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Abstract

Regression analysis of a response variable Y requires careful se-
lection of explanatory variables. The quality of a set of explanatory
features X = (X™M),..., X(@) can be measured in terms of the mini-
mum mean squared error

L* = min B{(Y — f(X))*}.

This paper investigates methods for estimating L* from i.i.d. data.
No estimate can converge rapidly for all distributions of (X,Y’). For
Lipschitz continuous regression function E{Y|X = z}, two estimators
for L* are discussed: fitting a regression estimate to a subset of the
data and assessing its mean residual sum of squares on the remaining
samples, and a nearest neighbor cross-validation type estimate.

Key words: Cross-validation, mean squared error, nearest neighbor estimate,
nonparametric regression estimation.
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1 Introduction

Let Y be a real valued random variable and let X be a d-dimensional random
vector. The coordinates of X may have different types of distributions, some
of them may be discrete (for example binary), others may be absolutely
continuous. In the sequel we do not assume anything about the distribution
of X. The task of regression analysis is to estimate Y given X, i.e., one aims
to find a function f defined on the range of X such that f(X) is “close” to
Y. Typically, closeness is measured in terms of the mean squared error of
f’
E{(f(X)-Y)*}.

It is well-known that the mean squared error is minimized by the regression

function m with
m(z) = E{Y | X = z} (1)

and a minimum mean squared error

L' = E{(Y = m(X))*} = min B{(Y - f(X))").

For each measurable function f, the mean squared error can be decom-
posed into

B{((X)~Y)’} = E{m(X)—Y)"}+E{(m(X) - f(X)}}
— E{(m(X)-Y)} + / | m(z) - £(z) P p(de),

R4
where 1 denotes the distribution of X. The second term on the right hand

side is called excess error or integrated squared error of the function f and
will be denoted by

lm — fII* = /Rd | m(z) — f(z) |* p(dz). (2)

Clearly, the mean squared error of f is close to its minimum if and only if
the excess error ||m — f||* is close to zero.

The regression function cannot be calculated as long as the distribution
of (X,Y) is unknown. Assume, however, that we observed data

D, = {(Xl,Yl)a ) (Xnayn)}

consisting of independent and identically distributed copies of (X,Y). D,
can be used to produce an estimate m,, = m,(-, D,) of the regression func-
tion m. Since m arises from Ly considerations, it is natural to study Ls(u)
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convergence of the regression estimate m,, to m. In particular, the estimator
m,, is called weakly (strongly) universally consistent if its excess error
satisfies

|lm — my||* — 0 in probability (a.s.)

for all distributions of (X,Y) with E|Y'|? < oo.

Stone [18] first pointed out that there exist weakly universally consistent
estimators. He considered local averaging estimates, i.e., estimates of the
form

=1 =1

where W,,;(x) are the data-dependent weights governing the local averaging
about z. Important local averaging estimates are partitioning, kernel and
nearest neighbor estimates.

The partitioning estimate is defined by a partition P, = {4,1, An2...}
of R¢ and
_ Z?:l }/;:Kn('/'E? X’l)

S K, Xo)
where K, (z,u) = Zj‘;l Iize A, ;uca, ;- Results on weak and strong universal
consistency can be found in Devroye and Gyorfi [5] and Gyorfi [9].

mn ()

The kernel estimate is given by

X0 Vi, (e~ X))
Z?:l Khn (1‘ - X’L) ’
where h,, > 0 is a smoothing factor depending upon n, K is an absolutely

integrable function (the kernel), and K}, (z) = K(x/h,). Under the condi-
tions

M ()

hn — 0, nhd — oo
Devroye and Wagner [8], Spiegelman and Sacks [16], Devroye and Krzyzak

[7] and Walk [19] proved consistency theorems for the kernel estimate.

For the k-nearest neighbor estimate, W,,;(z; X1, ..., X,) is chosen to
be 1/k if X; is one of the k nearest neighbors of z among Xj,...,X,, and
zero otherwise. Note in particular that 2?21 Wei = 1. If

k, — oo, kp/n—0 (3)



then the consistency of the k-nearest neighbor estimate was established by
Stone [18] and by Devroye et al. [6].

It is of great importance to be able to estimate the minimum mean
squared error L* accurately, even before one of the above regression esti-
mates is applied: in a standard nonparametric regression design process, one
considers a finite number of real-valued features X®, i € I, and evaluates
whether these suffice to explain Y. In case they suffice for the given explana-
tory task, an estimation method can be applied on the basis of the features
already under consideration, if not, more or different features must be con-
sidered. The quality of a collection of features X(®, ¢ € I, is measured by
the minimum mean squared error

) 2
L*(I) :=E|Y —E{Y|X9 i eI}

that can be achieved using the features as explanatory variables. L*(I) de-
pends upon the unknown distribution of (Y, X(®) : § € I). The first phase of
any regression estimation process therefore heavily relies on estimates of L*
(even before a regression estimate is picked).

Accurate estimates of L* for higher-dimensional feature vectors are in-
dispensible because the problem of feature selection cannot be resolved by
selection rules combining the features X ® according to their “single feature”
errors L*({i}). Indeed, an easy example shows that a combination of “good”
single features may lead to a larger mean squared error than a combination
of “worse” features. To see this, let X7 := (XM, X® XGN)T be jointly
Gaussian with mean p and variance-covariance matrix ¥, and let Y = a7 X
for some a € R3 to be chosen later. For I C {1,2,3} we have

L*(I) = a"Sa — "= PT(PXPT) "' PXa

(Shiryayev [15], §13, Theorem 2), where P = P(I) contains the rows of the
3 x 3 identity matrix with row labels in /. Choose

0 1 =07 O 2
u=101], XY= -07 1 =07 and a=| 2.5
0 0 -07 1 1

to obtain the following ordering of minimum mean squared errors:

5

. 3
100~ LD =15

(1)) = 5 > L°({2))
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and
8

L(1L,2) = o < I({1L3) = § < I*({2,3) = .

Thus, the two best smgle features (X® and X)) become the worst two-
dimensional feature, whereas the two worst single features (X() and X®))
jointly constitute the best two-dimensional feature.

Hence, the decision whether the features already under consideration will
do, or whether other features should be targeted, requires accurate estimates
of L*. As will be seen, however, without additional assumptions on the dis-
tribution of (X, Y’) one cannot trust any estimate of L*. It is even futile to let
the sample size tend to infinity because any estimate is doomed to converge
arbitrarily slowly for some distribution of (X,Y") (Theorem 1). In practice,
one can thus never claim to have a universally superior feature extraction
or minimum error estimation method, no matter how many simulations are
performed and no matter how large the sample sizes are. Error bounds or
confidence bands for L* can only be constructed under additional assump-
tions on the distribution of the data (Theorems 2 and 3).

A related problem is the estimation of conditional variances,
o*(z) = E{(Y — m(X))*|X =z},

because of

= E{o*(X)}.
For nonparametric estimates of o%(z) see, e.g., Miiller and Stadtmiiller [12],
Neumann [14], Stadtmdiiller and Tsybakov [17], Kohler [11] and the literature

cited there. Miiller, Schick and Wefelmeyer [13] estimate L* as the variance
of an independent measurement error € in the model

Y =m(X) +e

2 Slow rate of convergence

In a first group of methods, L* is estimated by an estimate L, of the er-
ror L, = E{(Y — m,(X )) |D } of some consistent regression estimate m,.
Clearly, if the estimate L,, we use is consistent in the sense that L, — L, — 0
with probability one as n — oo, and the rule {m,}, is strongly consistent,
then En — L* with probability one. In other words, we have a consistent
estimate of L*.



The problem is, however, that even though for many estimates, En —
L, can be guaranteed to converge to zero rapidly, regardless of what the
distribution of (X,Y) is, the rate of convergence of E{L,} to L* for such a
method may be arbitrarily slow (cf. Gyorfi et al. [10]). Thus, we can not
expect a good performance for all distributions from such a method. The
question remains whether it is possible to come up with another method
of estimating L* (by some function ¢,(X1,Y,. .., X,,Y,) of the data) such
that the difference ¢, (X1,Y1,..., Xy, Ya) — L* converges to zero rapidly for
all distributions.

Antos, Devroye, Gyorfi [3] proved that for pattern recognition the Bayes
error cannot be estimated with guaranteed rate of convergence. Using their
construction, the next theorem shows the same for regression estimation.

Theorem 1 For any sequence {¢,} of estimates and for any sequence {a,}
of positive numbers converging to zero, a distribution of (X,Y) on {1,2,3,...}x
{0,1} may be found such that

E{|¢, — L*|} > a, infinitely often.

Proof. Theorem 1 is a consequence of a result of Antos, Devroye and Gyérfi
[3]. They considered the problem of estimating the Bayes error,

R* = E{min(n(X),1 — n(X))},

where

n(X) = P{y = 1]X}.

In their example, Y is {0, 1}-valued and n(X) = m(X) may take the values
0,1/2 and 1. For such a distribution of (X,Y)

Var{Y|X} = n(X) — n(X)* = min(n(X),1 - n(X))/2,

therefore
L* = R"/2.

Thus the corresponding result on R* implies the theorem. O

3 Estimation of L* by splitting the data based
on a consistent regression estimate

Under additional assumptions on the distribution of (X,Y), estimates can
be constructed that guarantee a good rate of convergence. In the sequel, we
assume the regression function m to be Lipschitz continuous.
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For the data Ds, = {(X1,Y1), ..., (Xon, Y2,)} let m, be a regression esti-
mate based on the first n observations D,, = {(X1,Y1), ..., (Xy, Ys)} (training
data). An estimate of the minimum mean squared error L* can be obtained
by the mean residual sum of squares of m,, on the remaining samples (test
data). More precisely, we consider the estimate

Obviously, the rate of convergence of Lo, to L* depends on the quality of the
estimate m,,.

Theorem 2 Assume that |Y| < B, |m,(z)| < B. Then

B{ [ (male) - m(e)u(de) | = 0(u72149) @
implies that

E{|Ly, — L*|} < const. max{n~1/2 n=2/2+d} (5)
Proof. The theorem follows immediately from

E{|Lyn — L*|} < E{|Lon — B{Lon|Dp}} + B{|E{L2n| Dn} — L*[}
4B?

] [ onate) — e |

If m is Lipschitz continuous, then the rate in (4) is the optimum rate
of convergence. This rate is attained, e.g., for bounded X and bounded
0?(X), by the partitioning estimate with cubic partition with side length
hn ~ n~ /(@2 by the kernel estimate with bandwidth h, ~ n~/(4+2) and
the k,-nearest neighbor estimate with k, ~ n=2/(4*2) (cf. Gyorfi et al. [10]).

IN

O

Weakening the boundedness condition on Y, for example, to the condition
of 02(X) being bounded poses problems. Indeed, in general this is not pos-
sible. To see this, consider the case where m(X) = 0 a.s., then L* = E{Y?}.
From Antos [1], [2], however, it is known that under the only condition of
E{Y?} < oo, arbitrarily slow rate of convergence can occur, which means
that for any sequence of numbers a, > 0 tending to zero and for any es-
timates f,(Y1,...,Y,) there is a distribution of ¥ with E{Y?} < oo such
that

E{|f.(Y1,...,Y,) — E{Y?}|} > a,

for infinitely many n.



4 Estimation by first nearest neighbor cross-
validation

For dimensions d = 1,2 the rate of convergence using the splitting-the-data
technique cannot be improved. However, for d > 3 this can be achieved by
application of cross-validation based on first nearest neighbor rule, which is

a nonconsistent regression estimate.
Let X, be the first nearest neighbor of X; from {Xy,..., X, } \ {Xi},

Xin =X; with j= argmin |X; — X|]
k=1,...,n;k#1

(here and in the following | - | denotes the usual Euclidean norm for d > 1,
the absolute value for d = 1). If X; and X, are equidistant from X, i.e.,
| X — X;| = | X, — X;| for some k # ¢, then we have a tie. In this case we
apply tie breaking by indices, such that for k < ¢, X is declared closer to X;
than Xg.

Usually, functional estimates are derived from consistent function esti-
mation. However, it is possible to get a better rate of convergence if the
corresponding function estimate is not consistent. For example, in estimat-
ing the differential entropy one can have a fast estimate based on one-spacing,
which is a density estimate such that the pointwise variance tends to infinity,
causing a universal additive bias for the corresponding entropy estimate (cf.
Beirlant et al. [4]). Similarly, here the estimate would be

- 1 <&
Ln:_ Y;n_}/z'Q,
LS .- v)

=1

Y, » being the response variable that corresponds to X;,. One may expect
some fast rate of convergence since

1 — 1
— Y Y2~ ZEY?
n z_zl ¢ 2 ’

n

1 1
— ) Y2 ~ _EY?
2n 4 ’ 2
=1
and

1 n
- E Y; .Y ~ Em(X)2
n

i=1
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The problem, however, is that one data point X; may be the first nearest
neighbor of more other points, and we do not know how this affects the sus-
pected fast rate of convergence of L,. We therefore define a modified nearest
neighbor structure such that any X; is the (modified) nearest neighbor of ex-
actly one other point. There is no fast rate of convergence of the estimate Ly,
for tie breaking by indices, a good rate can only be achieved in case ties occur
with probability zero. If, however, ties occur with non-zero probability, we
apply tie breaking with randomization, i.e. we enhance the regressors X; by an
independent uniformly [0, 1] distributed coordinate. More precisely, we gen-
erate independent, identically distributed uniform([0,1]) random variables
Ui, ..., Uy, independent of (X1,Y7), ..., (X,,Ys), and replace X; by (X;, U;).
This does not affect the mean squared error, since by independence

E{Y; — E{Y;|X;}}* = E{Y; — E{Y}|(X;,U))}}*.
Moreover,
(X3, Us) = (X5, U))? = |Xi = X1 + |U; = U,

is the sum of two independent random variables one of which is absolutely
continuous. It follows that |(X;, U;) — (X, U;)|? is absolutely continuous, and
hence ties occur with probability zero.

We shall set up a modified neighboring structure such that each Xj is the
neighbor of exactly one of the X;’s. The modified neighboring structure will
be based on a (data-dependent) permutation j(-) on {1,...,n},

) =70, Xy, ..., Xp) # 1,
such that

D IXi— Xl <4 1% — Xl (6)
1=1 i=1

We say that Xj(; is the modified nearest neighbor of X;. Note that each
X; has exactly one modified nearest neighbor and is the modified nearest
neighbor of exactly one of the X;’s. The latter does not hold for the first
nearest neighbors without tie breaking. As shall be seen later, the modified
nearest neighboring structure makes the bias of the estimate vanish.

The following algorithm can be applied to construct a permutation j
satisfying (6): Observe that

G = {(X;, X;) : X is the first nearest neighbor of X;,i = 1,...,n}



defines a directed graph on D, = {Xj,..., X,,} with each X; having exactly
one direct successor because we apply the tie breaking by indices. We repre-
sent G by directed edges

The directed graph consists of a number of connected components, each
of which has precisely one cycle of nodes. The following steps are applied to
each connected component:

Step 1: Let the nodes of the cycle be denoted by

Xiy — Xy — - — Xy — Xy,

with different 7;,...,% and k¥ > 2. For each X;,, let G, be the subgraph
consisting of all direct and indirect predecessors of the node X;, not in the
cycle (i.e., all nodes from which we can reach Xj;, in finitely many moves
along directed edges). Note that Gy, ..., G are pairwise disjoint.

Step 2: This step applies if for all ¢, G, is either void or only consists of
nodes not connected by directed edges (in other words, X;, has at most one
level of predecessors). Fix . If G, is void the algorithm concerning G, stops,
otherwise the nodes of GG, are partitioned into levels, where the level of a
node is its path distance to the inner cycle. Repeat the following procedure
from the furthest level until level two: The nodes &, O, ..., ® of the highest
level (i.e., furthest from X;, in terms of the number of directed edges needed
to connect both) are of one of the following forms:

@ +6 or — O O @

©® represents nodes of lower order. Modifying these subgraphs to become

b2

and +—©® O <+— D
—©

&—+ O —-—



respectively, we split off cycles and thus reduce the number of levels in G,
by at least one. With the triangle inequality and the inequality (a + b)? <
2(a?+b?), it is easily established that the sum of the squared distances along
the resulting graph does not exceed four times the sum of the squares of
the distances of the original graph. At the end of this, we have a number
of disconnected cycles, and the leftover original component with all nodes
either in the cycle or at level one.

Step 3: For these nodes we do the following:

® ©-® B3O 0@
Nt becomes N v
Xil—l — Xie — Xiz+1 Xil—l — Xiz Xi£+1

Again, the sum of squared distances in the resulting graph exceeds the sum
of squared distances in the original graph by at most a factor 4. Choosing
j(i) as the label of the direct successor of X; in the modified graph yields the
desired permutation.

The algorithm, applied to one connected component, is illustrated in
Figure 1.

Now, with the modified nearest neighbor structure, we estimate the min-
imum mean squared error L* by a nearest neighbor cross validation type

estimate .

~ 1 9
L, = mn Z(Y}(i) -Y)"

i=1
The following theorem provides the rate of convergence for Zn.
Theorem 3 Let (X,Y) be an R? x R-valued random vector with d > 3 and

Y| < B almost surely. Assume that the regression function m is Lipschitz
continuous. Then

-~ . C-n'? forde {34}
E{|Ln—L|}§{C.n—2/d ford>5

with some constant C' depending upon d, B and the Lipschitz constant of m.
Note how the rate of convergence improved in comparison with (5) for

d > 3. The crucial point determining the rate is the speed of convergence of
E|X; — X;,|?* given in (7) below. For d < 3, (7) only holds under additional

10



assumptions on the distribution of X (Gyorfi et al. [10], Problem 6.7). We
then obtain

B{ L.~ L'} <C-n7
which is no improvement in comparison with (5). Hence, for Lipschitz con-
tinuous m and for d = 1 or 2, the best rate can be achieved by splitting
the sample, whereas for d > 3 a good rate can be achieved by first nearest
neighbor cross-validation.

Proof. Because (X)), Xj(2), - ., Xj(n)) is a permutation of (X1, Xo,..., X,),

Figure 1: Illustration of the algorithm for a connected component



we have that

and
n n

therefore

n =1

+ L Y (m(X;) — m(X;))”
2n — ](z) ?
1 n

+n Xjay)m(Xs) = Y)Yi)

= Ll,n + L2,n + L3,n-

Then R
E|L, - L*| < E|L1,n —L*| + EL,, + E|L3’n|

BZ
E|L., — L*| < y/E|L1, — L*]2 < ——
L= L] < /Bl — L < 5

For the second term we use the Lipschitz property

Im(z) —m(z)] < Klz — 2|

Obviously

and (6) to obtain

n

1
9EL,, = —ZE Xjw) — m(Xy))?

- X;?

IA
M
E

4K2
ZE|X Xinl%

IN

Now,
E|X; — Xin|* < const. n=2/4 (7)
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for d > 3 (Gyorfi et al. [10], Lemma 6.4), so that

EL,, < const. n=2/,

As to the third term, put
Aijiy = m(Xje)m(Xi) — Yo Y

If for integers ¢ and k the integers 1, j(7), k, j(k) are pairwise different (note
that by construction i # j(i) and k # j(k)), then

E{ A ) Ak, | Xis Xjiciy, Xn Xy} = 0

(i

and therefore

n’EL3, = E {Z Az',j(i)Ak,j(k)}

i,k
< 45 (Z Iij=it) + Y Limiw) + D Lsr=n + D _ 1] [i=k1) :
i,k i,k i,k i,k

Here, >,  i6)=ite) = 225 2ok li=jky) = 224 1 = n since j(-) is a permuta-
tion on {1,...,n}. Arguing analogously for the other double sums, we end up

with
\/EL%, <4B*n7 12

Summarizing the previous results, we obtain
E{|En - L'} < C’max{n_Q/d,n_lﬂ},

where C depends on d, B and the Lipschitz constant K. O
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