
Stringology
Sasha Bell, Tiffany Yong

March 17, 2022

This is an augmented transcript of a lecture given by Luc Devroye on
the 17th of March 2022 for the Honours Data Structures and Algo-
rithms class (COMP 252, McGill University). The subject was string
processing data structures and algorithms.

Introduction

Stringology deals with strings, patterns and text. We think of a string
in a broad way — it could represent text, DNA, numerical data or
even images. In the first half of the lecture, we present data structures
that work with text and strings, and in the second half of the lecture,
we introduce some algorithms on these data structures.

Definition 1. An alphabet A is a set of possible values that a string
can take.

Examples of alphabets include the 26-letter Latin alphabet (|A| =
26), and the alphabets used to express binary numbers (|A| = 2), or
even DNA sequences (|A| = 4).

Tries
Figure 1: An example of an infinite trie.
The red paths are the "spaghetti"-like
infinite ends that get trimmed, and the
red nodes are the leaves of the resulting
trie.Definition 2. A trie is a k-ary search tree that stores strings x1, . . . , xn,

where each xi is a string consisting of symbols from A, and k = |A|.
The term “trie" comes from the word “retrieval", and was first coined
by Fredkin1. 1 Fredkin [1960]

We begin with the case where xi’s are all infinite strings. This al-
lows us to form an infinite trie, where a string can be viewed as a
path in a k-ary tree if we use the symbols in the string to determine
the child that is followed (Figure 1).

Since we are given a finite number of paths, if we do not allow
identical paths2, eventually each path must split. We can “trim the 2 Assume that the xi’s are all distinct.

Otherwise, there would still be an
infinite path after the trim.

spaghetti”, where we remove the unnecessary infinite ends of each
branch of the tree, such that each path has a unique leaf. We do this
by cutting off the trailing end of each path at the first node unique to
that path, visualised by removing the red paths in Figure 1. Now we
have our trie (Figure 2), with n leaves and one leaf per string, where
the leaf stores the index of the string.

Figure 2: The trie obtained from trim-
ming Figure 1.

stringology 2

In the case where xi’s are finite, it is possible that some xi is a
prefix for some xj in the list of strings (e.g., xi = “goo” and xj =

“google”). Clearly we cannot count on having only one leaf per path
anymore.

To get around this issue, we mark the nodes where one string
terminates, as shown in Figure 3. This indicates that one path repre-
sents two strings rather than one. We don’t need to mark the leaves,
since these will always represent a string. Then, we have that all path
endings are either in a leaf or a marked node.

Figure 3: The “goo” and “google”
paths, with a yellow marked node
representing the word ending “goo”.

Remarks on storage:

• The storage required for finite tries can easily blow up, as it is not
bound as a function of n. Even when n = 2, we can create two
arbitrarily long strings that only split at the end. Then, the space
needed is the length of the arbitrarily large string.

• Storing strings the classical way results in each internal node hav-
ing k = |A| children pointers. However, the further an internal
node is from the root, the more likely that most of its children
pointers will point to nil. For example, there are many words that
start with “t”, so most of the children pointers will point to an-
other node. However, there are fewer words that start with “trem”,
so most children pointers will point to nil. This results in a lot of
wasted space due to unnecessary pointers.

• de la Briandais3 developed a more space-efficient method for stor- 3 de la Briandais [1959]

ing strings in an alphabet A. Let |A| = k. Instead of each internal
node having k child pointers, we replace it with one pointer to a
linked list of ≤ k children (Figure 4). However, this disadvantage
of this method is that one needs to search a linked list to find a
child. Another similar alternative would be having a node point to
a search tree of children.

• There is an even more space-efficient method for storing strings:
the patricia tree, which we will explore below.

Figure 4: de la Briandais method for
storing strings.

PATRICIA Trees

Definition 3. A patricia tree is a trie where subsequent nodes with
one child each are compacted into one node, to save space. patricia

stands for Practical Algorithm to Retrieve Information Coded in
Alphanumeric, and was first described by Morrison4. 4 Morrison [1968]

Figure 5: patricia tree node reduction.

For example, in a binary tree, one can describe a path using a
sequence of zeros and ones. If there is a chain of nodes with one

stringology 3

child each then we can reduce these nodes to an edge that stores the
relevant path information (a finite binary sequence) (Figure 5).

If we have a marked node in a chain of nodes with one child, we
cannot compact it into one node to save space. We can only compact
chains of unmarked nodes. If a marked node interrupts a chain of
nodes with one child, we compact the chain above and below the
marked node (Figure 6).

Figure 6: patricia tree marked node
reduction.

The storage improvement of a patricia tree is significant, since
all the nodes in the tree have at least 2 children, except the parent
and child of marked nodes. However, the storage will not be O(n) if
we store the relevant path information in the edges with linked lists.
A better way to store path information in edges is to store a string at
the edge, specifying the string number, array start index and array
end index. For example, if we see the string “17, 8, 11” stored in the
edge, we go to x17 and take the values from position 8 to position 11

to find our values (Figure 7).
Figure 7: Retrieval of path information
from string.

Exercise 4. Show that the number of nodes in a patricia tree ≤ 2n.

Now we look at data structures designed to prepare text for future
search commands. Let T be a text (an array) of size n over some
alphabet A. Our aim is to return information about the text, such as
how many times or where a certain pattern occurs.

Suffix Data Structures

Definition 5. A suffix trie is a trie for all n suffixes of T.

1
1 1

0 1 1
1 0 1 1

0 1 0 1 1
0 0 1 0 1 1

Figure 8: The suffixes of T = 001011.

Let T = 001011. Then, Figure 8 has the list of suffixes of T. The
suffix trie for T would be a binary tree with each leaf and marked
node corresponding to a suffix (Figure 9). The number stored in the
leaf or marked node is the index of T where the suffix begins.

This allows us to find patterns in the text T. For example, if we
wanted to know all the substrings of T that start with “01”, we could
take the path “01” in the typical way that one navigates a binary tree,
and view the resulting subtree. All the integers that are stored in the
leaves and the marked nodes of this subtree are indices of T where
the pattern “01” is found. Then, you know how many matches there
are, and where these matches are in the text T. Not only that, but
if you perform an in-order traversal, the substrings will be sorted
lexicographically.

Figure 9: The suffix trie for T = 001011
before trimming the leaf paths. After
trimming, leaves 2 and 3 move up two
positions, while leaf 1 moves up four
levels.

This example easily extends to k-ary position trees when an alpha-
bet of size k is used to construct T. However, suffix tries blow up the

stringology 4

storage required as well. This leads us to our next data structure, the
suffix tree.

Definition 6. A suffix tree is the patricia version of the suffix trie.
We perform compactification on unbroken chains of unmarked nodes
with one child in the suffix trie, exactly as described for patricia

trees. The new edge will store the start and end indices of the sub-
string of T corresponding to the edges that have been replaced (Fig-
ure 10).

Figure 10: The suffix tree for T =
001011.

We will require O(n log n) bits to store the suffix tree. We are
asked to show in Exercise 4 that patricia trees have ≤ 2n nodes.
This property also applies to suffix trees. The storage required per
edge is O(log n), since the maximum number of bits required to store
the start and end indices is 2⌈log n⌉. With O(n) nodes and O(log n)
bits per edge, storage of the suffix tree requires O(n log n) bits.

This data structure is used for the Oxford English Dictionary, as
it is extremely space efficient and easy to search. It is also easy to
construct: a more efficient but very complicated algorithm can create
a suffix tree in O(n) time, but we won’t cover this.

If we want to make changes to T after constructing a suffix tree,
then adding one element to the front at most affects one path, since
this element will be added to a leaf. However, adding an element
at the end means it will have to be added to every leaf. The way to
build a suffix tree or trie, then, is to insert suffixes from right to left.

Definition 7. A suffix array is a sorted array of all suffixes in T.

We can construct a suffix array by looking at all the leaves of a suf-
fix tree in lexicographical order. In the case of the ordering of marked
nodes, we assume that the ancestor is before the descendant. For ex-
ample, when T = 001011 as above, the suffix array is [1, 2, 4, 6, 3, 5].
We can use binary search with a string to see if the pattern comes
before or after in the array.

However, in terms of storage, suffix arrays still require O(n log n)
bit space, since we have n entries in the array, and each entry requires
≤ ⌈log n⌉ bits to store.

Pattern Search / Matching

Figure 11: Pattern search for P in T.

Now we turn to an example of algorithms involving strings. The
setup is: let the text T and the pattern P be unknown, so we cannot
conduct any pre-processing. We want to determine if the pattern
P of size m is contained in text T of size n, where n ≥ m. We may

stringology 5

additionally want to determine how many times P repeats in T, or
where it is located within T.

We could easily do this with our suffix tree as described above.
However, there are shorter algorithms to do this, some which take
as little as O(n) time. We will study the KMP algorithm, devised by
Knuth, Morris and Pratt5. Another way to do this is Rabin-Karp6, but 5 Knuth et al. [1977]

6 Karp and Rabin [1987]this requires knowledge of hashing which is not covered this year.

Conducting the pattern search consists of 2 steps:

1. Prepare the pattern, by making a magic table M.

2. Perform the KMP algorithm.

Step 1: Build a magic table M[1, . . . , m]

To build the magic table, for each k ∈ {1, ..., m}, we define

Mk = max{0 ≤ j < k : P[1, . . . , j] = P[k − j + 1, . . . , k]}.

This means that the k-th value in the magic table is the largest value j
for which the pattern from 1 to j is the same as the pattern from k − j
to k. This is visualised as the two green areas having equal patterns
in Figure 12. If there is no j where the patterns match, Mk = 0. If
j = k then the trivial solution is Mk = k, so we restrict j < k. We can
construct M with the following algorithm:

Figure 12: P[1, . . . , j] = P[k − j, . . . , k].

Build-Magic-Table(P, M)

1 j = 0, k = 1, M1 = 0
2 while k < m:
3 if P[j + 1] = P[k + 1]
4 Mk+1 = j + 1
5 j = j + 1, k = k + 1,
6 else if j > 0
7 j = Mj

8 else // j = 0
9 Mk+1 = 0

10 k = k + 1

Figure 13: Magic table M for P =
10011001.

This algorithm works by starting with two pointers j = 0 and k = 1,
where M1 = 0 by definition. We only increment j = j + 1 if P[j + 1] =
P[k + 1]. Thus, if j > 0, then we know that P[1, . . . , j] = P[1, . . . , k].
Then, to check if P[1, . . . , j + 1] = P[1, . . . , k + 1], we just need to check
if P[j + 1] = P[k + 1]. If this is true, then j + 1 must be the largest
index where this overlap occurs. We set Mk+1 = j + 1, j = j + 1 and
k = k + 1, and keep iterating to see if the shared substring continues.

Otherwise, since P[j + 1] ̸= P[k + 1], denoted by the red shaded
region in Figure 14, then Mk+1 ̸= j + 1. If j > 0, then we know that

stringology 6

P[1, . . . , j] = P[1, . . . , k] as explained above. This implies that the tail
of P[1, . . . , j] is the tail of P[1, . . . , k], as denoted by the yellow shaded
regions in Figure 14. For any other index i, the largest common sub-
string between P[1, . . . , i] and the tail P[j − i, . . . , j] is found when
i = Mj based on our definition of M. Thus, we set j = Mj, and con-
tinue iterating to check if P[Mj + 1] = P[k + 1]. This explains the else
if statement.

Figure 14: Construction of the magic
table M by iterating through Mj’s.

However, if j = 0 and P[j + 1] ̸= P[k + 1], then we have run
through the entire pattern and not found a match. This implies that
Mk+1 = 0, and we can continue to build the magic table for when
k = k + 1.

The time complexity of the Build-Magic-Table algorithm is
O(m). Note first that both k and k − j are monotonically increasing.
Each time we go through the while loop, either k increases by one, or
k − j increases (in the j = Mj step). Both can happen at most m times.

Step 2: KMP-Algorithm
Now we can move on to the KMP-Algorithm, which uses the table

we just constructed. At the beginning of the algorithm, we compare
the P[1] to T[1], so P and T can be thought of as "lined up" at their
first index (Figure 15). After this comparison we essentially "slide" P
along T until we find a match, repeating this process until the largest
match has been found or T has been exhausted (Figure 16).

Figure 15: Alignment of T and P at the
first index.

KMP-Algorithm(T, P, M)

1 i = j = 1 // initialization
2 while i ≤ n
3 if T[i] = P[j]
4 i = i + 1, j = j + 1
5 else if j > 1
6 j = Mj−1 + 1
7 else // j = 1
8 i = i + 1
9 if j = m + 1

10 return i − m and halt
11 return “no match"

This algorithm works by starting with two pointers, i = j = 1. We
only increment j = j + 1 if T[i] = P[j]. Thus, if j > 1, we know
that T[1, . . . , i − 1] = P[1, . . . , j − 1]. Then, to check if T[1, . . . , i] =
P[1, . . . , j], we just need to check if T[i] = P[j]. If this is true, then we
can continue iterating through the loop to check for more matches.

Otherwise, since T[i] ̸= P[j] denoted by the red shaded region
in Figure 16, then the P no longer matches T at the start point s1.

stringology 7

If j > 1, then we know that T[1, . . . , i − 1] = P[1, . . . , j − 1] as ex-
plained above. This implies that the tail of T[1, . . . , i − 1] is the tail
of P[1, . . . , j − 1], as denoted by the yellow shared regions in Figure
16. For any other index k, the largest common substring between
P[1, . . . , k] and the tail T[i − k, . . . , i] is found when k = Mj−1 based
on our definition of M constructed before. Thus, we set k = Mj−1,
effectively sliding the pattern P until Mj−1 is lined up with i − 1, at a
new start point s2.

Figure 16: Sliding P along T to find a
pattern match.

However, if j = 1 and T[i] ̸= P[j], then we have run through the
entire pattern and not found a match between T[i − j, . . . , i − 1] and
P[1, . . . , j]. Thus, we set i = i + 1 and continue iterating to try and
find a match.

We know we have found a match when j = m + 1, since this means
that T[i − m, . . . , i − 1] = P[1, . . . , m], which implies that there is
a complete match. Otherwise, if we run through the entire pattern
where i ≤ n and there is still no match, we return “no match”.

The time complexity of the KMP-Algorithm is O(n). Note that
both i and i − j are monotonically increasing. In each iteration of the
while loop, either i increases by 1 (n iterations), or i − j increases by
at least one (≤ n iterations).

Exercise 8. Modify the code of the KMP-algorithm to return all
matches.

stringology 8

References

R. de la Briandais. File searching using variable length keys. In Papers
Presented at the the March 3-5, 1959, Western Joint Computer Confer-
ence, IRE-AIEE-ACM ’59 (Western), page 295–298. Association for
Computing Machinery, 1959. ISBN 9781450378659.

E. Fredkin. Trie memory. Commun. ACM, 3(9):490–499, 1960.

R.M. Karp and M.O. Rabin. Efficient randomized pattern-matching
algorithms. IBM J. Res. Dev., 31(2):249–260, 1987.

D.E. Knuth, J.H. Morris Jr., and V.R. Pratt. Fast pattern matching in
strings. SIAM Journal on Computing, 6(2):323–350, 1977.

D.R. Morrison. Patricia—practical algorithm to retrieve information
coded in alphanumeric. J. ACM, 15(4):514–534, 1968.

	Introduction
	Tries
	Pattern Search / Matching

