
A Lecture on Disjoint-Set
Moeez Muhammad, Parth Gupta

March 20, 2023

This is the augmented transcript of a lecture given by Luc Devroye
on the 14th of March 2023 for a Data Structures and Algorithms class
(COMP 252). The subject was disjoint sets.

Introduction

Definition 1. A Disjoint-Set (also called union-find and sometimes
abbreviated DSU) is an abstract data type that maintains a partition
of n points. It has the following operations:

1. makeset(x): places x in a set by itself.

2. find(x) or findset(x): find set to which x belongs (returns repre-
sentative of the set).

3. union(A, B) or union(x, y): join sets A and B. Note that in the
other notation, x is the representative of set A and y is the repre-
sentative of set B.

A

B

C
D

Figure 1: Example of a Disjoint-Set
structure where the red coloured
element is the representative of the set.

Definition 2. A representative of a set is some member of the set
that is used to identify it. In some cases, it does not matter what
element we pick to be the representative whereas in other cases there
are rules (such as picking the smallest number in the set) for picking
the representative. Regardless, the important thing is that findset

always returns the same representative for any element in the set
between changes to the data structure (i.e. findset(x) = findset(y)
⇐⇒ x and y in the same set).

Applications

One of the many applications of disjoint-sets is to construct equiva-
lence classes.

Example 3. Suppose we are given a set of equivalences: S = {a ≡
b, c ≡ d, a ≡ e}. We can partition S into into equivalence classes as
follows where the colour denotes the equivalence class.

a

b

e

c

d



a lecture on disjoint-set 2

Note that this example is the same as determining connected
components in a graph as an edge denotes an equivalence relation
and a connected component denotes an equivalence class. Depth-
first search can be used to find connected components faster, but
disjoint-set is faster when you want to maintain the equivalence
classes/connected components dynamically under edge additions.

We present the following algorithm that can be used to construct
equivalence classes where S is the set of equivalences:

EQUIVALENCE CLASSES(x)

1 ∀x do : makeset(x)
2 ∀ equivalence relations (x ≡ y) ∈ S do:
3 a = find(x)
4 b = find(y)
5 a ̸= b then union(a, b)

Example 4. The fortran programming language has an instruction
called "equivalence" which takes variables (or arrays) separated by
commas as an argument and specified that these variables shared the
same block of memory.

Example 5. A screen can be thought of as a grid of pixels and each
pixel has a grey level which indicates the brightness of a pixel. We
can define an equivalence relation on pixels as follows: if two ad-
jacent pixels have the same grey level, they are equivalent. So by
forming equivalence classes of pixels, programmers can easily manip-
ulate the grey scale of the movie frames with respect to time by doing
a level order traversal. See Figure 2.

Figure 2: Example of an old movie
frame shown on TV with adjacent pix-
els that have the same colour represent
equivalence relation.

Implementations

Array Implementation

We can store A[1], ..., A[n] where A[i] stores the set number of ele-
ment i (usually, this is the index of the representative of the set). The
time complexity of find is O(1) while union is Ω(n) in the worst-
case.

Remark 6. If we store the set sizes with the representatives, and
change the labels of the smallest set, then each x can change labels
at most log2(n) times. Hence, the complexity over m operations is
bounded by m + n log2 n.

Linked List Implementation

Each set can be encoded as a linked list with the first node being the
representative of the set. Each node is augmented with a pointer to



a lecture on disjoint-set 3

the representative which gives find O(1) complexity. See Figure 3.
To implement the union operation, it is ideal to merge the smaller

list into the bigger one so the time will be equivalent to length of
the smallest of the two lists and each operation involves setting the
augmented pointer to the representative of the bigger list. Hence
giving Ω(n) complexity.

Remark 7. The total time spent on union is O(n log(n)). This is
because if we fix x (an element of the set), its contribution to the com-
plexity is the number of times it changes its pointer (which is 1 time
unit). Every time x changes its pointer, it goes to a set of bigger size,
so it at least doubles (ex. going from a set of size 2 to a set of size 4).
Since we can only double log(n) times and there are n elements, it
follows that the complexity of union is O(n log(n)).

Figure 3: Implementation of a set where
the red node is the representative.

Parent-pointer trees and forests

Most implementations of disjoint-set instead use parent-pointer
trees1. Each tree in the forest represents a single set, and each ele- 1 First introduced by Galler and Fisher

[1964]ment holds a pointer to its parent element (see figure 4). The root is
the representative of the set and points to itself.

The operations still have simple implementations with a parent-
pointer forest structure. We wish to do something similar to merging
small to large like with linked lists. To do this, we introduce the
notion of rank for each node, which will be a useful loose upper
bound on the height of the subtree that’s easy to maintain. We’ll give
the code first and then prove properties about rank.

root has p[x] = x

parent pointer p[x]

Figure 4: A set represented as a parent-
pointer tree

MAKESET(x)

1 p[x] = x // p[x] represents the parent of x, where x is the node
2 rank[x] = 0

FIND(x)

1 while p[x] ̸= x :
2 x = p[x]
3 return x

In the following algorithms, x, y are the roots of the parent-pointer
trees and we give two union algorithms: union by rank (first algo-
rithm) and lazy-union (second algorithm).



a lecture on disjoint-set 4

UNION(x, y)

1 if x ̸= y :
2 if rank[y] ≥ rank[x] :
3 p[x] = y
4 if rank[x] = rank[y] :
5 rank[y]+ = 1
6 else p[x] = y

UNION(x, y)

1 if x ̸= y :
2 p[x] = y

Properties of rank

1. rank[x] always increases during its lifetime until x is no longer a
root.

2. rank[p[x]] > rank[x] if x is not a root.

3. size[x] ≥ 2rank[x] (where size[x] represents the size of the subtree
with root x).

Proof. By induction on the number on union steps. Note that
for 0 union steps, we have size[x] = 1 since the only thing that
has happened is makeset(x) and 2rank[x] = 1, so we are done.
Suppose now we do a union, we have two cases to deal with.

(a) If old rank[x] < rank[y], then

new size[y] > old size[y] ≥ 2old rank[y](induction hypothesis) = 2new rank[y].

(see Figure 5)

(b) If old rank[x] = old rank[y], then

new size[y] = old size[x] + old size[y]

≥ 2old rank[x] + 2old rank[y]

= 2old rank[y]+1

= 2new rank[y].
x

y

Figure 5: rank[y] > rank[x] so the size
of the tree with root y is greater than
the size of the tree with root x.

We briefly list out the worst-case complexities of the atomic opera-
tions:

1. find: Ω(n).

2. find if union is done by rank: O(log2(n))



a lecture on disjoint-set 5

3. union, union by rank: O(1).

Note that because the rank increases as you go up a path, and the
height increases by 1 each step up the path, the rank is always at least
as much as the height. Therefore we have height[x] ≤ rank[x] ≤
log2(size[x]). Therefore, find takes O(log n) time.

If actual size is maintained instead of rank, union-by-size would
also yield O(log n) complexity for find if smaller sets are merged
into larger ones. However, we will see in the following section on
path compression that rank is both much easier to maintain and
easier to analyze.

Path compression

Right now, parent-pointer trees are as good as linked lists, just swap-
ping the complexity of find and union. However, parent-pointer
trees enable us to do something called path compression which will
give us much better amortized time.

Path compression is simple: when we find an element, we put it
and each of its ancestors on the top level by attaching them directly
to the root, thereby making them faster to find next time.

This change is only a few extra lines to find to do a second pass
up the path:

FIND(x)

1 y = x
2 while y ̸= p[y] :
3 y = p[y]
4 while y ̸= p[x] :
5 z = p[x]
6 p[x] = y
7 x = z

Those few lines, however, give us a big speed up.

Analysis of path compression

We prove the following claim2: For n makeset and m find and 2 Hopcroft and Ullman [1973]

union operations, the total time taken is O((m + n) log∗(n)) where
log∗(n) is the iterated log or log star function, defined as log∗(n) =

min{i : log log . . . log(n)︸ ︷︷ ︸
i times

≤ 1}. We will also define the inverse

function A(n) = 22...2
(n times).

Notice that log∗ is an extremely slowly growing function as log∗(2) =
1, log∗(4) = 2, log∗(16) = 3, log∗(65536) = 4, and log∗(265536) = 5.



a lecture on disjoint-set 6

Note that are an estimated 1018 ≤ 260 atoms in the observable uni-
verse. This means that O((m + n) log∗(n)) might as well be linear for
all practical inputs3. 3 In fact, notice that then A(6) = 2265536

is too big to even be written in the
observable universeProof. We first revise an earlier statement and claim that there are

still ≤ n
2r nodes of rank r, even with path compression. Remember

that the earlier claim relied on the fact that a node of rank r had
≥ 2r descendants. However, with path compression, subtrees are
destroyed and every node on the path now only has one node: itself.
So we have to be a little more careful.

Remember that the rank of a node only increases while the node
is a root. Also, while a node is a root, the size of its subtree only in-
creases. Therefore, every node of rank r has some set of nodes (at
least 2r) that were once under it and "explain" its rank being r. So,
we just have to show that for all nodes of rank r, their sets of "ex-
planation nodes" are disjoint. This is because a node of rank r only
ever merges into other roots of rank r or greater, and if it merges into
a root of rank r, the new root has rank r + 1. Therefore, once path
compression happens and the node loses its children, it will only
ever lose them to nodes of higher rank. So there can be no overlap
between nodes of the same rank.

Next, we divide the nodes by rank into intervals of [A(i), A(i+ 1)).
We will then compute the total time taken by m finds by computing
the number of edges traversed over all finds, since we pass over each
traversed edge twice, so we process each edge in O(1) time. To do
this, we divide the edges into three different categories:

1. Those that end at the root

2. Those that cross bucket boundaries

3. Those that stay within a bucket

Each find only has one edge that ends at the root and so Type 1

edges only contribute O(m) over m finds. In a given find, the path
has length O(log n), and each edge that cross bucket boundaries
increases the rank by 2r but that can only happen log∗(log2(n)) =

log∗(n)− 1 times4. Therefore, in a find there are O(log∗(n)) edges 4 log∗(n) takes one additional log than
log∗(log2(n)) wouldof Type 2. So Type 2 edges contribute O(m log∗(n)) over m finds.

The analysis of Type 3 edges is a bit more involved. We’ll count
this by considering a single node, and counting the number of edges
that stay within the same bucket of that node. So fix a node u with
rank r ∈ [A(i), A(i + 1)). Each edge that is traversed that starts at u
ends at a parent of u. So consider the sequence v1 . . . vk of parents of
u within the same bucket over time. Remember that we are not con-
sidering edges ending at the root since we already counted those in



a lecture on disjoint-set 7

Type 1, so all vi are not roots and have fixed rank at the time they are
u’s parent. Also, because ranks increase as you go up a path, and vi

are not roots, when path compression is performed, u is attached to
an ancestor of vi, and thus the rank of u’s parent is strictly increasing
over time. Therefore, all vi must be distinct.

So k is bounded by the number of ranks in the bucket [A(i), A(i +
1)) which is just A(i + 1) − A(i) ≤ A(i + 1) (notice that A(i +
1) ≫ A(i)). Therefore the number of Type 3 edges traversed in path
compression per node is ≤ A(i + 1). Therefore the total number of
Type 3 edges seen is:

∑
Bucket i

∑
node n∈Bucket i

A(i + 1).

Notice that A(i + 1) only depends on the bucket and so can be taken
out of the sum over nodes. But we can express the number of nodes
in a given bucket in a simpler form. Remember that for each r there
are ≤ n

2r nodes of rank r. Therefore, the number of nodes in bucket i
is not more than

A(i+1)−1

∑
r=A(i)

n
2r =

n
2A(i)

+
n

2A(i)+1
+ · · ·+ n

2A(i+1)−1
,

which is a geometric series of ratio 1/2. We take out the common
factor n

2A(i) =
n

A(i+1) (remember the definition for A) and obtain:

n
A(i + 1)

A(i+1)−A(i)−1

∑
r=0

1
2r .

We bound the finite sum by the infinite series and obtain

≤ n
A(i + 1)

∞

∑
r=0

1
2r =

2n
A(i + 1)

.

Therefore, our original sum becomes

∑
Bucket i

2n
A(i + 1)

A(i + 1) = ∑
Bucket i

2n = O(2n log∗(n))

because there are O(log∗(n)) buckets. Therefore the sum over all
types of edges is O(log∗(n)).

Ackermann’s function

O((m + n) log∗(n)) is not actually a tight upper bound. It was shown
by Tarjan [1975] that the running time is actually Θ((m + n)α(n))5, 5 Later Tarjan [1979] and Fredman and

Saks [1989] showed that this is the
theoretical lower bound for all general
disjoint-set structures

where α(n) is an even slower growing function than log∗, and is
defined as the inverse of the Ackermann function, which is similar to,
but different from our A(n). There exist multiple variations of the



a lecture on disjoint-set 8

Ackermann function and its inverse, but one is the following from
Cormen et al. [2009], actually defined as a sequence of functions. For
integers k ≥ 0 and j ≥ 1, let Ak(j) be:

Ak(j) =

j + 1 if k = 0

A(j+1)
k−1 (j) if k ≥ 1

where f (j)(x) is the function f applied j times to x. We then define
the inverse α(n) := min{k : Ak(1) ≥ n}. We can do some calculations
to show how slowly growing α(n) is6. Using the definition, it’s quick 6 α(n) is actually o(log∗(n))

to show that A1(j) = 2j + 1 and A2(j) = 2j+1(j + 1)− 1. Then, we can
compute A3(1) = A2(A2(1)) = A2(7) = 28 · 8 − 1 = 2047 > A(3) =
16. Therefore, we can see that log∗(2047) = 4 but α(2047) = 3. After
this point, the discrepancy becomes much larger.

A3(j) is repeated application of A2(j), and so corresponds roughly
to repeated exponentiation (since in each application of A2 you ex-
ponentiate by 2), and you can show that A3(j) is much bigger than
A(j + 2). Then, we can compute A4(1) = A3(A3(1)) = A3(2047) ≫
A(2049). A(2049) is a mind-bogglingly large number, and of course
log∗(A(2049)) = 2049 but α(A(2049)) = 4.

The full proof of the α(n) bound is much more intricate, but can be
found in Cormen et al. [2009].



a lecture on disjoint-set 9

References

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, Third Edition. The MIT
Press, 3rd edition, 2009. ISBN 0262033844.

M. Fredman and M. Saks. The cell probe complexity of dynamic
data structures. In Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing, STOC ’89, page 345–354, New
York, NY, USA, 1989. Association for Computing Machinery. ISBN
0897913078. doi: 10.1145/73007.73040. URL https://doi.org/10.

1145/73007.73040.

Bernard A. Galler and Michael J. Fisher. An improved equivalence
algorithm. Commun. ACM, 7(5):301–303, may 1964. ISSN 0001-0782.
doi: 10.1145/364099.364331. URL https://doi.org/10.1145/

364099.364331.

J. E. Hopcroft and J. D. Ullman. Set merging algorithms. SIAM
Journal on Computing, 2(4):294–303, 1973. doi: 10.1137/0202024.
URL https://doi.org/10.1137/0202024.

Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of set
union algorithms. J. ACM, 31(2):245–281, mar 1984. ISSN 0004-
5411. doi: 10.1145/62.2160. URL https://doi.org/10.1145/62.

2160.

Robert Endre Tarjan. Efficiency of a good but not linear set union
algorithm. J. ACM, 22(2):215–225, apr 1975. ISSN 0004-5411. doi:
10.1145/321879.321884. URL https://doi.org/10.1145/321879.

321884.

Robert Endre Tarjan. A class of algorithms which require non-
linear time to maintain disjoint sets. Journal of Computer and
System Sciences, 18(2):110–127, 1979. ISSN 0022-0000. doi:
https://doi.org/10.1016/0022-0000(79)90042-4. URL https://

www.sciencedirect.com/science/article/pii/0022000079900424.

Wikipedia. Disjoint-set data strucuture — Wikipedia, the free
encyclopedia, 2023. URL https://en.wikipedia.org/wiki/

Disjoint-set_data_structure. [Online; accessed 20-March-2023].

https://doi.org/10.1145/73007.73040
https://doi.org/10.1145/73007.73040
https://doi.org/10.1145/364099.364331
https://doi.org/10.1145/364099.364331
https://doi.org/10.1137/0202024
https://doi.org/10.1145/62.2160
https://doi.org/10.1145/62.2160
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/321879.321884
https://www.sciencedirect.com/science/article/pii/0022000079900424
https://www.sciencedirect.com/science/article/pii/0022000079900424
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
https://en.wikipedia.org/wiki/Disjoint-set_data_structure

	Introduction
	Applications
	Implementations
	Path compression

