexity: ≥ 2n − 3.

(i) Tournament Algorithm

In a tournament, every match is a pairing of two elements. At the
first round, n teams pair up into n

2 matches. The winners move up
to the next round, where n

2 teams pair up into n
4 matches, and so on

until 1 team remains.
We can use this tournament idea for the n elements, where every

match is a comparison. The tournament can be represented as a
complete binary tree with n leaves.

The n − 1 matches in a tournament correspond to n − 1 non-leaf
nodes. Hence, the tree has 2n − 1 nodes. The root is the winner of the
tournament, the largest element.

winner

Figure 8: The winner’s path in the
tournament tree; note that the second
largest must have played with the
winner on the victory path.

The second largest must have played with the winner at some
point on the winner’s path to the root. The winner’s path is visual-
ized in Figure 8. The winner’s path has the same height as the tree,
⌊log2(2n − 1)⌋.

Therefore, for the tournament algorithm,

Tn(A) ≤ (n − 1)︸ ︷︷ ︸
of matches

+ (⌊log2(2n − 1)⌋)︸ ︷︷ ︸
winner’s path

= n + log2 n + O(1).

We will derive a lower bound by method of adversaries that shows
that the tournament algorithm is optimal, up to a constant term.

(ii) Adversary’s Strategy

The adversary’s strategy is to mimic a tournament to determine the
values of the elements. Note: this is not to say that the adversary is
aware of what type of algorithm is being used.

Each element has a weight and a value. Each element starts with a
weight of 1.

As long as an element has a weight, its value has not been deter-
mined yet.

The adversary’s rules, visualized in Figure 9, are:

notes on lower bounds 12

1. If the algorithm asks for a comparison between two elements with
weights w and w′ and no values, where w ≥ w′, assign weight
w + w′ to the element with previous weight w and assign weight
zero and value t to the element of previous weight w′. In other
words, the element with the greater weight swallows the weight of
the other element, and the loser w′ element loses its weight and is
given the value t.

Input Adversary’s
Actions

Output
(largest)

0 0 nothing truth

0 w nothing w

w w′

(w ≥ w′)

w + w′ 0

+t
w + w′

Figure 9: The adversary’s rules depend-
ing on input. The adversary changes
the weight (what is inside the item) and
value (what is below). The weight of an
item is set to zero when the value is set.
The oracle outputs the larger of the two
inputs.

2. If the algorithm asks for a comparison between one element with
a value and another element with weight w and no value, return
the weighted element as the larger. Do not assign any new values.

3. If the algorithm asks for a comparison between two unweighted
elements, tell the truth.

(iii) Lower Bound

Eventually, the weight of the largest element is n, as it has swallowed
all the other elements’ weights. As Rule 1 of our adversary states, an
element with weight w can only add weight w′ under the condition
w ≥ w′. In other words, the winner can at most double its weight at
each comparison. After k comparisons, the winner has weight ≤ 2k.
At the root, the winner has weight n ≤ 2k. Thus, the winner was
involved in k ≥ ⌈log2 n⌉ comparisons.

max

S 2

2

S

Figure 10: Comparison trees created
by the tournament adversary. The blue
tree on the right is the comparison tree
of |S| − 1 size that derives the second
largest. The second largest is labeled as
2.

The comparison tree of the tournament as in Figure 10 shows
that the winner has at least ⌈log2 n⌉ children with weight > 0 at the
time of their comparison with the largest. Call the set of ⌈log2 n⌉
compared nodes as the set S. The second largest element must be
in this set S. There exists a comparison tree that visits all nodes and
includes all comparisons between nodes in S and the root. This com-
parison tree has n − 1 edges.

For the second largest element to be decided, there must
exist a separate comparison tree with the second largest element as
the root, that includes all the other elements of S. Therefore, the two
comparison trees 7 taken together give us the lower bound of 7 Remark: A comparison graph must

be distinguished from a comparison
tree, which unlike a graph cannot have
any cycles. The adversary creates a
comparison graph, but the comparison
tree within is what is necessary.

of comparisons ≥ (n − 1) + (|S| − 1),

min
A

Tn(A) ≥ n + ⌈log2 n⌉ − 2.

As we can see, our tournament algorithm is very close to the lower
bound.

notes on lower bounds 13

5. Finding the median of 2n + 1 items

Problem: Find the median of 2n + 1 items.
Analysis: We will show that the adversary will force any algorithm
to make at least 3n comparisons.

(i) Adversary’s Strategy

The adversary’s strategy is to assign n negative values and n positive
values, and only after those 2n values have been assigned, assign the
last item the value of 0 (which will be the median).

The adversary has rules that ensure that n values will be negative
and positive each. The positive values are grouped together in group
P and negative values are in group N. If P has n elements, then it
is full, and thus no more elements should be added to P. The same
applies to N. We will once again use the oracle’s "clock" for these
values. The adversary’s rules, visualized in Figure 11, are:

1. If the algorithm asks for a comparison between two unvalued
elements,

Input Adversary’s
Actions

Output
(largest)

– –

+ + nothing truth

–
-v

vice versa

+
+t

+
+v

+
+t

OR

+
+v

–

-t
+

+v
+

+v

+
+t

–

-t
+
+t

Figure 11: The adversary’s rules de-
pending on input. The adversary sets
values on items. The values are shown
below an item. + means that the ele-

ment is in P and − means that it is in
N. When only one input has a negative
value (third row), the adversary acts in
the same way as with one positive value
(second row) but with the signs flipped.

• If neither group P or N has n elements, assign one element to
value +t and the other -t, where t is the clock time.

• If one group has n elements (it is full), assign both elements to
the other group with values t and t + 1

2 (if P) or -t and −t − 1
2

(else).

• If one group has n elements and the other has n − 1 elements,
assign one element to the non-full group, and assign the other
element the value 0 (the median).

2. If the algorithm asks for a comparison between one unvalued
element and one valued element x,

• If x is positive and |N| < n, set the unvalued element to value
-t. If |N| = n, give value +t.

• If x is negative and |P| < n, set the unvalued element to value
+t. If |P| = n, give value -t.

If |N| = |P| = n, give value of 0 (the median).

3. If the algorithm asks for a comparison between two valued ele-
ments, then answer truthfully.

notes on lower bounds 14

(ii) Lower Bound

All 2n + 1 elements must be given values, requiring ≥ n comparisons
to put every element into either P or N. There must be a comparison
tree in each group that connects all elements in the group to the
median in the middle (see Figure 12). Therefore, the comparison tree
made in each group has n + 1 nodes, which requires n comparisons
per tree. In other words, 2n comparisons must be made to form the
two comparison trees.

P N

0

median

Figure 12: Comparison trees of the
adversary; all elements are connected to
the median.

The total number of comparisons must be ≥ 3n.

References

Luc Devroye. Chapter 2. Lower bounds. McGill University, February
2022.

Sally A. Goldman and Kenneth J. Goldman. Adversary Lower Bound
Techniques. Washington University in St. Louis, 2007.

	Lower Bounds: An Introduction
	The Method of Decision Trees
	1. Sorting a list of numbers
	2. Mastermind
	3. Simple Problems
	4. Merging two sorted sets
	5. Median of 5 numbers
	The Method of Witnesses
	The Method of Adversaries
	1. Guessing a password
	2. Another Proof for Decision Tree Lower Bound
	3. Finding Largest and Smallest
	4. Finding the Largest and 2nd Largest
	5. Finding the median of 2n + 1 items

