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Abstract

Given a polyhedronP by a list of inequalities we develop unbiased estimates of the number of vertices and bases ofP .
The estimates are based on applying tree estimation methods to the reverse search technique. The time to generate an unbiased
estimate is essentially bounded by the time taken to solve a linear program onP with the simplex method. Computational
experience is reported. The method can be applied to estimate the output size of other enumeration problems solvable by
reverse search. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

LetA be anm by n matrix withm> n and letb be
ann-vector. Theconvex polyhedronP is defined by

P = {x ∈Rn |Ax 6 b}. (1.1)

For definitions not given here and further information,
the reader is referred to Chapter 2.3, written by Bayer
and Lee, of the handbook [12]. We assume throughout
thatA has full column rank, thatP is non-empty and
that there are no redundant inequalities. A bounded
polyhedron is called apolytope. In this note we will
deal with polytopes rather than possibly unbounded
polyhedra. A pointx ∈ P is a vertex of P if there
is somen by n submatrixB of A such thatx is the
unique solution ofBx = b. The matrixB is called a
basisfor x. The vertex isdegenerateif more thann of
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the inequalities in (1.1) are satisfied as equations byx.
In other words it can be represented by more than one
basis. A polytope with no degenerate vertices is called
simple.

The well-known Upper Bound Theorem of Mc-
Mullen (see [12]) states that the polyhedronP has at
most

f (m,n)=
(
m− bn+1

2 c
m− n

)
+
(
m− bn+2

2 c
m− n

)
.

vertices. On the other hand, the Lower Bound Theo-
rem of Barnette (see [12]) states that a non-empty sim-
ple polytopeP has at least

g(m,n)=m(n− 1)− (n+ 1)(n− 2)

vertices. Non-simple polyhedra can have even fewer
vertices, and general lower bounds were obtained
by Deza and Fukuda [9] by inverting McMullen’s
condition. The bounds are tight and for most values
ofm andn there is a very large gap between the lower
and upper bounds.
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An important computational problem is to generate
all of the vertices ofP . There are essentially two
main approaches to this problem, both with their
origins in the 1950s. The double description (or
Motzkin) method [16] involves building the polytope
sequentially by adding the defining inequalities one
at a time. Recent algorithms of this type have been
developed by Seidel, see [10], and Chazelle [7].
This method seems very powerful for degenerate
polytopes but has the disadvantage that it can require
a lot of memory. A practical implementation has
been developed by Fukuda [11]. The second method
of vertex generation involves pivoting around the
edge skeleton of the polytope (for general references,
see [8]). Specifically, a graph is defined on the bases
of P . Two bases are adjacent if they differ in exactly
one row. A search of this graph generates all bases
and hence all vertices. An efficient practical method
using this approach is the reverse search method of
Avis and Fukuda [2]. Their approach is to compute
directly a spanning tree of the basis graph. The method
has time complexity depending on the number of
bases ofP and so is very slow for highly degenerate
polytopes. The advantage of the reverse search method
is that it requires only the space required to store
the polytopeP , and does not require the bases to be
stored. A practical implementation of this method has
been developed by Avis [3].

Let V and N denote respectively the number of
vertices and bases ofP . At present there is no
known method of computing the vertices ofP in time
polynomial inm, n andV . The pivoting methods are,
however, polynomial inm, n and N . For example,
the reverse search method generates all bases in
time O(n(m− n)min(m− n,n)N) and space O(mn).
In order to determine the feasibility of a vertex
generation problem it is therefore necessary to have
good estimates ofN andV .

Due to the availability of the practical implemen-
tations of vertex generation algorithms various large
problems have now been solved. For instance, in [6]
all vertices of a non-simple polytope withm = 729
andn= 8 were found. Using the Upper Bound Theo-
rem we can see that this polytope has at least 17 and
at most 11 479 694 949 vertices. This is of little use in
determining the feasibility of generating the vertices
of the given polyhedron. In fact the polytope has 4862
vertices and is highly degenerate. This result was ob-

tained by both the double description [11] and reverse
search [3] methods, requiring many days of compu-
tation on a SPARC work station. The time taken by
reverse search is proportional to the number of bases
of the polytope. For a degenerate polytope, the num-
ber of bases is reduced by perturbation of the defining
half-spaces. For this polytope, a perturbation yielded a
polytope with 477 471 bases which was generated on a
SPARC work station in about three weeks, using exact
integer arithmetic.

The above example shows the need to be able
to estimate the number of vertices and bases of a
polytope, both before and after perturbation, and the
need to estimate the running time of an algorithm. In
this paper we give a method for estimating the number
of vertices and bases of a polytope, and for estimating
the running time of the reverse search method. We
describe a class of randomized algorithms that give
estimates whose expected value is the correct answer.
Although the variance is high, methods are suggested
for reducing it. The basic idea is to estimate the
size of the reverse search tree estimation techniques.
These are described in the next section, which also
includes a discussion of how to reduce the variance.
In Section 3 we discuss the application of these results
to the vertex estimation problem for convex polytopes
and give some experimental results on estimates for
configuration polytopes.

2. Tree estimation

Perhaps the simplest estimate of the size of a tree is
the Hall–Knuth (HK) estimator [13] which is analyzed
in detail by Knuth [15]. This estimate is formed as
follows. For a vertexv in a treeT , let n(v) be the
number of children ofv. A random path

v0, v1, . . . , vk

is generated such that:
(i) v0 is the root andvk is a leaf ofT , and
(ii) for i = 1, . . . , k, vi is a child of vi−1 chosen

randomly with probability 1/n(vi+1).
An estimateN of the number of vertices ofT is given
by

N = 1+
k−1∑
i=0

n(v0)n(v1) · · ·n(vi).
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This estimate can be understood as the size of a tree
where each vertex at depthi from the root has the same
number of children asvi . Hall and Knuth showed that
the expected valueN of N is the number of nodes in
T , showing that the estimate isunbiased. Thecostof
an estimator is defined to be the number of tree nodes
evaluated in obtaining the estimate. The cost of the HK
estimator isk+ 1, the number of nodes on the random
path. In the worst case it is one more than the height
of the tree.

In order to use this estimator, it is necessary to find
a random path in a tree. In general, given a graph
G it is not possible to find a random path in the
depth-first or breadth-first spanning tree ofG without
actually computing the tree. The HK estimator has
been used primarily for a relatively limited number
of well structured backtracking examples. Reverse
search, however, allows a random path to be generated.
This is because, given any node of the tree, it is
possible to generate all children of this node without
any other information. A direct application of the HK
estimator to the basis graph of a polytope using reverse
search to generate a random path gives an estimate of
the number of bases. This is discussed further in the
next section.

The major problem with the HK estimator is that the
estimate has a high variance. Some methods to reduce
the variance are described in [15]. In the next three
subsections, we discuss ways to reduce the variance.

2.1. Multiple probes from the root

The simplest way to reduce the variance is sim-
ply to make a numberq of independent estimates
N1,N2, . . . ,Nq from the root. The estimateM(q) for
T is

M(q)= 1

q

q∑
i=1

N i

which is clearly unbiased. If the probes are indepen-
dent the variance ofM(q) is given by

VarM(q)= VarN

q
.

The cost of computingM(q) is q times the cost of
computing a single estimateN .

2.2. Single probe with look-ahead

The HK estimator tends to underestimate the size of
the tree with fairly high probability. Consider a large
binary tree with one of the two nodes attached to the
root a leaf. With probability1

2 the HK estimate is 3.
In order to avoid these low estimates it is possible to
“look-ahead” in the tree and avoid paths that lead to
“small” subtrees. This can be done as follows.

Ledd be a non-negative look-ahead parameter. The
path is generated from the root by choosing the next
vertex at random from among those children which
have descendants at depthd . The selection is biased
towards the child with the most descendants at depth
d . If no such children exist the path is terminated,
otherwise the procedure is repeated from the selected
child. This procedure combines features of methods
studied by Knuth [15], and the proof that the estimate
is unbiased can be derived along similar lines.

For a treeT and any vertexv in the tree, letnd(v)
be the number of descendants at exactly depthd from
v. If T has depth at leastd , a random path

v0, v1, . . . , vk

is generated such that
(i) vi is a child ofvi−1 and is chosen with probability

nd−1(vi)/nd(vi−1) from the children ofvi−1,
wherei = 1, . . . , k, and

(ii) vk is the first vertex in the path withnd(vk)= 0.
Let

m(v)= 1+
∑

w is a child ofv
nd−1(w)=0

|subtree rooted atw|.

Note that in particularm(vk) is the size of the subtree
rooted atvk . The estimateL(d) of the size of the tree
is given by

L(d)=m(v0)

+
k∑
i=1

nd(v0)nd(v1) · · ·nd(vi−1)

nd−1(v1)nd−1(v2) · · ·nd−1(vi)
m(vi).

Ford = 1 this is the HK bound. The cost of computing
L(d) increases greatly withd in general, and depends
on the average degree of nodes inT .

2.3. Single probes from depths

Using the notation of the previous section,T has
ns(v0) nodes at depths. As an alternative to making
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t = ns(v0) probes from the rootv0, we may make one
probe from each node at depths. Let N(v) be the
HK estimate obtained for the subtree rooted at node
v. Then the depths estimateD(s) is

D(s)=
s−1∑
i=0

ni(v0)+
∑

v is a node at depths

N(v).

For s = 0 this is the HK estimate. Witht = n(v0) the
cost of computing an estimateM(t) is comparable
to that of computingD(1) since the same number
of random probes are computed. However the latter
estimate has lower variance, as made precise in the
following theorem.

Theorem 2.1. Sett = n(v0) and letM(t) andD(1)
be estimates of the size of a treeT .
(i) VarM(t)> VarD(1) with equality holding if and

only if all subtrees ofT at depth1 have the same
cardinality.

(ii) E costM(t) > E costD(1) with equality holding
if and only if the root has degree1.

Proof. Label the children of the rootu1, u2, . . . , ut .
Now

D(1)= 1+
t∑
i=1

N(ui),

whereN(ui) is the HK estimate of the size of the
subtree rooted atui . Since the random variablesN(ui)
are independent,

VarD(1)= Var
t∑
i=1

N(ui)

=
t∑
i=1

E
[
N(ui)−N(ui)

]2
.

Now let N be a HK estimate from the rootv0.
Conditioned on the event thatui is on the random path,
N has the same distribution as 1+ tN (ui). From this
we observe that the expected valueN ofN is given by

N = 1+
t∑
i=1

N(ui).

The variance ofN is given by

E[N −N ]2

=
t∑
i=1

E
[
(N −N)2 | ui is on path

]
Pr(ui is on path)

= 1

t

t∑
i=1

E
[
1+ tN(ui)−N

]2
= t

t∑
i=1

E

[
N(ui)− 1

t

t∑
j=1

N(uj )

]2

> t
t∑
i=1

E
[
N(ui)−N(ui)

]2
> t VarD(1).

Now the result follows since

VarM(t)= VarN

t
> VarD(1).

For the costs, we observe that

E costM(t)= t costN

= t
(

1+ 1

t

t∑
i=1

E costN(ui)

)

> 1+
t∑
i=1

E costN(ui)

=E costD(1). 2
2.4. Tail estimates

A tail estimate is useful in determining the feasibil-
ity of a vertex generation problem. IfX is an unbiased
estimate of the size of a treeT , then by Markhov’s
inequality, for every positive constantc,

Pr

(
|T |> X

c

)
> 1− 1

c
. (1)

This tail estimate can be used with any of the
preceding estimators as a way of discarding hopeless
problems. However, it does not give assurances that
whenX is small the problem is probably tractable.
For this one requires bounds on the other tail ofX. At
present we have no such bounds for any of the above
estimators.

2.5. Red–blue trees

For the vertex generation application, a modified
estimation problem is also of interest. Assume thatT
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has nodes colored either red or blue. It is required to
estimate the number of red vertices. Again, let

v0, v1, . . . , vk

be a random path in the tree. Then the HK estimate for
the number of red nodes,R, is given by

R = 1{v0 red} +
k−1∑
i=0

1{vi+1 red}n(v0) . . .n(vi),

where1{ } is the indicator function. It is easy to show
that this is an unbiased estimate of the number of
red nodes. Similar modifications apply to the three
variance reduction methods described above.

3. Vertex estimation

To apply the methods of the previous section,
one must be able to compute all children of any
given tree vertex. The original applications of the
HK estimator were for trees generated by standard
backtracking algorithms for well structured problems.
For less structured graph search problems the method
cannot be applied: unfortunately, there is no easy way
to compute even the degree of a vertex in a tree
generated by depth-first search of an arbitrary graph.
However, the reverse search method [4] is a method
of generating search trees which allow the children of
an arbitrary node in the tree to be generated. In fact,
it is not even necessary to keep track of the path in
the search tree to the given node. The codelrs [3]
implements the reverse search method for the problem
of generating all of the vertices of a polytope, and
is a modification of the method originally described
in [2]. For the vertex generation problem,lrs generates
a spanning tree of a set of bases of an input polytope
P , as described in more detail below. IfP is simple,
each basis corresponds to a unique vertex. Hence the
estimates of the previous section immediately give
estimates for the number of vertices ofP . Note that
the worst case cost of obtaining a HK estimate is
proportional to the maximum path length+1 in the
reverse search tree. This path length is the worst case
number of pivots required by the simplex method to go
from a feasible basis to the optimum basis. Inlrs, the
pivoting rule is the least subscript rule (Bland’s rule)
for entering variable, with lexicographic perturbation

to resolve ties for leaving variable (in the case of
degeneracy). The Klee–Minty examples are known
to generate an exponential number of pivots under
Bland’s rule [1], and so a HK estimate in this case
could involve the generation of a random search path
of exponential depth. This pathological behaviour is
unlikely to be observed in practice.

In the case whereP is non-simple, the same vertex
may be represented by many bases. Since a basis
is a subset ofn inequalities from them inequalities
definingP , we can represent it by ann element subset
of integers from 1, . . . ,m. For a degenerate vertex, the
lex-minbasis is the lexicographically smallest subset
of indices that define the vertex.lrs does not generate
all bases ofP : it generates the bases of a symbolic
perturbation ofP to a simple polytope. The bases
generated are known aslex-positive bases(see, for
example, [14, pp. 118–122]). The lex-positive bases
do however contain alllex-minbases, and the property
of being alex-minbasis can be easily checked from the
corresponding dictionary which is available during the
reverse search. In the reverse search tree generated by
lrs for a non-simple polytopeP , we can distinguish
two types of nodes; those that correspond tolex-min
bases (red) and those that do not (blue). The number
of vertices inP is exactly the number of red nodes
in T . Using the techniques of the last section, we
can in estimate the number of vertices of non-simple
polytopes. For the highly degenerate polytopes that are
often encoutered in practice, there may be very few red
nodes in a tree with a very large number of blue nodes,
so the vertex estimates may have enormous variance.

We can use the HK estimates of the number of
bases ofP to estimate the running time oflrs for
the complete vertex generation ofP . This is due to
the fact thatlrs runs in time linear in the number of
bases. For any given problem, one can runlrs and
quickly determine the running time per basis. From
this an unbiased estimate of the total running time is
readily obtained. Then it is possible to decide whether
or not it is likely thatlrs will be able to complete the
calculation.

In Table 1 we give some experimental results on
configuration polytopes that were supplied by Gerardo
Garbulsky. These polytopes are described in [6] and
the input files forlrs can be found at the ftp site given
in [3]. The polytopes arise in the study of ternary
alloys. Each problem is numberedm − n giving the
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Table 1
Configuration polytopes

Problem Upper Actual Estimate
bound Vertices Bases Vertices Bases Probes Nodes Time

729-9 1.15e+10 4862 477 421 2112 134 690 3-20 9918 790.3 s

31-20 587 860 18 553 169 272 11 596 120 743 2-20 7519 146.3 s

41-16 8 544 096 29 108 287 806 69 827 204 209 2-20 5917 52.7 s

71-61 5.47e+09 3 149 579 57 613 364 2.32e+06 5.18e+07 2-5 25 765 6418 s

90-86 3 067 078 323 188 1 621 760 393 712 1.73e+06 1-5 1300 4416 s

288-281 9.16e+12 ? ? 2.33e+10 1.10e+12 1-5 5289 24 days

number of rows and columns of the input file. Since
each row corresponds to an inequality, the polytope
therefore is defined bym inequalities in dimensionn−
1. The problems are all highly degenerate. Column 2
gives the upper bound on the number of vertices
given by the Upper Bound Theorem. Where known,
the actual number of vertices is given in column 3.
Column 5 gives an estimate of the number of vertices
of the polytope. Columns 4 and 6 give respectively
the actual and estimated number of lex-positive bases.
These are the bases thatlrs will generate in a complete
vertex enumeration. The estimates were obtained by
the depth s probe method, bymutt a DEC1000
AlphaServer 4/233 using version 2.5i of lrs compiled
for 64-bit integers. The entrys-x in the “Probes”
column indicates that the estimate was obtained by
averagingx depths estimates. For example, we made
20 probes from every node at depth 3 in the tree for
problem 729-9, and averaged the results. The “Nodes”
column gives the total number of tree nodes explored
to obtain the given estimate. By comparing this with
the actual number of bases (where known), we can
determine what fraction of the tree was explored
in making the estimate. For example, the estimate
for problem 71-61 was made by looking at roughly
0.045% of the search tree. The final column is the
CPU time taken in seconds (except for the problem
288-281) for the estimate.

Considering the high degree of degeneracy, we
were surprised at the accuracy of the vertex estimates
(compare columns 3 and 5). The largest problem
completely solved, 71-61, used a parallel version oflrs
running on a NEC Cenju-3 system with 64 processors

in 4.5 days [5]. Incidentally,mutt estimates that she
would need about six million years to solve 288-
281 with lrs, but this is probably optimistic. As an
application of the tail inequality (1) of the previous
section, with probability at least 0.999 it would take
more than six thousand years to solve 288-281 in
this way. For those looking for harder problems,
Geraldo Garbulsky has problems 554-545 and 842-
743 available on request (email: gdg@lanai.mit.edu).
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