
Directed Acyclic Graphs
Ningyuan (Leo) Li, Joshua Dall’Acqua

April 7, 2022

This is the augmented transcript of a lecture given by Luc Devroye on
the 7th of April, 2022 for the Honours Algorithms and Data Structures
class (COMP 252, McGill University). The subject was an overview on
directed acyclic graphs (dags).

Introduction

Definition 1 (Directed acyclic graph). A directed acyclic graph (ab-
breviated as dag hereafter), is a directed graph with no cycle1. ■ 1 Cormen et al. [1989]

dags have a large number of possible uses, which include:

• indicating partial orders (≤,⊆);

• denoting arithmetic expressions and common sub-expressions;

• forming a prerequisite tree;

• forming partitions of regions;

• illustrating pert
2 networks (used for job planning); 2 Program Evaluation and Review

Technique
• illustrating critical paths;

• visualising the game of nim.

We will provide a few examples to further illustrate its use immedi-
ately hereafter.

{1, 2, 3, 4}

{1, 3, 4} {2, 3, 4}

{1, 3} {1, 4}{2, 3}

{1} {2}

∅

Figure 1: An example that il-
lustrates the partial order of
sets.

Example 2 (Partial order of sets). We use Fig. 1 to illustrate how a
dag can be used to indicate the partial order of sets. ■

Example 3 (Expression dag). We can also use a dag to represent an
arithmetic expression. Particularly, the expression:

[α ∗ (β + γ) + δ] ∗ [α/(β + γ)− δ]

is illustrated by Fig. 2. We recall that arithmetic expressions can be
represented by trees; however, notice that in this expression, the sum
β + γ appeared two times, and the symbols α and δ appeared two
times respectively as well. If we were to use a tree, we would have
to include the same information twice; on the contrary, by using a
dag, we could include the sum and the symbols exactly once, which
saves space and performance. This is precisely why dags play a role
in optimising compilers as well.

directed acyclic graphs 2

The dag has leaves that represent operands (constants and sym-
bols) and internal nodes for operators. If a compiler uses the dag to
produce machine learning instructions, then we might want to min-
imise the number of iterations, which is equivalent to minimizing the
number of internal nodes. ■

*

+ -

* δ/

α +

β γ

Figure 2: An example that
illustrate the use of dags to
represent arithmetic expres-
sions.

Characteristics of dags

Linear ordering

We present the a theorem that characterizes the main property of
dags:

Theorem 4. There exists a linear ordering consistent with all direct edges of
a dag. In fact, all dags can be represented in the form described in Fig. 3.
This is also known as topological sort or consistent labelling.

1 2 3 4 5 6 7

Figure 3: Linear-ordered form
of a dag.

Proof. We prove this theorem by construction. In particular, we use
dfs and output nodes in f [u] order. To see why this would give us
the correct ordering, we need to recognise that:

Claim 5. If
−−−→
(u, v) ∈ E, then f [v] < f [u].

u

v

Figure 4: If v is an ancestor of
u, then there exists a cycle.

Essentially, during the unique time in the dfs when the traversal
from u to v is processed, we have the three possible scenarios:

1. colour[v] = grey: this implies that v is an ancestor of u, which in
turns implies existence of a cycle (cf. Fig. 4). Since we have a dag,
this case is impossible;

2. colour[v] = black: =⇒ f [v] < d[u] < f [u];

3. colour[v] = white: v is a descendant of u, which by nesting implies
that:

d[u]< d[v] < f [v]︸ ︷︷ ︸
nested

< f [u].

We see that all three scenarios support the correctness of Claim 5,
which in turn means that the proof is complete.

We present an illustrated example of obtaining this linear ordering on
a particular dag:

directed acyclic graphs 3

Example 6. We have a dag in the form of Fig. 5. By performing
dfs and order the f [·] values, we can obtain a linear ordering like in
Fig. 6.

α

1
10

β

2

7 γ8 9

δ

3

4

ϵ
5

6

Figure 5: The dag that we
construct the linear order-
ing on. Particularly, the non-
highlighted numbers are the
d[·] values, and the highlighted
numbers are the f [·] values.

α

10

γ

9

β

7

ϵ

6

δ

4

Figure 6: The linear ordering of
the dag in Fig. 5. The numbers
underneath the nodes are their
associated f [·].

■

Remark 7. The time complexity for generating this linear ordering is
O(|V|+ |E|), which follows directly from the time complexity of the
dfs algorithm.

Reversing a dag

Given the adjacency lists of each vertex, we would reverse a dag sim-
ply by emptying the adjacency list, and reconstructing the adjacency
list by having the right side point to the left side. It is perhaps more
expedient to consider an example:

1 → 5 2 3

2 → 4

3 →
4 →
5 → 4

(a) The adjacency list before the
reversal.

1 →
2 → 1

3 → 3

4 → 2 5

5 → 1

(b) The adjacency list after the
reversal.

Note that in a sense, we simply reversed the direction of the arrows.
Clearly, this procedure takes O(|V|+ |E|) time, since that is precisely
the size of the adjacency list (all vertices and edges).

This reversal procedure will come in handy in later discussions.

Remark 8. By using this procedure twice, we can also sort the adja-
cency list of a graph in linear time!

Applications of dags

PERT (also activity) networks and critical paths

We are given a dag, with nodes denoting a critical moment in time of

a project, and an edge
−−−→
(u, v), denoting the activity between moments

u, v, taking time Time[u, v].
We refer to Fig. 7 for the illustration of such problem. Here, we

have one starting node (α) and one leaf node (θ) denoting a job fin-
ished. The numbering of each edge describes the time it takes for the
activity occurring between two moments in time. Let T[v] be the time
at which we have finished all jobs leading to node v. Our task is to

directed acyclic graphs 4

find the minimum time to complete the entire job. We first recognise
that, for all nodes u:

T[v] = max
u:
−−→
(u,v)∈E

(T[u] + Time[u, v]). (1)

Using the observation, we could now write the algorithm for this
operation:

α

1

2

0

β

2

4

3

γ1

1

1

2

δ

3

4

6

ϵ

3

1

5

ξ

2 6

θ

10

Figure 7: The given dag in the
problem. Here, the blue edges
form a critical path. The num-
bers marked in yellow are the
T[·]’s for each moment.

Algorithm 1 (Minimum time to complete the job).

1 T[root] ← 0

2 for all v, in topological order, do (1)
3 return T[leaf] # time of the project

†

As promised, we also define the notion of a critical path:

Definition 9 (Critical path). A critical path is a path on which any
delay causes a project delay. ■

With the definition in mind, it is simple to find the critical path:
from the leaf node, it can be easily found using Eq. (1), but with
arg max instead of max.

The game of nim

(1)

(5)(4)(3)(2)(11) (12) (13) (14) (15)

(22)

(25) (122)(24)(23)

(111)

(113) (114) (115)(112)

(123)

(124) (125) (134) (135)

(33)

(35)(34)

Figure 8: Game of nim, with a
starting state-vector of (1, 3, 5).

nim is a removal game based on an integer vector, where each inte-
ger represents a number of sticks. For example, the vector (1, 3, 5, 7)
corresponds to four piles of sticks:∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

Players take turns. In one move, they can remove any number of
sticks from one pile. The player who is forced to take the last stick
loses.

This set of rules prompts the question: given the game vector, can
we determine if the first player will win or lose? To answers this,
we notice that it is expedient to represent the nim game using a
dag. Say, we take the (1, 3, 5) game as an example, and represent the
possible game progression using a dag (cf. Fig. 8).

We linearly order the positions and determine whether each posi-
tion is good (G) or bad (B). For a position v, v ∈ G guarantees a nim

if the player plays perfectly; on the contrary, v ∈ B means that against
a perfect player, a loss will result.

Data Structure 10. kind[v]: an array of elements v ∈ V where each v
represents a good position or a bad position, i.e., v ∈ {G,B}. ■

directed acyclic graphs 5

We are now able to describe this algorithm. We first topologically sort
all the positions and store them in a queue Q.

Algorithm 2.

1 while |Q| > 0 do
2 u ← DEQUEUE(Q)
3 kind[u] ← B
4 for all v that can be reached from u in one move do
5 if kind[v] = B then
6 kind[u] ← G

†

The operation with greatest contribution to the time complexity
in this algorithm is checking the kind of v in line 5. This must be
checked for each edge in the graph taking time O(|E|). Initializing
the kind array takes time O(|V|) as it is only done for the vertices.
Thus, the overall time complexity of the algorithm is O(|E|).

Question 11. For some game of nim (a1, a2, . . . , an), is it possible to con-
struct a mathematical function which takes the game as input and outputs
whether it is "Good" or "Bad" in constant time?

For a possible answer to the previous answer, one can consult Win-
ning Ways for Your Mathematical Plays by Berlekamp, Conway, and
Guy3. 3 Berlekamp et al. [1982]

chomp

Poison Pill

Figure 9: 4 × 5 game of chomp

example.

Figure 10: Example of a
"chomp" that can be taken

out of the grid.

Another example of a game solvable using dags is chomp
4. Given

4 Gale [1974]

some n×m grid of "pills", players alternate turns taking rectangular
chomps from the top right corner of the grid. The goal is to avoid
eating the poison pill in the bottom left corner of the grid.

Decomposition of Directed Graphs

u

v

Figure 11: u and v equivalence

Figure 12: dag of equivalence
classes

We first establish the notion of equivalence on two nodes:

Definition 12 (Node equivalence). For a graph G = (V, E), we say
that two nodes u, v are equivalent (u ≡ v) if there exists a path from
u to v and one from v to u, see Fig. 11. ■

This creates a set of equivalence classes in the graph, and we call
those equivalence classes strongly connected components (abbreviated
as the scc’s hereafter). The equivalence classes (on scc’s) form a
dag as showcased in Fig. 12.

We are mainly interested in obtaining the scc’s. To this end, we
shall use the following algorithm. We first notice that, if we are using

directed acyclic graphs 6

the adjacency matrix notation for the graph G = (V, E), then the
reversed graph is exactly the transposition GT = (V, ET). We shall
use the above notation in the algorithm.

Algorithm 3 (Determination of all scc’s).

1 Perform \textsc{dfs} on G = (V, E) and list all nodes in f [·] order;
2 Reverse all edges, obtaining GT = (V, ET);
3 Perform \textsc{dfs} on GT = (V, ET) in descending order of f [·]

†

It is clearer to explain the mechanisms of this algorithm with the aid
of illustrations. In Fig. 14 we see a highlighted node α within an scc

S . This is the first node discovered in that scc in step 1. Being the
first node discovered, we know that ∀u ∈ S , d[α] < d[u] < f [u] <
f [α]. Thus α is the node in the scc with the largest f -value.

α1

S1

α2

S2

α3

S3

αk

Sk

Figure 13: The scc’s in linear
order, after the reversal in step
2.

Fig. 13 shows a representation of our dag of scc’s after step 2 of the
algorithm. Recall Theorem 4 that a dfs on a dag gives us the linear
ordering of the dag when ordered by f [·]. In other words, the dfs

in step 1 gives us the marked nodes (α1, α2, . . . , αk) of the scc’s in
linearly-ordered form. Step 1 prepares us for step 2, which is the
(arguably) most central and beautiful step in this algorithm, and the
importance of this reversal would become obvious in the third step.

α

S

u

Forefather

Figure 14: Strongly Connected
Component.

In step 3, the dfs started at α must visit all nodes in S by the
definition of an scc; however, due to step 2, it cannot search outside
of the scc that α is part of. We explain now why this is the case:

• if α is located in the very first scc of the reversed linearly-ordered
dag, then it is impossible for the dfs to reach another scc since
all ‘bridges’ from other scc’s must be pointing in, i.e., the out-
degree of the first scc is zero. Hence, the dfs halts after finding
all elements in this scc;

• if α is in an scc that is somewhere in the middle of the reversed
linearly-ordered dag, then by the same argument it could not go
to the other scc’s that ‘bridge’ towards it. However, it also could
not go through any edge that points out, since by linear ordering,
all nodes in the previous scc’s would have been black already,
which does not permit another search.

directed acyclic graphs 7

As a result, every restart of dfs visits exactly one of the scc’s, in the
order given in Fig. 13.

α

S

Figure 15: dfs tree of an scc.
Note, α also has children which
are not in S. This is how com-
ponents become connected.

directed acyclic graphs 8

References

Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning
Ways for Your Mathematical Plays. Academic Press, 1982.

T.H Cormen, C.E. Leiserson, R.L.Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 3rd edition, 1989. ISBN 9780262033848.

David Gale. A curious nim-type game. American Mathematical
Monthly, 81:876–879, 1974.

	Introduction
	Characteristics of dags
	Applications of dags

