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a b s t r a c t

Cell communication through biochemical signaling pathways is a key determinant of tissue responses
to radiation. Several molecules, such as the transforming growth factor β (TGFβ), are implicated in
radiation-induced signaling between cells. Brownian Dynamics (BD) algorithms have recently been used
to simulate the interaction of ligands with receptors and to elucidate signal transduction and autocrine
loops in ligand–receptors systems. In this paper, we discuss the simulation of particle diffusion and
binding kinetics in a space bounded by two parallel plane membranes, using an exact algorithm to
sample the propagator (Green’s function) of a particle located between 2 membranes. We also show
that the simulation results are independent of the number of time steps used, in accordance with time
discretization equations. These simulations could be used to simulate the motion and binding of ligand
molecules in a cell culture, and possibly in neuronal synapses.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many experiments have shown that cellsmay respond both col-
lectively and individually to radiation [1,2] and that non-irradiated
cells may be affected through signaling by those directly damaged
by radiation [3]. Regarding this, non-targeted effects (NTE) refer to
effects observed in cells not traversed by radiation, including in the
progeny of cells many generations after exposure. A great number
of NTEs have been observed, such as micronuclei formation, mu-
tations, reduction in clonogenic survival, and apoptosis (reviewed
in [4]). The mechanisms of NTE are poorly understood but several
molecules such as the transforming growth factor (TGF-β) [5], re-
active oxygen species (ROS) [6], NO· radical [7], and membrane-
bound NADPH oxidases [8] have been shown to be implicated in
radiation-induced cell signaling. In particular, TGF-β is of great in-
terest in radiobiology. This molecule is secreted by cells in an in-
active or latent form, denoted as LTGF-β [9]. Latent TGF-β can be
activated bymany factors, notably by the ·OH radicals produced by
ionizing radiation [10]. After activation, TGF-β binds to membrane
receptors and initiates a cascade of signaling events mediated by
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the Smad proteins [11]. Activated TGF-β has several effects on cells
and is known tomediate cellular response to DNA damage [12] and
to suppress apoptosis in irradiated cell cultures [5].

To investigate the mechanisms of cell signaling, computa-
tional models have been developed and applied to simulate the
interaction between the epidermal growth factor (EGF) and its
receptor (EFGR) in cell cultures [13–16]. These simulations use
stochastic Brownian Dynamics (BD) algorithms to characterize the
spatial range of secreted ligands and to discriminate the roles of
autocrine and paracrine actions of ligands in cell culture. In a re-
cent paper [17], we have developed exact BD algorithms based on
analytical Green’s functions of the diffusion equation (DE) to sim-
ulate the Brownian motion of a particle near a plane membrane
with bound receptors and initiation of signal transduction by the
ligand–receptor complex. In this paper, we present algorithms to
sample the Green’s functions of the DE of the Brownian motion
of a molecule located between two parallel planes with receptors,
whichmay be representative of cell cultures and possibly neuronal
synapses. The algorithms have several advantages over those used
in similar calculations [13], they are: (1) able to reproduce the ex-
act distribution of particles predicted by the Green’s functions for
this problem; (2) efficient regarding computational speed and cost,
and (3) can be used for any value of time step or position of a
particle. Importantly, the time step does not need to be smaller
when the particle is near the absorbing membrane. As in our
previous paper [17], theGreen’s functions are presented first. Then,
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Fig. 1. 3D representation of ligand molecules in a cell culture. The cells are located
at the bottom of the dish. A ligand initially at position (x0, y0, z0) diffuses until it
binds to a cell receptor.

we provide the time discretization equations and the sampling al-
gorithms of the Green’s functions. Finally, we present the results
from our simulations and discuss how these simulations could be
used to link radiation track structuremodels with existing DNA re-
pair models to improve our understanding of the radiation risks.

2. Mathematical description

2.1. Description of the system

A ligandmolecule is considered to be a particle located between
two parallel membranes, that are described by the equations x = 0
and x = L in Cartesian coordinates. The particle may diffuse freely
in the directions Y and Z (i.e. no boundaries). This is illustrated in
Fig. 1.

The trajectories of particles are obtained by randomly sampling
the Green’s function [18] of the diffusion equation (DE) in 3D:

∂p(x, y, z, t | x0, y0, z0)
∂t

= D∇2p(x, y, z, t | x0, y0, z0), (1)

whereD is the diffusion coefficient, (x0, y0, z0) is the initial position
of the particle, (x, y, z) is a position in space, p(x, y, z, t | x0, y0, z0)
is the Green’s function of the DE (also called the Brownian prop-
agator), t is the time and ∇2 is the Laplacian. The initial condi-
tion is p(x, y, z, t = 0 | x0, y0, z0) = δ(x− x0)δ(y− y0)δ(z − z0),
where δ(x) is the Dirac’s delta function. In our system,
p(x, y, z, t | x0, y0, z0) can be written as [19]:

p(x, y, z, t | x0, y0, z0) = px(x, t | x0)py(y, t | y0)pz(z, t | z0), (2)

where px(x, t | x0), py(y, t | y0) and pz(z, t | z0) are solutions of their
respective 1D diffusion equations:

∂px(x, t | x0)
∂t

= D
∂2

∂x2
px(x, t | x0), (3a)

∂py(y, t | y0)
∂t

= D
∂2

∂y2
py(y, t | y0), (3b)

∂pz(z, t | z0)
∂t

= D
∂2

∂z2
pz(z, t | z0). (3c)

Since the boundary conditions in the direction Y are
py(y → ∞, t | y0) → 0 and py(y → −∞, t | y0) → 0, and sim-
ilar boundary conditions apply in the direction Z, py(y, t | y0) and
pz(z, t | z0) are Gaussian functions with variance σ 2

= 2Dt and
mean µ = y0 and µ = z0:

py(y, t | y0) =
1

√
4πDt

exp

−(y− y0)2/4Dt


, (4a)

pz(z, t | z0) =
1

√
4πDt

exp

−(z − z0)2/4Dt


. (4b)

As the diffusion in the directions Y and Z is independent from
the diffusion in the direction X , only px(x, t | x0) is considered
in the following discussion. In this paper, we considered two cases:
(1) two reflecting membranes (at x = 0 and x = L) and (2) par-
tially absorbing membrane at x = 0 and reflecting membrane at x
= L.

2.2. Two reflecting plane membranes

The boundary conditions for a particle located between reflec-
tive membranes at x = 0 and x = L are written as:

D
∂px(x, t | x0)

∂x


x=0
= 0, (5a)

D
∂px(x, t | x0)

∂x


x=L
= 0. (5b)

2.2.1. Green’s function
TheGreen’s function of theDE for the systemwith the boundary

conditions given by Eq. (5) is [18,19]:

px(x, t | x0) =
1
L


1+ 2

∞
n=1

e−π2n2Dt/L2 cos
nπx
L

cos
nπx0
L



≡
1
L

∞
n=−∞

e−π2n2Dt/L2 cos
nπx
L

cos
nπx0
L

. (6)

This function is complicated by the presence of an infinite sum and
may converge slowly for small values of t . It can be written in an
equivalent form by using the Jacobi theta function

θ(x) =
∞

n=−∞

exp(−n2πx), x > 0. (7)

This function has the remarkable property that
√
xθ(x) = θ(1/x),

which follows from the Poisson summation formula. In particular,
Jacobi’s theta function identity can be written:

1
√

πx

∞
n=−∞

exp

−

(n+ y)2

x



=

∞
n=−∞

cos(2πnx) exp(−n2πx), y ∈ ℜ, x > 0. (8)

Using trigonometric identities, Eq. (6) can be written as:

px(x, t | x0) =
1
L

∞
n=−∞

e−π2n2Dt/L2

×


cos

2πn(x+ x0)
2L

+ cos
2πn(x− x0)

2L


. (9)

The application of Jacobi’s theta function identity on Eq. (9) yields:

px(x, t | x0)

=
1

√
4πDt

∞
n=−∞


e−(x−x0−2nL)2/4Dt + e−(x+x0−2nL)2/4Dt


. (10)

Therefore, px(x, t | x0) can also be expressed as an infinite sum
of Gaussian functions.
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Fig. 2. Boundary homogenization procedure. As the receptors are present only on
cell membranes, the surface rate constant k = ka on cell surfaces (approximated
by disks) and k = 0 elsewhere. In our simulations, we assume that the receptors
are distributed uniformly on the whole surface. Therefore, the rate constant of the
surface can be estimated as κeff .

2.2.2. Survival probability
The survival probability of a free particle, denoted Q (t | x0), is

calculated by integrating px(x, t | x0) over [0, L]:

Q (t | x0) =
 L

0
px(x, t | x0)dx

=

 L

0

1
L


1+ 2

∞
n=1

e−π2n2Dt/L2

× cos
nπx
L

cos
nπx0
L


dx = 1. (11)

The survival probability, as expected, is 1 in this case.

2.2.3. Asymptotic behavior
When t → ∞, px(x, t → ∞| x0) = 1/L which is the uni-

form probability distribution. This confirms that a uniform con-
centration of particles between the membranes is obtained when
Dt ≫ L2.

2.2.4. Limit L→∞
When L → ∞, x ≪ L, x0 ≪ L and Dt ≪ L2, the boundary at

x = L is too far to influence the Brownian motion of the particles.
Indeed, all the terms in the summation of Eq. (10) are negligible
(except n = 0), because of the dominant term−n2L2 in the expo-
nential functions. Therefore, px(x, t | x0) reduces to

px(x, t | x0) =
1

√
4πDt


e−(x−x0)2/4Dt + e−(x+x0)2/4Dt


. (12)

This is the Green’s function for a particle near a reflective boundary
at x = 0 (Ref. [17]).

2.3. Partially absorbing membrane at x = 0, reflecting membrane at
x = L

After reviewing the Green’s function of a particle between two
reflecting plane membranes, we studied the case of a partially ab-
sorbing membrane at x = 0 and a reflecting membrane at x = L.
This model system was used in Refs. [13,15] to simulate the accu-
mulation of a ligand molecule in a cell culture.

The boundary conditions at x = 0 and x = L1 are

D
∂px(x, t | x0)

∂x


x=0
= k1px(0, t | x0), (13a)

1 It is also possible to introduce a rate constant (k2) in the boundary condition at
x = L. In this work, only the case with k2 = 0 is considered.

D
∂px(x, t | x0)

∂x


x=L
= 0. (13b)

where k1(> 0) is the absorption rate constant of the membrane at
x = 0. In models representative of cell cultures, k1 is an effective
rate constant calculated with the ligand–receptor association rate
constant, the number of receptors per cell and the fraction of the
surface covered by cells, as shown in Fig. 2 [13–15,17].

2.3.1. Green’s function
The Green’s function of the DE with the boundary conditions

(13a) and (13b) is [18]:

px(x, t | x0) =
∞
n=1

Zn(x)Zn(x0)e−α2
nDt , (14)

where

Zn(x) =

√
2 [Dαn cos(αnx)+ k1 sin(αnx)]

D2α2
n + k21


L+ Dk1

, (15)

and±αn, n = 1, 2, . . . , are the roots of

tan(αL) =
k1
Dα

. (16)

The roots of Eq. (16) are shown in Fig. 3.
Using trigonometric identities and Eq. (16), it may be shown

that

cos(αnL) =
Dαn

k21 + D2α2
n

(−1)n+1, (17a)

sin(αnL) =
k1

k21 + D2α2
n

(−1)n+1. (17b)

The factor (−1)n+1 is introduced to account for the fact that the
signs of cos(αnL) and sin(αnL) alternate (Fig. 3). For k1 = 0, αn =
nπ/L; therefore, Zn(x) =

√
2/L cos(nπx/L), and px(x, t | x0) takes

the form given by Eq. (6).

2.3.2. Survival probability
The survival probability of a particle is obtained by integrating

px(x, t | x0) over [0, L]:

Q (t | x0) =
 L

0
px(x, t | x0)dx

=

 L

0

∞
n=1

Zn(x)Zn(x0)e−α2
nDtdx

=

∞
n=1

Zn(x0)e−α2
nDt
 L

0
Zn(x)dx, (18)

Q (t | x0) = 2
∞
n=1

[Dαn cos(αnx0)+ k1 sin(αnx0)]
D2α2

n + k21

L+ Dk1

×
[D sin(αnL)+ k1(1− cos(αnL))/αn]

D2α2
n + k21


L+ Dk1

e−α2
nDt . (19)

This can also be written as:

Q (t | x0) = 2
∞
n=1

[Dαn cos(αnx0)+ k1 sin(αnx0)]
D2α2

n + k21

L+ Dk1

k1
αn

e−α2
nDt

=

∞
n=1

Zn(x0)Zn(0)
k1

D2α2
n
e−α2

nDt . (20)

The probability of a particle to bind at the membrane x =
0, denoted p(∗, t | x0), can be obtained either by integrating the
flux of particles at x = 0 or by using the conservation equation
p(∗, t | x0)+ Q (t | x0) = 1.
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Fig. 3. Roots of Eq. (16) for k1 = 2,D = 1 and L = 5. The roots are at the intersection of the curves and are marked by dots. The signs of sin(αL) and cos(αL) alternate.

3. Discretization of time

As discussed in our previous work on a particle near a plane
membrane [17] and in simulation of chemical reactions [20,21],
Brownian Dynamics simulations can be done in several time steps.
Therefore, if t = 1t1 +1t2, we should have:

px(x, t | x0) =


Ω

px(x, 1t2 | x1)px(x1, 1t1 | x0)dx1, (21)

where Ω is the domain of x1, i.e. [0, L] in the present case. This
is the Chapman–Kolmogorov equation, which holds for Markov
processes. That is, the probability for a particle initially at x0 to end
at position x is equivalent to the sum of all probabilities to go to an
intermediate position x1 and end at x.

3.1. Two reflecting membranes

Eq. (21) can be verified directly for two reflecting membranes:

I =
1
L2

 L

0


∞

n=−∞

e−π2n2D1t2/L2 cos
nπx
L

cos
nπx1
L



×


∞

m=−∞

e−π2m2D1t1/L2 cos
mπx1

L
cos

mπx0
L


dx1. (22)

The integral can be rearranged by keeping the terms comprising
the integration variable x1:

I =
1
L

∞
n,m=−∞

e−π2D(m21t1+n21t2)/L2 cos
nπx
L

cos
mπx0

L

×
1
L

 L

0
cos

nπx1
L

cos
mπx1

L
dx1. (23)

The result of the integral is δmn/2, but each term (except for n = 0)
is counted twice in the double sum. For n = 0, the result is δm0, but
it is counted once. Therefore the double sum can be reduced to a
simple sum:

I =
1
L

∞
m−∞

e−π2Dm2(1t1+1t2)/L2 cos
mπx
L

cos
mπx0

L

≡ px(x, t | x0). (24)

This confirms the time discretization equation for the Green’s
function of a particle between two reflecting membranes.

3.2. Partially absorbing membrane at x = 0, reflecting membrane at
x = L

A free particle initially located at x0 at t = 0 can either (i) go
to an intermediate position x1 during 1t1 and then go to its final x
position at 1t2, (ii) bind to the membrane during 1t1, or (iii) go to
an intermediate position x1 during 1t1 and bind to the membrane
during1t2. The first possibility is described by Eq. (21). The proba-
bility to find a particle bound at t = 1t1+1t2 is given by the sum
of (ii) and (iii):

p(∗, t | x0) = p(∗, 1t1 | x0)

+


Ω

p(∗, 1t2 | x1)px(x1, 1t1 | x0)dx1, (25)

where p(∗, t | x0) is the probability of a particle initially at x0 to
bind to the membrane at x = 0 at time t . The time discretization
equations can also be verified directly from the Green’s functions
in this case. For this system, Eq. (21) can be written:

I =
 L

0


∞
n=1

Zn(x)Zn(x1)e−α2
nD1t2



×


∞

m=1

Zm(x1)Zm(x0)e−α2
mD1t1


dx1, (26)

I =
∞

n,m=1

Zn(x)Zm(x0)e−α2
nD1t2e−α2

mD1t1

×

 L

0
Zn(x1)Zm(x1)dx1. (27)

This integral is straightforward because it is composed of simple
products of trigonometric functions. The result, given in the Ap-
pendix A, is δmn. Therefore

I =
∞

n,m=1

Zn(x)Zm(x0)e−α2
nD1t2e−α2

mD1t1δmn

=

∞
m=1

Zm(x)Zm(x0)e−α2
mD(1t1+1t2) ≡ px(x, t | x0). (28)

As shown in our previous work [17,20], Eq. (25) can be de-
duced from Eq. (21). However, it is also possible to verify it di-
rectly from the Green’s functions. Using the conservation equation
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p(∗, t | x0)+ Q (t | x0) = 1, Eq. (25) can be written:

I = p(∗, 1t1 | x0)+
 L

0


1−

∞
n=1

Zn(x1)Zn(0)
k1

D2α2
n
e−α2

nD1t2



×


∞

m=1

Zm(x1)Zm(x0)e−α2
mD1t1


dx1. (29)

The first term of the integral is Q (1t1 | x0):

I = p(∗, 1t1 | x0)+ Q (1t1 | x0)

−

∞
n,m=1

e−α2
mD1t1−α2

nD1t2Zm(x0)Zn(0)
k1

D2α2
n

×

 L

0
Zm(x1)Zn(x1)dx1. (30)

The result of the integral is δmn (Appendix A):

I = 1−
∞

n,m=1

e−α2
mD1t1−α2

nD1t2Zm(x0)Zn(0)
k1

D2α2
n
δmn

= 1−
∞
n=1

e−α2
nD(1t1+1t2)Zn(x0)Zn(0)

k1
D2α2

n

≡ p(∗, 1t1 +1t2 | x0). (31)

This confirms the time discretization equation for particle binding.

4. Sampling of the Green’s functions (Brownian Dynamics
algorithms)

In this section, we present Brownian Dynamics algorithms
used to sample the position of a particle after one time step. The
sampling of y and z distributed as py(y, t | y0) and pz(z, t | z0) is
done by using Gaussian random numbers of variance σ 2

= 2D1t
and mean µ = y0 and µ = z0 (D is the diffusion coefficient of the
particle and 1t is the time step). In the remainder of this section,
we provide algorithms to generate x distributed as px(x, t | x0).
These algorithms use the seriesmethod, which has been suggested
by Devroye [22], and was further developed and analyzed in his
book [23] and a paper [24]. The details are given in the supporting
document (see Appendix B).

4.1. Two reflecting membranes

As seen in Section 2.2, the probability density px(x, t | x0) can
have a flat or peaked shape, for which the sampling algorithms
are to be different. The condition L2 ≥ (Dt) ln 2 determines which
algorithm is used.

4.1.1. Sampling algorithm for p(x, t | x0) for L2 ≥ (Dt) ln 2
The algorithm presented in this section is only valid when the

condition L2 ≥ (Dt) ln 2 is satisfied. It is based on the fact that
px(x, t | x0) can be expressed as a mixture of Gaussian functions
(Section 2). The functions an(x), bn(x) and f ∗(x) are defined as fol-
low:

an(x) = exp

−

(2Ln+ (x+ x0))2

4Dt


, (32)

bn(x) = exp

−

(2Ln+ (x− x0))2

4Dt


, (33)

f ∗(x) =
∞

n=−∞

(an(x)+ bn(x)). (34)

Algorithm 1 is:

Algorithm 1A: Generation of random variate X distributed
as px(x, t | x0) for k1 = k2 = 0 and L2 ≥ (Dt) ln 2
REPEAT
{

GENERATE U, V uniform on [0, 1], N standard normal
IF (V < 2/9) THEN SET X← 2L− x0 +

√
2DtN

ELSE SET X← x0 +
√
2DtN

IF (0 ≤ X ≤ L) THEN SET Y← U(7b0(X)+ 2a−1(X))

}
UNTIL 0 ≤ X ≤ L and Y ≤ f∗(X)

RETURN X

The verification of the condition Y ≤ f ∗(X) requires the evalu-
ation of an infinite sum. However, it is possible to verify whether
the condition is true without ever calculating the value of f ∗(X)
exactly by using this algorithm:

Algorithm 1B: Verification of Y < f ∗(X)

SET S← a0(X)+ b0(X), k← 1 (S holds the approximation
sum)
REPEAT FOREVER
{

T← 2(ak(X)+ a−k(X)+ bk(X)+ b−k(X))

IF (Y ≥ S+ T) THEN RETURN ‘‘Y ≥ f∗(X)’’ and EXIT
IF (Y ≤ S− T) THEN RETURN ‘‘Y ≤ f∗(X)’’ and EXIT
S← S+ T/2
k← k+ 1

}

4.1.2. Sampling algorithm for px(x, t | x0) for L2 ≤ (Dt) ln 2
In this section, we assume that the condition L2 ≤ (Dt) ln 2

holds. However, the algorithm presented here is valid for all possi-
ble values of the parameters (Dt > 0, L > 0, and x and x0 ∈ [0, L]).
However, it is preferable to use Algorithm 1 if L2 > (Dt) ln 2, be-
cause it is more efficient if the condition is true. For this section,
the functions f (x) and fn(x) are defined:

f (x) =
1
L
+ 2

∞
n=1

fn(x), (35)

and

fn(x)
def
=

1
L
e−π2n2Dt/L2 cos

nπx
L

cos
nπx0
L

. (36)

The sampling algorithm is:

Algorithm 2A: Generation of random variate X distributed
as px(x, t | x0) for k1 = k2 = 0
DEFINE H← 1/L+ 1/

√
πDt

REPEAT
{

GENERATE U, V uniform on [0, 1] and X
uniform on [0, L]
SET Y← VH

}
UNTIL Y ≤ f(X)

RETURN X

The verification of Y ≤ f (X) is dose by using the following
routine:
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Algorithm 2B: Verification of Y < f (X)

SET S← 1/L+ 2f1(X), k← 1 (S holds the approximation
sum)
REPEAT FOREVER
{

T = L exp(−π2k2Dt/L2)/(π2kDt)
IF (Y ≥ S+ T) THEN RETURN ‘‘Y ≥ f(X)’’ and EXIT
IF (Y ≤ S− T) THEN RETURN ‘‘Y ≤ f(X)’’ and EXIT
k← k+ 1
S← S+ 2fk(X)

}

4.2. Partially absorbing membrane at x = 0, reflecting membrane at
x = L

In this case, we need to generate random variates of the sub-
density2 given by Eq. (14). Random variate generation for this
Green’s function introduces a new problem; beyond the infinite
sum there is the fact that none of the constantsαn can be computed
exactly. Yet, it is possible to design an exact random variate gener-
ation without ever computing any αn exactly. At first, px(x, t | x0)
and Q (t | x0) can be written in this form by using trigonometric
identities:

px(x, t | x0) =
∞
n=1

AL(αn) cos[αn(L− x)]

× cos[αn(L− x0)]e−α2
nDt , (37)

Q (t | x0) =
∞
n=1

AL(αn) sin(αnL) cos[αn(L− x0)]e−α2
nDt/αn, (38)

where

AL(αn) =
2

D2α2

n + k21


D2α2
n + k21


L+ Dk1

. (39)

The approximate values of the roots αn used in the algorithm are
given by αn,N , where the accuracy parameter N is an integer num-
ber larger than 1. Given N, αn,N is obtained by a binary search such
that

αn ≤ αn,N ≤ min


αn + 2−N ,
2n− 1

2
π


. (40)

The binary search tries to find the unique solution of tan(αL) =
k1/Dα in the interval [(2n − 2)π/2L, (2n − 1)π/2L] and clearly
needs no more than N steps. The αn,N are calculated for all
1 ≤ n ≤ N , for a total computational cost of N2. The N-th ap-
proximants of px(x, t | x0) and Q (t | x0), denoted px,N(x, t | x0) and
QN(t | x0), are:

px,N(x, t | x0) =
N

n=1

AL(αn,N) cos[αn,N(L− x)]

× cos[αn,N(L− x0)]e
−α2

n,NDt
, (41)

QN(t | x0) =
N

n=1

AL(αn,N) sin(αn,NL)

× cos[αn,N(L− x0)]e
−α2

n,NDt
/αn,N . (42)

2 A sub-density means that P =
 L
0 f (x)dx ≤ 1, and f (x) ≥ 0. In this case, a

random variate with the density f /P is generated with probability P .

In Appendix B, it is shown that px(x, t | x0) ≤ S∗, where

S∗ def
=

2
L


e−Q

2Dt
+

L
√
4πDt


, (43)

and

Q def
=

πk1
πD+ 2Lk1

. (44)

For Algorithm 3, RN and M are defined as:

RN
def
=

L exp(−Dt(N − 1)2π2/L2)
(N − 1)Dtπ2

, (45)

M = 2

2L+ 2L2Q + πDtQ

L2Q


exp(−Q 2Dt)

+ 4

L/π + L+ πDt/2L

√
4πDt

+
L
2π


. (46)

The algorithm is:

Algorithm 3A: Generation of random variate X distributed
as px(x, t | x0) for k1 > 0, k2 = 0
COMPUTE S∗

REPEAT
{

GENERATE V uniform on [0, 1] and X uniform
on [0, L]
SET Y← VS∗

}
UNTIL Y ≤ p(X)

RETURN X

The verification of Y ≤ p(X) is done by using Algorithm 3B:

Algorithm 3B: Verification of Y < p(X)

SET N← 2
REPEAT FOREVER
{

T← RN + 2−NM
IF (Y ≥ px,N(X)+ T) THEN RETURN ‘‘Y > p(X)’’ and EXIT
IF (Y ≤ px,N(X)− T) THEN RETURN ‘‘Y ≤ p(X)’’ and EXIT
N← N+ 1

}

Finally, the survival of a particle is determined by sampling a
Bernoulli random variate ξ with possible values 1 (survival) and 0
(binding). First define R∗N and M∗:

R∗N
def
=

L exp(−Dt(N − 1)2π2/L2)
N(N − 1)Dtπ3

, (47)

M∗ =

3+ 2LQ + 2DtQ 2

Q 2


2
L
exp(−Q 2Dt)

+


3L2 + 2L2π + 2Dtπ2

π2


1
√

πDt
. (48)

The algorithm is:

Algorithm 4: Generation of a Bernoulli (P) random variate ξ

GENERATE U uniform on [0, 1]
SET N← 2
REPEAT FOREVER:
{

T← R∗N + 2−NM∗

IF (U > QN + T) THEN RETURN ξ = 0
IF (U ≤ QN − T) THEN RETURN ξ = 1
N← N+ 1

}
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Fig. 4. Probability distributions px(x, t | x0) (panel a) and py(y, t | y0) (panel b) for particles initially at (x0 = 5, y0 = 0, z0 = 0), diffusing freely between two reflecting
membranes at x = 0 and x = L = 10, at t = 1, 2, 4, 8 and 16 time units. (—): Analytical predictions; (�): Monte Carlo simulations using 1,000,000 particles. Panel c:
projection in the XY plane of the positions of particles (only 3000 are shown) used for the simulations depicted in panels a and b at t = 1, 2, 4, 8, 16 and 32 units. Panel d:
⟨(r − r0)2⟩ as a function of time for the particles of Fig. 4(a) and (b).

5. Results and discussion

In this section, simulation results using the algorithms are
presented.

5.1. Two reflecting membranes

In this case, the particles are located between reflecting mem-
branes. To simplify the following discussion, only the distributions
px(x, t | x0) and py(y, t | y0) will be shown, because pz(z, t | z0) is
similar to py(y, t | y0).

In Fig. 4(c), we show the diffusion of particles initially at
(x0, y0, z0) = (5, 0, 0) between the plane membranes at x = 0
and x = L = 10, at t = 1, 2, 4, 8, 16 and 32 time units.3 The po-
sitions of the particles after a time step 1t are obtained by using
Algorithm 1 or Algorithm 2 in the direction X and by sampling Gaus-
sian random numbers with variance σ 2

= 2D1t andmeanµ = y0
and µ = z0 in the directions Y and Z . The coordinates of the par-
ticles are stored in histograms after the sampling and normalized
to the initial number of particles, to obtain the distributions of the
coordinates X, Y and Z . The distributions of the coordinates X and
Y of the particles shown in Fig. 4(c) are plotted in Fig. 4(a) and (b)
and compared with the analytical Green’s functions.

With time, as expected, px(x, t | x0) becomes uniform. In the
directions Y and Z , the distributions are Gaussians. The results are
independent of the number of time steps used for the simulation
(results not shown), in accordance with the time discretization
equations.

To further validate Algorithm 1 and Algorithm 2, we performed
a simulation with membranes at x = 0 and x = L = 100, for
particles at (x0, y0, z0) = (1, 0, 0), and using t = 1, 2, 4, 8 and
16 units. In this case, x ≪ L, x0 ≪ L and Dt ≪ L2; therefore,

3 To simplify the discussion, dimensionless units are used.

px(x, t | x0) can be approximated by Eq. (12), which is the
well known Green’s function for particles near a reflective
boundary [17]. No significant difference was observed when the
distributions of the coordinates X of the particles were compared
to those predicted by Eq. (12) (results not shown).

5.1.1. Range of a particle
In diffusion processes, in 3D, the mean squared distance of a

particle to its original position r0 is given by ⟨(r − r0)2⟩ = 6Dt .
In 2D, ⟨(r − r0)2⟩ = 4Dt . The mean squared distance for parti-
cles between plane membranes (L = 10) initially at the position
(x0, y0, z0) = (5, 0, 0)were calculated at different time points. The
results are shown in Fig. 4(d). At early times, the boundaries are
too far to influence the motion of the particles, so they diffuse as if
they were in a free 3D environment; therefore, ⟨(r − r0)2⟩ = 6Dt .
Eventually, the particles become uniformly distributed between
the boundaries, and they diffuse in a 2D ‘‘plane’’ of thickness L;
hence, ⟨(r − r0)2⟩ = 4Dt + L2/12. The term L2/12 is added to
take into account the uniform distribution of particles between the
membranes. The transition between 3D and 2D diffusion is shown
in Fig. 4(c) and (d). To illustrate the transition to 2D diffusion, the
scales X and Y of Fig. 4(c) are the same. The transition is expected
to occur when the particles reach the boundary, which is approxi-
mately when Dt = L2/24 ∼= 4.17.

5.2. Partially absorbing membrane at x = 0, reflecting membrane at
x = L

The particles are initially located between a partially absorbing
membrane with k1 = 1 at x = 0 and a reflecting membrane
(k2 = 0) at x = L = 10.

In this case, the probability of binding is evaluated for each
particle at each time step by using Algorithm 4. If a particle
is free after a time step, its coordinate x is obtained by using
Algorithm 3 and its coordinates y and z by generating Gaussian
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Fig. 5. Probability distributions px(x, t | x0) (panel a) andQ (t | x0)py(y, t | y0) (panel b) for particles initially at (x0 = 5, y0 = 0, z0 = 0), diffusing freely between one partially
absorbing membrane at x = 0 (with absorption rate constant k1 = 1) and a reflecting membrane at x = 10, at t = 1, 2, 4, 8 and 16 units. Panel c: p(∗, t | x0)p(y, t | y0) for
bound particles at t = 2, 4, 8 and 16 units. (—): Analytical predictions; (�): Monte Carlo simulations using 1,000,000 particles. Panel d: projection in the XY plane of the
positions of particles (only 3000 are shown) used for the simulations depicted in panels a and b at t = 1, 2, 4, 8, 16 and 32 units. (·): free particles; (�) bound particles. Panel
e: Survival and binding probabilities for the particles described in Fig. 5(a) and (b).

random numbers with variance σ 2
= 2D1t and mean µ = y0

and µ = z0. Otherwise, we consider the particle bounded.
In Fig. 5(d), the projection on the XY plane of the positions of

particles initially at (x0, y0, z0) = (5, 0, 0), between the mem-
branes at x = 0 and x = L = 10, is shown for t = 1, 2, 4, 8, 16 and
32 time units. At early times, the particles are not influenced by the
membranes and their motion is similar to free diffusion in 3D. At
t = 4, some particles interact with the membranes. Those close
to the top are reflected, whereas those at the bottom may bind to
the membrane. The coordinates of the particles are stored in his-
tograms and normalized to the initial number of particles to yield
the distributions of the coordinates in the directions X, Y and Z .
The distributions inX and Y are shown in Fig. 5(a) and (b). To obtain
the analytical distribution in one direction (such as X), we need to
integrate p(x, y, z, t | x0, y0, z0) over Y and Z .4 The integration of
py(y, t | y0) and pz(z, t | z0) over the domain is 1 for this system;
therefore, the distribution of particles in X is px(x, t | x0). However,

4 In that sense, there are the marginal distributions of p(x, y, z, t | x0, y0, z0).

for the distribution in Y , the integration of the distribution over X
yields the survival probability Q (t | x0), and the integration over Z
is 1. Therefore, the distribution of coordinates of the particles in the
direction Y is Q (t | x0)py(y, t | y0). Similarly, the distribution in the
direction Z (not shown) is Q (t | x0)pz(z, t | z0).

The probability that a particle at initial position (x0, y0, z0)
binds at (x = 0, y, z) at time t is given by p(∗, y, z, t | x0, y0, z0) =
p(∗, t | x0)py(y, t | y0)pz(z, t | z0). Once again an integration should
be performed over the variable Z to get the distribution of
bound particles in the direction Y . Therefore, the distribution
of bound particles in the direction Y is p(∗, y, t | x0, y0) =

p(∗, t | x0)py(y, t | y0). Similarly, the distribution of bound particles
in the direction Z (not shown) is p(∗, t | x0)pz(z, t | z0). With time,
all particles eventually bind to the absorbingmembrane (Fig. 5(e)).
As in Section 5.1, to further validate the sampling algorithm, a sim-
ulationwas performedwithmembranes at x = 0 and x = L = 100,
for particles at (x0 = 1, y0 = 0, z0 = 0), at t = 1, 2, 4, 8 and 16
units. In this case, px(x, t | x0) can be approximated by Eq. (7) of
Ref. [17]. No significant difference was observed when the distri-
butions of particles in X were compared to those predicted by this
equation (results not shown).
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Table 1
Simulation times of the algorithms for two reflecting membranes (x0 = 0.5).

Parameters Algorithm 1 Algorithm 2
Dt 1 2 4 8 16 1 2 4 8 16

L = 1 30.1 – – – – 22.3 13.5 9.36 6.80 5.04

L = 5 27.1 27.6 28.0 29.2 30.7 24.3 14.9 10.1 7.30 5.43

L = 10 27.2 27.4 28.1 27.9 28.9 28.7 17.3 11.9 8.13 5.90

L = 20 26.7 27.2 27.4 27.8 28.5 44.6 25.8 16.8 10.9 7.99

L = 50 24.5 24.7 27.5 27.5 28.3 130.0 71.0 40.1 23.2 14.6

L = 100 24.4 24.6 24.9 25.0 28.2 418.0 216.0 116.0 63.7 35.6

The gray shading indicates the fastest algorithm.

Fig. 6. Effect of the time steps on Q (t | x0)py(y, t | y0) for bound particles. For this
simulation, k1 = 1, x0 = 1 and L = 5. The simulation is attempted with two time
steps (1t1 = 1 and 1t2 = 1) and with one time step (1t1 = 2). The distribution
obtained with two time steps is different (see text for details).

5.2.1. Range of a particle
A goal of this calculation was to find how far particles located

between two membranes will go, using the algorithms developed
for this paper. This calculation assumes that the bound particles do
not move.

However, as shown in Fig. 6, when this assumption is used for
the calculation, the time discretization equations are not verified;
therefore, the results are a function of the number of time steps
used. The reason is that all particles diffuse in the directions Y
and Z during the first time step (1t1). The simulation is over for
the bound particles (they do not move anymore) and they are
considered bound at (0, Y , Z), Y and Z being the sampled values.
Therefore, only the free particles are allowed to diffuse further
during the second time step (1t2). If the simulation is done in
one single time step (1t1 + 1t2), the correct number of bound
particles is found. However, the distribution of particles in the
directions Y and Z are different, because no particles are bound
initially and therefore all particles diffuse in the directions Y and Z
during1t1+1t2 in this case. To have the distribution of particles in
the directions Y and Z obey the time discretization equations, the
bound particles should be allowed to diffuse in the directions Y and
Z with the diffusion coefficient used for free particles. However, in
real cell cultures, it is unlikely that bound particles diffuse with the
same diffusion coefficient in the directions Y and Z . This example
illustrates the usefulness of the time discretization property in
the description of the model system, which allows a systematic
verification of the algorithms.

5.2.2. Lifetime of a particle
At last, the half life (τ1/2) of particleswas calculated for particles

diffusing between the membranes located at x = 0 and x = 5,

Fig. 7. Half life (τ1/2) of particles diffusing between the plane membranes x = 0
and x = 5, initially at x0 = 1.5, 2.5 and 3.5 as a function of k1 .

for x0 = 1.5, 2.5 and 3.5 and for k1 varying from 10−3 to 102.
The results are shown in Fig. 7. The half life is not dependent on
the initial position of the particles for small values of k1, because
many particles are reflected by the reflecting and to some extent
by the absorbingmembrane. Therefore the particles have sufficient
time to diffuse and reach nearly uniform distribution between the
membranes before they bind. This is not true for larger values of k1,
because the probability of binding is so high that the particles will
bind when they are near the boundary (instead of being reflected).
Eventually, all the particles bind to the receptors in the system,
regardless of the value of k1.

5.3. Performance of the algorithms

Weused the algorithms to simulate the trajectories of 1,000,000
particles on a computer with an Intel R⃝ Xeon R⃝ CPU E5-2640 @
2.50 GHz. The simulation times for several values of Dt and L are
given in Table 1.

Algorithm 1was used only for L2 ≥ (Dt) ln 2, whereas Algorithm
2 was used for all values of L and Dt . The fastest algorithm for a
given combination of parameters is indicated by a grayed cell in
the table. As discussed in Appendix B, the simulation times for
Algorithm 1 are more or less constant, whereas those for Algorithm
2 increase with L2/Dt . Algorithm 2 is faster than Algorithm 1 even
for some cases where L2 ≥ (Dt) ln 2.

In Table 2, the simulation times for the case of a partially ab-
sorbing membrane at x = 0, with association rate constant k1 = 1
and reflecting membrane at x = L are given. As in the previous
case, 1,000,000 particle trajectories are simulated, usingAlgorithms
3 and 4.

The algorithms are very fast for small values of L and large val-
ues of Dt , because many particles bind to the absorbing boundary
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Table 2
Simulation times of the algorithm for absorbing and reflecting membranes (x0 =
0.5, k1 = 1).

Parameters Algorithm 3
Dt 1 2 4 8 16

L = 1 9.30 7.21 5.27 3.57 3.18
L = 5 19.3 16.6 14.9 13.2 10.5
L = 10 29.5 25.1 22.2 18.9 16.8
L = 20 56.1 43.0 34.9 29.5 25.6
L = 50 222.0 124.0 80.3 58.8 47.3
L = 100 804.0 416 206.0 133.0 87.1

and, therefore, Algorithm 3 does not need to be used to sample the
propagator. The calculation time also greatly increases with large
values of L. In these cases, px(x, t | x0) takes a much simpler form
(given by Eq. (7) of Ref. [17]), for which a faster sampling algorithm
can be used.

6. Conclusion and perspectives

The Green’s functions for particles located between parallel
membranes are relevant to many fields in chemistry and biology.
For example, in radiation chemistry, most existing simulation
codes assume diffusion of particles in an infinite 3D medium
[20,25,26]. However, it is certainly not the case in radiobiology, and
it is important to simulate diffusion of particles in confined spaces
for future biophysical models. Another example of this is the cell
culture models [13–16]. The Green’s functions are well known, but
their evaluation and sampling are difficult because their analytical
forms are complex. Despite these difficulties, exact algorithms
were developed to sample these Green’s functions and simulate
the diffusion of a particle between membranes. It could be useful
to use this approach in similar systems for which the analytical
Green’s functions are known [18], notably inside or outside a
circular membrane representative of a cell and/or micro-tubules.
This analytical method will be difficult to use in more complicated
systems or geometries; eventually, most related problems will
require numerical approaches. Nevertheless, the BD algorithms
can be useful for several purposes, notably to benchmark future
numerical calculations of the range and lifetime of a particle. We
also remark that existing BD simulations use adaptive time-step
algorithms [13,15]. This kind of algorithm may be difficult to use
when a large number of particles are followed simultaneously.
There are also some small discrepancies in the survival probability
between previous BD simulations and analytical predictions [15].

An important application of the theory described in this paper
is the study of the response of a group of cells to ionizing radiation,
specifically the role of TGF-β . As ionizing radiation creates radical
and molecular species (·OH,H·,H2,H2O2, e−aq, . . .) by the radioly-
sis of water in livingmatter [25], and as ·OH radicals liberate TGF-β
molecules from their latent complex LTGF-β [10], this work should
allow us to follow the evolution of TGF-β in cell culture or tissue
models after irradiation. Indeed, activated TGF-β binds to cell re-
ceptors and initiates signal transduction by the activation of a cas-
cade of downstream signaling events mediated by Smad proteins,
which may result in several biological consequences [27]. In this
perspective, the simulations described in this paper are another
step in the implementation of a BD algorithm to explain the ex-
perimental results on the role of TGF-β in irradiated cell cultures
or tissues.

In futurework, radiation track structuremodels [28] in different
geometrieswill be used to calculate the number of activated TGF-β
in a cell culture and to include TFG-β signaling pathways in exist-
ing DNA repair models [29] and its role in controlling DNA dam-
age responses [27]. Differences between high and low doses, and

random interactions of X-rays or electrons versus the distinct track
structures of high-energy ions will be investigated. Of importance
in this model is the ability to simulate interactions at low doses
where stochastic effects induced by a small number of molecules
or interactions come into play. Eventually, these simulations will
be used to calculate the range, lifetime and concentration of TGFβ
following irradiation, as well as the number of cells affected by
TGFβ and the positions where these molecules will bind to the cell
surface receptors to initiate signal transduction. They are the cor-
nerstone of a computational model that could allow a better un-
derstanding of cell communication in an irradiated system, and
an approach to make predictions for conditions difficult to access
by experiments, including the understanding of radiation effects
at low doses of ionizing radiation. Another possible application of
the algorithms is the simulation of signal transmission in a neu-
ronal synapse. In this case, neurotransmitters are secreted by the
presynaptic neuron and bind to the receptors located on the post-
synaptic cell.
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Appendix A. Evaluation of integral

In this section, the integral

I =
 L

0
Zn(x)Zm(x)dx, (A.1)

is evaluated for Zn(x) given by Eq. (15). The result is simply δmn.
Expanding the integrand yields:

Zn(x)Zm(x) =

√
2 [Dαn cos(αnx)+ k1 sin(αnx)]

D2α2
n + k21


L+ Dk1

×

√
2 [Dαm cos(αmx)+ k1 sin(αmx)]

D2α2
m + k21


L+ Dk1

. (A.2)

This product gives four terms. To simplify expressions, we define
the integrals I1, I2, I3 and I4 such that I = I1 + I2 + I3 + I4 and a
common factor Cn,m:

Cn,m =
2

D2α2
n + k21


L+ Dk1


D2α2

m + k21

L+ Dk1

, (A.3)

I1 = Cn,mD2αnαm

 L

0
cos(αnx) cos(αmx)dx, (A.4a)

I2 = Cn,mDαnk1

 L

0
cos(αnx) sin(αmx)dx, (A.4b)

I3 = Cn,mDαmk1

 L

0
cos(αmx) sin(αnx)dx, (A.4c)

I4 = Cn,mk21

 L

0
sin(αnx) sin(αmx)dx. (A.4d)

These integrals yield different results, depending whether the val-
ues ofαn andαm are equal or different. Therefore, the caseαn ≠ αm
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is examined first:

I1 = Cn,mD2αnαm

×


αm cos(αnL) sin(αmL)− αn cos(αmL) sin(αnL)

α2
m − α2

n


(A.5)

Using (17a) and (17b), this yields I1 = 0.

I2 = Cn,mDαnk1

×


αm − αm cos(αmL) cos(αnL)− αn sin(αmL) sin(αnL)

α2
m − α2

n


, (A.6)

I3 = Cn,mDαmk1

×


−αn + αn cos(αnL) cos(αmL)+ αm sin(αmL) sin(αnL)

α2
m − α2

n


. (A.7)

Therefore

I2 + I3 = Cn,mDk1 sin(αmL) sin(αnL) = Cn,mDk1

×

 k21
k21 + D2α2

n


k21 + D2α2

m

 . (A.8)

The last integral I4 yields

I4 = Cn,mk21


αn cos(αnL) sin(αmL)− αm cos(αmL) sin(αnL)

α2
m − α2

n



= −Cn,mk21

 Dk1
k21 + D2α2

n


k21 + D2α2

m

 . (A.9)

From this, I = I1 + I2 + I3 + I4 = 0. If αn = αm, the integrals yield
different results. We have:

I1 = Cn,nD2α2
n


αnL+ sin(αnL) cos(αnL)

2αn


, (A.10)

I2 = I3 = Cn,nDαnk1


sin2(αnL)

2αn


, (A.11)

I4 = Cn,nk21


αnL− sin(αnL) cos(αnL)

2αn


. (A.12)

The sum of the terms is 1. Hence, L

0
Zn(x)Zm(x)dx = δmn. (A.13)

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.cpc.2013.09.011.
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