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ABSTRACT

We illustrate the paradigm that various random ob-

jects defined in terms of random processes can be

generated quite efficiently without actually ‘running”

or ‘simulating” the defining random process. Exam-

ples include the generation of sums of independent

random variables, of random trees, of random con-

vex hulls, and of absorption times in finite Markov

chains. A simple method with one design parameter

is presented.

1 INTRODUCTION

Generating random variables is like creating chaos

from nothing. It is the world in reverse: we are used

to looking at data, creating models, estimating pa-

rameters, and molding data in terms of well-defined

functions. In all these endeavors, some degree of de-

terminism is squee~ed out of random data, often at

tremendous computational costs. The inverse process

should thus be simpler as we create disorder, increase

the temperature and descend into the hell of random

objects. Computationally, it should thus be easier to

create such random objects than to derive distribu-

tional and other information from existing random

objects. A random object (such as a random vari-

able, a random vector, a random process, a random
~raph, a random set, and so forth) can be described

in a myriad of ways. Consider for example a random

variable X with a mixture density

i=l

where the pi’s form a probability y vector, and the fi’s

are known densities. X can be generated as XN,

where N is a random integer with P{N = i} = pi,

and XN has density fN. The random integer N can

be generated in time O(1) if we allow preprocessing,

using either Walker’s method (Walker, 1974, 1977;

Kronmal and Peterson, 1979; Peterson and Kronmal,

1983) or the guide table method (Chen and Asau,

1974; Fiahman and Moore, 1984). If, e.g., the ft’s

are normal densities with different means and vari-

ances, XN can thus be generated in constant time.

Take now the reverse viewpoint: given x, how fast

can we compute ~(z) (exactly, of course)? It seems

that we cannot avoid a time complexity that grows at

least linearly with n. Thus, deterministic information

is dramatically more expensive than random variate

generation for this distribution.

We did not have to work hard on the finite mix-

ture example. Let us briefly exhibit an example in

which random variate generation seems to be chal-

lenging even though the description of the distribu-

tion is simple. Consider a random variable X with a

symmetric stable distribution of parameter a G (O, 2]:

it is uniquely determined by its characteristic function

p(t) = exp(– Itla). The computation of p(t) is trivial;

it seems difficult to beat. It was not until 1976 that

we were even presented with an exact generator (see

Chambers, Mallows and Stuck, 1976). Later (see for

example, Devroye, 1982, 1986) more efficient methods

were proposed, such as the one in which X is gener-

ated as Y/Z, where Z = (El + E211C7<~1)l’uj &~ E2

are independent exponential random variables, U is

a uniform [0, 1] random variable, and Y has the de

la VaU6e-Poussin density (1/(2 ~))(sin(z/2)/(z/2))2

and can be generated quite easily via the rejection

met hod.

Still, even now, there are serious challenges ahead.

In general, there are no satisfactory methods for

infinitely divisible d~tributions when described via

their Kolmogorov canonical representation for ex-

ample: given is a nondecreasing function K with

K(–w) = O (see Durrett, 1991), and the character-

istic function is given by

log p(t) = ipt +
J

m eitx — 1 — itz
dK(z) ,

—co
~2
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where the parameter P is a shift parameter. With

dK(x) = U26(X), we obtain the normal distribution

with variance az. For dK(z) = M(z – 1), we have

the Poisson (J) distribution. The general K case re-

mains a serious challenge. An approximate genera-

tor was proposed by Bondesson (1982). But even for

particular K, simple random variate generators seem

elusive, despite simple descriptions. An example is

given by

J

1 ~it$

log ~(t) = it+
–l–i%

dz ,
0 x

which describes the

limit distribution of (l/n) ~~=1 Xi, where the Xi ‘S

are independent, and Xi = i with probabtit y l/i,

and Xi = O otherwise. Of course, strictly speaking,

p(t) takes an infinite amount of time to compute, so

the description of the distribution is not computa-

tionally simple.

In this note, we will take one paradigm, that of

simulating quantities defined in terms of random pro-

cesses without actually running the random process.

This will be illustrated on the time until absorption

in Markov chains, on random convex hulls, on sums

of i.i.d. random variables, and on random trees.

2 ABSORPTION TIMES IN MARKOV

CHAINS

2.1 Naive simulation.

Consider an N-state discrete-time Markov chain with

starting state Xo, and realization Xl, X2, . . .. Let

P be the N x N matrix of transition probabilities

Pij = p{Xtt+I = jlx~ = i}. We wish to simulate the

time T until absorption in one of a number of absorb-

ing states, or, the time until we first reach one of the

states in a designated collection of states. For simu-

lation purposes, we can always modify the transition

probabilities to make any subset of states absorbing,

so both problems are in fact equivalent. Needless to

say, if we have a good grip on the absorption time

simulation, we will in fact have solved a fundamental

problem in Markov chain simulation. In a renewal

process framework, we can simulate the time of first

return to the starting state X. by generating the first

transition (to Xl), and then generating the time until

we first reach X. from Xl.

For simulating Markov chains, one typically con-

structs N alias tables (Walker, 1974, 1977; Kron-

mal and Peterson, 1979) or N guide tables (Chen

and Asau, 1974; Fishman and Moore, 1984), one

per state. This allows one to generate transitions in

constant expected time. Deleting multiplicative con-

stants, the total expected cost of such a direct simula-

tion is ET+N2, where T is the time until absorption.

The quadratic term accounts for the set-up of the

alias or guide tables. This is the standard method one

uses to proceed; see, e.g., the survey in Popescu and

Vaduva (1991). Additional improvements are possi-

ble if one assumes a certain structure on the transition

matrix, such as when the transition probability vec-

tors for the states do not differ much (see for example

Fox (1990, 1991) or Fishman and Yarberry (1990)).

If one is just interested in the generation of T and not

the sequence of states per se, then additional savings

are possible. The purpose of th~ section is to explore

this possibility.

The waiting time W until absorption in a

continuous-time Markov chain, in which the distri-

bution of the waiting time until a transition is ex-

ponentially d~tributed is simply gamma (T), where

T is the waiting time until absorption in a discrete-

time Markov chain with the same transition matrix.

Random variables of this form are called phase type

random variables. Neuts and Pagano (1981) gener-

ate such random variables by running the Markov

process. For more discussion on this point, and mi-

nor improvements, see Devroye (1986, pp. 757-758).

The vastness of the problem we are facing can be

grasped by the following result: given any density f
on the positive halfline, and any e > 0, there exists

a continuous-time finite-state Markov chain with a

starting state and an absorbing state such that the

density fT of T, the time until absorption, satisfies

~ [f - fTl < C. Thus, the family of phase-type &tri-
butions is phenomenally rich.

2.2 An Adaptive Algorithm: Acceleration,

Deceleration

Introduce the matrix Pk with entries

(~) – p{xk = jlxo = i} .
P“” –SJ

We propose in a first step, the acceleration phase,

to generate the sequence XO, Xl, X2, Xl, XS, ..., X2&,

where X2k is the first time an absorbing state is

reached. This can be achieved in 0(N2 ) space and

0(kN3) time, since at every iteration, we square the

last transition matrix and recompute the alias tables.

Because 2k-1 < T < 2k, we see that th~ method

takes expected time bounded from above by a con-

stant times 1 + N3E log2 T.

In the deceleration phase, we put 1 = 2k-1, r = 2k,

and repeat the following steps:

while r-l>ldo
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m + (r + 1)/2

generate Xm (given XZ, Xr)

if Xm is absorbing

then r +m

else 1 t m

return T + r

In the generation of Xm given Xl and X,, we must

in fact use a matrix of transition probabilities cor-

responding to a conditional Markov chain (Seneta,

1981) in which we have the following transition prob-

abfities:

P{xm = i]xl = j, x. = s}

P{xm = i, x. = Slxl = j}——
P{xr = Slxl = j}

(A)pp
Pj*——

J+ “
Js

The matrix of probabilities only requires the matri-

ces PT-’ and P(r-Z)/2. Thus, we could naively store

the matrices P, P2,.. ., Pk that were computed dur-

ing the acceleration phase. Every step in both phases

requires 0(N3) time for transition matrix computa-

tions. The total number of steps is bounded by k, as

the original interval is of size 2k-1. The conditional

Markov chain run until absorption costs no more than

kN3 in set-up time for the matrices and tables, kN

for computing the appropriate transition probabili-

ties, and O(k) on average for actually generating the

conditional Markov chain. The time complexit y of de-

celeration is 0(N3 logz T). This nicely balances out

the acceleration step. The method given here is remi-

niscent of binary search, as each time the interval size

is halved. The overall expected time is thus bounded

by

Cl + C2N3E log2 T

where Cl and C2 are universal constants. This is

better than straightforward simulation when

N3Elog2 T < max(N2, ET) .

Roughly speaking, th~ happens when

~3 < ET

Elogz T “

The total expected storage is 0(N2E log2 T). ThE is

only slightly more than N2.

S RANDOM CONVEX HULLS

Let Xl,..., Xfl be i.i.d. random vectors in the plane,

and let Cm be a (random) subset of indices from

{1 ,. ... n} corresponding to those Xi ‘S that are on

the convex hull of the n data points. In computa-

tional geometry and in pattern recognition, one works

frequently with convex hulls of data sets. It is thus

natural to ask how we can generate a random convex

hull efficiently. The above definition of a random con-

vex hull has the drawback that the cardinality of the

convex hull, [Cn 1, is also random. Nevertheless, for

many dwtributions of Xl, lCn I is rather concentrated

about its mean, El Cfl 1, and thus nearly deterministic.

The method based upon the definition would call

for the generation of the data and the application

of a convex hul finding algorithm, which would tYP-

ically lead to a time complexity of @(n log n) (see,

e.g., preparata and Shames, 1985). A small improve-

ment follows if we generate Xl, X2 and X3, denote

the geometric center by Xc, generate X4, . . . . Xn in

angular order wit h respect to XC, and find the con-

vex hull by the linear-time Graham march (Graham,

1972). The generation of order statistics in order in

linear time is well-known: see for example section

V.3 of Devroye (1986). Still, our time complexity

grows linearly with n. Contrast this with an obvi-

ous (dwtribution-dependent) lower bound for the ex-

pected time given by EICn 1. For the uniform distri-

bution on any polygon with a finite number of ver-

tices, E lCn \ = @(log n). For the uniform distribution

on the unit sphere, it is @(nlf3) (R6nyi and Sulanke,

1963, 1964). In the same papers, we find that for the

standard normal d~tribution, El C= I w 2~=.

In other words, the expected size of a normal ran-

dom cloud with n = 103 is about 13. For n = 106,

109, 1012 and 1015, we obtain about 18, 22, 26 and

29 respectively. The implication is simple: if we

wish to simulate a fair-sized normal random convex

hull, we will require phenomenal values for n. Lin-

ear expected time algorithms just won’t do. There

are even distributions for which E]Cn I grows slower

wit h n: Carnal (1970) first pointed out the existence

of heavy-tailed radially symmetric distributions for

which E ICn I tends to a finite constant as n ~ m.

We will make our point here with the aid of the nor-

mal sample, though.

The method of Devroye (1982) can be applied to

any radially symmetric distribution. The idea is to

select a threshold radius rn and to bet on the event

that the circle SO,.. lies entirely in the convex hull.

If that is indeed the case, one would only need to

generate the points that fall outside the said circle.

By choice of r., this number is small.

[set-up]

T’+/210gn -310glogn+2c

where c ~ –(1/2) log(4x)
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[generation]

generate a binomial (n, e-r’12)

random variate N

generate an ordered random sample @l, . . . ~~

with a uniform distribution on [0, 27r]

generate i.i.d. exponential random

variates El, . . . . EN

for the points with polar coordinates

(Vz-m m.- .}(l/x@ + J%v), @N)
find the convex hull CH b% a

linear time Graham march

if SO,, ~ CH

then return CH

else determine the largest radius R

such that So,~ ~ CH

generate a binomial (n – N, p)

random variate M where

p = (e-R’/2 – e-”’i2)/(1 - e-r’i2)

generate an angularly ordered

random sample of M

independent points drawn from

the uniform distribution on

So,r – So,R

merge the samples into an angularly

ordered list of size N + M

find the convex hull CH

by a Graham march

return CH

Figure 1: Random Convex Hull Generator

In the algorithm, we used the fact that ~m

has distribution function 1 – exp(–r2/2) on (0, co),

when N1, N2 are independent standard normal ran-

dom variables. The ordered random sample of angles

can be obtained in time O(N) using the algorithms of

section V.3 of Devroye (1986). Therefore, given N,

the time taken by the first part of the algorithm is

proportional to N. To determine R takes time pro-

portional to N as well. Next, if the inclusion check

fails, we need an additional sample of size M. In

that case, there is an additional cost proportional to

N + M, since two sorted lists can be merged in linear

time. With a little effort we then obtain

Theorem 1. The expected time taken by the above

algorithm does not exceed a constant times (log n)312

if we take r = r~ = /210gn– 310glogn+2c fora

constant c satisfying c < –(1/2) log(4r).

PROOF. Binomial random variates can be generated

in constant expected time, uniformly bounded over all

parameters (Devroye, 1986, section X.4). For what

follows, we do not even need such sophistication. Ev-

erything below remains true if N for example is gen-

erated by the inversion method so that the expected

time is bounded by a constant times 1 + EN. Up

to the generation of M, the expected time is thus

bounded by a constant times

1 + EN = 1 + ne-”i2 = 1 + e-c(logn)312 ,

The contribution of the second part to the expected

time is bounded from above in a rather crude manner

by assuming that R = O. The cost of the generation of

the M-sized angularly ordered sample, its merge with

the N-sized sample, and the Graham march does not

exceed a constant times n. The expected complexity

due to that part of the algorithm is not larger than

a constant times nQ, where Q is the probability that

S.,. is not contained in CH. This is bounded as fol-

10WS: for Xi ~ S.,., let Ti be the collection of Xj,

j # i, that are such that the segment linking Xj with

the origin crosses one of the tangents of S.,. through

Xi. Then,

{
Q < P{N < 2} + E ~ ~[X,&,.]r[lTil=I)]

i=l }

< ( )(1 _ e-T’j2 ‘–1 1 – e-r2/2 + ~)

+nP {Xl @ So,r , IT1 I = O}

< (n+ 1) exp (–(n – l)e-r’f2)

+2ne-r2/2(1 - P)*-l

where p is the probabfity that the first coordinate of

Xl exceeds r. With our choice of r, we note that the
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bound becomes

Q < (n+ 1) exp (–(1 – l/n)e-c(logn)3/2)

+2e–’(10g n)s/ze–P(n–l]

= o(l/n) + 2e–c(log n)3f2e–p(fl-1) .

Collecting bounds, we note that the overall expected

time is not greater than a constant times

( )
1 + o(1) + e-c(log n)3i2 1 + 2ne-p(n-1) .

It suffices thus to establish that p ~ O and that

~e–~ = 0(1). But from the properties oft he normzd

distribution, we recall that

JP=—
e-t2/2 &

,“ &
1

<— -r=/2

rfie

e-clogn——
n&

so that indeed ne-pn = O(1) provided that e–c z

6. •1

The algorithm given above is thus acceptably efi-

cient. For other radially symmetric d~tributions, one

can argue similarly, but all of them require the com-

putation of a threshold value for r. There is, fortu-

nately, a different strategy for uniform distributions

on convex sets. Take for example the uniform distri-

bution in the unit circle. We generate the random

convex hulI incrementally, whale keeping track at all

times of the partial convex hull in angular order, and

the probability (p) that a new point falls outside the

partial convex hull. Since this is just an area, it is

easy to calculate and update. After having generated

X1, X2,,,., XT where T is the first index such that

the convex hull of Xl, . . . . XT contains the origin, we

start the following process: we keep a counter for the

index (initially ‘1’), and increase the counter by a ge-

ometric (p) random variate. If the counter exceeds n,

we stop. Otherwise, a point ~ generated udorndy

in S.,l but outside the present convex hull, and both

the convex hull and p are updated. With a bucket

structure for the angles, we can update all in O(1)

expected time. To facilitate the generation, it helps

to partition the space into a fan of infinite triangles

with top at the origin and with sides going through

the points on the convex hull. Intersect th~ with S.,l

and with the outside of the convex hull. Each piece

thus obtained has an easy-to-compute area. We could

coin this the waiting time algorithm, in analogy with

the paradigm explained in Devroye ( 1986, p. 71). The

overall expected time is seen to be bounded by

()057’
i=l

where Ni is the size of the convex hull of Xl, . . . . Xi.

For the uniform distribution on the unit circle,

we obtain an unimprovable expected complexity of

0(nlf3), whale for the uniform dlstribition on the

unit square (where ENn N (8/3) log n), the overall

expected complexity becomes 0(log2 n).

4 GENERATING SUMS

The idea of simulating random variables via short-

cuts that bypass the definition of the random vari-

ables has been exploited by many. For example, a

binomial (n, p) random variable representing the out-

come of n coin Klps is nowadays routinely generated in

O(1) expected time uniformly bounded over n and p

(Kachitvichyanukul and Schmeiser, 1988; Stadlober,

1988, 1989). Assume more generally that we wish

to generate many independent copies of the random

variable & = ~~=1 Xi, where the Xi’s are i.i.d. ran-

dom variables having a given density f. Obviously,

we could always do this in time O(n) by generating

and summing the Xi ‘s. For very large n, this is rather

inefficient. At the same time, it is unacceptable to

generate a random variate with a properly normal-

ized limit law for Sm. However, local central limit

theorems can be helpful in the design of an exact gen-

erator. Section XIV.4 of Devroye (1986) deals with

precisely this problem. Basically, one could in general

develop generators for distributions with known char-

acteristic function (see also Devroye, 1986), and apply

these to the situation at hand. This is promishg if

we know the characteristic function p of f, since Sn

must then have characteristic function V*. However,

the resulting algorithms are rather cumbersome.

The strategy explored in Devroye (1988) rests on

the simple principle of solving a complex problem by

solving many easier problems, e.g., by first develop-

ing a generator for the sum Sn of n i.i.d. uniform

[-1, 1] random variables. This generator takes O(1)

expected time per random variate. From this, the

user can build at will. as densities can be written as

mixtures
m

i=l

where the fi’s are uniform densities on intervals

[%, hi]. The sum Stt of n i.i.d. random variables with

density f can be generated as follows.
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generate a multinominal (n, pl, pz, . ..)

random sequence N1, N2, . . .

(note that the Ni’s sum to n)

(let K be the index of the largest nonzero Na)

x+()

fori:=lto Kdo

generate S, the sum of Ni i.i.d.

random variables with common density ~i.

Xtx+s

return X

Developing a uniformly fast generator for the sum of

uniform [— 1, 1] random variables is not a sinecure as

the density ~fl of Sn can only be computed at fl(n)

time cost. This is best seen by noting first that S.m has

characteristic function (sin (t)/t )*. For all n z 2!, the

density fn can be obtained by the inversion formula

This yields

[(n-pl)/2J

fn(z) = n2-” x
(-l)’

kao k! (n – k)!

(n-2k - IZI)’J-J (o< Iz[ < n) .

The evaluation of the density fn of Sn takes time pro-

portional ton. Let us formalize this, and assume that

the algorithm has a random integer cost associated

with it, consisting of the number of uniform random

variates needed before the algorithm halts, and of n

times the number of evaluations of fn (thus, reflecting

the fact that each evaluation takes time proportional

to n). These two components will be called R and

N respectively. The algorithm we are after has the

following desirable properties: uniformly over all n,

ER ~ c < 00 for some constant G and as n -* 00,

EN -t O. This means that the contribution from

the evaluation of fn is asymptotically negligible. In

other words, one could be rather sloppy in the im-

plementation of these evaluations, and barely notice

any impact on the expected time per random variate.

Furthermore, the overall expected time is uniformly

bounded over n. To be able to avoid the evaluations

of fn nearly all the time means that we must in fact

derive a relatively accurate expression for the actual

density of Sn. For the solution, we use the truncated

Gram-Charlier series:

&=f2

(

6X2–3–X4
g.(z) = —

6 1+ )20n ‘

which approximates the density fn (z) of the normal-

ized sum @%n. This normalization will be as-

sumed throughout the remainder of this note. We

need to know how good the approximation is. De-

vroye (1988) has shown the following:

where A = 3.9608280445 . . .. This is used to derive

a dominating curve in the rejection method. Indeed,

we know that @Sn has support on [– 6, ~.

Thus, we have on thw support set, maximizing the

quartic polynomial in the definition of gn with respect

to x,

The dominating curve has integral not exceeding

6 2A&
l+——

20 n + n312 ()
=l+O:.

Next, we introduce a squeeze step, both for rejection

and acceptance. An evaluation of fn is only neces-

sary when both squeeze tests fail. It is known that

the expected number of evaluations of fn is the the

area bet ween the squeeze curves (Devroye, 1986, p.

54). In our case, thw yields a value not exceeding

4A~/n3f2. Hence, EN, which equals n times this

value, is 0( l/@). We have thus achieved our goals

stated above. We summarize the algorithm:

[set-up]

A + 3.9608280445 . . .

compute p t 1 +
2A@

&andq*W

[generator]

repeat

generate a uniform [0,1] random variate U

ifu <-&
then generate a uniform [–n, n]

random variate X

(or set X + -n+ 2n(p + q)U/q)

else generate a normal random variate X

generate a uniform [0, 1] random variate V.

T- V((l+&)~+ An-2 )
if [Xl > .fi then Accept + False ‘

else if T ~ g.(X) — An-2 then Accept + True

else if T ~ gn (X) + An-2 then Accept - False

else Accept + [T < fn (X)]

until Accept

return X (note: X is S. ~).

The properties of the algorithm are well under-

stood: the expected number of iterations is 1 +

(6/(20 n))+2A@z-3i2, the expected number of eval-

uations of fn is not greater than 4A&/n312, and thus

EN < 4A~.
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5 RANDOM BINARY SEARCH TREES assure that the time and especially the space require-

ments grow slowly with n. For one thing, to simulate

Hfl, it is simply out of the question that a random

tree is generated.

One solution to this problem is to generate a ran-

dom vector (no, . . . . nm) where n; is the number of

external nodes at level i. Clearly, for a random bi-

nary search tree with n nodes, we have n + 1 external

nodes, and thus xi ~ = n + 1. We obtain H. as

m – 1. Various paradigms are studied in Devroye

and Robson (1992), including depth-first search with

pruning, incremental methods in which the tree grows

with random-sized jumps, and a tree growing proce-

dure gleaned horn birth-and-death processes. The

last method takes 0(log4 n) expected time.

5.1 A Simple Linear Time Algorithm

Constructing the tree by consecutive insertions leads

to a @(n log n) expected time and @(n) space al-

gorithm. In Devroye (1986, p.650), a linear time

method is given for generating a random binary

search tree. The basic algorithm is shown below.

Figure 2 Random Binary Search Tree

(Internal nodes are black, external nodes are white)

The binary search tree is one of the most frequently

used structures in computer science, see e.g. Aho,

Hopcroft and Unman (1983), Knuth (1973) or Cor-

men, Leiserson and Rivest (1990). A random binary

search tree is defined as the random binary tree ob-

tained by consecutive insertion of X1,..., X. into

an initially empty tree, where X1, ..., Xn is either

an i.i.d. sequence of random variables with a fixed

density, or an equiprobable random permutation of

{1 ,. ... n}. The height H- of the tree is the maxi-

mal distance between any node and the root (thus,

HI = O, as the root is at distance O from itself, and

Hz = 1). Early studies of Hn include Robson (1979,

1982), Pittel (1984) and Mahmoud and Pittel (1984).

See also Mahmoud (1992). While it is known that

H.

log n
— * c ‘Zf 4.33107. . .a.s.

as n - ~ (Devroye, 1986, 1987), very little addi-

tional information is available regarding H., and one

is led to simulation in order to study the second or-

der properties of H. such as its variance, its asymp-

totic distribution, and so forth. Such simulations re-

quire formidable values of n in view of the logarithmic

growth of H= with n. It is thus of great importance to

m + 0 (m is the number of levels)

notl

for N:=l tondo

(N is the number of external nodes)

generate L randomly in {O,..., m}

according to the frequencies no, . . . . ~

nL+nL—1

if L=mthenmtm+l

n~+l 4- n~+l + 2

return (no, nl, ..., ~ )
(the height of the tree is m – 1)

In this algorithm, we keep the number of external

nodes at each level in an array (w, nl, ..., %). The

expected storage needed for this is O(log n) since the

expected height is O(log n). The algorithm is based

upon the fact that when adding a new node, each

of the external nodes is equally likely to receive the

node. To generate the random integer L according to

the vector of frequencies (no,. . . . ~), one can triv-

ially proceed in time 0(1 + m), but this would result

in overall expected time O(n log n). To generate L

in 0(1) expected time, one haa to either use more

space or more programming resources. For example,

keeping an array with ~ + nl + --- ~ entries, of

which ~ entries have label i, would enable us to gen-

erate L in O(1) time. The overall time and space

both are O(n). By a dynamic version of the guide

table method, O(log n) expected space is achievable
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provided that we can update the guide table in O(1)

amortized time. This is easy to achieve if we take

care to rebuild the table every log n-th (or ~th) en-

try. Between rebuilding, the new entries in the ti~ble

are collected in a simple overflow list; this does not

affect the overall linear expected time,

5.2 Discrete Jumps in the Simulation

Probabilistic shortcuts based upon waiting times al-

low us to reduce the expected time to O(filog n).

This requires efficient generators for a multivariate

hypergeometric and a certain waiting time distribu-

tion, thereby rendering the programming effort and

the overhead a bit heavier. Nevertheless, for medium-

sized values of n, the method is very useful.

Consider a vector (no, nl,..., ~) representing the

number of external nodes at levels O, 1, . . . . m respec-

tively, and assume that no + . . . + ~ = n for now.

The previous linear time algorithm is baaed upon the

selection of a uniform random external node, say one

at level k E {O ,. ... m], and the updating of the vec-

tor by the rule

(nk, nk+l) +- (n~ - l,nk+~ + 2) .

Imagine that the n original external nodes are white

balls in an urn, and that the label of each ball is its

level number. A randomly selected (white) ball is

removed. If its label is k, two black balls with 1-

bel k + 1 are added. Thw process can be repea,ted

until we pick for the first time a black ball. The

number of draws required until this happens is a ran-

dom variable T = Tn c {2,..., n + 1}. We say that

T. has the wm”ting-time distribution with parameter

n. We can let the tree growing process jump ahead

by T steps at once if we are given T. Indeed, given

T, it suffices to draw T – 1 white balls uniformly

and without replacement from the urn. The vec-

tor (Do, Dl,..., Dm) represents the number of blslls

drawn with labe~ % 1~. ..; m respectively. The ~ltri-
bution of this vector ia multivariate hypergeometric,

and it can be generated in O(m) expected time uni-

formly over all n. The vector of external nodes is

updated by the rule:

(no, . . ..nm. ~+l) t (no, . . ..~. O)

– (Do,Dl,..., Dm,o)
+ 2(o, Do,..., Din).

The single black ball is taken care of by selecting a

label L at random from the T– 1 white ball labels just

selected, the k-th label being picked with probability

proportional to Dk. This label can be chosen in time

O(m). A further update is required:

(n~+~, n~+~) + (n~+~ – 1, n~+~ + 2) ,

where, if L = m + 1, we define %+2 = O before

the update and %+2 = 2 after the change. The

number of external nodes now is n + T instead of

n. Iterate thw process until we obtain more external

nodes than needed. It is a simple matter to get the

exact size one wants by simply truncating T in the

last iteration. The following remaining details are

ironed out in Devroye and Robson (1992):

●

●

●

5.3

Determine the waiting time distribution for T

and show how a random variate T can be gen-

erated in constant expected time, bounded uni-

formly over n.

Show how one can generate a multivariate hy-

pergeometric random variate.

Show that the algorithm takes O(filog n) ex-

pected time units.

A Birth-and-Death Process Method

A random binary search tree can also be grown by

imagining that each external node is a living organ-

ism that will bear two children and die according

to a simple Poisson point process. We then let the

time grow by constant amounts, so that the tree

grows at an exponential rate. At any given mo-

ment, we have a correctly distributed binary search

tree, but the size is random. When one stops as

soon as the size of the tree is n or larger, the ex-

pected time complexity ia 0(log4 n). A modifica-

tion of the algorithm ia introduced to obtain the

right sise. The constant in 0(log4 n) ia rather large

due to the overhead in a multinominal random vector

generator used in a bottleneck portion of the algo-

rithm. This last method is useful for extremely large

n, such aa n w 1040. In Robson (1979, 1982), simu-

lations were reported that were based upon an ultra-

fast algorithm that produces random binary search

trees of random size. Once again, consider a vector

(no, nl,... , ~) representing the number of external

nodes at levels O, 1, ..., m respectively, and assume

that no +... + ~ = n for now. Every external

node should be considered as a living element in a

birth-and-death process with unit reproduction rate

for each element. When an external node gives birth,

it produces two new elements (which live at one level

below their parent), and it immediately dies, for a

net gain of one element, The n nodes at time t will

thus spawn families of offspring at time t+ A of i.i.d.

sizes Sl, ..., Sn. The key to the solution is to find the
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distribution of these Si ‘s. We claim that the common

distribution is that of S, where

P{S= k} = (1 –e-A)~-’e-A (k 2 1) .

If the state at time tisdescribed by (no, nl, . . ., n~),

then our purpose is to efficiently generate an updated

state at time t+ A, where A is a constant to be se-

lected. The first step is to generate the sizes of the

subtrees of external nodes (at time t+ A) with roots

at the elements alive at time t. This leads to the

generation of the triangular array of random integers

N(i, j), each representing the number of size j sub-

trees-~th

In fact,

mial with

original root at level i. Thus,

m

j=l

(N(i, 1), N(i, 2), N(i, 3),...) is multino-

parameter IU and probabilities given by

PI(A), P2(A), . . .. By repeatedly appealing to a uni-

formly fast binomial generator, we can generate thw

vector in expected time bounded by a constant times

the expected value of the maximal size subtree Af(rq)

for any of the n~ roots. Now, the maximum of ni i.i.d.

geometric random variables described by the proba-

bilities pi(A), i ~ 1, has expected value not exceeding

l+log%

1 + log(l/(1 –e-A)) “

Since each ~ does not exceed n, we see that, given

m, all N(i, j) can be generated in expected time

O(rnlog n).

The next step in the algorithm consists of generat-

ing the correct numbers of external nodes at all levels.

This can be done in one sweep from O to m. Assume

that we are given N(i, j), j ~ 1, for tied i. TKB

leads to N(i, 1) external nodes at level i. For fixed

j ~ 2, we obtain no external nodes at level i. Rather,

it is possible to determine how many subtrees rooted

at nodes of level i + 1 this leads to. Indeed, a node at

level i with a subtree having j external nodes yields

a left child at level i + 1 which itself has a subtree

of (random) size S ~ 2, where S is equally likely to

take any value between 1 and j – 1. The size of the

subtree rooted at the right child is j — S. Of course,

we won’t have to do this for each node separately.

Rather, it is easy to see that we need only generate

a mnltinomial random vector WI, w2, ..., wj - 1 m “th

~ WI = N(i, j), and equal probabilities. Here w, rep-

resents the number of left child nodes at level i + 1

having 1 external nodes in their subtrees. Adding in

the sizes of the right subtrees, we see that at level

i + 1, the N(i, j) level i nodes spawn 2N(i, j) nodes

~th W1 + wj .l nodes of size 1. A uniformly fat bino-

mial generator can “split” all N(i, j) at level i in this

manner in expected time O(EM(ni )2). For fixed A,

this is 0(log2 n).

The sizes of the nodes at level i + 1 can now be

updated, and they in turn are split. An iteration

thus takes expected time not exceeding EH~ times

0(log2 n) where N is the number of external nodes at

the end of the iteration. Devroye and Robson (1992)

showed that the above algorithm halts in expected

time 0(log4 n).
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