
Introduction to information theory and data com-
pression
Adel Magra, Emma Gouné, Irène Woo

March 18, 2017

This is the augmented transcript of a lecture given by Luc Devroye
on March 9th 2017 for a Data Structures and Algorithms class (COMP
252).

Data compression involves encoding information using fewer bits
than the original representation.

Information Theory

Information theory1 is the study of quantification, storage, and com- 1 Thomas and Cover [2006]

munication of information. Claude Shannon developed the mathe-
matical theory that describes the basic aspects of communication sys-
tems. It is concerned with the construction and study of mathemati-
cal models using probability theory.

In 1948, Shannon published his paper ”A Mathematical Theory
of Communication” in the Bell Systems Technical Journal 2. The pa- 2 Shannon [1948]

per provided a ”blueprint for the digital age.” Figure 1 illustrates
a general communication system as Shannon proposed in his paper.

Figure 1: Communication system
diagram

We can calculate the compression ratio C as: C = length(B)
length(A)

Shannon’s Theory

Shannon imagined that every possible input sequence that may have
to be compressed has a given probability pi, where the pi 's sum to
one. So if we transform the i-th input sequence into one having `i

bits, the expected length of the output bit sequence is ∑i pi`i.
One can reverse engineer a transformation (or compression) al-

gorithm and construct a binary tree that maps every binary output
back to an input. It is similar to the old decision tree we saw when
arguing about lower bounds. Leaves correspond to possible inputs.

What matters is to find a compression method that minimizes
∑i pi`i. Theoretically, this can be done by finding the Huffman tree
using the Hu-Tucker algorithm (see section ”Practice”). Since the
number of possible inputs is incredibly large, one cannot possibly use
Huffman to actually do it. In addition, pi is generally unknown.



introduction to information theory and data compression 2

However, one can still learn things from Shannon about ∑i pi`i.

His main theorem is that:

E + 1 ≥ min ∑i pi`i ≥ E

where E is the binary entropy, ∑i pi log2
1
pi

, and the minimum is
over all possible binary trees (and thus, all compression algorithms).

As a special case, putting pi = 1
n , where n is the total number

of possible answers for a particular algorithmic problem (such as
sorting), we rediscover the decision tree lower bound seen earlier in
the course: the expected number of binary oracle comparisons must
be E = log2 n.

We will prove Shannon’s theorem in the next section.

Entropy (symbol E )

In Information Theory, entropy (E ) is a number defined to be the
measure of the average information content delivered by a message.
It measures the unpredictability of the outcome. The binary entropy
is defined by

E = ∑i pi log2
1
pi
≥ 0,

where the pi 's are the probabilities of the input sequences. We will
prove that

E + 1 ≥ min ∑i pi`i ≥ E ,

where the minimum is over all binary trees.
Recall Kraft's inequality, which is valid for all binary trees:

∑i
1

2`i
≤ 1.

Remark: The converse of Kraft's inequality is also true, i.e., given
numbers `1, `2, ... with ∑i

1
2`i
≤ 1, there exists a binary tree such that

its leaves have those depths.
We first show: ∑i pi`i ≥ E .
Observe that:

∑
i

pi`i =∑
i

pi log2 2`i

=∑
i

pi log2

(
2`i pi

1
pi

)
=∑

i
pi log2(2

`i pi) + ∑
i

pi log2

(
1
pi

)
=∑

i
pi log2(2

`i pi) + E .



introduction to information theory and data compression 3

Now, ∑i pi log 1
2`i pi

≤ ∑i(pi(
1

2`i pi
− 1)) = ∑i

1
2`i
− 1 ≤ 0 since

log x ≤ x− 1 and by Kraft’s inequality. Thus, clearly ∑i pi`i ≥ E .
Now we show: E + 1 ≥ ∑i pi`i for the so-called Shannon - Fano

code. In this code, we take `i = d(log2(
1
pi
))e.

We have ∑i
1

2`i
≤ ∑i pi ≤ 1.

Thus, by the converse of Kraft's inequality, there exists a code
that has length `i for input i. That is the Shannon - Fano code. Now,
∑i pi`i = ∑i pid(log2(

1
pi
))e ≤ ∑i pi log2

1
pi
+ ∑i pi = E + 1. So we are

done.
In conclusion, E , measured in "bits," corresponds to how well one

can hope to compress a file given the assumption on the ”pi”'s.

Practice

In practice, we will compress either symbols or small chunks of sym-
bols. There is a separation problem on the part of the receiver. How
do we separate a bit sequence if we transform each symbol in the in-
put, symbol per symbol, into a small bit sequence? Indeed, when we
send an encoded string, a concatenation of "codewords," the receiver
might not be able to parse correctly the string in order to decode each
string portion or codeword.

Example 1. Suppose we want to send a sequence of integers such as
18 23. Its standard bit representation is 10010 and 1011. Sending the
sequence 1001010111 is not very useful. Where does the first portion
start or end? How large is the portion? A bit number always starts
with a 1, hence one can send a prefix that starts with 0 and indicates
the length of codeword. We have then: 00101100100010110111 Another
method is to add a prefix of 0's of the same length of the codeword.
We have: 00000100100000010111. Still, this method is inconvenient and
slightly wasteful.

Fixed width coding, as for example in the standard 8-bits per char-
acter coding, gives another solution. It can be vastly improved. A
first such improvement is (variable width) prefix coding. A codeword
assigns a sequence of bits to a symbol. A code is a set of codewords.
One can picture a code as a trie (defined below). In a prefix code,
each leaf uniquely corresponds to an input symbol. In this manner,
the separation problem will be solved.

Tries

A trie (pronounced ”try”) is a tree-based data structure for storing
strings in order to support fast pattern matching. The main applica-



introduction to information theory and data compression 4

tion of a trie is information retrieval, thus it is not surprising that the
name ”trie” comes from the word ”retrieval”.

Example 2. A simple exam-
ple we can make is to encode
the alphabet a,b,c with bits:

The leaves correspond to all the possi-
ble inputs. Here 0 maps to a, 10 maps
to b and 11 maps to c.

In a binary trie, each edge represents a bit in a codeword, with an
edge to a left child representing a ”0” and an edge to a right child
representing a ”1”. Each leaf is associated with a specific character.
Using a trie we can develop a strategy for the coder and decoder. The
coder would search for a character and then go backwards to the root
while recording the path. This step can be done using pointers to the
parent node.

The decoder doesn't need to have the code trie. She/he only needs
to process the code to find a leaf and go backward to the root. For
efficiency we usually send the trie along with the coded message.

For prefix coding, the sender (or coder) has a prefix coding tree
and uses either a table of codewords or parents pointers in the tree
to do his coding. The receiver needs the tree (which is sent in some
way), and with the tree, one can easily decode the sequence symbol
by symbol as leaves correspond to input symbols.

Prefix Coding

Definition 3. Prefix coding is a coding system in which variables
(words in English text) are differentiated by their prefix attribute.

We give an example with a trie and an alphabet composed of 5 let-
ters a,b,c,d,e. Each letter is attributed a prefix code which is a proper
binary sequence. Let P be the prefix code: P = a:00,b:01,c:10,d:110,e:111.
We clearly see that P is a valid prefix code as no binary sequence is
the prefix of another in P. We can view this prefix code as a code
tree:

In this example, the string ”abbba” is transformed into ”0001010100”.
This bit sequence can be uniquely interpreted and decoded back into



introduction to information theory and data compression 5

”abbba” — in other words, we have solved the separation problem
quite elegantly.

If we assume a certain probability pi on symbol i (possibly ap-
proximated by the relative frequency of symbols in general input
sequences that we would like to compress), then the expected length
of a codeword — which ultimately tells us about the expected length
of the compressed sequence — is again ∑i pi`i. We should first of all
design the code by using the Huffman tree. Such codes are called
Huffman codes. By Shannon's theorem, observe that for the Huffman
code, ∑i pi`i ≤ E + 1.

Huffman Codes

We can optimize a prefix code by taking into consideration the prob-
ability of different code words to occur. We could then construct a
Huffman Tree 3. The Huffman coding algorithm constructs a solu- 3 Cormen et al. [2009]

tion step by step by picking the locally optimal choice. It is called
a greedy algorithm. Given a fixed tree with leaf distances `i and a
certain assignment of symbols to the leaves, ∑i pi`i is minimized by
placing the symbols i and j with smallest pi values furthest from the
root. Therefore, since single child nodes are obviously suboptimal,
the optimal tree has i and j as children of an internal node. This per-
mits us to create one internal node and reduce the problem by one.

The algorithm proceeds in a series of rounds.
Algorithm: First make each of the distinct characters of the string
to encode the root node of a single-node binary tree. In each round,
take the two binary trees with the smallest frequencies and merge
them into a single binary tree. Repeat this process until only one tree
is left.

Example 4. Let’s show the algorithm with the following alphabet i
and probabilities pi.



introduction to information theory and data compression 6

As seen in the previous lecture (March 7, 2017), there is a complete
algorithm for building a Huffman tree using binary heaps. Let's
recall the method we used: The Huffman tree has n leaves and 2n-
1 internal nodes. We build the Huffman Tree by filling the internal
nodes with left and right children. We use the Hu-Tucker algorithm,
which uses a priority queue (H).

Hu-Tucker(n symbols with key i and probability pi are given)

1 MAKE_EMPTY_PRIORITY_QUEUE(H)
2 For i from 1 to n do (to insert the leaves first)
3 LEFT[i] = 0
4 RIGHT[i] = 0
5 INSERT((pi,i),H)
6 For i from n+1 to 2n-1 do (to implement the internal nodes)
7 (pa,a) = DELETEMIN(H)
8 (pb,b) = DELETEMIN(H)
9 LEFT[i] = a

10 RIGHT[i] = b
11 INSERT((pa + pr, i),H)

This algorithm outputs the Huffman tree. The root is node 2n - 1.
Left and right children of nodes are stored in the arrays LEFT and
RIGHT. The construction of a Huffman tree takes O(n log(n)).

Finally, the entropy tells us about how well we can do. For exam-
ple, E depends upon the language when the input consists of long
texts.



introduction to information theory and data compression 7

Final Remarks

Improvements are possible by grouping input symbols in groups
of two, three, or more. Once can also employ adaptive Huffman
coding, where the code is changed as a text is being processed (and
the frequencies of the symbols change).

References

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. 2009. Cambridge, MA.

Claude E. Shannon. A mathematical theory of communication. The
Bell System Technical Journal, 27:379–423, 623–656, 1948.

Joy A. Thomas and Thomas M. Cover. Elements of Information Theory.
Wiley Series, 2nd edition, 2006. New York.


	Information Theory
	Shannon's Theory
	Practice
	Final Remarks

