
RANDOM SEARCH IN AUTOMATIC FONT GENERATION

Luc Devroye and Sandro Mazzucato

School of Computer Science, McGill University, Montreal, Canada

Abstract. We present a method for creating a PostScript type one Bézier outline font from a scanned

bitmap of all characters. The number and positions of the Bézier sections are found by a random search

method in which the search parameters are learned on-line. The criterion we use in the minimization

takes into account the curvature, an error for deviating from the original pixel bitmap, and a penalty for

the number of Bézier sections. The output consists of a type one PostScript font file and corresponding

afm and tfm files with full sets of kerning pairs. The process is virtually fully automatic.

Keywords and phrases. Automatic font generation, PostScript, random search, global optimization,

Bézier curves, font design.

CR Categories: 3.74, 5.25, 5.5.

Research of the authors was sponsored by NSERC Grant A3456 and by FCAR Grant 90-ER-0291. Address: School of
Computer Science, McGill University, 3480 University Street, Montreal, Canada H3A 2A7. Email addresses: luc@cs.mcgill.ca,
pedro@cs.mcgill.ca.

1. Introduction.

Designing a typeface is a mammoth undertaking that has fascinated and absorbed some of the

most creative minds over the past 500 years. From pioneers such as Garamond, Arrighi, Fournier and

Bodoni to the twentieth-century designers such as Gill and Goudy, we find one invariant—most designs

were based upon simple pen-and-paper drawings of the characters. Recent efforts in computer typography

have attempted to smoothen the transition from such drawings to a given computer format such as

PostScript or intellifont. The computer era has seen the creation of parametric fonts—descriptions

of fonts as functions of parameters such that each selection of a set of parameters yields another font in

the family. An example is the metafont system developed by Knuth (1986a) (see also Hobby (1986)

and Haralambous (1993)). Attracted by the possibility of creating families of fonts instead of one font at

a time, commercial companies have come up with their own solutions, such as Adobe’s multiple master

format.

In this paper, we are going back to the basic process of capturing a pen-drawn collection of

characters and making just one font from it. Our first concern is with the user’s time. The whole process

from scanning to final output takes less than two (physical) hours and may thus be attractive when one

wants a quick production of one’s own handwriting. In fact, the design of fonts for handwritten text is what

motivated us in this project. One aspect of this involves the creation of suitably randomized characters

to simulate real handwriting. This won’t be dealt with here—we refer to Devroye and McDougall (1996)

for a theoretical development and some crude examples, and to André and Borghi (1989), Doojies (1989)

and van Blokland and van Rossum (1991) for earlier attempts in this direction.

In a nutshell, our approach is as follows: first we scan the characters and obtain a bitmap. The

bitmap is processed and a polygonal outline of the characters are found. The polygons are then replaced

by a C2 Bézier spline approximation based on Böhm’s method. Thus far, this is all very standard. The

number of initial Bézier sections is typically unacceptably large—often more than 3000—and must be

pared down. After trimming, the resulting outlines lead to PostScript type one (.pfa) files of a size

comparable to those found in the market, i.e., about 100k bytes per file.

Our main contribution here is the method used for trimming the outlines: the optimization of

the number and the positions of the outlines is done by a random search algorithm based upon a carefully

picked criterion. Random search has several advantages—it is robust, it seeks a global minimum, and it

may be made beautifully adaptive by the introduction of parameters that tune themselves. The algorithm

always produces reasonable results. As our main contribution is at the level of the optimization itself, we

will keep the discussion of details of the other steps to a minimum. The interested reader can obtain more

information by electronic mail or by consulting Mazzucato (1994). As a first reference on font design, we

refer to Karow (1994a, 1994b) or André (1993).

2

2. Bézier curves

The generation of scalable fonts in the PostScript type one format requires the use of cubic Bézier

curves in order to describe the contours of a character. Bézier curves were invented independently by de

Casteljau around 1959 and by Bézier around 1962 and are described in the books by Farin (1993) and

Su and Liu (1989).

Given the current point (x0, y0), the PostScript command curveto takes the three points (x1, y1), (x2, y2), (x3, y3)

as parameters. The four points are called the Bézier points. The Bézier curve B(t) = (x(t), y(t)) can be

written as

x(t) = axt
3 + bxt

2 + cxt+ x0

y(t) = ayt
3 + byt

2 + cyt+ y0

where
ax =x3 − 3(x2 − x1)− x0 ay =y3 − 3(y2 − y1)− y0

bx =3(x2 − 2x1 + x0) by =3(y2 − 2y1 + y0)

cx =3(x1 − x0) cy =3(y1 − y0) .

Equivalently,

x(t) = x3t
3 + 3x2t

2(1− t) + 3x1t(1− t)2 + x0(1− t)3

y(t) = y3t
3 + 3y2t

2(1− t) + 3y1t(1− t)2 + y0(1− t)3 ,

in the Bernstein polynomial format. The monomial form of a Bézier curve allows the computations to be

performed with Hörner’s method. A Bézier curve of the third degree takes one of four possible shapes:

convex convex/concave with one loop with a cusp

Figure 1. Third degree Bézier curves.

The junction point of the segments is known as a knot or a breakpoint. A spline S, composed of

two adjacent Bézier curves B0 and B1 may be created as follows. Each curve has its own local parameter

t while S has a global parameter u, where u ∈ R. The knot sequence can be represented in terms of the

parameter u, knot i having parameter value ui. The correspondence between t and u depends on the

actual length of each segment, t = (u− ui)/(ui+1 − ui). We can think of B0 and B1 as two independent

curves each having a local parameter t ranging from 0 to 1 or we may regard it as two segments of

a composite curve with parameter u in the domain [u0, u2]. Æsthetically pleasing composite curves are

obtained by introducing continuity restrictions and applying smoothness conditions to S (Manning, 1974).

3

Roughly speaking, continuity of the first and second order derivatives at knot points with respect to the

global parameter u is called C1 and C2 continuity respectively.

To illustrate these notions of smoothness, take two adjacent Bézier sections B0 (with Bézier points

b0, . . . , b3) and B1 (with Bézier points b3, . . . , b6). C1 continuity at b3, the knot, occurs if b2, b3 and b4 are

collinear, and if ||b4 − b3||/||b3− b2|| = ∆1/∆0, where ∆1 = u2− u1 and ∆0 = u1 − u0. Note that b1 and

b5 do not appear in the condition. With C2 continuity, the points b1, b2, b3, b4, b5 influence the second

derivative at the junction point. If the curve S is C2 then there must a point d of a polygon b1, d, b5 that

describes the same global quadratic polynomial as the five points mentioned above do. Hence assuming

that the curve is already C1, the following equations must be satisfied in order for d to exist:

b2 = (1− t1)b1 + t1d

b4 = (1− t1)d+ t1b5 ,

where t1 = ∆0/(u2 − u0). The conditions for C1 and C2 curves are shown in the following figure.

∆0 ∆1

b0

b1

b2 b3
b4

b5

b6

d

∆1

∆0

∆0

∆1
∆0

∆1

b0

b1

b2

b3
b4

b5

b6

Figure 2. The different segment ratios for C1 and C2 Bézier curves.

4

3. From bitmap to polygonal outline.

In the development of a new typeface, typographers are concerned with legibility, uniformity

among the characters and æsthetics. For handwritten characters, however, the major concern is with the

accurate reproduction of the contours. The various steps are shown in the simplified figure 3.

(a) (b)

(c) (d)

Figure 3. (a): The initial bitmap. (b): The contour pixels of a
character. (c): The approximation by polygons. (d): Böhm sections
derived from the polygon.

5

The algorithm.

1 Create characters with a pen and paper.

2 Scan the artwork, leaving a tiff bitmap image.

3 Remove impurities from the bitmap.

4 Find all contour pixels (see remark below).

5 Determine the starting polygonal outline (see remarks).

6 Trim the starting polygonal outline (see remarks).

7 Determine the starting Bézier outline (see remarks).

Remark. Bitmap formats. A multitude of bitmap formats, such as tiff, gif, eps, bdf and ppm,

are available. The different bitmap formats are, de facto, equivalent. Many programs for converting from

one format to another are also available. See for example the pbmplus package by Poskanzer (1989).

Remark. Removing impurities. The bitmap is cleaned by removing all specks and impurities, small

connected islands of black pixels in a white sea and small connected islands of white pixels in a black sea.

This is done by finding all connected components by depth first search of the bitmap and removing those

that are too small.

Remark. Finding all contour pixels. As a character is represented by a bitmap, many black

pixels are required to form the character. Some pixels are “interior” and others constitute the “contour”

of the characters. The latter are extracted. A contour pixel can be defined as having at least one white

pixel as a neighbor in a 4-connected representation. Neighbors are sometimes referred to by their relative

position, north, east, south, or west. A pixel can be part of more than one contour and more than

one contour may be present in a character. The contour pixels in a bitmap can be identified in time

proportional to the number of pixels. We mark all black pixels that have at least one white pixel as a

row neighbor or column neighbor. It is convenient to have a representation in which contour pixels are

linked together in a chain or chains. We call the skin of a character the set of white pixels that have a

contour pixel as one of its neighbors. The use of contour pixels in conjunction with the skin of a character

permit one very simply to build the desired ordering. Some earlier contour-following algorithms (Duda

and Hart, 1973) do not create the correct ordering for some 8-connected images, so one has to be a bit

careful. Nevertheless, it is rather straightforward to find ordered contours in time linear in the number

of contour pixels. To guarantee that all outlines are found, the visited pixels are marked and the search

for another outline can be started by considering unvisited pixels. The search may simply be done by

scanning the bitmap in an up-down, left-right fashion. The algorithm resembles in some respect depth

first search (Cormen, Leiserson and Rivest, 1990).

6

Remark. Other contour-finding algorithms. Some contour-finding algorithms are established

according to the type of bitmap. For grey-level images, Avrahami and Pratt (1991) developed a con-

tour extraction algorithm. This algorithm was modified and used in Itoh and Ohno (1993). A different

contour-tracing algorithm derived from algorithms designed to verify connectedness of components (Min-

sky and Papert, 1969) has been employed by Gonczarowski’s algorithm (Gonczarowski, 1991). Algorithms

performing contour extraction are commonly used in the area of pattern analysis and recognition. For

example, Moore’s tracing algorithm (Pavlidis, 1982) works for all bitmap images.

Remark. Polygonal outline. A simple polygon is a polygon with non-crossing edges. A polygonal

outline is a finite collection of non-crossing simple polygons. A point is inside a polygonal outline if a

ray emanating from it crosses an odd number of edges (this is called the even-odd rule, see Foley et al,

1992). The starting polygonal outline of our character has two properties: (i) its vertices are the centers

of some black pixels; (ii) all centers of pixels in the original bitmap are correctly colored (black pixels

have centers that are inside the polygonal outline). We refer to figure 3(c).

Remark. Trimmed polygonal outline. The starting polygonal outline consisted of 800 to 3000

linear segments in our experiments. It may be trimmed by walking around the contour and identifying

the longest edges that would induce no error on the bitmap. That is, we have a current polygon vertex

vi and consider the polygons in which the chains (vi, vi+1, . . . , vj) are replaced by (vi, vj). The largest

j > i for which the resulting polygonal outline correctly colors all pixel centers is kept, and the attention

moves to vj . This is repeated until the entire contour is processed. There is no absolute guarantee that

the resulting polygon is minimal, but it is considerably less complex. The time is roughly linear in the

number of contour pixels.

Figure 4. A portion of the contour is parti-
tioned into longest possible contiguous line seg-
ments.

Remark. From polygonal outline to Bézier outline. In the next step, we make the breakpoints

of the polygons the defining points of a Bézier spline that we shall call a Böhm spline (Böhm, 1977). Figure

3(d) shows the Böhm spline for our simple example. It has the same number of sections as the polygon

of figure 3(c). Denote by di the vertices of the trimmed polygonal outline. Partition each edge (di, di+1)

into three equal parts and denote the two cutpoints by ui and vi+1 respectively. Let zi be the midpoint

of the segment joining vi and ui: the zi’s are thus the knots of the spline. The Bézier spline (a C2 cubic

B-spline in Farin’s notation, Farin, 1993) consists of Bézier sections (zi, ui, vi+1, zi+1). Taken together,

7

by the odd-even rule of ray intersections, the Bézier splines (one for each polygon) define an inside and

an outside. It is of course no longer true that each center of the original bitmap is correctly colored.

d0

d1

d2

d3

d4

Figure 5. Böhm’s C2 construction
algorithm. The white points on the
curve are the zi’s.

Our parametrization is called uniform or equidistant. Other parametrizatioons lead to different distribu-

tions of the cutpoints (Schneider (1990), Itoh and Ohno (1993) and Plass and Stone (1983)). Duplicating

some of the points di creates some sections of zero length. For example, the figure below shows the Bézier

splines for d0, d0, d1, d1, d2, d2, . . . and d0, d0, d0, d1, d1, d1, . . . respectively. Unfortunately, this procedure

destroys the C2 continuity. Our method overcomes the necessity of corner detection and produces a

flexible spline that is handy to manipulate.

(a) (b) (c)

Figure 6. C2 construction with knot multiplicities of 1, 2 and 3 respec-
tively.

8

(a) (b) (c)

Figure 7. By cutting Bézier sections into parts, we may obtain
new interesting splines. Each section of the Böhm spline is divided
into three parts, in the proportions 0.3, 0.4 and 0.3 for figure (a).
In figure (b), the ratios are 0.1, 0.8, 0.1.

Remark. Other methods of determining Bézier outlines. As knots define the endpoints of

curves, dynamic programming methods may be used to find a good knot partitioning as in Plass and

Stone (1983). A modified version of it, presented in Schneider (1990), consists of replacing the heuristic

by a subdivision process that breaks the curve where the maximal error occurs. Other approaches

perform first corner detection to define an initial set of knots (see, e.g., Lejun, Hao and Wah, 1994).

Corner detection consists of interpreting the bitmap to find locations where the contour changes direction

abruptly. Between two consecutive corners, a certain number of knots may be defined. An iterative

approach, used in Gonczarowski (1991), consists of finding the longest curve from a given point such that

it approximates the desired section of the bitmap with a user-specified threshold. As mentioned in Itoh

and Ohno (1993), the precise detection of contour points is a very hard problem. The algorithm of Itoh

and Ohno uses the estimated corner points for defining segments. The approximation of contour pixels or

polygonal outlines by curves is sometimes referred to as auto-tracing. Some commercial packages perform

such an operation.

4. Optimization: the quality function.

Call the Böhm spline S. To further reduce the number of sections and to make smooth outlines

that remain close to the original bitmap, one must define a quality function Φ and an optimization

algorithm. The choice of both differs from what we have found in the literature. Our choices are

developed in the next two sections.

The most used quality function Φ is based upon the least-squares criterion (see Plass and Stone

(1983), Itoh and Ohno (1993), Gonczarowski (1991) and Schneider (1990)). It evaluates the distance

between the contour pixels and their corresponding locations on the interpolating curve. It requires the

computation of a mapping between the pixels and the local parameter t. Different methods are used to

perform the approximation mapping. Our method does not require any such mapping. We simply take

the following quality function Φ(S) of a spline S:

Φ(S) = α pixel error(S) + β curvature(S) + γ(# of sections)(S) .

9

Here the weights α, β and γ are nonnegative and sum to one. The pixel error penalizes big differences

with the original bitmap. The curvature penalizes curves that arte not smooth. The last term in Φ places

a penalty on the description length or complexity of the solution. The first two errors are described in

more detail.

Pixel error. The pixel error criterion looks at the centers of all pixels in the bitmap. The original

bitmap colors each pixel. Each center of a pixel gets colored again by filling the Bézier spline ensemble S
according to the odd-even rule explained earlier. The pixel errors merely counts the number of pixels for

which the colors are flipped. Note that it does not attempt to compute the area of the points that are

incorrectly colored.

Figure 8. The figure shows an orginal
bitmap and a Bézier spline with zero pixel
error. Colors of points are determined by
the even-odd algorithm.

If we define the error to be the number of incorrectly colored pixels, then each pixel has the same

weight in the criterion. Experiments show that it is preferable to give more weight to pixels that are

far away from the contour. This, in effect, creates better-fitting splines. Therefore, we propose various

definitions of pixel error and let the user make a selection. The distance from the outline is the length of

the shortest adjacent-pixel-path (in which only north, south, east, west moves are allowed) starting at the

pixel to reach a pixel of the appropriate color. These distances may be computed by breadth first search

in time proportional to the number of pixels by starting with a queue of contour pixels and working away

from the contour (Cormen, Leiserson and Rivest, 1990). We will call this the bushfire algorithm. More

details may be found on page 254 of Preparata and Shamos (1985) and in Mazzucato (1994). The pixel

error is in general defined by ∑

all pixels p

W (Dp) ,

where Dp is the distance between p and the nearest pixel for which the original bitmap color matches the

assigned color of p. Thus, if p is correctly colored, Dp = 0. In the expression above, W is an increasing

10

penalty function such as

W (U) =





IU>0 (ordinary pixel error)

U (linear penalty)

U2 (quadratic penalty)

U3 (cubic penalty)

UIU≤δ +∞IU>δ (linear penalty, ∞ beyond δ)

U2IU≤δ +∞IU>δ (quadratic penalty, ∞ beyond δ)

U3IU≤δ +∞IU>δ (cubic penalty, ∞ beyond δ)

,

and δ > 0 is a design parameter. As mentioned above, many existing algorithms use the least-squares

method. Roughly speaking, these correspond to picking W (U) = U as the sum of penalties 1, 2, 3, . . . , k

for a pixel at distance k is k(k + 1)/2.

Remark: Updating the pixel error. We would like to point out that updating the pixel error

can be done efficiently. The convex hull property of Bézier curves ensures that all modifications to pixel

coloring are relatively local. If a modification θ is applied to a Bézier curve B1 to produce another Bézier

curve B2, the region of the bitmap for which pixels might change color is delimited by the convex hulls of

B1 and B2. Note that the two cannot be disjoint since B2 must be attached to the portion of the spline

that B1 was connected to initially. For simplicity, a bounding box BBθ can be used to enclose the two

convex hulls. With a spline that gets modified at each step of the generation process, the computations

are thus kept to a minimum. The even-odd rule suggests that we should store and keep track of the

intersections between the curves and the horizontal and vertical lines of the pixel grid. Given a Bézier

curve B, with control points b0, b1, b2, b3 and a bounding box BB, the intersections of B with the rows

and columns of BB need to be computed. An intersection for B is calculated by solving the cubic roots

of one of the two polynomials of the Bézier monomial form

axt
3 + bxt

2 + cxt+ x0 = xl

ayt
3 + byt

2 + cyt+ y0 = yl

depending on whether a vertical line at x = xl or a horizontal line at y = yl is considered. Note that xl
and yl are contained in the bounding box BB. Without loss of generality, let us consider the case of a

vertical line at x = xl. We call a root t0, t1, t2 valid, if it is real and falls in the range [0, 1]. Let tj be

such a valid root. Then the curve intersects the line at point (xl,B(tj)). Let yb = bB(tj)c. If the total

number of curves passing between the points (xl, yb) and (xl + 1, yb) is odd then the color of the two

points (xl , yb) and (xl + 1, yb) is different. If the considered bitmap is of size r× c, then knowing the color

of pixel center (x, y), 0 ≤ x < r, 0 ≤ y < c, as well as the number of times the line (x, y) (x + 1, y) gets

intersected by curves is sufficient to determine the color of the pixel (x+ 1, y). The only information that

must be kept for a pixel center (x, y) is thus the number of intersections between (x, y) and (x + 1, y).

The information that must be retained is the set of intersection points with the horizontal and vertical

lines.

Curvature. The curvature is a good indicator of the wiggliness of a curve. For a line, the curvature is

zero, and for a circle the curvature is constant and is inversely proportional to the radius of the circle.

If the curvature at a point z of a curve C is κ, the curve locally behaves like a circle with radius 1/κ

11

(Swokowski, 1975). In the case of parametrically defined curves (x(t), y(t)), the curvature at t is defined

as

κ =
|x′(t)y′′(t)− y′(t)x′′ (t)|

[(x
′
(t))2 + (y

′
(t))2]

3
2

,

and the total curvature is
∫ 1

0 κ(t)dt or
√∫ 1

0 κ
2(t) dt. For our splines, κ varies continuously across sections,

so that the integrations may routinely be performed by by Simpson’s rule (Davis and Rabinowitz, 1984).

5. Optimization

The Böhm spline introduces a possibly substantial error on the original bitmap and has too

many sections. We will optimize both the number of sections and the locations of the Böhm control

points (called di above). We recall that these points are not endpoints of Bézier splines, but rather

define a closely related Bézier spline, the Böhm spline. In the main part of our algorithm, the number of

sections is reduced and the quality of the approximation is enhanced by minimizing Φ. As Φ depends in a

complicated and multimodal manner on its parameters, and the number of parameters varies as well, we

use a rather robust and general optimization method such as random search. For general descriptions of

random search, simulated annealing, genetic algorithms or evolutionary methods, see Törn and Žilinskas

(1989), Zhigljavsky (1991), Männer and Schwefel (1991), Devroye (1994), Rechenberg (1973), Schwefel

(1977, 1981), or Rinnooy Kan and Timmer (1987a, 1987b). Roughly, we have:

start from S
perform the following n times:

T is obtained from S by modifying S
if Φ(T) < Φ(S) then S ← T

return S

Random search has the advantage that it converges in all circumstances to a global optimum, and that it

finds acceptable solutions relatively quickly. The “modification” defined in the algorithm must be based

upon operations defined on Böhm splines. We took two such operations but realize that there are endless

other possibly better operations one might consider as well. Our operations are described below.

The merge operation. A merge operation consists of replacing two adjacent Bézier curve segments

by a single one. Since the C2 spline constraint is always present, the merge is executed by replacing two

adjacent sections sj and sj+1 with one, simply by defining the new section with the endpoints of the

polysegment (sj , sj+1). The total number of sections in the contour thus decreases by one. This process

is also called knot removal.

12

Figure 9. Knot removal: the white point on the left (a di point) is deleted,
resulting in an updated spline on the right.

The move operation. A move operation moves a section endpoint a certain (random) distance away

from its current location, causing two sections to be modified.

Figure 10. When a point di is moved, only four Bézier sections of the spline
are affected.

Consider the Bézier curve segments B0, B1, B2, B3, B4 of a spline S. If B2 and B3 are merged into B,

only the curves associated with B1, B4 and B need to be recomputed. Similarly if a move is performed

on the junction point of sections B2 and B3, the affected curve segments are B1, B2, B3, and B4. These

operations ensure the locality of the modifications on a spline S. A merge operation can perturb the curve

significantly. As it lowers the number of sections in a character, the sections become longer. It allows

the removal of small imperfections introduced during the input process. The merge is most efficient on

consecutive sections that do have more or less the same orientation.

13

6. Details of our random search algorithm.

We use the following notation. S is a Böhm-type Bézier spline. A section of a Bézier spline S
is denoted by B. Its curvature is κB. Each section also has a priority value πB and the sections are

organized into a heap H with the smallest priority value on top. Furthermore, we need

A. δ1, an initial step size (in terms of number of pixels).

B. ξ ∈ {1, 2, 3}, a user parameter for changing the step size.

C. {pn}, a sequence of adjustable probabilities.

D. N , a limit on the number of iterations.

δ1 ← initial step (initial step size for random search)

for n = 1 to N do

with probability pn do:

B ← top(H)
B′ ← shortest section neighboring B on S
T ← S with B and B′ merged (and adjacent sections modified)

otherwise do:

select d uniformly and at random from

the junction points of S
set d

′ ← d+ δnU, where U is uniformly distributed

on the unit circle (so ‖d′ − d‖ = δn)

T ← S with d replaced by d
′
(and adjacent sections modified)

if Φ(T) < Φ(S)

then (a success):

δn+1 ← δn + ξ

S ← T
update H by removing obsolete sections

and/or altering the priorities of updated sections

(Note: maximally 4 sections are involved,

and for each one do πB ← κB)

else (a failure):

δn+1 ← max{1, δn − ξ}
πB ← 1.1 max{πB′ } for all neighbors B′ of B

adjust pn as described below

The algorithm above dsiffers from ordinary algorithms in two fundamental ways.

A. it uses an adaptive step size. The above algorithm differs from fixed step size random search, in

which random perturbations are always of constant magnitude. Small step sizes yield small improvements,

14

while large step sizes reduce the probability of a successful trial. As noted by Schumer and Steiglitz (1968),

the optimum step size is between those two extremes. Since the optimum step size is unknown, adaptive

step size random search algorithms were created. The magnitude δn of a step in a random direction

varies according to the past experience. The basic principle behind these adaptive algorithms is to try

bigger steps as an improvement occurs and to reduce the step on unsuccessful trials (Matyas, 1965). Each

algorithm uses a different variant. For example, the adaptive step size random search algorithm (assrs;

see Schumer and Steiglitz, 1968) tries two step sizes (δn and δn(1 + a)) in the same random direction,

where 0 < a < 1, and waits a certain number of consecutive unsuccessful trials before reducing the step

size δn. If on the other hand the attempt succeeds, δn+1 is set to δn or δn(1 + a), depending upon which

corresponded to the best improvement. A rule of thumb that may be found in several publications (see

Devroye, 1972, and more recently, Bäck, Hoffmeister and Schwefel, 1991), is that the step size should

increase after a successful step and decrease after a failure, and that the parameters should be adjusted

to keep the probability of success around 1/5. Schumer and Steiglitz (1968) and others investigate the

optimality of similar strategies for local hill-climbing. Alternately, the optimal step size may be found by a

one-dimensional search along a random direction (Bremermann, 1968, Gaviano, 1975). Another adaptive

procedure (Devroye, 1972) combines random search with non-random direct search. The compound

random search algorithm (crsa) basically inspects a deterministic modification to the approximation as

well as a controlled random variation. The interesting feature here is the control of the step size. The

step size δn is updated as follows:

δn+1 =

{
δn(1 +A) if the trial is successful

δn(1−B) otherwise,

where A > 0 and 0 < B < 1. The probability of a successful trial stabilizes roughly around B/(A+B), and

this level must be picked strictly in (0, 1/2) (so that A > B). For example, if we choose
� {success} = 0.2,

then A = 4B. It is recommended though that Psuccess be kept between 0.15 and 0.35. Unfortunately,

this method cannot be employed näıvely. The PostScript type one format requires that the different

instruction parameters be integer values (see Adobe, 1990b). Thus, junction points are always truncated

to a sufficiently small integer grid. Step sizes less than one just do not make sense. Thus, in our algorithm,

step sizes are integer-valued and are updated by the rule

δn+1 =





δn + ξ if the trial is successful

δn − ξ if the trial is not successful and δn − ξ ≥ 1

δn otherwise,

where ξ ∈ {1, 2, 3}.

B. it picks the most effective strategy on the fly. In the algorithm, we have a parameter pn
which controls the probability of trying a merge operation. In a sense, the merge operation “competes”

against the move operation. After starting with a fixed pn for a warm-up, the algorithm measures the

average decrease in Φ observed over the last N ′ = 50 similar operations (this includes the failed attempts,

in which the change in Φ is zero). If the absolute value of the average was ∆m for a merge and ∆µ for a

move, then we set pn = ∆m/(∆m + ∆µ) to insure that the more successful strategy receives preferential

treatment. The case 0/0 is elegantly avoided by stopping altogether when both ∆’s are zero; this only

occurs if no improvement is seen in Φ in the last N ′ attempts with either strategy. We resorted to

such a rule as it was very difficult to estimate the number of required iterations beforehand in view of

the unknown nature of the characters—simple outlines require far less work for example. Attempts at

15

adjusting random search parameters on-line go back to the early seventies, where learning automata are

used to select best search strategies on the fly—see Poznyak (1972), Volynskii and Filatov (1974), and

Ripa (1970, 1971). In 1975, Jarvis introduced competing local random searches. The n-th trial is spent

on the i-th search strategy with probability pn,i, where pn,i is adapted as n→∞. See also Ermakov and

Zhigljavskii (1983), Hill (1969), McMurtry and Fu (1966), and Shapiro and Narendra (1969).

7. Results

The code is written in C and consists of filters that take tiff input (from the scanner), transform

it to xbm (by using tifftopnm and pbmtoxbm), and create a type three PostScript bitmap font. The

last part is called scrpt2s and was written by Luc Mikiszko at McGill University during the summer of

1993, and used ideas from Leisher’s program bdftops (Leisher, 1990). The algorithm described above

grabs the last file and creates in one execution a type one PostScript font with corresponding .afm file

and kerning pairs. There are 35 options related to the choice of quality function, the parameters of the

optimization process, the generated font (weight, italic angle, sidebearing, name, height, monospacing,

unique ID number, stroking versus filling) and statistics to be collected during the generation. For

example, bold versions are easily obtained by coating the original bitmap with a fixed number of layers

of pixels. Different quality function settings lead to different outputs as each resulting font is indeed a

best possible compromise. The following figures highlight some of the technical difficulties we overcame:

A. Characters drawn with a thin pen are often just a few pixels wide, and are very sensitive to

variations in thickness. Examples of successful conversions include the font Bunsbeek in figure

15 and the font Isa-LightItalic in figure 11.

B. Characters with highly irregular contours, such as from old typewriters require more Bézier

sections for faithful reproductions. See Gete in figure 12.

C. Characters with many intersections require crisp rendering where strokes cross. As an extreme

example, we created the font Oplinter, in which each letter was drawn twice. Observe the quality

of the curves near intersections in figure 13.

Figure 11. The letter w in the font Isa-LightItalic, based upon the
handwriting of Isabelle Massarelli. Black dots denote Bézier endpoints,
and white dots represent control points.

16

ABCDEFGHIJKLM

NOPQRSTUVWXYZ

abcdefghijklm

nopqrstuvwxyz
Figure 12. A font called Gete derived from a sample from an old typewriter. For
such irregular characters, the trimmed polygonal outline often suffices if characters will
not be used at large point sizes.

17

ABCDEFGHIJKLM
NOPQRSTUVWXYZ
abcdefghijklm
nopqrstuvwxyz

Figure 13. A font called Oplinter was derived from a sample in which each character was drawn
twice, to test the algorithm’s performance in the presence of many intersections of strokes. Note
that the number of Bézier sections increases with the curvature of the contour.

18

ABCDEFGHIJKLM
NOPQRSTUVWXYZ
abcdefghijklm
nopqrstuvwxyz

Figure 14. In this baroque font called Waaiberg, we applied ul-
tra-thin strokes that ran into each other in several spirals. These
inkruns were caught by the algorithm and faithfully reproduced. Only
the Bézier endpoints are shown.

We wrote a filter for generating kerning pairs. To illustrate this, look at text samples of Bost-Bold

and Houtem:

The quick brown fox jumps over the lazy dog.

The quick brown fox jumps over the lazy dog.

A few examples of some of the generated fonts are shown below in a format adapted from Wallis’s

book (1990).

19

Bierbeek abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Binkom abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Bost-Bold abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Bunsbeek abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Hoegaerden-Bold abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Houtem-Bold abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Houtem abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Kumtich abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Pach abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Wommersom abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Figure 15. Fonts based upon simple pen-and-paper drawings.

8. References

Adobe, PostScript Language Reference Manual, Addison-Wesley, Reading, MA, 1990a.

Adobe, Adobe Font Metric Files Specification Version 3.0, Adobe, 1990c.

20

Adobe, Adobe Type 1 Font Format, Addison-Wesley, Reading, MA, 1990b.

J. André, “Création de fontes et typographie numérique,” IRISA, Campus de Beaulieu, Rennes, 1993.

J. André and B. Borghi, “Dynamic fonts,” in: Raster Imaging and Digital Typography, ed. J. André and

R. D. Hersch, pp. 198–204, Cambridge University Press, Cambridge, 1989.

G. Avrahami and V. Pratt, “Sub-pixel edge detection in character digitization,” in: Raster Imag-

ing and Digital Typography II, ed. R. A. Morris and J. André, pp. 54–64, Cambridge Univer-

sity Press, Cambridge, 1991.

H. J. Bremermann, “Numerical optimization procedures derived from biological evolution preocesses,”

in: Cybernetic Problems in Bionics, ed. H. L. Oestreicher and D. R. Moore, pp. 597–616, Gor-

don and Breach Science Publishers, New York, 1968.

T. Bäck, F. Hoffmeister, and H.-P. Schwefel, “A survey of evolution strategies,” in: Proceedings of the

Fourth International Conference on Genetic Algorithms, ed. R. K. Belew and L. B. Booker, pp. 2–9, Mor-

gan Kaufmann Publishers, San Mateo, CA, 1991.

W. Böhm, “Cubic B-Spline curves and surfaces in computer-aided geometric design,” Computing, vol. 19,

pp. 29–34, 1977.

W. Böhm, G. Farin, and J. Kahmann, “A survey of curve and surface methods in CAGD,” Computer-

Aided Geometric Design, vol. 1, pp. 1–60, 1984.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press, Cam-

bridge, MA, 1990.

P. J. Davis and P. Rabinowitz, Methods of Numerical Integration, Academic Press, Orlando, FL, 1984.

L. Devroye, “The compound random search algorithm,” Proceedings of the International Sympo-

sium on Systems Engineering, pp. 105–110, Lafayette, IN, 1972.

L. Devroye, “Random optimization methods,” in: New Directions in Simulation for Manufacturing and

Communications, ed. S. Morito, H. Sakasegawa, K. Yoneda, M. Fushimi and K. Nakano, pp. 20–31, Op-

erations Research Society of Japan, Tokyo, 1994.

L. Devroye and M. McDougall, “Random fonts for the simulation of handwriting,” Electronic Publish-

ing, vol. 0, pp. 0–0, 1996.

E. H. Doojies, “Rendition of quasi-calligraphic script defined by pen trajectory,” Raster Imaging and Dig-

ital Typography, in: Raster Imaging and Digital Typography: Proceedings of the International Confer-

ences, Ecole Polytechnique Fédérale, Lausanne, Switzerland, October 1989, ed. J. André and R. D. Her-

sch, pp. 251–260, Cambridge University Press, Cambridge, 1989.

R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, John Wiley & Sons, New York,

1973.

S. M. Ermakov and A. A. Zhiglyavskii, “On random search for a global extremum,” Theory of Probabil-

ity and its Applications, vol. 28, pp. 136–141, 1983.

21

G. Farin, Curves and Surfaces for CAGD, A Practical Guide, Academic Press, New York, 1993 .

J. D. Foley, A. van Dam, S. Feiner, and J. Hughes, Fundamentals of Interactive Computer Graph-

ics, Addison-Wesley, Reading, MA, 1992.

M. Gaviano, “Some general results on the convergence of random search algorithms in minimisation prob-

lems,” in: Towards Global Optimisation, ed. L. C. W. Dixon and G. P. Szegö, pp. 149–157, North Hol-

land, New York, 1975.

J. Gonczarowski, “A fast approach to auto-tracing (with parametric cubics),” in: Raster Imaging and Dig-

ital Typography, ed. R. A. Morris and J. André, vol. 2, pp. 1–15, Cambridge University Press, Cam-

bridge, 1991.

Y. Haralambous, “Parametrization of PostScript fonts through metafont–alternative to Adobe multi-

ple master fonts,” Electronic Publishing, vol. 6, pp. 145–157, 1993.

J. D. Hill, “A search technique for multimodal surfaces,” IEEE Transactions on Systems, Science and Cy-

bernetics, vol. SSC-5, pp. 2–8, 1969.

J. D. Hobby, “Smooth, easy to compute interpolating splines,” Discrete Computational Geome-

try, vol. 1, pp. 123–140, 1986.

K. Itoh and Y. Ohno, “A curve fitting algorithm for character fonts,” Electronic Publishing, vol. 6, pp. 195–

205, 1993.

R. A. Jarvis, “Adaptive global search by the process of competitive evolution,” IEEE Transactions on Sys-

tems, Man and Cybernetics, vol. SMC-5, pp. 297–311, 1975.

P. Karow, Digital Typefaces, Springer-Verlag, Berlin, 1994a.

P. Karow, Font Technology, Springer-Verlag, Berlin, 1994b.

D. E. Knuth, The metafont book, Addison-Wesley, Reading, MA, 1986a.

D. E. Knuth, The TEXbook, Addison-Wesley, Reading, Mass, 1986b.

D. E. Knuth, Computer Modern Typefaces, Addison-Wesley, Reading, Mass, 1986c.

M. Leisher, “bdftops: a program to transform a bdf font into a PostScript font,” New Mexico State Uni-

versity, 1990.

S. Lejun, Z. Hao, and C. K. Wah, “FontSript—A Chinese font generation system,” in: Proceed-

ings of the International Conference on Chinese Computing (ICC94), pp. 1–9, 1994.

J. R. Manning, “Continuity conditions for spline curves,” The Computer Journal, vol. 17, pp. 181–

186, 1974.

J. Matyas, “Random optimization,” Automation and Remote Control, vol. 26, pp. 244–251, 1965 .

S. Mazzucato, “Optimization of Bézier outlines and automatic font generation,” M.Sc. thesis, School of

Computer Science, McGill University, Montreal, 1994.

22

G. J. McMurtry and K. S. Fu, “A variable structure automaton used as a multimodal searching tech-

nique,” IEEE Transactions on Automatic Control, vol. AC-11, pp. 379–387, 1966.

M. Minsky and S. Papert, Perceptrons, an Introduction to Computational Geometry, MIT Press, Har-

vard, MA, 1969.

R. Männer and H.-P. Schwefel, Parallel Problem Solving from Nature, Lecture Notes in Computer Sci-

ence, vol. 496, Springer-Verlag, Berlin, 1991.

T. Pavlidis, Algorithms for Graphics & Image Processing, Computer Science Press, Rockville, MD, 1982.

M. Plass and M. Stone, “Curve-fitting with piecewise parametric cubics,” Computer Graphics, vol. 17,

pp. 229–239, 1983 .

J. Poskanzer, pbmplus: a program to transform between various bitmap formats, 1989.

A. S. Poznyak, “Use of learning automata for the control of random search,” Automation and Remote Con-

trol, vol. 33, pp. 1992–2000, 1972.

F. P. Preparata and M. I. Shamos, Computational Geometry, an Introduction, Springer-Verlag, New

York, NY, 1985.

I. Rechenberg, Evolutionsstrategie—Optimierung technischer Systeme nach Prinzipien der biologis-

chen Evolution, Frommann-Holzboog, Stuttgart, 1973.

A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part I: cluster-

ing methods,” Mathematical Programming, vol. 39, pp. 27–56, 1987a.

A. H. G. Rinnooy Kan and G. T. Timmer, “Stochastic global optimization methods part II: multi level

methods,” Mathematical Programming, vol. 39, pp. 57–78, 1987b.

K. K. Ripa, “Some statistical properties of optimizing automata and random search,” Automatic Con-

trol, vol. 4(3), pp. 28–32, 1970.

K. K. Ripa, “Random search of the extremum of a multidimensional object as a stochastic automa-

ton,” in: Problems of Statistical Optimization, ed. L. A. Rastrigin, Zinatne, Riga, 1971.

P. J. Schneider, “An algorithm for automatically fitting digitized curves,” in: Graphics Gems, ed. A. S. Glass-

ner, pp. 612–626, Academic Press, San Diego, CA, 1990.

M. A. Schumer and K. Steiglitz, “Adaptive step size random search,” IEEE Transactions on Auto-

matic Control, vol. 13, pp. 270–276, 1968.

H.-P. Schwefel, Modellen mittels der Evolutionsstrategie, Birkhäuser Verlag, Basel, 1977.

H.-P. Schwefel, Numerical Optimization of Computer Models, John Wiley, Chichester, 1981.

I. J. Shapiro and K. S. Narendra, “Use of stochastic automata for parameter self-optimization with mul-

timodal performance criteria,” IEEE Transactions on Systems, Science and Cybernetics, vol. SSC-

5, pp. 352–360, 1969.

23

B.-Q. Su and D.-Y. Liu, Computational Geometry–Curve and Surface Modeling, Academic Press, Boston,

1989.

E. W. Swokowski, Calculus with Analytic Geometry, Prendle Webes & Schmidt, Boston, MA, 1975.

A. Törn and A. Žilinskas, Global Optimization, Lecture Notes in Computer Science, vol. 350, Springer-

Verlag, Berlin, 1989.

E. van Blokland and J. van Rossum, “Different approaches to lively outlines,” in: Raster Imaging and Dig-

ital Typography II, ed. R. A. Morris and J. André, pp. 28–33, Cambridge University Press, Cam-

bridge, 1991.

E. I. Volynskii and G. V. Filatov, “On step adaptation in random-search algorithms,” Automatic Con-

trol and Computer Sciences, vol. 8(4), pp. 58–62, 1974.

L. W. Wallis, Modern Encyclopedia of Typefaces, 1960-90, Van Nostrand Reinhold, New York, NY, 1990.

A. A. Zhigljavsky, Theory of Global Random Search, Kluwer Academic Publishers, Hingham, MA, 1991.

24

