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This is the augmented transcript of a lecture given by Luc Devroye on
January 18

th, 2018 for the Honours Algorithms and Data Structures
class (COMP 252, McGill University). The subject was Euclid’s algo-
rithm, ham-sandwich and pancake theorems, half space counting and
the linear time selection problem.

Euclid’s Algorithm

Euclid’s algorithm efficiently computes the greatest common divisor
(GCD) of two nonnegative numbers m, n (m < n), the largest number
that divides both of them without leaving a remainder.
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Figure 1: Illustration of Euclid’s
method. The number written two
rows below n is at most 50% of m — we
say that n is “halved”.

GCD(n, m)

1 if m == 0
2 return m = 0
3 else
4 return GCD(m, n mod m)

Denote Tn as the worst case “time” for any GCD(k, l) with n ≥ k ≥
l > 0. We have the complexity Tn ≤ 2 log2 n, since n gets halved every
second iteration, and a number n can get halved at most log2 n times.

Exercise 1. Using the bit model, show that the complexity of GCD(n, m)

is O (log2 n · log2 m).

Ham-Sandwich Theorem (3D)

The Ham-Sandwich Theorem1 describes the following: take a sand- 1 Libgober [2008]

wich made of a slice of ham and two slices of bread. As long as one’s
knife is long enough, one can cut all three pieces in half in only one
pass. The precise mathematical statement of the theorem, generalized
to n dimensions, is that given n compact sets in Rn, there is a hyper-
plane that bisects each set so that the two halves of both sets have
equal measure.

Can we cut a hamburger exactly in half so that each half

has exactly 50% of the cheese, 50% of the meat, and 50% of

the bread? Yes.
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Red and black points

Figure 2: Illustration of the application.

In 2D, this theorem is known as the pancake theorem. It implies
that we can perfectly bisect n red points and n black points in the
plane, so that each side has n/2 red and n/2 black points.

Application: We can divide m points into four sets of n/4 points
each by two lines (Figure 2). First draw a horizontal line that divides
the points in half. Color all points below the line red, and above the
line black. By the pancake theorem, we can find a second line that
evenly divides red and black, yielding n/4 points in each of the four
sets of the partition.

Half Space Counting Problem

Let x1, · · · , xn be drawn from R2. Make a data structure such that
one can “efficiently” answer queries that take as input a line given by
the user, and outputs the number of points on one side of the line.

Data Structure (Divide-and-conquer) Count(`, S) is a divide- we return the count to the set S.

and-conquer algorithm for computing the number of points of S on
one side of `, say the side that contains the origin. Assume that we
partitioned our space recursively using the 25%-trick suggested by
the pancake theorem.

Count(`, S)

1 if |S| ≤ 10
2 do it manually
3 else
4 determine the three sets cut by `, say A, B, C
5 if the fourth set is on the good side of `
6 return |S|/4 + Count(`, A) + Count(`, B) + Count(`, C)
7 else
8 return Count(`, A) + Count(`, B) + Count(`, C)
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`
Figure 3: Illustration of the Count(`, S)
algorithm.

We can indeed determine A, B, C in constant time. In the RAM
model, Tn = 1 + 3Tn/4, which yields Tn = Θ

(
nlog4 3

)
by the master

theorem.

Linear time selection: finding the kth smallest element

We present a selection algorithm invented by Blum, Floyd, Pratt,
Rivest and Tarjan2 for finding the kth smallest number in a list or 2 Blum et al. [1973]

array; such a number is called the kth order statistic. This includes the
cases of finding the minimum, maximum, and median elements.
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In particular, we want to find the kth smallest number in an un-
ordered set S = {x1, · · · , xn}, and can use a comparison oracle. By
sorting we would have time complexity O (n log2 n).

We will give an O(n) complexity solution, called Select(k, S),
where S is the collection of elements, and 1 ≤ k ≤ |S|.
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Figure 4: Medians of the median.

Select(k, S)

1 if |S| ≤ 5
2 Sort(S)
3 return the kth smallest element of S
4 else
5 group all elements in groups of 5, and find the median in

each group and call the set of medians M
// This costs 6 comparisons.

6 let m = Select(|M|/2, M)

// m is the median of the medians
7 compare all elements of S with m, forming the sets L and R

of smaller and larger elements
8 if |L| == k− 1
9 return m

10 elseif |L| ≥ k
11 return Select(k, L)
12 else
13 return Select(k− |L| − 1, R)

The bound on the cost for every critical step of the Select(k, S) algo-
rithm is listed in the table below:

Line number Bound on the cost

1 - 3 ≤ 7
5 ≤ 6n/5
6 = Tn/5

7 = n
11 = T|L| ≤ T7n/10

13 = T|R| ≤ T7n/10

A Possible Improvement. As shown in Figure 5, L and R each
have at least 3|S|/10 and at most 7|S|/10 elements. Hence, to identify
L and R, if we program correctly, we only require at most 4n/10 new
comparisons. Therefore, the recurrence that calculates the complexity
can be reduced to Tn ≤ 8n/5 + Tn/5 + T7n/10. We will prove by
induction that Tn ≤ Cn for all n ∈N.

< m

L

at least
3|S|/10

m

> m

R

at most
7|S|/10

Figure 5: Illustration of L and R.
Proof. Base case: If n ≤ 5, then C ≥ 7 is a safe choice.

Induction hypothesis: Assume Tk ≤ Ck for all k < n.
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Inductive step: Tn ≤ 8n/5 + Tn/5 + T7n/10 ≤ 8n/5 + C · 9n/10.
This should be ≤ Cn, so we have the requirement 8n/5 ≤ C · n/10, or
C ≥ 16. We have thus shown that Tn ≤ 16n for all n ∈N.

Median-of-3 Recurrence. When we replace the median-of-5 step
by a median-of-3 step, then one can see that Tn = Θ(n) + Tn/3 +

T2n/3. This equation is analyzed via a recursion tree. Note that in

each level the work adds up to n. We have
( 2

3
)k n = 1, where k is

the height of the recursion tree, so k = log2 n/log2(3/2). Therefore,
Tn = Θ (n log2 n).
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Figure 6: Recursion tree.

Observe that the recursion tree is not balanced. Nevertheless, the
work at each level is precisely n.
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