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§1. Introduction

A density f on [0,00)? is block decreasing if it is a non-increasing function of each of
its arguments on [0, c0) when all other arguments are held fixed. Other definitions of multi-
variate monotonicity and multivariate unimodality have been proposed (see Dharmadhikari
and Joag-Dev (1988) for a survey), but the block decreasing densities are rather natural as
a family. For example, if (Uy,...,U;) are independent uniform [0, 1] random variables and
(Y1,...,Yy) is an arbitrary random vector in the positive quadrant, then (U1Y1,...,UsYy)
has a block decreasing density. The same is true if U7 is exponential or the absolute value of
a normal variate. The class thus contains all arbitrary multivariate scale mixtures of basic
random vectors with independent components. The purpose of this paper is to present a
study of density estimates for this important multivariate class. Our results include several
new multivariate density estimates that are tailored to the class of block decreasing densi-
ties and that are minimax optimal for certain subclasses. Actually, most of existing results
on minimax optimality of estimates pertain to univariate data, and few generalizations to
higher dimensions are available. The present work represents a first modest step towards
the study of minimax optimal multivariate estimates. We will show below that the standard
kernel estimate requires a major overhaul before it can be used for this class. We expect
that for other classes, not treated here, other adjustments may be necessary, and the nature
of these modifications will surely prove to be an interesting topic of future research.

Define the class Fpg of all block decreasing densities on the unit hypercube I; = [0, 1]d
of R bounded by B. More precisely, any element f = f(z1,...,2q) of Fp should satisfy
[f@)de =1, f(z) =0if x ¢ Iy, 0 < f(z) < Bif x € I, and, for each j € {1,...,d},
f is a decreasing function of x; as z; T 1, when all other components are held fixed.
Examples of block decreasing densities are given in Arnold, Castillo, and Sarabia (1999,
pp. 58, 63, 68, 72, 88), including particular cases of beta conditional densities, Burr con-
ditional densities and Pareto conditional densities. The reader can easily construct other
examples by the multivariate scaling property mentioned in the first paragraph of this paper.

Assume now that we are given an i.i.d. sample of size n, Xq,..., Xy, drawn from
an unknown density f € Fp. Then the worst-case risk for a density estimate f, of f (a

measurable mapping from R% x (R4)" to R) is
R(fa ) = sup B{ [ 1fuloi X0, ) = (o) o}
feFp

(as a sake of clarity, we will drop in the sequel the “dz” notation when no confusion is
possible). The minimaz risk (Devroye (1987), Devroye and Gyorfi (1985), Devroye and
Lugosi (2001)) on Fp is given by

Rn(Fp) = i}lfR(fnafB)a (1)
and a density estimate fy is minimaz optimal if, for n large enough,

R(fna]:B) < CRn(FB)

for some constant C. In the univariate setting (d = 1), Birgé (1987a) proved that, if S =
log(1+B), upper and lower bounds for the minimax risk (1) are of the form C(S/n)'/3, where
C is a universal constant not depending upon B or n. Observing that classical estimates

—1-



like histograms or kernel estimates would not lead to the right bound, Birgé (1987b) also
exhibited a minimax optimal estimate for the class Fp merely by considering a suitable
histogram with geometrically increasing interval widths, and fine-tuning the geometrical rate
of increase. Birgé’s modified histogram provides us with a nice example of how estimates
can be tailor made for certain classes of densities. We refer to this author for discussion and
references on the problem of estimating unimodal and decreasing densities.

Our main purpose in this paper will be to generalize Birgé’s results to block decreasing
multivariate densities. In section 2, we show, using information-theoretic methods, that
lower bounds for the d-dimensional minimax risk are proportional to (§¢/n)1/(4+2) In sec-
tion 3, we prove that a multivariate generalization of Birgé’s modified histogram is minimax
optimal. In section 4, we propose a suitable variable kernel estimate with linear varying
smoothing parameter that achieves the optimal rate. In section 5, we introduce a method for
choosing all parameters in the kernel estimate automatically without loosing the minimax
optimality, even if B and the support of f are unknown.

§2. Minimax lower bounds
We develop information-theoretic methods based on the work of Assouad (1982), Birgé
(1986), and Bretagnolle and Huber (1979).

THEOREM 1. There exist positive constants C1, Co and C3, functions of d, such that
1 <ClSd>1/(d+2)

Rn(]‘—B) > 4[1 [ ( Sd/ )1/ d+2)]1/d:|d n

for Cy < S < C3nl/d.

PRrROOF. The first step of the proof is a discretization argument. Let € be a positive real
number and let 7 > 1 be an integer, both to be determined later. We partition the unit
hypercube I into 7% cells

d
sz]—lvxz] i:(il,...,id),
j=1

where 2o = 0 and, for j in {1,...,d},

1+ i —1 _
xlj—m, Z]—17...,T.
Observe that z, = 1 and that E%:l(wi]‘ - xij,l) = 1. For every index i = (i1,...,4q), set

i=141+...+ 14 and define two functions h; and g; supported on C; as follows:

M1+ (14 )4

h; = .
! 24(1 + e)t

)




where every 9i is a piecewise constant function on [;cz ~1, i ) defined by

T;. _1+tx;.
1/d [ 1 [
(1 + 6) / on |:$ij—17 ]fj)
i = Tij—11%i;
1 on | ——5—,2j; |,

and
2(1+¢)
re[1+ (1+ €)1/

(14" —1].

Observe that / hi=1/ r? since the Lebesgue measure of C; is

i

d -1

d e(l+¢) ed(l + e)ifd
AG) = (Iz Ty =
Jl:[l 2 ]1:[1(1“ [+ —1]

Similarly,

I 0 L P CRR WIS |
/Cigl_2d[(l+e)r—1}d (1+€)i’;)<k>(l+ ) T

Let us now compute the L1 separation and the Hellinger closeness (Devroye (1987) and De-
vroye and Lugosi (2001)) of the hypercube of block decreasing densities fg, § = (61, ..., 0,.4) €

d
{0,1}" defined on each C; by fy = h; whenever the component of § matching with C; is 1
and fy = g; otherwise. With respect to the L; separation, we have

/ |hi — gil
G

_ gt N _i(d ’<1+(1+€)1/d>d_(1+6)k/d

20[(1 4 ¢)r —1]7 A+t Ak 2
B 1 Lo (a\[(1+ @+l Ak
N [1+(1+e)1/d]dkz% k )( 2 > (e
1 1+ 1+
Zrd[1+(1+6)1/0l]d[< 2 ) !

+(1+e)—<1+

€

rd[1+ (1+ e)l/d]d




As to the Hellinger closeness, write

/Ci(wz_i—ﬁi)z

T a1+ (1+€1/d d,é( )[(%M)%r(“re)k/d

1/d d/2
~ 2(#) (1+ €>k/(2d>}

_ 1 61/dd
_rd[1+(1—|—e)1/d}d{2[1+(1+ )]

— o2 4 (14 VA2 [1 4 (14 Y/ D]

By the Taylor’s series expansion, we obtain

d—2(9 _ 2
[1+(1+e)1/d}dg2d[1+§+(3/2) 85? 1)6} for 0<e<1,

2 1 2 3 1 4 1

/2 5 g2l €L (Lo @ Ly € (L
[+ T 2 2 {1+4+8(d 1) 3242 32d2(d 1) 128d2(d 1)} for ¢>0,

and

2
1/(2d) d 1
[1+(1+e) ] >2[1—|—4+8(2d 1)] for 0 <e<1.

Therefore, we are led, after tedious calculations, to

2d¢ 2(1 + Ae)
/ <\/_ \/_) Cra[1 + (1 + ¢)1/4)
where
A 32d* — 24d® — 9d? + 11d + 2 =0
64(3/2)42d3(d — 1) + 96d* — 96d3 + 16d2 ~
16d>
O G - ) T 6P —6dr 1
Thus

de2 € fef
R T

Plugging  and 3 into Assouad’s lower bound theorem (Assouad (1982), Birgé (1986),
Bretagnolle and Huber (1979)), we obtain



B € 1 24ne2(1 + Ae)
21+ (1+ ¢)1/4] Cra[l + (1+ ¢)l/d]?
We define [-] to be the nearest larger integer (or: ceiling) function. We can make the square
root less than 1/2 if we take

. ( 4.2%n€2(1 + Ae) )1/d
Cl1+ (1 + )1/d]?

Consequently,
€

Rn(fB) > 4[1+ (1 +6)1/d}d .

This last expression should be maximized with respect to €, subject to the constraint that
d

the set of densities Fy = {fg : 6 € {0,1}" } forms a subclass of Fp, ie., that A% <

B. Observe that A% is approximately equal to exp (dre). Roughly speaking, this is at

most B if dre < S. Substituting r by its approximate value, (4ne?/ C)l/ 4 we obtain that
d(4/C)V/dpl/de(d+2)/d < G This is why the value

M

(Clsd> 1/(d+2)
€ =

n

with C = C/(4d%) > 0, is approximately optimal. We must insist that C1.S% < n to have
€ < 1. This value leads to the desired lower bound. However, we still have to verify that
Fy C Fg, i.e., that A% < B with this choice of e. This is done below. We begin with four
small observations.

(1) S < (11/12)(d+2)/d(1/C1)1/dpl/d is equivalent to € < 11/12;

(2) r =1+ (4ne?/C)Y/4 =1+ SP(e)/(de), where

po=151(a- e L(L Ay

et ea(a) s )
+e€) — T 1S nondecreasing in x for x > 0;
(3) (M+e)*—1)/zi d ing in z f 0;
(4) P(e) > 0.95 and P(e)log(l+¢€) <efor 0 <e<1.
This is used in the following chain of inequalities:
B 2(1+¢)
B re[l+ (1 + €)1/
(1 + 6)eSP(e)/(de) log(1+€) _ 1 14+e
€+ SP(e)/d 1+ (1+el/d
(14 e€)ed -1 1+e
T 0955/d+e 14 (14¢l/d

(146" —1]

<2
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(14 €)eS/d -1
= “70.955/d + ¢
< eS/d -1
< (S — 1)/,

Only the fourth inequality requires explicit verification. This boils down to verifying

eS/d(Q fe— 0.952) <2—e— 0.952 .

For S > 60/19d, we have eS/d > 23 and 0.955/d —2 > 1 > €. So, the left-hand side of the
last inequality is at most equal to
23(2 e 0.952).
Thus it suffices to check that g
24e < 22(0.953 - 2).

This is immediate from the fact that S > 60/19d and e < 11/12. The proof of Theorem 1
is completed taking Cy = 60/19d and C3 = (11/12)(d+2)/d(1/C)V/dpl/d 4

REMARK. ON THE CONSTRAINTS. Note that both constants Cs and C3 depend on the
dimension. Calculations show that Cs and Cg are increasing slowly towards infinity. For
d = 1, we have C9 = 3.16,C3 = 0.19. For d = 2, Cy = 6.31,C3 = 1.92. For d = 3,
Co =9.47,C3 = 3.28. For d =4, Cy = 12.63,C3 = 4.55. For d = 5, Co = 15.79,(C5 = 5.81.
Therefore the constraints on S and n do not dramatically get more severe as d increases.

§3. Birgé’s multivariate histogram estimate

Let € be a positive real number and let » > 1 be an integer. As in section 2, we partition
the unit hypercube I; into rd cells

H|:x7, 717551)7 i:(il,...,id),

where g = 0 and, for every j in {1,...,d},

i
Ti; = % iy=1,...,7
We define
U (CCI)) le,, (4)
where p, denotes the empirical measure based on the sample X1,..., Xy, and where the
summation extends over all i in {1,...,7}% When d = 1, the estimate (4) reduces to the

—6—



1-dimensional histogram with unequal bin widths already defined in Birgé (1987b). For
d > 1, we take the liberty of calling (4) Birgé’s multivariate histogram estimate. From
theorem 1, we recall that the lower bound for any estimate in the class Fpg is proportional
to (5%/n)1/(@+2) Theorem 2 below implies that Birgé’s multivariate histogram is minimax
optimal.

THEOREM 2. Birgé’s multivariate histogram (4) on I; with

M

r = [(R2as?) /4], R - 2+2775(d 1)
2d _ 1
and
e—e/ -1

Rigdy 1/(d+2) Rigdy 2/(d+2)
sw B [1f-nh=a(55) 7 va(TE)

f€FB

satisfies

for all n > C38%, where C, Co and Cs are positive functions of d.

PROOF. Let f be any element of Fp and introduce the notation g; = / f/A(C;). Then
Gi

/Ih—flzZ/cilfn—fl

gz/ci|fn—gi|+z/ci|f—gi|

dﬁf Vn + an

where V;, denotes “variation” and Bj, denotes “bias”. Define i = (i1,...,iq), 1 = (1,...,1),
i—1=(i1—1,...,ig—1). We have

Z)‘ xl 1 f(ml)}

(smce f is block decreasing on Cj, see Devroye (1987))

{ Y AC)B+ Y AC)f(zi1) — Z/\(Ci)f(zi)}

i€z, i€Z]

l\’)l»—~

where Z; = {i :3je{l,...,d}with ij = 1}, and Zj is the complement of Z; in {1, .. .m}d.

Observing that
d
DM@ < G
1+e)r -1

IEZd
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we have
1 Bde d
i€
Using the fact that for 0 < € < 1, by Taylor’s series with remainder,
(1+ )% < 1+de+273d(d — 1)e,

and, for a block decreasing density on I,

> ACiD)f (o) <1,

ieI;
we conclude that

de B s
< — | —— _ .
Bn_z[(1+€)T_1+1+2 (d—1)

To bound V,,, we let Z; be a binomial random variable with parameters n and p; = / 7,
and we proceed as follows: '

- Z \/E{ (Z; - E{Zi})z} (Cauchy-Schwarz inequality)
i

IN

Td
e —}Z\/pi(l—po

- Vnrd
1
rd 1 1
< NI Zpi (1 ~ Zpi) (Jensen’s inequality)
1 1
_ rd —1
N n

Combining the bounds on By and V,,, we obtain

de B d—3 rd —1
E{/|fn—f|}§7{m+l+2 (d—l)]+ —.

We choose € = ¢%/" — 1 and insist on € < 1. Resubstitution yields

{/|fn f|} Lot 203@—1)] + -1

n

rd

= Ae + (with A % q(1 4294 - 1))

(24 — 1) 24

n

A — 1) + foranyr—1<z <r.
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In the last inequality, we used the bound 7% — 1 < (2d -1) z? for r — 1 < x, which follows
from the binomial identity. The derivative of the function & — A(e%/* —1)++/(27 — 1) z7/n
is zero for the solution of

D2 = [24/(av/20 = 1) | vnseS/®.

S/x

Roughly speaking, this solution increases with n, so that e approaches 1 as n — oo.

Therefore, the choice
x = (R2n5’2)1/(d+2), r=[z] and R =24/ (d\/ 24 — 1)

will do. Plugging this back into the upper bound for the expected L1 error, we obtain

B [1fu- 11}

9d _ 1) d S 52 2
(J—I—A 242 S/ (usee“—1§u+u—e“foru>0)
n T 22 2

dad~ 1/(d+2) d od 2/(d+2)
S( 2d_1+é)<RnS ) N A (ﬁ) exp((Rde/n)l/(d+2)/R)

R 2R2 n

d_ d gd\ 1/(d+2) Jod _ 1,1/R / pdady 2/(d+2)
S(M‘dez 1)<RS> +d 2 le (RS)

n 4R n

for R84 <n.

Observing that € < 1 when Sd/ (R2 log (2(d + 2))) < n, the proof of theorem 2 is complete
if we set

Cy =24 —1+dv2d—1/2,
Cy =dv2d—1eY/B/(4R) ,
C3 = max [Rd, 1/(R2 log (2(d + 2)))} O

REMARK. ON THE CONSTRAINTS. Note that both the constraints on S and n become
more severe as the dimension increases. We have Cs = 2,2.08,3.45,18.20, 353.15 for d =
1,2,3,4,5, respectively.

84. A minimax optimal variable kernel estimate
Let K = 1[_1/271/2],1 be the uniform kernel, let 7 > 1 be an integer and let e = eS/r—1.
For x = (z1,...,24) € R%, we define the function
h(z) = (h(ml), e h(ﬂcd)),

where, for u € R,




We also set h(z) = h(z1)...h(zg). In this framework, the variable kernel estimate f, of
f with kernel K and smoothing parameter h (Devroye and Lugosi (2000, 2001)) reads, for

z € RY,

w0 = i 2 ()

where the argument of K is a vector with components (z; — X;;)/h(x;), 1 < j < d. With
our choice of K,

1 n
fn(z) = ’nfl(l‘) ; 1Wd,z (X4), (5)

where W, , stands for the d-dimensional hypercube [z1 — h(21)/2,21 + h(x1)/2] x ... X
[g — h(zq)/2, 24+ h(xq)/2]. The following theorem states that the kernel estimate (5) is
minimax optimal.

THEOREM 3. The variable kernel estimate (5) with

[/ p2, q2y1/(d+2) _ 34243 -1)
r = ’V(R nS ) —‘ and R = T
satisfies 1/(d42) 2/(d+2)
dqd + dqd —+
sup E{/lfn—ﬂ}scl(RS) +02(RS) ,
fE]‘—B n n

for all n > C3 max (Sd, 572), where C7, Cy and Cg are positive functions of d.

PRroOOF. First observe that for u € R,
h(u) 1 € 1

2 1+5 24e(l+er—1

and
h(u)  1+e€ € 1

= u .
2 1+5 24+e(l+er -1
Therefore, the variable kernel estimate (5) vanishes almost surely outside the d-dimensional
hypercube

u

—€ 1 14 € n € d
2l4+¢)(I4+¢"=1"" "2 2[(1+¢" —1]
(note that each component of h is positive on Py, so that f,, is well defined). Now, let

f € Fp. As for Birgé’s multivariate histogram, we split the expected Ly error of the kernel
estimate into a variation and a bias term, namely

B 15~ 11} :E{/pd a1} <5{ /Pd 2~ BRI} +/Pd E{fu} — /]

ety B,

|
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We have for x € Py,

[E{fa()} - f(@)] < ﬁ [ 0= @
T d,z
Let us introduce the sets
d
Ag = {0,1+§+m} )

d
= o=y s

H:i = Ay \ Hq and H!) = P4\ Ay. Figure 1 illustrates the respective positions of the sets
Pa, Ad, Hg, Hly and H)) in dimension 2.

Examples of sets P, Az, Ha, H), and H}.

Since f is bounded and block decreasing on I;, a moment’s thought shows that, for
x € Pgand t € Wy,

B if z € H))
h(z
2

f(@). B = f(2), f@@) — fla+ 2 itz e
flz— @) — f(@), fz) — f(z+ @)} if x € Hy.

=
—~
=
|
~
—~
&
IA
— e
5
™
— =

Therefore,

Bng/HgBd;H/H&BJrf(x)—f(H@)dm
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Moreover,

Thus

3Bde 1 € 1
By < ———— + f =T — dx
2[(1+er —1]  Jy, \1+ 2+e(l+e)r -1

Using the (multivariate) change of variable

1 € 1
T1ted T Ixe(lrer -1
in the first integral leads to

1 € 1
- d
/de<1+§x 2+e(1+e)r—1> *

1+e € 1
=(1+e? d
1+ /7.[2f<1+%$+2+6(1+6)1”_1> w

where H; stands for the d-dimensional hypercube

Yj

2= | € 1 1+3 B € 1 d
d 20l+e)(1+e -1 1+e 20+e€ (1+er—1
Consequently, using (1 + €)% < 1+ de +2%73d(d — 1)e for 0 < € < 1, and the fact that

1+e € 1
dr < 1
/;f<1+5“2+e<1+e>7*—1) e

we deduce that

Observe finally that

1+e € 1
d
/7—((’;f(1+%x+2+6(1+6)T—1> o
Bde 1+4+¢€ € 1
<+ + dx .
=21+ —1] /Adf<1+§$ 2+e(1+e)r—1> v
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By definition of €, we obtain

2B -3
Bp <de| ———— +1+2973d -1
nSde|l Gy P -
= de[3+2973(d — 1)]
defA

Let us now turn to the analysis of V;,. From a straightforward adaptation of theorem 7.3,
pp. 113 of Devroye (1987),

E{fn}
E n —E{fn < -
{/Pdlf {f}|}</Pd t:
and therefore

E{/pd”n—E{an}g/P \/@
oo,
gﬁ Pdﬁ+ﬁ\//7’d|f_E{fn}|\//pd

1+ Ve /i (as By, < Ae)
Vn 7, h

1
/ = because we will insist that Ae < 1.

= e

<2
=/

Elementary computations show that, for 0 < e <1,

/P % = (2+6) H2rlog +e€) = (%)derd(log(l‘FG))d
y :

€
2
< (—+ ) rded < gdpd,
€

Putting all pieces together, we obtain

d
E{/|fn—f|}SA6+A'\/;,

with A’ = 2v/34. Using the inequality rd < 2924 for r — 1 < , valid for r > 2, the end of
the proof is similar to the end of the proof for Birgé’s multivariate histogram, with

C) = (d—|—2)\/6d,
dved el/E

277 9R
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C3 = max {Rd, 1/(R2 log ((d+2)(1 + A*l))), 2;—22} O

REMARK. GRENANDER’S ESTIMATE. Grenander’s estimate for univariate monotone den-
sities (Grenander (1956)) has been shown to be minimax optimal for Fp (Birgé (1989)).
The multivariate generalization of it was shown by Polonik (1995a, 1995b, 1998) to be the
maximum likelihood estimate. However, it was not shown there to be minimax optimal,
so that question remains open. For additional results on Grenander’s estimate, we refer to
Wegman (1969, 1970a, 1970b) and Groeneboom (1983).

REMARK. ON THE CONSTRAINTS. Note that both the constraints on S and n become
more severe as the dimension increases. We have C'5 = 5.33,47.02,276.48 for d = 1,2, 3,
respectively.

85. Adaptive polynomial bandwidth kernel estimates

We saw in the previous section why kernel estimates with bandwidths of the form a+ bz,
x > 0 are important for monotone densities on the real line—they are minimax optimal
modulo a universal constant. However, the form of bandwidth suggested in the previous
section cannot be computed, since it involves unknown quantities. In R?, a d-dimensional
bandwidth vector with j-th component a; + b;x; is similarly optimal for d-dimensional
block decreasing densities. If one uses the values for a; and b; suggested in section 4, then
it is necessary to at least know (or have a good estimate of) f(0) and the smallest box
[0,81] X -+ x [0, s4] of unit probability. By rescaling the minimax results appropriately, we
note that each h; is of the form s;(a; 4 bjz;/s;), where a; and b; are functions of n, d and

v(f) def f(0) H;lzl s; only. However, what happens if f is not bounded or not of compact
support? Or what happens when f is far removed from the densities that occur as worst
cases in the minimax bound? Thus, to be really useful, we need to be able to choose the a;’s
and b;’s automatically, so that we get near-optimal expected error rates for all densities, and
near-optimal bounds for block monotone densities that match the minimax lower bounds
derived earlier. This sort of universal robustness is derived here, based on the combinatorial
method of Devroye and Lugosi (2001).
Let

©={0=(h1,...,hg) : minh; >0}
J

be the parameter space of all bandwidths. Consider the product kernel estimate on R4
defined by

Fuo(@) = 3" Kglw— X,
=1
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where

d 4 2() 1 i
Kg(ac):Hh—jKj h—] , x:(ac(),...,x( )),
7=1
and K1,...,K, are fixed 1-dimensional kernels integrating to one. In this estimate, the

smoothing factor varies in each direction. This, of course, is the multivariate extension of
the Akaike-Parzen-Rosenblatt kernel estimate. The automatic selection of the bandwidths
has been discussed in Devroye and Lugosi (2001), where additional references may be found.
The most recent results on the consistency of multivariate multiparameter kernel estimates
are in Devroye and Krzyzak (2000).

The variable kernel estimate of the Breiman-Meisel-Purcell kind is defined by

n d G _ xW)
= A3 TL i (S ) o= (o),

i=1j=1 Jst 7,

where K is a 1-dimensional kernel (typically a density), and each X; has its own set of d
bandwidths, (hy,...,hq;), which possibly depends upon the data. The original paper by
Breiman, Meisel, and Purcell (1977) had the 1-dimensional version of this, which was sub-
sequently studied by Habbema, Hermans, and Remme (1978), Abramson (1982), Devroye
(1985), Devroye and Penrod (1986), Hall and Marron (1988), Mielniczuk, Sarda, and Vieu
(1989), Hall (1992), Terrell and Scott (1992), Marron, Hall, and Hu (1995), Hazelton (1996),
Sain and Scott (1996, 1997), and Devroye and Lugosi (2000).

If K is a density, then so is fn. A second estimate that is not a density but may
nevertheless have interesting properties is one in which the smoothing factor depends upon
z, not X;, as in

d j ()
1 & 1 () — X}
f (1}) = - K ! )
" n Egl:ll h;(z) hj(x)
where h(z) = (h1(z),...,hq(z)) is a given vector of functions of z. Typically, fy is no

longer a density. An interesting approach to local bandwidth selection could consist in
parameterizing h in an appropriate way. For example, we may have a polynomial choice

o) = ats,0) (o)

=0

14

for coefficients a(j, £). Clearly, care must be taken to insure that h;(x) > 0 for all 2, so not
all choices of coefficients are feasible. It is easy to avoid that problem, but that will not
concern us here. For example, one might set

k

hj(z) = exp (Z a(j,£) (x(j)y)

(=0

or something similar.
Define 6 = (a(j, E))0<é<k 1<j<d 3 @ (k + 1)d-dimensional vector of parameters. The

space for 6 is €2, where we only restrict a(j,0) > 0 for all j. Denote the variable kernel
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estimate with polynomial choice of each h; by f, 9. Our interest in this section is in the
data-based selection of § when the kernel is the uniform kernel K = 1/_y/51/9). We call the
estimate with these choices of h; and K the polynomial bandwidth kernel estimate. We are
only interested in densities on Q = [0, oo)d with our particular choice of #. The purpose of

this section is to show that there exists an algorithm for picking 6 depending upon the data
(this data-based choice will be called ©) such that

B{ [ 1no— 11} < Cjut B] [ 100 11} + cay2E"

where Cy depends upon d and k only and C] is a universal constant. As ) contains the
standard product kernel density estimate, we note that modulo a factor C'1, the data-based
estimate is as good as the best product kernel estimate, even if f were given to us beforehand.
In particular, we have universal consistency: for all f,

Jin { [1f,0 - 11} =0,

If we apply the above result to the estimation of block decreasing densities on @, we
note that the kernel estimate of the previous section had k = 1, with all 2d coefficients given
explicitly in terms of the supports s; and a shape parameter v(f) = f(0) H?:l s;j. This
setting is of course contained in 2. For that choice, the kernel estimate of that section had
an expected L1 error O(((log(v(f) + 1))d/n) 1/(d+2)). Let F denote the class of all block
decreasing densities on ). As the inequality above is valid for all n, we thus conclude that
fn,@ has the same order for its expected L1 error for densities that have v(f) < co, and this

is adaptive in a very strong sense:
B{ [Ino - 11}

} 1/(d+2)

—0(1).

sup sup
t>0 {feF(f)<t} {(log(t + 1))d/n

Thus, we need not to know the support, f(0), or y(f) to get performance commensurate
with the minimax lower bound, uniformly over all block decreasing f with v(f) < ¢. In other
words, the estimate “adjusts” to the individual values v(f). The estimate of the previous
section does not do that, as it only adjusts to the densities in the class with the highest
value of y(f).

We now describe the manner in which we select the coefficients of the polynomial
bandwidths. Split the sample in two parts, X1,..., Xn—m and Xp_pm41,..., Xn. Consider
the subsets of R? defined by {fn—mo > fr_mer}, with 6,68 € Q. The collection of these
sets is called a Yatracos class and is denoted bif A. Then select © so as to minimize

© = argmin sup
AcA

/A Fomp — 1A

where pm(A) = (1/m) Z?:n—m 11 ]l[ X;jeA] is the empirical measure for A based upon the
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second part of the sample. If the minimum does not exist, we select © such that
sup

. 1
/ fn—m,@ - ,U'm(A)' < inf sup / fnfmﬂ* — pm(A)| + —.
AcAlJA A n

0*cQ Ac A
For this method of choosing the polynomial bandwidths, we show the following non-asymptotic
bound, valid for all n and all densities f on Q:

THEOREM 4. For the polynomial bandwidth kernel estimate with © as selected above, for
any f on @,

E{/Ifn,@—fl}
o) 2 g

8\/2(k + 1)dlog (d(n —m)) + (2(k + 1)d + (k + 1)%) log(2m) + 3

The choice m = n/2 yields

B{ [ no -1}
< eiggE{/vn,e - f|} (15+40/v?2)

. sﬁ\/Q(k + 1)dlog(d/2) + (4(k+ D+ (k +1)%) logn +3 5

n

The proof of theorem 4 follows from theorem 5 and lemma 1 below without further
work. Many classical nonparametric density estimates may be written in the form

gnle) = = 3" K, Xi),
=1

where K : RYxR?% — R is a measurable function. Such estimates are called additive (Devroye
and Lugosi, 2001, chapter 10). We say that the additive estimate gy is regular if for each
z, E{|K(z,X)|} < oo. The multivariate variable product kernel estimate introduced here
is additive and regular.

THEOREM 5 (DEVROYE AND Lucosi, 2001, THEOREM 10.3). Let the set Q determine a
class of regular additive density estimates (with possibly [ fn—m,p # 1 for some or all §).
Then for all n, m <n/2, and f:

£ [lno-n1h s e] [ 10— 11} (142 48 /2)

+8E{ w}+z

m n
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Here S g(m) is the shatter coefficient for A, i.e., the maximal number of sets in {(y1, ..., ym)N
A:Ae A}, where the maximum is taken over all (y1,...,ym) € R,

We will not be concerned with the actual details of the minimization algorithm. We realize
that more work is needed to make the present method computationally feasible. Note that
A, and thus S 4(m), depend upon X1,..., Xp—m. First we show that for any A, there is a
uniform bound for S 4(m) over all values of X1,..., Xp_m.

LEMMA 1. Let fy9 be the polynomial bandwidth kernel estimate of order k, the degree
of the polynomial on RY, based on a fixed sample of size . Define the class of all sets

{z: foo > fro}, with 0 # 6’ € Q. Then

Su(m) < o(k+ 1) 2+2(k+1)d o (de)2(k+Dd m2(E+1)d+(k+1)T

ProoOF. We cut the proof in several parts. First we introduce the notation zq,...,z, for
the sample from R% used in the definition of feg- It is deterministic, and the bounds below
will hold uniformly over all such samples. To compute the shatter coefficient, we will use
(y1,.--,Ym) as the sample from R to be employed. We begin by defining the vector

(1) (1) (d) (d)
. def Y ) <yj - )
V(j,i,0) = | K| 22— ),... . k[ ZL—) |,
G, 6) ( h1(y;) ha(yy)

where the dependence upon 6 is through hy,...,hg. Then define the m x ¢ matrix V(6) of
vectors V(4,4,0), 1 < j <m, 1 <i<{ We will first verify how many possible values this
(1) M)y (1

—x = , and

matrix can take as we vary 0. Fix 1 <j<m, 1 <i</. Seta:yj L ;

Py(b) = a1o + annb+ - +ah” .
Consider the values K (a/Py(b)) can take as (a1g,...,a1;) varies. As K = L_1/2,1/2], we
note that K (a/Py(b)) = 1P, (b)|>2la|)- Note that [P1(b)| > 2|a| translates into

lato + a11b + - - - + ab¥| > 2|al

with the only variable items being (aig,...,a1). Thus, we have two linear inequalities.
Every (i,7) pair and every component index (of d possible components) yields a different
pair of inequalities, for a total of 2dm/ linear inequalities in the (k+1)d-dimensional space of
the free parameters, (a1, ...,a1%),-- -, (@go, - - -, agk)- It is well known from Cover’s lemma
(1965) that the number of regions in the partition defined by these inequalities does not

exceed
(k+1)d—1

2dmt — 1) (k+1)d
2 < 2(2dm) .
> (7
Within any of these regions, the matrix V(0) is fixed, with all kernels K taking precisely
one value. We may do the same for V/(#’), and thus note that there exists a partition of Q2
of size at most

(2(2dme)(k+1>d)2
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such that on any set of the partition, (V(),V(¢')) is fixed.
Fix such a region R of Q2. This fixes all values for V(6) and V(¢'). Next we are
interested in the collection of indicators

def def
Z = Z e Zm = 1 ) 1 °
( 1, s ) < [fl,@(yl)>f€,0'(y1)] [féﬂ(ym)>fg,9/(ym)]>

Indeed, the shatter coefficient is nothing but the number of different possible values of Z as
(6,0') varies. We will calculate a bound W on the number of different possible values of Z
when (0, 0') varies within a region R of 02, and show that W only depends upon d, ¢, m, k.
Then, by recalling the bound on the number of regions R, we see that the shatter coefficient
is bounded by

2
W x (2(2dm£)(k+1)d)
To compute W, we fix all values of
(n (1 (d) (d)
.y def (A > <3/j - >
V,i,0) = | K| ———),.... K| ——
G:4,6) < hi(y;) ha(y;)

for all j,i. For fixed j, let N; be the number of z;’s, 1 <14 < ¢, for which
(s) (s)

d
HK<7yj 5 > —1
1 hS(yj)
where hg depends upon 6 through the coefficients in the polynomial

k
hs(yj) =ag + as1y](-8) +dag (y](S)) ]
We will write b/, if the coefficients of ¢’ are used instead. Let N. ]’ be the corresponding value

of N;. Clearly,

!

Nj N
d d '

n Hs:1 hs (y]) n H5:1 h/s(yj)

Thus, { feo(y) > feor (y)} as a function of a generic y € R is a set defined by an inequality
of the form

feoly;) = v Jeer(y) =

d d
[T > [T hs),
s=1 s=1

where c is a fixed value. This is a polynomial inequality with each monomial being of the

form
(y(n)“ X oo X (y(co)”d

and each 0 < ps < k for all 1 < s < d. The number of such monomials does not exceed

r &t (k+ l)d. By a mapping that makes each of the monomials a new variable, it is easy to
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see that considered as a set in R",

d d
[T ) > e ] hsw)
s=1 s=1

is just a homogeneous linear inequality of the form ajwi+- - -+arw, > 0, with the coefficients
a; depending upon the pair (6,6’) only. The shatter coefficient for a collection of m points
in R" for a collection of linear halfspaces is not more than (m+1)". Thus, in particular, the
number of possible values of Z is not more than (m 4+ 1)" (see, e.g., Devroye and Lugosi,
2001), and therefore,

W < (m+1)kE0"
Putting everything together, we conclude that
d 2
Sa(m) < (m+1)*+D) (2(2dm€)(k+1)d)

< (kD) 2+2(k+1)d o (d0)2(k+Dd m2(E+1)d+(k+1)

This finishes the proof of lemma 2. []
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