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1. Introduction. The development of image processing has motivated the in-
vestigation of properties of point sets for the purpose of image classification and/or
understanding. Connectivity graphs and various enclosing boundary sets have been
used to characterize the shape of point sets. The minimum spanning tree, the Gabriel
graph, and the Delaunay triangulation are important connectivity graphs. Convex,
maximal, and α-hulls [KLP75, EKS83] are instances of boundary sets. The kth iter-
ated hull [Ch85] and the related concept of k-hull [CSY87] have also been proposed.

In this paper we introduce unoriented Θ-maxima as a generalization of extreme
and maximal vectors. These are useful as boundary descriptors, and remain invariant
under rotation.

Let S be a set of n planar points. A ray from a point p ∈ S is the collection of
all points {p+ λ(v − p) : λ > 0}, where v is a fixed point in the plane not equal to p.
A ray from a point p ∈ S is called a maximal ray if it passes through another point
q ∈ S. A cone is defined by a point p and two rays A and B emanating from it: it is
the convex set {λu+ (1− λ)v : u ∈ A, v ∈ B, λ ∈ [0, 1]}. A point p ∈ S is said to be a
maximum (or maximal) with respect to S if there exist two rays, A and B, emanating
from p such that A and B are parallel to the +x- and +y-axes, respectively (thus,
v = p+ (1, 0) and v = p+ (0, 1) in the definition of A and B), and the points of S lie
outside the (π/2-angle) cone defined by p, A, and B. A point p ∈ S is an unoriented
Θ-maximum with respect to S if and only if there exist two maximal rays, A and B,
emanating from p with an angle at least Θ between them so that the points of S lie
outside the (Θ-angle) cone defined by p, A, and B (see Figure 1). We let SΘ denote
the subset of S whose elements are unoriented Θ-maxima. For the remainder of this
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Fig. 1. Point p1 is an unoriented π/2-maximum whereas p2 is not.

paper, we only consider the problem of computing Sπ/2. The algorithms apply to
other values of Θ > π/2. The additional technique for handling values of Θ < π/2 is
discussed in the appendix.

For each p ∈ Sπ/2, our algorithms report two witnesses in the form of two maximal
rays with an included angle, denoted by αp ≥ π/2. Each of these maximal rays
intersects the same edge of the convex hull of S and contains a ray parallel to either
the x- or the y-axis in the cone between the two maximal rays. The above properties
lead to two different approaches for computing Sπ/2, which we outline in the following
paragraphs.

1.1. Convex hull approach. The following geometric properties of Sπ/2 (to
be proven later) form the pillars of this approach and allow for a reduction of the
problem into simpler tasks equal in number to the convex hull of S.

1. For each point p ∈ Sπ/2, there exist two maximal rays emanating from p which
intersect the same edge of the convex hull of S and such that the points of S
lie outside the π/2-cone between the two rays.

2. For each point p ∈ Sπ/2 there exist no more than three pairs of maximal rays
which satisfy the previous property.

3. A pair of maximal rays which satisfies the first property includes the perpen-
dicular from p to the corresponding convex hull edge in the π/2-cone between
them.

The first task involves reporting unoriented maxima whose corresponding maximal
rays intersect the same convex hull edge of S, and the other two properties facilitate
the use of efficient computational geometry tools to develop an optimal running time
algorithm. A detailed description of this approach is given in section 2.

1.2. Restricted unoriented maximum approach. This approach is based
on the following simple property: for each point p ∈ Sπ/2 there exist two maximal
rays emanating from p which contain the +x-, the −x-, the +y-, or the −y-axis in
the π/2-angle cone between them.

The problem is thus reduced to reporting for each of the four (directed) axes
the unoriented maxima whose corresponding maximal rays contain it. For each axis,
e.g., the +y-axis, we first sort points of the set in the direction perpendicular to the
selected axis. We then perform two more linear passes. In the first pass, we scan the
points of S from left to right constructing the convex hull of the visited points. Before
p ∈ S is processed, we compute the empty angle between the tangent from p to the
convex hull and the selected axis, and call it θ. Perform a similar pass from right to
left, storing the angle at p in ξ. A simple geometric argument shows that with respect
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to the selected axis a point p ∈ Sπ/2 if and only if θ + ξ ≥ π/2.

It is natural to observe the similarity between the two approaches. However,
the restricted unoriented maxima (rum) approach is more suitable for handling the
discrete versions of the problem, namely, answering unoriented maximum queries,
and identifying unoriented maxima of a set in parallel models of computation. This
follows from the fact that focusing on a particular direction allows for the use of the
divide-and-conquer technique with an efficient merging process. Moreover, the rum
approach is more suitable for probabilistic analysis. A detailed description and the
probabilistic analysis of this approach is given in section 4.

The rest of the paper is organized as follows. Section 2 is dedicated to the details
of computing unoriented π/2-maxima for a given set of planar points. In section 3 a
lower bound for the algebraic computation tree model is developed, which implies that
our algorithm is optimal. Finally, in section 4 the expected number of unoriented π/2-
maxima is analyzed (and used) to obtain a linear expected running time algorithm.
In conclusion, we discuss an approach for handling arbitrary values of Θ and some
related results and unsolved problems.

2. Computing unoriented π/2-maxima. Let S = {X1, X2, . . . , Xn} denote
a set of n planar points in general position (no three points are collinear). Its convex
hull CH(S) is the pair (V (S), E(S)), where V (S) is the set of vertices and E(S) is
the set of edges. We denote the size of the convex hull by h (h = |V (S)| = |E(S)|). A
point p ∈ S − V (S) is called a candidate for an edge e ∈ E(S) if there exist two rays
emanating from p with a π/2-angle cone between them which intersect the edge e.
Clearly, a point which is an unoriented maximum must be a candidate for some edge
of the convex hull, and all convex hull points are candidates. From now on, we pay
attention to candidate points that are not on the convex hull. To report the elements
of the set Sπ/2, based on the convex hull approach, we first identify the candidates
for each edge of E(S); then we consider each subset separately and check whether a
candidate is a true unoriented π/2-maximum (i.e., whether the π/2-cone defined by
the candidate is empty or not). The following geometric properties of candidates are
critical to the efficiency of our algorithm.

Lemma 1. Each point p ∈ S − V (S) may be a candidate for at most three edges
of E(S).

Proof. The circular angle around p is 2π and, moreover, the points are in general
position. Therefore, if p is the candidate for more than three edges, then one of the
cones must have angle less than π/2.

Lemma 2. If point p is a candidate for the edge e ∈ E(S), then p lies in the
semicircle of diameter e which has a nonempty intersection with the interior of the
polygon defined by E(S).

Proof. The proof is elementary and omitted.

Therefore, we have h semicircles with the constraint that no point in S − V (S)
belongs to more than three semicircles. In the following subsection, we establish a
linear bound on the number of intersections of such curves. Algorithms for identifying
candidates for each edge and for reporting unoriented maxima are then presented in
sections 2.2 and 2.3, respectively.

2.1. A combinatorial property of constrained circles. Let C(h) = {C1, . . . ,
Ch} be a set of h planar circles with the constraint that no point in the plane belongs
to more than k circles (k ≤ h). Let xi and ri denote, respectively, the center and the
radius of the ith circle Ci.
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Fig. 2. Finding a bound on θ.

Without loss of generality, we assume that C1 is the circle of C(h) with the smallest
radius and that r1 = min1≤i≤h{ri} = 1.

Lemma 3. At most k − 1 circles can have their centers inside C1.
Proof. C1 is the circle with smallest radius. Therefore, any circle Ci having xi

inside C1 must contain x1. Since x1 cannot belong to more than k circles, the lemma
follows.

Let C be the circle concentric to C1 with radius
√

3, let Di be the disc consisting
of circle Ci with its interior, and let the arc Ai be the intersection of Di and the
boundary of C if it exists. It is easy to see that any circle in C(h)−C1 that intersects
C1 and has a center outside C1 must intersect C. The following lemma is based on
Avis and Horton [AH81].

Lemma 4. If Ci intersects C1 and xi lies outside of C1, then Ai subtends an
angle of at least π/3 radians.

Proof. Refer to Figure 2 for illustration. Let x, y and θ = 6 xix1z be as shown in
Figure 2. Since Ci intersects C1 and xi lies outside of C1, y = d(x1, xi) ≤ r1 + ri =
1+x. Therefore, we have 1 ≤ x, y ≤ 1+x and cos θ = (3+y2−x2)/(2

√
3y); elementary

geometry shows that cos θ ≤ √
3/2. Therefore, θ ≥ π/6 radians, and thus the lemma

follows.
Theorem 1. At most 7k circles can intersect C1.
Proof. No point of the plane can belong to more than k circles. Therefore, Lemma

4 implies that no more than 6k circles can intersect C1 and have their center outside
C1. Also, Lemma 3 implies that no more than k circles can intersect C1 and have
their center inside C1.

Corollary 1. C(h) induces at most 14kh intersection points.
Proof. Theorem 1 implies that C1 can have at most 14k intersection points. By

an inductive argument (removing C1 from C(h) to obtain C(h−1)), we can conclude
that C(h) induces at most 14kh intersection points.

It is clear that Corollary 1 holds for semicircles too.
Corollary 2. In the arrangement of semicircles that was introduced in Lemma

2, there are at most 42h intersection points.
Proof. The proof follows from Corollary 1 and Lemma 1.
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Fig. 3. An example illustrating the idea of plane sweep.

In this subsection, we showed that there are only a linear number of intersections
among all the semicircles. We show in the next subsection how to apply this result
to report candidates with respect to each hull edge.

2.2. Reporting candidates for each hull edge. In this section we will de-
scribe a procedure for reporting the candidates for E(S). The procedure is based on
the plane sweep technique of Bentley and Ottmann [BO79]. The idea of plane sweep
can be described with the following simple example. Assume that we have two seg-
ments s1, s2, and without loss of generality, assume that the x-coordinates of the left
(right) endpoints of s1, s2 are the same. The problem is to decide whether s1 intersects
s2. We can see that s1 intersects s2 if and only if the order from top to bottom of the
y-coordinates of the right endpoints of s1, s2 differs from the top-to-bottom order of
the y-coordinates of the left endpoints of s1, s2. In general, the plane sweep method
maintains a total order of some geometric objects (e.g., O(n) segments) at a given
stage. To check certain properties of two valid objects (e.g., whether s1 intersects
s2), it simply checks whether the top-to-bottom order of these two objects switches
at a later stage. Usually a dynamic balanced binary search tree is sufficient for the
plane sweep method (to maintain the total order) [BO79]. In Figure 3 we illustrate
an example for plane sweep for some xy-monotone (i.e., monotone in both the x- and
y-directions) circular segments.

First we give a description of the procedure and then explain the essential details
and analyze its correctness and performance.

Procedure Candidates

Input: A set S of n planar points.

Output: The list of edges of E(S) together with a list of candidate points for each
edge.

Method:
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1. Compute the convex hull of S and store the edges of CH(S), E(S) in a doubly
linked list.

2. Compute the semicircles having as diameters the edges of E(S).
3. Partition each semicircle into at most three parts such that every (circular)

segment produced is xy-monotone. Let H be the set of segments obtained
(note that |H| ∈ O(n)).

4. Apply the Bentley and Ottmann [BO79] plane sweep algorithm on H ∪ (S −
V (S)) to report the intersection points of the monotone segments in H. When
a point p ∈ S−V (S) is met by the sweep line, an O(log n) search in a balanced
search data structure T may be used to identify those edges of CH(S) for
which p is a candidate. At the end of this step, all candidates of S − V (S)
are known.

5. Produce the list of candidates for each edge of E(S) using the output of
step 4.

End of Procedure

Correctness of Procedure Candidates in computing the intersection points of the
elements in H∪(S−V (S)) follows directly from correctness of the sweep line algorithm
in [BO79]. Computing such intersections is essential to maintaining a total vertical
ordering of the segments in a search structure T where the following four operations
can be implemented in O(log n) time.

1. INSERT(s, T ) inserts the segment s into the total order maintained by T .
2. DELETE(s, T ) deletes segment s from T .
3. ABOVE(s, T ) returns the name of the segment immediately above s in T .
4. BELOW(s, T ) returns the name of the segment immediately below s in T .

These operations are listed in [SH76] and referred to by [BO79]. They can be imple-
mented using a balanced binary search tree.

For a given vertical sweep line L, T contains the total ordering of the monotone
segments (of semicircles) intersecting L. They define vertical intervals on L, each of
which corresponds to a unique intersection region. We modify the balanced search tree
by keeping for each vertical interval (uniquely determined by two adjacent elements
of H) the list of semicircles containing that segment. By Lemma 1, at most three
such semicircles may exist. Therefore, the space complexity of the data structure is
still linear. When a new semicircle is encountered (and two monotone segments are
to be inserted), we use the information in its neighbor vertical intervals to establish
its linked list. A deletion of a semicircle can be handled similarly. Finally, when
an intersection point of two segments of semicircles is encountered, the appropriate
linked list can be updated in constant time. Handling point p ∈ S − V (S) requires
performing a search of the structure T which returns the vertical interval that contains
p. We can then determine the semicircles that contain p in constant time, and update
the list of candidates for each of the corresponding convex hull edges in E(S).

Step 1 can be done in O(n log n) time, and steps 2, 3, and 5 can be accomplished
in O(n) time. The Bentley and Ottmann [BO79] algorithm has an O(n log n+k log n)
running time, where k is the number of intersection points to be reported. Since
we have O(n) intersection points by Corollary 2, the execution time of step 4 is
O(n log n). Therefore, Procedure Candidates reports the set of candidates for the
convex hull edges in O(n log n) time and O(n) space.

2.3. Computing unoriented maxima among candidates. Given the output
of Procedure Candidates (i.e., a set of candidates for each edge of E(S)), we now
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develop a procedure to identify for each convex hull edge the unoriented maxima
among its list of candidates.

Let Ci denote the set of candidates for the ith edge ei of E(S), and let ki denote
its size. If p ∈ Ci, then the ray emanating from p and perpendicular to the edge ei,
denoted by Rp,ei , properly intersects ei since p lies inside the semicircle of diameter
ei. Let wedge(p, ei) be the largest angle at p which does not contain points of S and
is bounded by two maximal rays, Lp and Rp, that emanate from p and intersect ei
(Figure 4).

Lemma 5. If point p is an unoriented maximum with respect to edge ei, then
Rp,ei must belong to the cone defined by p and the maximal rays Lp and Rp.

Proof. IfRp,ei does not lie between the maximal rays Lp andRp, then wedge(p, ei) <
π/2, a contradiction.

Lemma 6. If the convex hulls of points in Ci − {p} to the left and to the right
of Rp,ei , denoted by CHL,p and CHR,p respectively, are known, then we can compute
wedge(p, ei) in O(log n) time.

Proof. Refer to Figure 4. Our problem is to compute the rightmost and leftmost
(maximal) rays, Rp and Lp, emanating from p, intersecting ei, and containing Rp,ei in
the cone (p, Lp, Rp). Rp (Lp) can be computed by finding the ray from p tangent to
the convex hull to the right (left) of Rp,ei , which can be done in O(log n) time [PS85].
If the angle between Rp and Lp (defined by the cone containing Rp,ei) is ≥ π/2, then
p is an unoriented maximum.

Procedure Unoriented Maxima

Input: A list of candidates for the ith edge of E(S).

Output: The unoriented maximal points and the rays defining their widest angles.

Method:
1. Sort the ki points of Ci along ei. Note that the sorted points define a simple

polygonal chain.
2. Compute Lp for all points p ∈ Ci as follows:

• CHL ← endpoint of ei
• Going from left to right using the order of the points of step 1:

– Compute Lp using CHL (as explained in Lemma 6).
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– Insert p in CHL using the rules of the convex hull algorithm of Avis,
ElGindy, and Seidel [AES85].

3. Compute Rp for all points p ∈ Ci in a similar fashion to step 2, by scanning
them from right to left.

4. For each p ∈ Ci, compute angle wedge(p, ei) between Lp and Rp, and if αp ≥
π/2, output (p,Lp,Rp).

5. Output V (S).

End of Procedure

Correctness of the above procedure follows from the correctness of the on-line
convex hull algorithm in [AES85] and from Lemma 6.

Step 1 is performed in O(ki log ki) time. Since the algorithm in [AES85] updates
the convex hull of ki points by insertion in O(log ki) time, and since searching for Lp
and Rp requires O(log ki) time at most as explained in Lemma 6, then steps 2 and 3
require O(ki log ki) time. Step 4 is clearly performed in O(ki) time, hence O(ki log ki)

total time is spent for edge ei. Lemma 1 implies that
∑h

i=1 ki log ki ≤ log n
∑h

i=1 ki ≤
3n log n ∈ O(n log n). Therefore, we can state the final result of this section as follows.

Theorem 2. All unoriented maximal points of S can be computed in O(n log n)
time and O(n) space.

In the next section, we establish an Ω(n log n) lower bound for computing unori-
ented maxima in the plane, thus proving that our algorithm is optimal.

3. Lower bound for the algebraic computation tree model. In this section
we establish an Ω(n log n) lower bound for computing unoriented Θ-maxima in the
plane. This Ω(n log n) lower bound for computing the unoriented maxima SΘ ⊆ S
in the plane, for π/2 ≤ Θ ≤ π, is achieved by a reduction from the integer element
uniqueness problem. Note that when Θ ≥ π, the unoriented maxima SΘ ⊆ S are
exactly the convex hull (extreme) points, and it is well known that computing the
extreme points of a set of n points has a lower bound of Ω(n log n) under the algebraic
computation tree model [PS85]. Our result is as follows.

Theorem 3. The problem of computing SΘ ⊆ S for π/2 ≤ Θ ≤ π is Ω(n log n)
under the algebraic computation tree model, where |S| = n.

Proof. We use a reduction from integer element uniqueness. In Yao [Ya89] this
problem is shown to have a lower bound of Ω(n log n) under the algebraic computation
tree model.

We are given a set of integers M = {x1, . . . , xn}, input to the integer element
uniqueness problem. For each xi, produce the following six points: (i + ε, (nxi)

2),
(i+ε, (nxi)

2+ε), (i+ε, (nxi)
2−ε), (i−ε, (nxi)2), (i−ε, (nxi)2+ε), and (i−ε, (nxi)2−ε).

The value of ε = 1/4 is used for our proof. Let S be the set containing all of these
points.

If xi = xj then at least two out of the twelve induced points cannot be unoriented
maxima (Figure 5). On the other hand, if xi is unique in M , then the six points
created for xi are all unoriented maxima. Hence all xi’s in M are distinct if and
only if there are exactly 6n unoriented maxima in S. We have thus reduced integer
element uniqueness to computing the unoriented maxima in linear time. Since the in-
teger element uniqueness problem has a lower bound of Ω(n log n) under the algebraic
computation tree model, the theorem follows.

We have thus obtained an optimal algorithm for computing unoriented Θ-maxima
in the plane. In the next section we present the rum algorithm which will beat the
Ω(n log n) lower bound when the points are drawn from a common distribution. This
is obtained via a careful probabilistic analysis of the expected number of unoriented
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maxima, together with a simple divide-and-conquer algorithm.

4. Expected number of unoriented maxima. In this section, we analyze the
expected number of unoriented maxima when elements of the set S are independently
drawn from a common distribution. Since n points on the perimeter of a convex set
are all unoriented maxima, it is only natural to exclude such pathological cases. This
is done by assuming that the distribution of the prototype data point is absolutely
continuous; i.e., it has a density f . This has the added benefit that with probability
one, no two points have the same coordinates. We also assume that f has compact
support. Without loss of generality, we can then assume that f vanishes off [0, 1]2. We
will show that under a mild condition on f , which is satisfied for most distributions
that appear in probabilistic models, the expected number of unoriented maxima is
O(
√
n). In section 4.4, we describe a divide-and-conquer algorithm that runs in linear

expected time for this class of distributions.
The notion of unoriented maximum generalizes that of a maximal vector, for

which algorithms can be found in [BS78, BKST78, De80, De85, GBT84, BCL90,
Go94, KS85, KLP75]. The expected time was considered in all but the last two of
these papers. For additional analysis, see [Dw90, Bu89]. All linear expected time
algorithms described in these papers have conditions on the distribution that are
more restrictive than the ones used in this paper.

4.1. Preliminaries. We define a cone Cθ(x, η) for x ∈ IR2, θ ∈ [0, 2π), and
η ∈ [0, 2π) as the collection of all points y ∈ IR2 with polar coordinate representation
y = x + reiφ for some r > 0 and φ ∈ (θ − η/2, θ + η/2). Thus, x is the top of the
cone, and θ is the direction of the bisector, while η is the opening angle. Given a set
of vectors Xn = {X1, . . . , Xn} in IR2, we say that Xj is an unoriented maximum
if there exists a θ such that Cθ(Xj , π/2) ∩ Xn = ∅. Thus, every maximal vector and
every point on the convex hull of Xn is an unoriented maximum of Xn.

It is helpful to cut the problem into manageable subproblems. To do so, we
introduce the notion of a restricted unoriented maximum or rum. Fix a direction
ζ ∈ [0, 2π). Call Xj a rum of Xn if there exists a direction θ such that

Cθ(Xj , π/2) ∩ Xn = ∅
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and

Cθ(Xj , π/2) ⊇ Cζ(Xj , π/3) .

Call this collection of directional unoriented maxima Sζ . Obviously, if S is the collec-
tion of all unoriented maxima, we have

S = ∪ζ∈[0,2π)Sζ = ∪11
j=0Sjπ/6 .

This property allows us to focus on rums. In what follows, we fix ζ = π/2 and
abbreviate the restricted unoriented maxima with respect to this ζ to rums. The set
of all rums among X1, . . . , Xn is denoted by Sn. We list three structural properties
of Sn.

1. The Lipschitz property. If Xi ∈ Sn, Xj ∈ Sn, then the line segment joining
Xi and Xj has an angle with the x-axis within π/3 of 0 or π. Suppose that
the segment forms an angle of ξ degrees, with π/2 ≥ ξ > π/3. Then either

Xj ∈ Cθ(Xi, π/2) ⊇ Cζ(Xi, π/3)

for some θ, or vice versa,

Xi ∈ Cθ(Xj , π/2) ⊇ Cζ(Xj , π/3) .

In the former case, Xi is not a rum, and in the latter case, Xj is not a rum. If
we sort all the rums from left to right and join them by straight line segments,
we obtain a piecewise linear curve that is Lipschitz of constant not more than
π/3. (A function f is Lipschitz of constant C if |f(x)− f(y)| ≤ C|x− y|.)

2. The monotonicity property.

rum(X1, . . . , Xn+1) ⊆ rum(X1, . . . , Xn) ∪ {Xn+1} .
3. The transitive property.

rum(X1, . . . , Xn+m) = rum(rum(X1, . . . , Xn),rum(Xn+1, . . . , Xn+m)) .

We will need the following elementary lemma.
Lemma 7. If N is a binomial (n, p) random variable, then P{N > enp} ≤ e−np.
Proof. By Chernoff’s bounding method [Ch52], for t > 0 and λ > 0,

P{N > t} ≤ E
{
eλN−t

}
≤ (eλp+ 1− p

)n
e−λt

≤ exp
(
(eλ − 1)np− λt

)
= exp

(
t− np− t log

(
t

np

))
(take λ = log(t/(np)) )

so that

P {N > enp} ≤ e−np .

Theorem 4 deals with distributions having a bounded density: for such distribu-
tions, there is limited dependence between the components of the random vector X.
In a later section, we will obtain analogous results for unbounded densities. In the
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bounds presented in this paper, the dependence upon f is measured through ‖f‖∞
or
∫
fα.
Theorem 4. Let X be a random vector on [0, 1]2 whose density is bounded by

‖f‖∞. For an i.i.d. sample X1, . . . , Xn drawn from X, let Sn be the collection of
rums. Then

lim
n→∞P{|Sn| > C

√
n} = 0,

where C = e
√

2(1 + 2/
√

3)‖f‖∞ log 4. Also,

lim sup
n→∞

E{|Sn|}
C
√
n

≤ 1 .

Proof. As described in the caption of Figure 6, the unit square is covered by
a circumscribed rhombus with angles 120, 60, 120, and 60 degrees. From top to
bottom, it measures 2a = 1 +

√
3, and from left to right 2b = 1 + 1/

√
3. The area of

the rhombus is 1+2
√

3. Partition the rhombus into m×m equal rhombi as shown in
the figure. This is achieved by taking m slabs Ai and m slabs Bj , and defining rhombi
by the intersections Ai ∩ Bj . There are m2 small rhombi that can be addressed by
index pairs (i, j), 1 ≤ i, j ≤ m. A chain of cells is an ordered collection of such pairs,
beginning with (1, 1) and ending with (m,m), satisfying the successor rule: (i, j) must
be followed by either (i, j+1) or (i+1, j). See the lightly shaded collection in Figure
6. Thus, the chain contains precisely 2m−1 cells, and by a simple counting argument,
it is easy to see that there are exactly(

2m− 2

m− 1

)

possible chains. Let us mark each cell that contains at least one rum (dark in Figure
6). We claim that the marked cells are contained in a chain. This, of course, follows
from the Lipschitz curve property we established above and our choice of angles when
defining the partition. We let N(C) denote the number of data points in the chain C.
Thus,

|Sn| ≤ max
all chains C

N(C).

By the inclusion–exclusion inequality, we have

P {|Sn| > t} ≤ P

{
max

all chains C
N(C) > t

}

≤
∑

all chains C
P {N(C) > t}

≤
(

2m− 2

m− 1

)
sup

all chains C
P {N(C) > t} .

Next, observe that the probability of a cell is given by∫
Ai∩Bj

f(x, y) dx dy ≤ ‖f‖∞
∫
Ai∩Bj∩[0,1]2

dx dy ≤ ‖f‖∞(1 + 2/
√

3)

m2
.
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A1

B1

A2

B2

A3

B3

A4

B4

A5

B5

A6

B6

A7

B7

A8

B8

A9

B9

A10

B10

a

b

120o

Fig. 6. The unit square [0, 1]2 is shown in dark lines. Consider the rhombus of angle 120
degrees that circumscribes the square. Partition the rhombus into a grid of m × m similar small
rhombi. A chain (in lightest shading) is any collection of small rhombi where the first and last
rhombus are the leftmost and rightmost rhombi, respectively, and intermediate rhombi share one
side. The rhombi in a chain must have increasing x-coordinate values of their centers. The dark
shaded rhombi are those that contain at least one restricted unoriented maximum. Observe that
these cells always belong to a chain.
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Thus, for a chain of 2m− 1 cells C, N(C) is binomial with parameters n and

∫
C
f ≤ ‖f‖∞(1 + 2/

√
3)(2m− 1)

m2
≤ 2‖f‖∞(1 + 2/

√
3)

m

def
= q .

Hence, P{N(C) > t} ≤ P{Binomial(n, q) > t}. Therefore, by Lemma 7, if m→∞ as
n→∞,

P {|Sn| > enq} ≤
(

2m− 2

m− 1

)
sup

all chains C
P {N(C) > enq}

∼ 22m−2

√
πm

sup
all chains C

P {N(C) > t}

≤ 22m−2

√
πm

P {Binomial(n, q) > enq}

≤ 22m−2e−nq√
πm

.

Define q′ = mq. First, take

m =

⌈√
nq′

log 4

⌉
.

Then

P {|Sn| > enq} ≤ (1 + o(1))
exp(m log 4− nq′/m)

4
√
πm

≤ 4 + o(1)√
πm

→ 0 .

This proves the first part of Theorem 4. For the second part, choose ε > 0 very small
and set

m =

⌊
(1− ε)

√
nq′

log 4

⌋
.

We verify quickly that

P {|Sn| > enq} ≤ e−c
√
n

for some constant c > 0 depending upon ε. Then,

E|Sn| ≤ enq + nP{|Sn| > enq} = enq + o(1) ∼ e
√
nq′ log 4/(1− ε) .

Theorem 4 now follows since ε was arbitrary.

4.2. Lower bounds. The number of unoriented maxima is larger than the
number of maximal vectors, i.e., the number of data points Xi for which one of
Cπ/4(Xi, π/2), C3π/4(Xi, π/2), C5π/4(Xi, π/2), and C7π/4(Xi, π/2) has a nonempty
intersection with X1, . . . , Xn. We denote the set of maximal vectors for X1, . . . , Xn

by Mn. Thus, |Sn| ≥ |Mn|. This can be used to show that the bound of Theorem 4
cannot be improved for many simple distributions. To clarify this, just take the uni-
form distribution on the trapezoid T formed by intersecting [0, 1]2 with {(x, y) : y <
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x < y + c}, with 0 < c ≤ 1. The area of the trapezoid is 1/2(1− (1− c)2) = c− c2/2.
Hence,

f(x, y) =
1

c− c2/2
IT (x, y) .

Thus, ‖f‖∞ = 1/(c − c2/2). We take an integer m large enough such that 1/m < c.
Then partition the unit square into a rectangular grid of m by m with sides equal to
1/m. Mark the m grid cells that straddle the diagonal of the square. Let E1, . . . , Em

be the indicators of the events that the marked grid cells contain at least one data
point, with E1 referring to the cell with the largest y-values, and so on down. A
simple geometric argument shows that

|Mn| ≥
m∑
i=1

Ei .

Hence, if the marked grid cells intersected with our trapezoid T yield the triangles
S1, . . . , Sm,

E|Mn| ≥ mEE1

= m (1− (1− ‖f‖∞ area(S1))
n)

= m
(
1− (1− ‖f‖∞/(2m2))n

)
≥ m

(
1− exp(−‖f‖∞n/(2m2))

)
≥ m/2

≥
√
‖f‖∞n/4 log 4− 1

if we choose m = b√‖f‖∞n/ log 4c. Recall that n has to be large enough to insure
that 1/m < c. Thus, we have

E|Mn| ≥
√
‖f‖∞n/4 log 4− 1 .

The upper bound in Theorem 4 cannot be improved upon in terms of ‖f‖∞ and n
unless the class of distributions is further restricted.

4.3. Random vectors with very dependent coordinates. If f is unbounded,
Theorem 4 becomes useless. It is possible, however, that

∫
fα < ∞ for some α > 1.

This fact can be used to obtain a different collection of upper bounds.
Theorem 5. Let X be a random vector on [0, 1]2 whose density satisfies

∫
fα <

∞ for some α > 1. For an i.i.d. sample X1, . . . , Xn drawn from X, let Sn be the
collection of rums. Then

lim
n→∞P{|Sn| > Cnα/(2α−1)} = 0,

where

C = e

((∫
fα
)1/α (

2(1 + 2/
√

3)
)1−1/α

)α/(2α−1)

(log 4)(2α−1)/(α−1) .

Also,

lim sup
n→∞

E{|Sn|}
Cnα/(2α−1)

≤ 1 .
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Proof. We follow the proof of Theorem 4. Note that N(C) is binomial with
parameters n and p, with p given by

∫
C
f(x, y) dx dy ≤

(∫
fα
)1/α

(∫
C∩[0,1]2

dx dy

)1−1/α

≤
(∫

fα
)1/α

(
2(1 + 2/

√
3)

m

)1−1/α

def
= q

def
= q′/m1−1/α .

Here we used Hölder’s inequality and an inequality from the proof of Theorem 4.
Therefore, N(C) is binomial with parameters n and p where p ≤ q, and P{N(C) >
t} ≤ P{ Binomial(n, q) > t}. As in the proof of Theorem 4, when m→∞ as n→∞,

P {|Sn| > enq} ≤ (1 + o(1))22m−2e−nq√
πm

.

With

m =

⌈(
nq′

log 4

)α/(2α−1)
⌉
,

we obtain

P {|Sn| > enq} ≤ (1 + o(1))
exp(m log 4− nq′/m1−1/α)

4
√
πm

≤ 4 + o(1)√
πm

→ 0 .

This proves the first part of Theorem 5. The second part follows from the first part
by using arguments analogous to those of Theorem 4.

Remark 1. We note that the condition
∫
fα < ∞ imposes a condition on the

peakedness of the density f . For bounded densities, we clearly have
∫
fα < ∞.

Theorem 4 is obtained as a limit of Theorem 5 when we let α→∞.
Remark 2. If ψ is a positive convex strictly increasing function, then for the chain

C in the proof, we have by Jensen’s inequality,∫
C
f ≤

∫
C∩[0,1]2

dx dy × ψinv

(
A/

∫
C∩[0,1]2

dx dy

)
,

where A =
∫
ψ(f). Using this instead of Hölder’s inequality, with ψ(u) = u loga(1+u)

for a > 0, we see that

E|Sn| = O

(
n

loga n

)

whenever
∫
f loga(1 + f) <∞. Observe also that this condition is satisfied whenever∫

f b <∞ for some b > 1.
Remark 3. Theorems 4 and 5 remain valid with different constants for cones

Cθ(x, η), η ∈ (0, π].
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4.4. Divide-and-conquer algorithms for unoriented maxima. At least
five strategically different algorithms can be used for finding the outer layer Mn

of X1, . . . , Xn in the plane. Let Ln = |Mn| denote the number of points on the outer
layer.

1. The naive algorithm. For each Xi, determine in linear time whether a
point is a maximal vector. The time taken by this algorithm is Θ(n2), while
the space is Θ(n).

2. One sort and one elimination pass. Sort the data points according to
their y-coordinates, and eliminate unwanted points in a second stage by pass-
ing through the sorted array and keeping partial extrema in the x-direction.
This may be implemented in O(n log n) worst-case time.

3. Divide-and-conquer [BS78]. Start with n singleton outer layers, marry
(merge) all outer layers pairwise, and repeat these pairwise marriages until
one outer layer is left. Noting that outer layers of sizes k and m can be married
in O(k + m) time, and that about log2 n rounds of merging are needed, it
is easy to see that the time taken by this algorithm is O(n log n). However,
since many points are thrown away at early stages, there is reasonable hope
of obtaining linear expected time ET . The following is known: ET = O(n)
when the components of X1 are independent [BS78, De83]. In the general
case, ET = O(n) if and only if

∑
n ELn/n

2 < ∞ by a general theorem
on the expected time analysis of divide-and-conquer algorithms [De83]. An
important class of problems is that in which f is bounded, in which case we
see that ELn = O(

√
n) and thus ET = O(n) [De85].

4. Bucketing methods. Partition [0, 1] into a grid of size about
√
n × √

n,
assign all points to grid locations, and mark in all columns (rows) the topmost
(leftmost) and bottommost (rightmost) occupied grid cells, together with
their inner neighbors. Finally, use the naive algorithm (1) to obtain the outer
layer among the points in all the marked cells [De86]. This too yields linear
expected time for bounded densities, but it uses a different computational
model because truncation is assumed to be available at unit time cost. [Ma84]
use another grid in which in each cell, the outer layer is found, and the overall
outer layer is found in a second step.

5. Output-sensitive algorithms based on lazy sorting. In [KS85], al-
gorithms are presented that take worst-case time bounded by O(n logLn).
The expected time therefore is bounded by a constant times En logLn ≤
n log ELn.

In this section, using the results of the previous sections, we offer a linear expected
time divide-and-conquer algorithm for finding the set Sn of all rums that runs under
conditions weaker than any condition mentioned above for linear expected time for
outer layers. A similarly adapted divide-and-conquer algorithm for outer layers would
yield linear expected time under the same general conditions.

Procedure Restricted Unoriented Maxima

Input: A set of n planar points X1, . . . , Xn.

Output: The set Sn of all rums of X1, . . . , Xn.

Method:

1. Put all data points Xi in singleton sets Si.
2. Put all sets Si in a queue Q.
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3. While |Q| > 1 do
• Dequeue sets S and T from Q.
• Compute V = rum(S ∪ T ).
• Enqueue Q with V .

End of Procedure

Theorem 6. If the divide-and-conquer algorithm is used on data that are i.i.d.
and have a density of compact support such that

∫
f loga(1 + f) <∞ for some a > 1,

and if the merging of two sets of rums is supported in linear time, then the overall
expected time is O(n). The running time is O(n log n) in the worst case.

Proof. The expected time analysis of general divide-and-conquer algorithms given
in [De83] shows that linear expected time is obtained if the data constitute an i.i.d.
sequence, the merge step takes linear time in the size |S|+ |T |, and

∞∑
n=1

E|Sn|
n2

<∞ .

By Remark 2,

E|Sn| = O

(
n

loga n

)

when f has compact support and
∫
f loga(1+f) <∞. Theorem 6 follows when a > 1.

Remark 4. The condition mentioned in the proof above was rediscovered later in
the context of randomized incremental algorithms by Clarkson and Shor [CS88, CS89].
For a slightly different approach with conditions deduced from recursions, see [BS78].

Remark 5. One can push things further and get linear expected time if f has
compact support and if for some a > 1,

∫
f log(1 + f) loga log(1 + f) <∞.

Remark 6: On merging sets of rums. Performing the merge step in linear time
requires keeping track of the sets of rums according to increasing x-coordinates. First,
we merge the sorted sets S and T into a set W , sorted by x-coordinate. We then
perform two more linear passes. In the first pass, we construct the convex hull in
clockwise fashion from left to right as we visit points of W (in fact, this only gives the
upper part of the convex hull; the lower part is not needed). This is done by Graham’s
incremental algorithm [Gr72]. As Xi is processed, we note the angle between the
convex hull edge leading to Xi, and the y-axis, and call it θi. Repeat a similar pass
in counterclockwise manner from right to left, storing the angles in ξi. A simple
geometric argument shows that Xi ∈ rum(W ) if and only if θi + ξi ≤ π/2. The entire
procedure takes linear time.

Remark 7: Lazy merging of rums. If we find rum(W ) in time O(|W | log |W |),
results from [De83] guarantee overall linear expected time if

∞∑
n=1

E|Sn| log |Sn|
n2

<∞ .

Since log |Sn| ≤ log n, it suffices to verify that

∞∑
n=1

E|Sn| log n

n2
<∞ .

By Theorem 5, this is satisfied if for some α > 1,
∫
fα < ∞. By Remark 2, it also

suffices that
∫
f loga(1 + f) <∞ for some a > 2.
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5. Concluding remarks. We introduced unoriented Θ-maximal points and de-
scribed an optimal O(n log n) algorithm for identifying them when Θ ≥ π/2. The
case Θ < π/2 is handled in the Appendix. We also showed that if the points are
random and have a common density (satisfying mild regularity conditions), then we
can compute the unoriented π/2-maxima in O(n) expected time.

6. Appendix. For values of Θ < π/2, the geometric properties of Lemmas 2
and 5 become useless. However, we are able to modify them slightly as shown below
to obtain efficient algorithms for this case.

Lemma 8. If point p is a candidate for the edge e ∈ E(S), then p lies in the
part of the circle which has e as a chord, and p makes an angle Θ with e which has a
nonempty intersection with the interior of CH(S).

Lemma 9. If point p is an unoriented Θ-maximum with respect to edge ei, then
the angle between the rays Lp and Rp must contain either Rp,ei or one of π/Θ − 2
directions which are separated from Rp,ei by integer multiples of Θ.

A point p ∈ S − V (S) may be a candidate for at most 2π/Θ edges of CH(S).
Therefore, Corollary 1 implies that the circles defined in Lemma 8 cannot have more
than 14(2π/Θ)h (∈ O(n/Θ)) intersections, which changes the running time of Pro-
cedure Candidates to O((n/Θ) logn). In addition, the procedure of section 2.3 for
computing unoriented Θ-maxima among candidates needs to be executed (π/Θ) − 1
times for each convex hull edge. As a result, we can compute the set SΘ, for Θ < π/2,
in O((n/Θ) logn) running time. The algorithm is clearly optimal for fixed values of
Θ. However, no matching lower bound is known when Θ is part of the input.
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