
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 2, FEBRUARY 2008 781

On the Performance of Clustering in Hilbert Spaces
Gérard Biau, Luc Devroye, and Gábor Lugosi, Member, IEEE

Abstract—Based on n randomly drawn vectors in a separable
Hilbert space, one may construct a k-means clustering scheme by
minimizing an empirical squared error. We investigate the risk
of such a clustering scheme, defined as the expected squared dis-
tance of a random vector X from the set of cluster centers. Our
main result states that, for an almost surely bounded X , the ex-
pected excess clustering risk is O( 1=n). Since clustering in high
(or even infinite)-dimensional spaces may lead to severe computa-
tional problems, we examine the properties of a dimension reduc-
tion strategy for clustering based on Johnson–Lindenstrauss-type
random projections. Our results reflect a tradeoff between accu-
racy and computational complexity when one uses k-means clus-
tering after random projection of the data to a low-dimensional
space. We argue that random projections work better than other
simplistic dimension reduction schemes.

Index Terms—Clustering, empirical risk minimization, Hilbert
space, k-means, random projections, vector quantization.

I. INTRODUCTION

CLUSTERING is the problem of identifying groupings of
similar points that are relatively isolated from each other,

or, in other words, to partition the data into dissimilar groups of
similar items (Duda, Hart, and Stork [14, Ch. 10]). This unsu-
pervised learning paradigm is one of the most widely used tech-
niques in exploratory data analysis. Across all disciplines, from
social sciences to biology or computer science, practitioners try
to get a first intuition about their data by identifying meaningful
groups of observations. In data compression and information
theory, the clustering problem is known as vector quantization
or lossy data compression. Here, the goal is to find an efficient
and compact representation from which the original observa-
tions can be reconstructed with a prescribed level of accuracy
(see Gersho and Gray [18], Gray and Neuhoff [20], Linder [30]).

Whatever the terminology used, an observation is usually
supposed to be a collection of numerical measurements repre-
sented by a -dimensional vector. However, in some problems,
input data items are in the form of random functions (speech
recordings, spectra, images) rather than standard vectors, and
this casts the clustering problem into the general class of func-
tional data analysis. Even though in practice such observations

Manuscript received June 15, 2006; revised October 15, 2007. The work of
L. Devroye was sponsored by NSERC Grant A3456 and FQRNT Grant 90-ER-
0291. The work of G. Lugosi was supported by the Spanish Ministry of Science
and Technology under Grant MTM2006-05650 and by the PASCAL Network
of Excellence under EC Grant 506778.

G. Biau is with LSTA & LPMA, Université Pierre et Marie Curie–Paris VI,
Paris 75013, France (e-mail: biau@ccr.jussieu.fr).

L. Devroye is with the School of Computer Science, McGill University, Mon-
treal, QC H3A 2K6, Canada (e-mail: luc@cs.mcgill.ca).

G. Lugosi is with ICREA and the Department of Economics, Pompeu Fabra
University, Barcelona 08005, Spain (e-mail: lugosi@upf.es).

Communicated by P. L. Bartlett, Associate Editor for Pattern Recognition,
Statistical Learning, and Inference.

Digital Object Identifier 10.1109/TIT.2007.913516

are observed at discrete sampling points, the challenge in this
context is to infer the data structure by exploiting the infi-
nite-dimensional nature of the observations. The last few years
have witnessed important developments in both the theory
and practice of functional data analysis, and many traditional
data analysis tools have been adapted to handle functional
inputs. The book of Ramsay and Silverman [40] provides a
comprehensive introduction to the area.

Interestingly, infinite-dimensional observations also arise
naturally in the so-called kernel methods for general pattern
analysis. These methods are based on the choice of a proper
similarity measure, given by a positive definite kernel defined
between pairs of objects of interest, to be used for inferring
general types of relations. The key idea is to embed the obser-
vations at hand into a (possibly infinite-dimensional) Hilbert
space, called the feature space, and to compute inner products
efficiently directly from the original data items using the kernel
function. The use of kernel methods for clustering is very
natural, since the kernel defines similarities between observa-
tions, hence providing all the information needed to assess the
quality of a clustering. For an exhaustive presentation of kernel
methodologies and related algorithms, we refer the reader to
Schölkopf and Smola [41], and Shawe-Taylor and Cristianini
[42].

Motivated by this broad range of potential applications, we
propose, in the present contribution, to investigate the general
problem of clustering when observations take values in a
separable Hilbert space . Thus, in our model, the data to be
clustered is a sequence of independent -valued random ob-
servations with the same distribution as a generic
random variable . The goal of clustering is to find an assign-
ment of each variable to one of a finite number of classes.
Throughout, we will denote by the inner product in ,
and by the associated norm. In particular, we focus on the
so-called -means clustering, which prescribes a criterion for
partitioning the sample into groups, or clusters,
by minimizing the empirical squared norm criterion

(1)

over all possible choices of cluster centers
. Here, is the empirical distribution of the data, defined

by

for every Borel subset of . Associated with each center
is the convex polyhedron of all points in closer to than
to any other center, called the Voronoi cell of (ties are broken
arbitrarily). Each is assigned to its nearest center, and each
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empirically optimal center is just the mean of those
’s falling in the corresponding cluster.
The performance of a clustering scheme given by the collec-

tion of cluster centers (and the associ-
ated Voronoi partition of ) is measured by the mean squared
error or clustering risk

(2)

The optimal clustering risk is defined as

Since the early work of Hartigan [21], [22] and Pollard
[35]–[37], the problem of -means clustering and its algo-
rithmic counterparts have been considered by many authors.
Convergence properties of the empirical minimizer of
the clustering risk have been mostly studied in the case when

. Consistency of was shown by Pollard [35], [37] and
Abaya and Wise [1] who prove that in , the infimum in the
definition of is achieved and that
almost surely (a.s.) as , whenever . Rates
of convergence and nonasymptotic performance bounds have
been considered by Pollard [36], Chou [11], Linder, Lugosi, and
Zeger [31], Bartlett, Linder, and Lugosi [7], Linder [29], [30],
Antos [3], and Antos, Györfi, and György [4]. For example, it
is shown in [7] that if is such that , then

(3)

where is a universal constant. On the other hand, there exists
a constant and with such that

For further references, consult Graf and Luschgy [19] and
Linder [30]. Note that the upper bounds mentioned above
become useless when is very large. In our setup, in which
we allow to take values in an infinite-dimensional Hilbert
space, substantially different arguments are called for. In
Section II, we prove that when , the expected
excess clustering risk is bounded by

, where is a universal constant. We also examine the
case where is not bounded. In order to do this, we replace
the VC and covering number arguments by techniques based on
Rademacher averages.

It is important to point out that minimizing the empirical clus-
tering risk is a computationally hard problem as all known al-
gorithms have a computational complexity exponential in the
dimension of the space. In practice approximate solutions are
needed, often leading to local optima. In this study, we ignore
this computational issue and assume that an (approximate) mini-
mizer of the empirical clustering risk can be found. In Section III
we discuss computational complexity from a different point of

view: we propose to use Johnson-Lindenstrauss-type random
projections as an effective tool for dimension reduction. This
is independent of the particular algorithm used to minimize the
empirical squared error. Our results reflect a tradeoff between
accuracy and computational complexity (measured as the di-
mension of the space in which the clustering is performed) when
one uses -means clustering after random projection of the data
to a low-dimensional space. We argue that random projections
work better than other simplistic dimension reduction schemes.
Proofs are postponed to Section IV.

II. CLUSTERING PERFORMANCE IN HILBERT SPACES

Recall that the training data consists of independent
-valued random observations with the same

distribution as a generic random variable with distribution
. Throughout the paper, we suppose that .
Let . A collection of vectors is

called a -minimizer of the empirical clustering risk (1) over
if

where . When is
called an empirical clustering risk minimizer. (Note that the ex-
istence of an empirical risk minimizer is guaranteed by the fact
that is supported on at most points.) The following consis-
tency result states that the clustering risk should be
close to the optimal risk as the size
of the training data grows.

Proposition 2.1: Assume that . Let be a
-minimizer of the empirical clustering risk. If

, then
i) a.s., and

ii) .

In the Euclidean case, that is, when is isomorphic to some
, statement is due to Pollard [37] (see also Pol-

lard [35], [36]) and Abaya and Wise [1]. The proof of the gen-
eral case is essentially similar—for the sake of completeness,
we sketch it in Section IV, where we also show that is a
consequence of and some properties of the Wasserstein
distance (Rachev and Rüschendorf [38], [39]) between and

.
Clearly, the consistency result of Proposition 2.1 does not pro-

vide any information on how many training samples are needed
to ensure that the clustering risk of the -optimal empirical cen-
ters is close to the optimum. The starting point of our analysis is
the following elementary inequality (see Devroye, Györfi, and
Lugosi [13, Ch. 8]):
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Roughly, this means that if we can guarantee that the uniform
deviation

of estimated clustering risks from their true values is small, then
the risk of the selected is close to the best risk over all in

. In , this can be achieved by exploiting standard tech-
niques from empirical process theory such as entropy methods
or the Vapnik–Chervonenkis inequality [43]. However, in in-
finite-dimensional Hilbert spaces these techniques yield sub-
optimal bounds.

In the next theorem we exhibit a universal upper bound which
is valid in any separable (possibly infinite-dimensional) Hilbert
space. To achieve this goal, we use a measure of complexity
of a function class, successfully employed in learning theory,
known as the Rademacher averages (Bartlett, Boucheron, and
Lugosi [6], Koltchinskii [26]; see also Bartlett and Mendelson
[8], Bartlett [5], and Ambroladze, Parrado-Hernandez, and
Shawe-Taylor [2]). Contrary to the VC techniques used to de-
rive (3), the structural properties of Rademacher averages (see
Bartlett and Mendelson [8]) make it a suitable tool to derive
a dimension-free bound. For any , let denote the
set of probability distributions on supported on , the
closed ball of radius centered at the origin. In other words,

is equivalent to

The main result of this section is the following:

Theorem 2.1: Assume that . For any -minimizer
of the empirical clustering risk, we have

and, consequently,

Remark (DEPENDENCE ON ): As we mentioned in the
introduction, in the expected excess risk may be bounded
by a constant multiple of . Even though the bound of
Theorem 2.1 gets rid of the dependence on the dimension, this
comes at the price of a worse dependence on the number of
clusters. The linear dependence on is a consequence of our
proof technique and we do not know whether it is possible to
prove a bound of the order of . This would match the
stated lower bound (when is large).

Corollary 2.1: Suppose that . Then, for any ,
with probability at least

The requirement is standard in the clus-
tering and data compression literature, where it is often called
the peak power constraint. As stated by the next theorem, this

requirement can be removed at the price of some technical
complications.

Theorem 2.2: Assume that . For any ,
there exist positive constants and such
that, for all , with probability at least

Remark (FAST RATES): In the finite-dimensional problem,
there are some results showing that the convergence rate can be
improved to under certain assumptions on the distribu-
tion. Based on a result of Pollard [36] showing that for sources
with continuous densities satisfying certain regularity proper-
ties, including the uniqueness of the optimal cluster centers,
the suitably scaled difference of the optimal and empirically
optimal centers has asymptotically multidimensional normal
distribution, Chou [11] pointed out that for such distributions
the expected excess risk decreases as . Further results
were obtained by Antos, Györfi, and György [4] who prove
that for any fixed distribution supported on a given finite set
the convergence rate is , and provide for more gen-
eral (finite-dimensional) distributions conditions implying an

rate of convergence. As pointed out by the authors,
these conditions are, in general, difficult to verify. Recent gen-
eral results of Koltchinskii [27] on empirical risk minimization
show that whenever the optimal clustering centers are unique,
and the distribution has a bounded support, the expected excess
risk converges to zero at a rate faster than .

III. RANDOM PROJECTIONS

In practice, handling high or infinite-dimensional data
requires some dimension reduction techniques. A common
practice to reduce dimension is by projecting the observations
onto a lower-dimensional subspace that captures as much
as possible the variation of the data. The most widely used
methods achieving this goal are factorial methods, such as prin-
cipal component analysis (see, e.g., Mardia, Kent, and Bibby
[33]) and its functional versions (see Ramsay and Silverman
[40]). Unfortunately, most factorial methods in high-dimen-
sional spaces are computationally expensive, with no guarantee
that the distances between the original and projected observa-
tions are well preserved. In this section we argue that random
projections to lower-dimensional subspaces are particularly
well suited for clustering purposes.

In the random projection method, the original high-dimen-
sional observations are projected onto a lower-dimensional
space using a suitably scaled random matrix with independent,
normally distributed entries. Random projections have been
found to be a computationally efficient, yet sufficiently accurate
method for dimensionality reduction. Promising experimental
results are reported in Bingham and Mannila [9]. The key idea
of random mapping arises from the Johnson-Lindenstrauss
lemma [24], which states that any point set in a Euclidean
space can be embedded in a Euclidean space of dimension

without distorting the distances between any pair
of points by more than a factor of , for any . The
original proof of Johnson and Lindenstrauss was simplified by



784 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 2, FEBRUARY 2008

Frankl and Maehara [16], [17], and further worked out using
probabilistic techniques by Dasgupta and Gupta [12].

The Johnson-Lindenstrauss lemma is usually stated in the
Euclidean setting, that is, when . The gen-
eral case requires some simple adaptations, detailed below.
Recently, this lemma has found several applications, including
Lipschitz embeddings of graphs into normed spaces (Linial,
London, and Rabinovich [32]) and searching for approximate
nearest neighbors (see Kleinberg [25], Indyk and Motwani
[23]).

To describe the random projections we suppose, without
loss of generality, that is infinite-dimensional. Since is
assumed to be separable, we may identify it with the space

of all sequences such that .
Each data point is now represented by
a vector in , denoted, with a slight abuse of notation, by

.
Let be a positive integer, and let

be independent sequences of independent centered normal
random variables with variance . For each , set

or, in matrix form

...
...

...
...

...

Conditioned on , for fixed and , the sequence
is a sum of independent centered random variables,

and therefore it is a martingale. Moreover, denoting by ex-
pectation taken with respect to the normal random variables
(conditioned on )

Thus, the sequence is a martingale bounded in .
Consequently, it converges almost surely and in to some
random variable (see, e.g., Williams [45]). Moreover, there
exists a random variable in such that . It
follows by dominated convergence that

The vector may be regarded
as a random projection of to an -dimensional subspace.
(Note however that this is not an orthogonal projection stricto
sensu.) Clearly, for fixed , each component is a normal
random variable with mean and variance . Therefore,

and (with fixed) has
distribution with degrees of freedom. Similarly, for any

and has distribution with de-
grees of freedom. Now by a simple Chernoff bound (Chernoff
[10]) for the distribution, we have

and, similarly

By the union bound, we obtain the following theorem.

Theorem 3.1 (Johnson–Lindenstrauss Lemma): Let be a
separable Hilbert space. For any and any positive
integer , let be a positive integer such that

Define a linear map as a random projection de-
scribed above. Then, for any set of points in , with prob-
ability at least , for all

Thus, random projections approximately preserve pairwise dis-
tances in the data set, and therefore are particularly well suited
for the purposes of -means clustering.

Let and let
be the randomly projected data points

. We propose the following algorithm.
Determine a collection

of cluster centers which minimizes the empirical clustering
risk in based on the projected data , and let

be the associated Voronoi cells. Define the
cluster centers in by

and denote by the collection of these centers. The cluster
centers then determine the associated Voronoi partition of
into cells. The following result ensures that replacing the em-
pirically optimal cluster centers by does not harm too
much.

Theorem 3.2: Fix the sample . For any
, let the positive integer and the random projection

be as in Theorem 3.1 above. Then, with probability at least

We may combine this with results of the previous sections to
establish performance bounds for the clustering algorithm based
on random projections.

Corollary 3.1: Assume that , and let
and . Define ,
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and consider the clustering centers found by the clustering
algorithm based on random projections described above. Then,
for any , with probability at least (with respect to
the random sample), with probability at least (with respect
to the random projections)

Remark: This corollary shows a tradeoff between perfor-
mance and computational complexity. If one projects onto a
space of dimension , the price to pay is an ex-
cess clustering risk of the order of . With other, simplistic,
dimension reduction techniques no such bounds can be proven.
Consider, for example, a commonly used dimension reduction
technique that simply keeps the first components of
(in an orthonormal representation of ), where is some
prespecified positive integer, possibly growing with the sample
size. Then it is easy to see that, even though almost sure conver-
gence of the clustering risk to the optimum may be achieved,
convergence may be arbitrarily slow. For concreteness, as-
sume that takes its values in . Let and suppose
that is concentrated on just one point, ,
where the ’s are nonnegative numbers with .
Then the optimal cluster center is clearly , but by truncating
at the first components the best one can do is to take

, giving a clustering risk equal to
. No matter how fast grows, the clustering risk

may converge to zero at an arbitrarily slow rate.
Another popular dimension reduction technique is based on

principal component analysis, see Vempala and Wang [44] for
an explanation of its advantages for clustering from and al-
gorithmic point of view. Unfortunately, clustering procedures
based on a principal component analysis may significantly de-
teriorate the clustering performance as opposed to random pro-
jections. The following example illustrates this in a 2-D set-
ting. The same phenomenon occurs in higher dimensions, as
can be seen by simple extensions of the example. Let
and assume that is uniformly distributed on the four points

. Then for , an op-
timal clustering rule groups with and
with , giving a mean squared error converging to as

. At the same time, the principal component of the dis-
tribution is the axis, so projecting on the first component col-
lapses the points and . Thus, any algorithm based
on this projection needs to group, say,
in one cluster, leaving for the other. The mean squared
error of the best such rule converges to as , thus giving
a strictly increased clustering risk if is sufficiently small.

Remark: In the corollary above we assumed, for simplicity,
that . In this case with probability
one, and by Theorem 3.2, is a -minimizer of the em-
pirical clustering risk, and Theorem 2.1 implies the corollary.
However, it is easy to generalize the statement, since, as it is
clear from the proof of Theorem 2.2, if , then

is bounded, eventually, almost surely, by a constant,
so Theorem 2.2 implies an analog statement with the appropriate
trivial modifications.

Remark (COMPUTATIONAL MODEL): There is no standard
computational model to handle Hilbert-space valued data. In
the algorithm described above we assumed implicitly that the
random projections can be calculated easily. This may not
be unrealistic if an orthonormal representation of the ’s is
available. Instead of discussing such details, we simply assume
the existence of a computational oracle that computes a random
projection at a unit cost. In this paper, we have ignored some
other important issues of computational complexity. It is well
known that finding the empirically optimal cluster centers is, in
general, NP hard. In practice, approximate solutions have been
used to avoid prohibitive complexity. Of course, dimension
reduction techniques are useful to lower computational com-
plexity, but in this paper we do not pursue this issue further,
and just investigate theoretical properties of minimizers of the
empirical clustering risk in the randomly projected subspace.

IV. PROOFS

A. Sketch of Proof of Proposition 2.1

The following sketch is based on arguments of Pollard [35]
(see also in Linder [31, Theorem 2]). Note that in this section
we only use the fact that is a separable and complete vector
space.

The basic idea is that for large the empirical distribution
is a good estimate of , so the optimal clustering for should
provide a good approximation to the optimal clustering for .
Recall that the Wasserstein distance (Rachev and Rüschen-
dorf [38], [39]) between two probability measures and on

, with finite second moment, is defined as

where is the set of all laws on with marginals
and . Equivalently

where the infimum is taken over all joint distributions of two
random -valued random vectors and such that has dis-
tribution and has distribution . It may be proven (Rachev
and Rüschendorf [38]) that is a metric on the space of prob-
ability distributions on with finite second moment, and that
the infimum in the definition of is attained.

The following inequality (see Linder [30, Lemma 3]) shows
that if two distributions and are close in metric, then
their clustering error are also similar:

(4)

Lemma 4.1 below relates the clustering risk of a
-minimizer of the empirical clustering risk to the optimal risk

in terms of the distance between the source
distribution and the empirical distribution .

Lemma 4.1: Let be a -minimizer of the empirical clus-
tering risk. Then
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Proof of Lemma 4.1: Let be arbitrary, and let be any
element of satisfying

For any , we set . Then

where the last inequality follows from (4).

The two statements of Proposition 2.1 are immediate conse-
quences of Lemma 4.1 and the following lemma.

Lemma 4.2: a.s. and
.

Proof of Lemma 4.2: Statement is proved in detail in
Linder [30, Theorem 2], and is based on the fact that the empir-
ical measure converges to almost surely (see also Dudley
[15, Ch. 11]).

Statement is less standard. To prove it, we denote by
the (random) set of all laws on with marginals

and . By definition, the squared Wasserstein distance
between and reads

Let be an arbitrary nonnegative constant, and let be the
subset of defined by

We may write for any

since

Consequently, by Markov’s inequality

Thus, taking the infimum over on both sides and
taking expectations with respect to the ’s, we deduce that

For a fixed , the first term tends to as ac-
cording to statement and the Lebesgue dominated conver-
gence theorem. Since , the second term of
the right-hand side vanishes as , and this concludes the
proof of Lemma 4.2.

B. Proof of Theorem 2.1

An important consequence of the assumption is
that it is sufficient for our purpose to consider only cluster cen-
ters in the (closed and convex) ball of the Hilbert space ,
since otherwise projecting any center that is not in to the sur-
face of clearly reduces the clustering risk. Since ,
we also have a.s., and, similarly, we only need to
search for empirical centers living in .

Note that, for any , the risk
defined in (2) may be rewritten as

Minimizing is therefore equivalent to minimizing the
functional
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over all . Similarly, minimizing the empirical risk (1) is
the same as minimizing

Moreover, for any -minimizer of the empirical risk

(5)

and

(6)

We are thus interested in upper bounds for the maximal
deviation

Note that the second term on the right-hand side of (6) is much
easier and can trivially be bounded by the upper bound we obtain
for the first term below.

Let be independent Rademacher random vari-
ables, that is -valued independent random variables such
that , independent of the

’s. Let be a class of real-valued functions defined on the
Hilbert space . Then the Rademacher averages of are de-
fined by

The proof of Theorem 2.1 relies on the following lemma.

Lemma 4.3: For every in , let be the real-valued map
defined by

Then the following three statements hold.
i)

ii)

iii)

Proof of Lemma 4.3 i): Let be an independent
copy of , independent of the ’s. Then, by a stan-
dard symmetrization argument, we may write

ii): To prove statement , we will make use of the following
properties of the Rademacher averages. Property 1 is a conse-
quence of the contraction principle, due to Ledoux and Tala-
grand [28]. (Note that our definition of a Rademacher average
does not involve absolute values, contrary to a perhaps more
usual usage. This allows us to save a factor of in the contrac-
tion principle.)

1) , where .
2) , where

.
The proof proceeds by induction on . For , we have

by the Cauchy–Schwarz inequality

For , we obtain
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using

by properties 1 and 2 above

The recurrence rule is straightforward, using the arguments pre-
sented for , and the fact that for any

iii):

by the Cauchy–Schwarz inequality

Theorem 2.1 is a consequence of inequality (5), inequality
(6), and Lemma 4.3 i)–iii).

C. Proof of Corollary 2.1

The proof is immediate from Theorem 2.1 and a standard
application of the bounded differences concentration inequality
(see, e.g., McDiarmid [34]).

D. Proof of Theorem 2.2

We start with the following lemma, which is a part of Linder
[30, Theorem 1].

Lemma 4.4: There exists a positive constant , depending
on , such that

and

Let be the constant of Lemma 4.4. Recall that is a
-minimizer of the empirical clustering risk over . If

, we let , otherwise we define as any -mini-
mizer of the empirical clustering risk over . We have

where the last equality arises from Lemma 4.4. Denote by
the probability space on which the sequence of

random variables is defined, and fix . Ac-
cording to Corollary 2.1, there exists a subset of of
probability larger than such that, on

Define

where the infimum is taken over all such
that, for at least one . Clearly, by Lemma 4.4

Therefore, using Proposition 2.1, we deduce that a.s., for large
enough

which in turn implies that, a.s., for large enough, each com-
ponent of is bounded above by . We have thus proven
that for each , there exists such that, for
all .

Note that the rank may depend on . To circumvent this
difficulty, for each , define the event

for all

Clearly, as . Choose such that
. Then , and, for all

uniformly on . Considering the
event leads to the desired result.

E. Proof of Theorem 3.2

Recall that we denote by the empirical
clustering centers associated with the -dimensional observa-
tions . Each is the mean of those ’s in the
Voronoi cell , that is

Define

Since no confusion is possible, we continue to write for
the empirical measure associated with the projected data
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. Recalling that each is the mean of the ’s
falling in , we obtain

Invoking the optimality of the -means clustering procedure
(see Lemma 1 in Linder [30]), we obtain

where the ’s are the Voronoi cells associated with
, and

Consequently, by Theorem 3.1, with probability at least

Similarly

as desired.

F. Proof of Corollary 3.1

According to Corollary 2.1, with probability at least
(with respect to the random sample)

Thus

Let us decompose the term as follows:

(7)

Theorem 3.2 allows one to upper bound the second term: with
probability at least (with respect to the random projections)

With respect to the first term in (7), we note that

where the last inequality arises from a standard application of
the bounded differences concentration inequality (McDiarmid
[34]). Bounding the third term in (7) using the same principle
and applying Lemma 4.3 leads to the conclusion.
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