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AbstractÐWe give a short proof of the following result. Let �X; Y � be any

distribution on N � f0; 1g, and let �X1; Y1�; . . . ; �Xn; Yn� be an i.i.d. sample

drawn from this distribution. In discrimination, the Bayes error L� �
infg Pfg�X� 6� Y g is of crucial importance. Here we show that without further

conditions on the distribution of �X; Y �, no rate-of-convergence results can

be obtained. Let �n�X1; Y1; . . . ; Xn; Yn� be an estimate of the Bayes error,

and let f�n�:�g be a sequence of such estimates. For any sequence fang
of positive numbers converging to zero, a distribution of �X; Y � may be

found such that E jL� ÿ �n�X1; Y1; . . . ; Xn; Yn�jf g � an infinitely often.

Index TermsÐDiscrimination, statistical pattern recognition, nonparametric

estimation, Bayes error, lower bounds, rates of convergence.
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1 INTRODUCTION

THE pattern recognition problem may be formulated as follows: we
are given n i.i.d. observations Dn � f�X1; Y1�; . . . ; �Xn; Yn�g, drawn
from the common unknown distribution of �X;Y � on RRd � f0; 1g.
Given X, one must estimate Y as best as possible by a function
gn�X� of X and the observations. The best one can hope for is to
make an error equal to the Bayes error, L�:

Ln �def
Pfgn�X� 6� Y jDng � L� �def

inf
g:RRd!f0;1g

Pfg�X� 6� Y g:

It is thus of great importance to be able to estimate L� accurately,

even before pattern recognition is attempted. Also, a comparison of
estimates of Ln and L� gives us an idea how much room is left for

improvement.
In a first group of methods, L� is estimated by an estimate bLn of

the error probability Ln of some consistent classification rule gn. As
such, this problem has been attempted by Fukunaga and Kessel

[9], Chen and Fu [2], Fukunaga and Hummels [8], and Garnett and

Yau [10], to cite just the early contributions. Concerning the error
estimation of specific classification rules see Chapter 10 in

McLachlan [11]. Clearly, if the estimate bLn we use is consistent
in the sense that bLn ÿ Ln ! 0 with probability one as n!1, and

the rule is strongly consistent, then bLn ! L� with probability one.

In other words, we have a consistent estimate of the Bayes error
probability. The problem is that even though for many classifiers,bLn ÿ Ln can be guaranteed to converge to zero rapidly, regardless
what the distribution of �X;Y � is (see Chapters 8, 23, 24, and 31 of

Devroye et al. [7]), in view of Cover [3] and Devroye [4], the rate of
convergence of Ln to L� using such a method may be arbitrarily

slow. Thus, we cannot expect a good performance for all

distributions from such a method. The question thus is
whether it is possible to come up with another method of

estimating L� (by �n�X1; Y1; . . . ; Xn; Yn�) such that the difference

�n�X1; Y1; . . . ; Xn; Yn� ÿ L� converges to zero rapidly for all

distributions. Unfortunately, there is no method that guarantees

a certain finite sample performance for all distributions. This

disappointing fact is reflected in the following negative result

(Theorem 8.5 of Devroye et al. [7]).

Theorem 1. For every n, for any estimate �n�X1; Y1; . . . ; Xn; Yn� of the

Bayes error probability L�, and for every � > 0, there exists a

distribution of �X;Y �, such that

E j�n�X1; Y1; . . . ; Xn; Yn� ÿ L�jf g � 1=4ÿ �:

The counterexamples in Theorem 1 vary with n, so it may still

be possible that for every fixed distribution for �X;Y �, there exists

a universal rate of convergence to zero for

E j�n�X1; Y1; . . . ; Xn; Yn� ÿ L�jf g:
The purpose of this note is to show that this too is impossible. We

show the following:

Theorem 2. For any sequence fang of positive numbers converging to

zero, a distribution of �X;Y � on f1; 2; 3; . . .g � f0; 1g may be found

such that

E j�n�X1; Y1; . . . ; Xn; Yn� ÿ L�jf g � an
infinitely often.

We note that for the L1 error in density estimation, similar

global lower bounds were obtained by Devroye [5], [6] and BirgeÂ

[1]. We also note that the phrase ªinfinitely oftenº cannot be

dropped from Theorem 2. Indeed, there exist deterministic

sequences bn with jbn ÿ L�j � c=n infinitely often for some constant

c: just consider the dyadic sequence

0=20; 1=20; 0=21; 1=21; 2=21; 0=22; 1=22; 2=22; 3=22; 4=22; . . .

With �n � bn, we thus obtain a very good estimate along an

(unknown) subsequence.

2 PROOF of THEOREM 2

Given fang, we find a sequence of positive integers `n with a given

property to be specified later. Then, we partition the positive

integers into consecutive blocks of cardinality `1; `2; `3; . . . . Let z �
�z1; z2; . . .� be a vector assigning a bit to each integer, and let u �
�u1; u2; . . .� be a vector assigning a bit to each block. Then the

distribution of �X;Y � is described constructively as follows: first a

block B is drawn from the geometric distribution:

PfB � ig � 1

2i
; i � 1:

Then X is drawn uniformly over the `B integers in that block. If

uB � 0, then Y � zX , while if uB � 1, Y is Bernoulli �1=2�. For this

distribution, it is easy to verify that

L� � L��u� �
X1
i�1

ui
2i�1

as the only problem blocks are those with ui � 1, where locally, the

Bayes error conditioned on X 2 block i is 1=2. Note in particular

that L� depends upon u only.
Assume that all samples have the same common X1; X2; . . . ; Xn

components, consisting of i.i.d. observations drawn from the

distribution of X (which is the same for all �u; z�). Then let W �
�W1; . . . ;Wn� be a bit vector consisting of i.i.d. Bernoulli �1=2�
random bits. Then, define
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Yi �
n
zXi

if ub � 0 where b is the block number of Xi

Wi otherwise:

Put

Dn � Dn�u; z� � f�X1; Y1�; . . . �Xn; Yn�g:
In the proof we use randomization such that �u; z� is replaced by

the independent random sequences �U;Z�, where U � �U1; U2; . . .�
and Z � �Z1; Z2; . . .� are i.i.d. Bernoulli �1=2� sequences.

Let Uk
� and Uk

ÿ denote the vector U , with the difference that Uk
�

forces the kth bit to be 1 and Uk
ÿ forces the kth bit to be 0. The event

that all X1; . . .Xn belong to block k are disjoint is denoted by Tk:
Introduce the notation

Rn�u; z� � E j�n�Dn�u; z�� ÿ L��u�jf g;

�Rn�u; z� � sup
m>n

Rm�u; z�
am

and

An � f�u; z� : �Rn�u; z� � 1g:
Observe that given X1. . .; Xn and U and the event Tk, the

d i s t r i b u t i o n s o f �Dn�Uk
ÿ; Z�; If�Uk

� ;Z�2Ang� a n d

�Dn�Uk
�; Z�; If�Uk

� ;Z�2Ang� are equal. In order to see this decompose

Dn�Uk
�; Z� and Dn�Uk

ÿ; Z� as follows: Let Xi1 ; . . . ; XiM be the

subsample of X1; . . . ; Xn such that Xijs fall into block k.

Put

En�U;Z� � f�Xij ; Yij � : j � 1; . . . ;Mg
and

Fn�U;Z� � Dn�U;Z� n En�U;Z�:
Then, given X1. . .; Xn and U

Fn�Uk
�; Z� � Fn�Uk

ÿ; Z� � Fn�U;Z�;
while, because of

En�Uk
�; Z� � f�Xij ;Wij � : j � 1; . . . ;Mg

and

En�Uk
ÿ; Z� � f�Xij ; ZXij

� : j � 1; . . . ;Mg;

under the event Tk En�Uk
�; Z� and En�Uk

ÿ; Z� have the same

distribution. Since the event

f�Uk
�; Z� 2 Ang � f �Rn�Uk

�; Z� � 1g
also only depends on U n Uk and Zi's falling out of block k;

�Fn�U;Z�; If�Uk
� ;Z�2Ang�

is independent from both En�Uk
�; Z� and En�Uk

ÿ; Z�. This completes

our statement.
We proceed with an indirect proof. Suppose that for all �u; z�,

�Rn�u; z� ! 0. This implies

Pf�U;Z� 2 Ac
ng ! 0:

Thus, by Fatou's lemma

0 � sup
u;z

lim sup
n

Rn�u; z�
an

� E
n

lim sup
n

Rn�U;Z�
an

o
� Eflim sup

n
aÿ1
n Rn�U;Z�If�U;Z�2Angg

� lim sup
n

aÿ1
n EfRn�U;Z�If�U;Z�2Angg

� lim sup
n

aÿ1
n Efj�n�Dn�U;Z��

ÿ L��U�jIf�U;Z�2Angg:
For proper k � kn,

lim sup
n

aÿ1
n E j�n�Dn�U;Z�� ÿ L��U�jIf�U;Z�2Ang

� 	
� lim sup

n
aÿ1
n E

n
Efj�n�Dn�U;Z�� ÿ L��U�j

If�U;Z�2AngjX1; . . .Xn;UgITk
o

� lim sup
n

aÿ1
n E

n�
Efj�n�Dn�Uk

ÿ; Z�� ÿ L��Uk
ÿ�j

If�Ukÿ ;Z�2AngjX1; . . .Xn;UgIUk�0

� Efj�n�Dn�Uk
�; Z�� ÿ L��Uk

��jIf�Uk
� ;Z�2Angj

X1; . . .Xn; UgIUk�1

�
ITk

o
� lim sup

n
�2an�ÿ1E

n�
Efj�n�Dn�Uk

ÿ; Z�� ÿ L��Uk
ÿ�j

If�Ukÿ ;Z�2AngjX1; . . .Xn;Ug
� Efj�n�Dn�Uk

�; Z�� ÿ L��Uk
��jIf�Uk

� ;Z�2AngjX1; . . .Xn; Ug
�
ITk

o
� lim sup

n
�2an�ÿ1E

n�
Efj�n�Dn�Uk

ÿ; Z�� ÿ L��Uk
ÿ�j

If�Ukÿ ;Z�2AngjX1; . . .Xn;Ug
� Efj�n�Dn�Uk

ÿ; Z�� ÿ L��Uk
ÿ� ÿ 1=2k�1j

If�Uk
� ;Z�2AngjX1; . . .Xn;Ug

�
ITk

o
;

where in the last step we used that given X1; . . .Xn and U and the

event Tk, the distributions of �Dn�Uk
ÿ; Z�; If�Uk

� ;Z�2Ang� and

�Dn�Uk
�; Z�; If�Uk

� ;Z�2Ang� are equal, and because of L��Uk
�� �

L��Uk
ÿ� � 1=2k�1:

lim sup
n

aÿ1
n E j�n�Dn�U;Z�� ÿ L��U�jI �U;Z�2Anf g

� 	
� lim sup

n
�2an�ÿ1E

n�
E
�j�n�Dn�Uk

ÿ; Z�� ÿ L��Uk
ÿ�j

I �Ukÿ ;Z�2Anf gjX1; . . .Xn;U
	

�E
�j�n�Dn�Uk

ÿ; Z�� ÿ L��Uk
ÿ� ÿ 1=2k�1j

I �Uk
� ;Z�2Anf gjX1; . . .Xn;U

	�
ITk

o
� lim sup

n
�2an�ÿ1E

n
E
�

1=2k�1

I �Ukÿ ;Z�2Anf gI �Uk
� ;Z�2Anf gjX1; . . .Xn;U

	
ITk

o
� lim sup

n
�2k�2an�ÿ1P �Uk

ÿ; Z� 2 An; �Uk
�; Z� 2 An; Tk

� 	
� lim sup

n
�2k�2an�ÿ1P �Uk

ÿ; Z� 2 An; �Uk
�; Z� 2 An

� 	
P Tkf g

� lim sup
n
�2k�2an�ÿ1 

1ÿ 2
P �Uk

ÿ; Z� 2 Ac
n

� 	�P �Uk
�; Z� 2 Ac

n

� 	
2

!
P Tkf g

� lim sup
n
�2k�2an�ÿ1 1ÿ 2P �U;Z� 2 Ac

n

� 	ÿ �
P Tkf g

� lim sup
n
�2k�2an�ÿ1 1ÿ 2P �U;Z� 2 Ac

n

� 	ÿ �
1ÿ n2

22k�1`k

� �
� 1=2

if 1=2kn�2 � an (e.g., the choice kn � blog2�1=an�c ÿ 2!1 is fine)

644 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 7, JULY 1999



a n d `kn � n2. T h i s c a n b e s a t i s f i e d b y t h e c h o i c e
`i � max2fn : kn � ig.

This is a contradiction, therefore for all fang, there is u; z; f`kg,
that lim supn

Rn�u;z�
an

> 0, which implies that for all fang, there is
u; z; f`kg, that

Ej�n�Dn�u; z�� ÿ L��u�j > can

infinitely often. Applying this to the original
�����
an
p

, this concludes
the proof of the Theorem. tu

3 CONCLUSION

In a standard pattern recognition design process, one takes a
number of features, and evaluates whether these suffice or will do
for discrimination. If so, a discrimination method is designed. If
not, more or different features must be considered. The quality of a
collection of features is measured by the Bayes probability of error,
L�. Thus, the first phase of any pattern recognition method is based
on estimates of L� (even before a discriminant is picked!). In this
paper, we show that no one can trust any Bayes error estimate, and
that it is futile to even let the sample size tend to infinity. It is only
possible to give error bounds or confidence bands for L� under
assumptions on the distribution of the data. In practice, one can
thus never claim to have a universally superior feature extraction
or Bayes error estimation method, no matter how many simula-
tions are performed and no matter how large the sample sizes are.
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