
Minimal Spanning Tree and Shortest Path Problems
Youri Tamitegama

March 11, 2020

This is the transcript of a lecture given by Luc Devroye in COMP 252

(Data Structures and Algorithms) at McGill University.

Suppose we are given an undirected graph G = (V, E) where each
edge (u, v) ∈ E has an associated weight w[u, v]. The length of a path
(v1, v2, . . . , vk) is the sum of the weights along the edges of the path,

n−1

∑
i=1

w[vi, vi+1] .

For such a graph, it is natural to minimize the length of the paths we
take. This gives rise to several problems of a similar flavour, the most
important of which we list below. Their solution is the main topic of
these notes.

1. Given two vertices s, t ∈ V, find the shortest path from s to t.

2. Given a starting vertex s ∈ V, find the shortest path from s to v for
every other vertex v ∈ V.

3. Find the shortest paths for all pairs (s, t) ∈ V2.

4. Find the spanning tree of smallest total weight. (For a definition,
see below.)

s

u

t

v

4 1

3 5

Figure 1: The path between two nodes
in the minimum spanning tree is not
necessarily the shortest path between
them in the graph. In blue the mini-
mum spanning tree, in red the shortest
path s to t.

Shortest Path Problem

In this section we treat questions 1 and 2. The collection of all short-
est paths to a node s forms a tree that we will refer to as the shortest
path tree.

Example 1. A classical example is when the nodes of the graph
G = (V, E) correspond to points (x, y) ∈ R2. Any two nodes are
connected by an edge of E and the weight between two nodes is the
Euclidean distance between them:

w[(x1, y1), (x2, y2)] =
√
(x1 − x2)2 + (y1 − y2)2

In this setup, the shortest path question has a simple answer, the
shortest path s to t is to take the edge {s, t}1. It follows that the short- 1 This is because the Euclidean distance

satisfies the triangle inequality: w[s, t] ≤
w[s, u] + w[u, t]

est path tree is a star tree with center s, as illustrated in figure 1.

s

Figure 2: The shortest path tree for
Example 1.

minimal spanning tree and shortest path problems 2

Example 2. A twist on the above example is to work with a more
restricted set of edges, G = (V, E∗), where E∗ ⊆ E is a strict subset of
all possible edges. This model can for example be used to study road
networks: some cities are connected by a road, others are not, but the
distance between connected cities is usually Euclidean.

s

Figure 3: A shortest path tree in a
network with Euclidean distances as
weights, (Example 2).

Dijkstra’s algorithm

The standard solution to the shortest path problem was found in the
1950’s and is due to Dijkstra2,3. He initially gave an algorithm for 2 Edsger W. Dijkstra et al. A note

on two problems in connexion with
graphs. Numerische Mathematik, 1(1):
269–271, 1959

3 Who came up with the algorithm
while having coffee with his fiancée on
a shopping date in Amsterdam.

finding the shortest path between two specified nodes, but effectively
that algorithm computes the shortest path tree to a specified vertex s.

Informally, the algorithm is to maintain a partial shortest path tree
A for s and iteratively add to it the node with the shortest path to s
via nodes of A out of the remaining nodes V − A. We let d[v] denote
the shortest distance from v to s while visiting only nodes in A. In
other words, we grow the solution one node at a time. Dijkstra’s
algorithm is a great example of the greedy method.

s

v

A V − A Figure 4: A step of Dijkstra’s algorithm.
The node v has the minimum d[v] and
is to be added to the partial solution
A. In black, the partial shortest path
tree; in grey the parent pointers p[u] for
u ∈ V − A.

Proposition 3. If A is a partial solution and v = arg min
u 6∈S

d[u], then d[v] is

the shortest path distance from v to s.
s

v

u

A V − A

Figure 5: The node v has the smallest d
value of all nodes in V − A. In dots, the
presumed shorter path from v to s.

Proof. Assume not, i.e., that there is a path from v to s that has length
less than d[v]. Since this path ends with s ∈ A and starts with v 6∈ A,
if we follow it from s to v, it must exit A for the first time at some
point4. Call u the first node of V − S that we encounter. By the defini-

4 Note that it may re-enter A later
before arriving at v.

tion of v it must be that
d[u] ≥ d[v] .

In turn, the length of the path must be at least d[v], which contradicts
our assumption.

minimal spanning tree and shortest path problems 3

Concretely, we will progressively compute the following attributes
for each node:

color[v]
white: unprocessed node outside of A
grey: node currently being processed
black: node of A

d[v] length of the shortest path from s to v via nodes of A
p[v] parent of v in the shortest path tree of s

In order to easily access the node with smallest d[v] value, the
nodes that are not in the partial solution A will be stored in a priority
queue Q5 with keys d[v]. 5 With the standard priority queue

operations MAKENULL(Q),
INSERT(v, Q), DELETEMIN(Q),
DECREASEKEY((v,d[v]), Q) which,
in respective order, initialize a new
priority queue Q, insert v in Q, remove
the node x in Q with smallest value and
returns x, decreases the key of v to d[v]
and modifies Q accordingly.

DIJKSTRA(s)

1 for v ∈ V
2 p[v] = nil

3 d[v] = ∞
4 color[v] = white

5 d[s] = 0
6 MAKENULL(Q)

7 for each v in V
8 INSERT(v, Q)

// Note that s has the smallest key
9 while |Q| > 0

10 u = DELETEMIN(Q)

11 color[u] = grey

// At this point, d[u] is correct and final for u
12 for each neighbor v of u
13 if color[v] = = white

14 if d[u] + w[u, v] < d[v]
// Update d[v] with the new value

15 d[v] = d[u] + w[u, v]
16 p[v] = u
17 DECREASEKEY((v, d[v]), Q)

18 color[u]← black

Analysis

Lines 8 and 10 are called once for each node of the graph, and lines
13 through 17 will be visited at most once per edge in the graph.
Hence, INSERT and DELETEMIN will be called at most O(|V|) times
and DECREASEKEY O(|E|) times.

The final complexity of the algorithm depends heavily on the run-
ning time of the operations in the priority queue implementation we
choose to use. Below is a summary of these complexities for various
data structures.

minimal spanning tree and shortest path problems 4

INSERT DELETEMIN DECREASEKEY DIJKSTRA
Data structure

Array 1 |V| 1 O(|V|2)
Binary heap 1 log |V| log |V| O(|E| log |V|)
Fibonacci heap* 1 log |V| 1 O(|E|+ |V| log |V|)
k-ary heap 1 k logk |V| logk |V| O((|E|+ k|V|) logk |V|)

The table above shows that Fibonacci heaps are best for Dijkstra’s
algorithm.

* The complexity of the individual
operations is in an amortized, not
worst-case, sense.

Remark 4. If we have a k-ary heap with k := min
(

2,
⌈
|E|/|V|

⌉)
, then

for dense graphs having |E| ≥ |V|1+ε for some constant ε > 0, we
have (

|E|+ k|V|
)

logk |V| ' 2|E| log |V|
log(|E|/|V|) = O(|E|) .

Minimal Spanning Tree (MST)

Let G = (V, E) be a connected graph where every edge (u, v) has a
weight w[u, v].

Definition 5. A spanning tree of G is a connected graph6 (V, E∗) 6 Equivalently, one could say it is a
connected tree that is a subgraph of G
and has all its vertices.

where E∗ is a subset of the edges such that |E∗| = |V| − 1.

We are interested in finding the minimal spanning tree of G, that
is

MST = arg min
spanning

tree (V,E∗)

∑
(u,v)∈E∗

w[u, v] .

1

2

34

5

7

9

10

11

12

13

14

22

23

17

16

15

8
635 32

34

18

19
31 20

29
24

28

25

21

2629

27

30

33

Figure 6: An MST (in blue) in a
weighted network.

minimal spanning tree and shortest path problems 5

Basic Property

Definition 6. Given a partition of a graph (A, B), we say that an edge
(u, v) ∈ E is a bridge between A and B if u ∈ A, v ∈ B.

The backbone of the solution is the following observation.

Proposition 7. Suppose we have a partial solution7. Then for any partition 7 i.e., a partition of V into subsets
V1, . . . , Vk and minimal spanning trees
Ti for each subset Vi .

A, B of its connected components, the smallest bridge between the two parts
is an edge of the solution8. 8 Note that in general there may be

multiple bridges of smallest weight. We
assume that all weights are distinct.Proof. Suppose for contradiction that an MST does not contain the

smallest bridge e. Then if we add the smallest bridge to the MST, we
create a cycle between A and B. Since this cycle is between A and
B, there must be a bridge f different from e along it. By removing
f we obtain once again a spanning tree. Since further w(e) < w(f)
by assumption, and all we did was to swap f and e, we obtain a
spanning tree with smaller weight, which is a contradiction.

A B

e

f

Figure 7: In black the partial solution,
in blue the alleged MST and in red
the smallest bridge e. The blue dashed
bridge f can be swapped with the red
one to obtain an even smaller spanning
tree.

From this we see that in an MST, every node is connected to its
nearest neighbor. Indeed, we can pick our partition to be a single
node A = {v} and the rest of the tree B = V − {v} with some partial
MST. In that set-up, the smallest bridge between A and B is precisely
the nearest neighbor of v.

Strategies

The main tool is in our hands, but there are different ways of using
it to solve the problem. Several approaches exist, although we only
list here some of the most efficient and commonly used solutions. We
will discuss the algorithm of Prim and Dijkstra in more detail in the
next section.

Prim-Dijkstra. 9 Initially discovered by Jarnik in 1930, it was redis-
9 Thomas H. Cormen, Charles E. Leis-
erson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT
Press, 2009

covered by Prim in 1957 and Dijkstra in 1959. The idea is to grow one
component A repeatedly by adding the smallest weight edge between
A and its complement in the graph.

Kruskal. 10 Discovered by Kruskal in 1956, this is a classical instance 10 Joseph B. Kruskal. On the shortest
spanning subtree of a graph and the
traveling salesman problem. Proceedings
of the American Mathematical Society, 7(1):
48–50, 1956

of a greedy algorithm. The idea is to go through the edges from
small to large and add in edges as long as what we obtain remains a
forest. The MST is obtained once we have added n− 1 edges.

Boruvka-Choquet. 11 Initially discovered by Borůvka in 1926 to find 11 Jaroslav Nešetřil, Eva Milková, and
Helena Nešetřilová. Otakar Borůvka
on minimum spanning tree problem
translation of both the 1926 papers,
comments, history. Discrete Mathematics,
233(1-3):3–36, 2001

an efficient electrical coverage for the region of Moravia and later
rediscovered by Choquet in 1938. The idea is to maintain components
of similar sizes in a queue, find the component in the queue with the
smallest bridge to the first component in the queue, add that bridge
and enqueue the result.

minimal spanning tree and shortest path problems 6

Prim-Dijkstra’s algorithm

The algorithm will be very similar to Dijkstra’s algorithm for shortest
paths. We compute the same set of attributes for each node, with
some slight changes for d and p.

color[v]
white, unprocessed node outside of A
grey, node currently being processed
black, node of A

d[v] weight of the shortest edge from v to A
p[v] parent of v in the MST

The choice of starting vertex s is made arbitrarily.

PRIM-DIJKSTRA(s)

1 for v ∈ V
2 p[v] = nil

3 d[v] = ∞
4 color[v] = white

5 d[s] = 0
6 MAKENULL(Q)

7 for each v in V
8 INSERT(v, Q)

9 while |Q| > 0
10 u = DELETEMIN(Q)

11 color[u]← grey

// At this point, d[u] is correct and final for u
12 for each v in u.neighbors
13 if color[v] = = white

14 if w[u, v] < d[v]
// Update d[v] with the new value

15 d[v] = w[u, v]
16 p[v] = u
17 DECREASEKEY((v, d[v]), Q)

18 color[u]← black

Complexity

The time complexities of the algorithms we mentioned are summa-
rized below. We will not discuss the complexity of Boruvka-Choquet.

Prim-Dijkstra O(|E|+ |V| log |V|)
Kruskal O(|E| log |E|)

Boruvka-Choquet O(|E| log |V|)
It is apparent from the previous section that the time complexity

for Prim-Dijkstra is the same as for shortest paths.

minimal spanning tree and shortest path problems 7

For Kruskal’s algorithm, we need to store the edges in a priority
queue structure, as well as merge components. If we choose to use
a heap for the priority queue, the total cost of the priority queue
operations will be O(|E| log |E|). To merge components together, we
need to determine |E| times in which set a given node is. This takes
time O(|E|) if we maintain set membership.

Exercise 8. Can you manage set membership of |V| nodes so that at
most O(|V| log |V|) membership changes are ever needed?

The best known deterministic algorithm for the MST is due to
Chazelle12,13 with a time complexity of O(|E|) for all realistic inputs. 12 Bernard Chazelle. The soft heap:

An approximate priority queue with
optimal error rate. Journal of the ACM,
47(6):1012–1027, 2000

13 Chazelle’s son is a movie director,
best known for is films Whiplash, La La
Land and First Man.

It is partly based on the algorithm of Boruvka-Choquet.

Applications of MST

Visualization of high-dimensional data

A classical taxonomy application is the classification of living organ-
isms. The DNAs of living organisms can be represented as points
living in a very high dimensional space. In order to visualize or mea-
sure similarities and dissimilarities between species, one can draw
the MST of this graph.

SARS

Crocodilium

Neanderthal

Homo Pekinensis

Homo Sapiens

Figure 8: A possible classification of
DNAs using the MST.

Scientific discovery

The MST can aid the identification of pattern in data via hierarchi-
cal clustering. If we break the MST into k pieces by removing the

minimal spanning tree and shortest path problems 8

k− 1 longest edges, we obtain clusters of data points that are closely
related. One can then examine these clusters and study their proper-
ties.

Metric Space Traveling Salesman Problem Approximation

Given a weighted connected graph G = (V, E), the traveling sales-
man problem (TSP) is to find a tour14 that visits all vertices of V and 14 Recall that a tour is not allowed to

repeat vertices.has minimal total weight among such tours. Here we will only con-
sider instances of this problem where the weights satisfy the triangle
inequality,

w[u, v] ≤ w[u, z] + w[z, v] .

There is a dynamic programming algorithm that solves this prob-
lem perfectly in time O(2|V||V|2). This running time rapidly becomes
abysmal for large graphs and there is little hope to do much better.

However, if we allow ourselves to output an approximate solu-
tion, we can use the MST to find a decent approximation within an
acceptable running time.

For the rest of the section, we will denote by T∗ an optimal tour,
and by T the tour that the algorithm outputs.

Definition 9. Let c > 1 be fixed. An algorithm is said to be a c-
approximation for the TSP if

length(T) ≤ c · length(T∗) .

Proposition 10. There is a 2-approximation for the TSP that can be found
in time

O(|E|+ |V|) + time needed to find the MST.

This approximation algorithm can be summarized as follows:

1. Find the MST.

2. Traverse the MST in a DFS fashion and list nodes by their time of
discovery d[v].

3. Output the tour that visits the nodes in that order and loops back
to the start node.

We now argue this algorithm is a 2-approximation for the TSP.
First, observe that any tour of the graph contains a spanning tree
and, in particular, an optimal solution T∗ must contain a spanning
tree S. This allows us to upperbound the total weight of a MST by
the length of T∗,

total weight(MST) ≤ total weight(S) ≤ length(T∗)

minimal spanning tree and shortest path problems 9

12

10

11

2

3

1

4

5

9 8

6

7

Figure 9: In grey, the path taken by
the DFS (twice the total weight of the
MST). In red, the returned tour T. The
numbering of the nodes corresponds to
the order in which they are encountered
during the DFS.

On the other hand, by the triangle inequality, the length of the path
followed by the DFS is larger than the length of the tour T. Hence

length(T) ≤ length(DFS) = 2 · total weight(MST) ≤ 2 · length(T∗) ,

as desired.

Remarks on the MST

• The MST for a given set of weights {w[·, ·]} is identical to the MST
for {ψ(w[·, ·])}, where ψ is a monotonically increasing15 function. 15 Meaning if x > y then ψ(x) > ψ(y).

• Let T be a spanning tree of G. Let

L(T) = max
(u,v) edge

of T

w[u, v] .

Then
L(MST) = min

T
L(T) .

We provide a proof for this last statement.

Proof. The inequality L(MST) ≥ min
T

L(T) follows from the definition

of minimum. Suppose the other inequality did not hold, i.e., that
there is a spanning tree T∗ distinct from the MST such that

L(MST) > L(T∗) .

By definition,
max

(u,v) edge
of MST

w[u, v] > max
(u,v) edge

of T∗

w[u, v] .

Letting (x, y) be an edge of the MST of maximal weight, the above
inequality states in particular that w[x, y] is larger than the weights of
all edges of T∗.

The contradiction is now in sight. Let A = {x}, B = V − {x} be
a partition of G. Since T∗ is spanning, it has a bridge between A and
B, and as we just argued this bridge has smaller weight than (x, y),
contradicting Proposition 7.

minimal spanning tree and shortest path problems 10

All-Pairs Shortest Path Problem

We are given a directed graph G = (V, E) with elements of V num-
bered 1 through n as a weight matrix W, where

w[i, j] = ∞ means there is no edge {i, j},
w[i, i] = 0 for all i.

We would like to fill in a matrix D whose entries consist of the short-
est path distances d[i, j] for all i, j ∈ V, and retrieve the shortest path
for each pair16 in a matrix P. 16 Note that it suffices to store a pointer

p[i, j] to the first node on the shortest
path from i to j since the next node can
be obtained by looking at the first node
on the shortest path from p[i, j] to j, and
so forth.

Classical Solution

The classical solution for this problem is a dynamic programming
approach known as the Floyd-Warshall algorithm. We will progres-
sively compute two n× n× (n + 1) matrices whose entries are

d[i, j, k] = length of the shortest path from i to j
via nodes of index at most k

p[i, j, k] = pointer to the neighbor of i on this
shortest path

The matrices D and P that we want consist of the entries with k = n,
and the entries with k = 0 are simply

d[i, j, 0] = w[i, j]

p[i, j, 0] =

nil if w[i, j] = ∞ or i = j,

j if 0 < w[i, j] < ∞ .

To compute the other entries, observe that the shortest path from i to
j via nodes of index at most k is either the same as via nodes of index
at most k − 1, or passes through the node k at some point, in which
case the path decomposes into two parts, i to k and k to j, which both
need to be of shortest length and via nodes of index at most k − 1.
See Figure 10.

The respective lengths of these paths are a := d[i, j, k − 1] and
b := d[i, k, k− 1] + d[k, j, k− 1], hence the formulas for the entries with
k > 0

d[i, j, k] = min(a, b)

p[i, j, k] =

p[i, k, k− 1] if a > b,

p[i, j, k− 1] otherwise.

Since each entry of the 3-dimensional matrices are computed in O(1)
time, the resulting algorithm has a time complexity of Θ(|V|3) and
space complexity17 Θ(|V|2). 17 To compute d[∗, ∗, k] we only need

the entries d[∗, ∗, k − 1] computed at
the previous iteration of the algorithm,
so we don’t need to store the entire 3-d
matrices.

minimal spanning tree and shortest path problems 11

i j

k

Nodes with
index < k

Nodes with
index ≥ k

Figure 10: Shortest paths from i to j
via nodes of index at most k come in
one of two kinds. Either they use only
nodes of index < k and have length
d[i, j, k − 1] (in blue), or they pass
through k at some point, resulting in a
path of length d[i, k, k− 1] + d[k, j, k− 1]
(in black).

Solution with Dijkstra’s Algorithm

Dijkstra’s algorithm yields a better solution, in terms of both simplic-
ity of the solution and complexity of the algorithm: repeat the single
source shortest path algorithm for each vertex in the graph.

With a Fibonnacci heap implementation for the priority queue, this
gives the bound

|V| ·O(|E|+ |V| log |V|) .

which is much better than the dynamic programming solution.
Even with the most basic array implementation for the priority

queue, the bound we obtain is

|V| ·O(|V|2) .

which is still better than the dynamic programming solution as the
worst case running time O(|V|2) will not be achieved for most graphs
in general.

Transitive Closure Problem

Definition 11. Let G = (V, E) a directed graph, the transitive closure
of G is GTRANS = (V, ETRANS), where

ETRANS = {(i, j) | ∃ a path from i to j in G}.

Given such a graph as an adjacency matrix T, we are tasked to
compute its transitive closure.

minimal spanning tree and shortest path problems 12

Matrix Multiplication Solution

A dynamic programming solution relying on matrix multiplication is
as follows. Define * By length we mean ordinary path

length here.

t[i, j] =

1 if ∃ path from i to j in G

0 otherwise,

t[i, j, k] =

1 if ∃ path of length* ≤ k from i to j in G

0 otherwise.

In particular the base case is

t[i, j, 1] =

1 if (i, j) ∈ E,

0 otherwise.

For k > 1, we note that if there is a path of length k from i to j it
can be decomposed as a path of length k − 1 from i to some node `

followed by a path of length 1, an edge, from ` to j.

i j

`

Figure 11: The paths from i to j using at
most k nodes come in one of two kinds.
Either they use at most k− 1 nodes, i.e.,
t[i, j, k− 1] = 1 (in blue), or they reach
some vertex l with an edge to j via a
path using k− 1, which is equivalent to
saying both t[i, l, k− 1] and t[l, j, 1] are 1
(in black).

The other possibility is that there was already a path of length
≤ k− 1 from i to j. Hence the formula,

t[i, j, k] = max

(
max

1≤l≤|V|
t[i, l, k− 1] · t[l, j, 1], t[i, j, k− 1]

)
.

Based on this, one could compute these values in the standard dy-
namic programming fashion. If done naïvely, this would take time
O(|V|3 · |V|) since we are filling up a |V| × |V| × |V| matrix whose
entries take O(|V|) time to compute. One can do much better.

Define Tk to be the matrix (t[i, j, k])1≤i,j≤|V|, i.e., the matrix with
all the values t[i, j, k] for a fixed k. In this notation, T1 is simply the
adjacency matrix. For a matrix A, define an operation f to replace all
strictly positive entries of A by 1’s.

minimal spanning tree and shortest path problems 13

Then,

Tk = f (Tk−1 · T1 + Tk−1)

= f (Tk−1 · (1 + T1))

= f (f (Tk−2 · T1 + Tk−2) · (1 + T1))

= f ((Tk−2 · T1 + Tk−2) · (1 + T1))
(

as the entries of the involved
matrices are non-negative

)
...

= f (T0(1 + T1)
k)

= f ((1 + T1)
k)

(
as T0 is the identity matrix

)
.

This justifies the following algorithm:

1. Compute (1 + T1)
|V| using Strassen and fast exponentiation.

2. Output f ((1 + T1)
|V|).

The first step takes time O(|V|log2 7 · log |V|) while the second takes
O(|V|2). As such, the overall running time of this algorithm is of the
order of O(|V|log2 7 · log |V|), which is often, but not always, better
than the naïve approach, which would perform DFS starting at all
nodes, and thus have a cost upper bounded by O(|V| × (|V|+ |E|)).

minimal spanning tree and shortest path problems 14

References

Bernard Chazelle. The soft heap: An approximate priority queue
with optimal error rate. Journal of the ACM, 47(6):1012–1027, 2000.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. MIT Press, 2009.

Edsger W. Dijkstra et al. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269–271, 1959.

Joseph B. Kruskal. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the American
Mathematical Society, 7(1):48–50, 1956.

Jaroslav Nešetřil, Eva Milková, and Helena Nešetřilová. Otakar
Borůvka on minimum spanning tree problem translation of both
the 1926 papers, comments, history. Discrete Mathematics, 233(1-3):
3–36, 2001.

	Shortest Path Problem
	Minimal Spanning Tree (MST)
	Applications of MST
	Remarks on the MST
	All-Pairs Shortest Path Problem
	Transitive Closure Problem

