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Abstract. We analyze the expected time complexity of range searching
with k-d trees in all dimensions when the data points are uniformly dis-
tributed in the unit hypercube. The partial match results of Flajolet and
Puech are reproved using elementary probabilistic methods. In addition, we
give asymptotic expected time analysis for orthogonal and convex range
search, as well as nearest neighbor search. We disprove a conjecture by
Bentley that nearest neighbor search for a given random point in the k-d tree
can be done i) (1) expected time.

1 Introduction

The k-d tree, or k-dimensional binary search tree, was proposed by Bentley
in 1975. Itis a binary tree in which each record conta&ikeys, right and left
pointers to its subtrees, and an index integer between k #mat indicates
which key in the record is used for splitting. On any path from the root,
splitting is performed in a cyclical fashion as explained below. The index
of a node at distancéfrom the root isl + ¢ modk. Fork = 1, we obtain

the standard binary search tree. Eor 1, consider a node having index

j € {1,...,k}. All nodes in its left subtree are such that thgft key is

less than thg'" key in u, and all nodes in its right subtree are such that
their 5t key is greater than or equal to th&" key in u. As the indices
arel,2,...,k,1,2,... on any path from the root down, we see that each
coordinate axis gets cutin turn, in a cyclical fashion. Insertion, deletion and
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Fig. 1. The k-d tree and its partition of the plane. The query rectangle is shaded

search are implemented as for the standard binary search tree algorithms.
These trees are used for a variety of other operations, including orthogonal
range searching (report all points within a given rectangle), partial match
gueries (report all points whose values match a gik«glimensional vector

with possibly a number of wild cards, e.g., we may search for all points
with values(aq, , *, a4, as, *), wherex denotes a wild card). Additionally,
nearest neighbor searching is greatly facilitated by k-d trees. For orthogonal
range searching, a host of particular data structures have been developed,
such as the range tree and variations or improvements of it (for surveys, see
Bentley and Friedman (1979), Yao (1990), Matek (1994), and Agarwal
(1997)). However, the k-d tree offers several advantages—it t@kés)

space fom data points, it is easily updated and maintained, it is simple to
implement and comprehend, and it is useful for other operations besides
orthogonal range search.

It is instructive to associate with each node the unique rectangle in the
partition in which the node falls when it is last added to the tree. Bentley’s
range search algorithm simply visits recursively all nodes whose rectangle
has a nonempty intersection with the query rectangle. In addition, it visits
all such rectangles that have no points (and correspond to children of leaves
in the tree, see Figure 1—these rectangles will be called leaf regions, and
correspond to the nodeless bottom edges in the tree of Figure 1). The query
time for orthogonal search time depends upon many factors, such as the
location of the query rectangle, and the distribution of the points. One may
construct a median k-d tree off-line by splitting each time about the me-
dian, thus obtaining a perfectly balanced binary tree, in which search takes
O(log n) worst-case time, and a partial match query takes worst-case time
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Fig. 2. Two random k-d tree partitions clearly show the elongated rectangles

O(n'~'/k 4 N), whereN is the number of points returned (see, for exam-
ple, Lee and Wong, 1977). For on-line insertion, balancing is notoriously
difficult. If we assume that the data are independent and have a common
distribution, then the expected query time is clearly of interest. For standard
random binary search trees, it is known (Knuth, 1997; Devroye, 1986; Mah-
moud, 1992) that most properties of balanced search trees are inherited: the
expected depth of a randomly selected node is abloigtn and the expected
height isO(log n). One would hope that the random k-d tree, constructed
by consecutive insertion of data points, would also have a performance
close to that of the median (off-line) k-d tree. This hope was shattered by
Flajolet and Puech (1986). They assumed that the data points are drawn
from the uniform distribution on the unit-cube, and that a partial match
guery is carried out with values also drawn uniformly and independently
on|0, 1] (so, there ar& — s wildcards). The partial match query algorithm
is Bentley's range search algorithm with a rectangle hayisigles of zero
length. On a median k-d tree, partial match query is easily shown to take
time about:!~*/%. However, Flajolet and Puech stunned the computational
geometry community by showing that the expected time performance is
O(n!—s/k+0(s/k)) wheref(u) is a strictly positive function of. € (0,1),
with maximum not exceeding.07. Thus, random k-d trees behave a bit
worse than their balanced counterparts. Surveys of related known proba-
bilistic results are provided by Vitter and Flajolet (1990), and Gonnet and
Baeza-Yates (1991).

The purpose of this paper is to complement, extend, and deepen the
results of Flajolet and Puech. We will show that the poor behavior of k-
d trees for orthogonal range queries is due to the elongated character of
most rectangles in the random patrtitions of the plane defined by the k-d
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tree. Elongated rectangles have less information (fewer dimensions, if you
wish) than squarish rectangles, and will increase search times. We will treat
partial match queries as a special case of orthogonal range queries, and
derive explicit and tight bounds for random orthogonal range search queries
when the query rectangle may have dimensions that dependrujoan
arbitrary fashion. The proofs are entirely probabilistic, rather than analytical,
and do not offer explicit constants for expected times but ¥y results.
However, they are short and explain many of the phenomena at work. To
illustrate the power of our approach, we finish with results regarding k-d
trees queries for membership in random convex sets of a given shape, and
look at the expected time for a simple nearest neighbor query. As pointed
out in the thesis of Chanzy (1993), nearest neighbor queries based on k-d
trees cannot possibly have logarithmic expected times—rather, they grow
polynomially inn.

2 Partial match queries

Bentley’s algorithm starts the search at the root. At each node, it looks at its
indexi € {1,...,k}, and compares th&" key of the current node with the

i*h range in the search region. If the range is entirely to the left, the search
continues only on the left child of the node, if it is entirely to the right, then
the search continues only on the right child. Otherwise, the search continues
on both children. Given a node we denote byleft(u) its left child, by
right(w) its right child, and byindex[u] its index.

Let uy,uo,... ,u,, n > 1 denote the nodes in the k-d tree, and let
Ui, ..., U, denote the data points, which are i.i.d. and uniformly distributed
on|0, 1]*. Thus,U; is the data point correspondingt@ The rectangle split
byu;is R;. Thus,R; = [0, 1]*. Then+1 leaf rectangles (the dangling edges
in Figure 1) are also denotdgl;, with the index; now running fromn + 1
to 2n + 1. The collection of rectangles is denoted Ry,. We will denote
by T the k-d tree constructed by inserting successivglys, . . . , u, into
an initially empty k-d tree. Given a nodein T, we will denote byT;, the
subtree ofl' rooted at:. The dimensions of rectanglg arez;;, 1 < j < k.

We will consider a query rectanglg = [mq, M;] x -+ x [mg, M| with
centerz = (Mpm  Mdmiy Note that a nodey; is visited by the
range search algorithm if and only if the query rectar@lietersectsi;. A
leaf rectangle is visited if its rectangl®, intersects). Let V,, be the time
complexity of Bentley’s orthogonal range search. Then,

2n+1

No= ) g, nozo) -
=1
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Fig. 3. The top curve is the Flajolet-Puech functief). The bottom curve is the function

0()

Now, letl < s < k,andv;,, ... ,v;, € [0,1]. Apartial match query asks for
all points in{uy, ... ,uy,} satisfyingu,;, = v;,, forall1 <t < s. We say
that the query fixes coordinatgs . . . , js. We also defind. as the set all of
points in[0, 1]* whosej;-th coordinate is equal to;,, forall 1 < ¢ < s. In

a random partial match query, we let thiixed coordinates be independent
and uniformly distributed ove, 1].

The flajolet-puech functiofror0 < u < 1, letf(u) be the root € [0, 1] of
the equatiorfd + 3 — u)“(6 +2 —u)! = — 2 = 0. We shall call the function
a(u) = 1—u+6(u) the Flajolet-Puech function df, 1]. Note in particular
thata is decreasing, and that— v < a(u) < 1.07 — u. Equivalently,

1—¢ 1—u ¢ u
a(u) = max {t +2 <> () — 2} .
0<t<1 1—-u U
Particular values of interest further on ar€)) = 1, a(1/2) = 0.5616,
a(1/3) = 0.7162, a(2/3) = 0.3949, a(1) = 0.

Theorem 1 (Flajoletand Puech, 198&jiven is a random k-d tree based on
i.i.d. random variabled/y, ... , U,, distributed uniformly orj0, 1]*. Con-
sider a random partial match query, in whiglof thek fields are specified
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with & > s > 0. Let Nﬁf) be the number of comparisons that Bentley’s
orthogonal range search performs. Then

E {N,gs>} = (c+ o(1))nG/k) |
wherec is a constant depending anand k£ only.

The following proposition is useful in relating random partial match
gueries to the range search problem.

Proposition 1 Given is arandom k-d tree based on i.i.d. random variables
Ui,...,Up,, distributed uniformly orf0, 1]*. Consider a random partial

match query, in whicls > 0 of thek fields are specified. LdV,(f) be the
number of comparisons that Bentley’s orthogonal range search performs.
Let.S be the set of specified coordinates. Then

o) o { ST .

i=1 j€S
whereW;;,1 < j < k are the widths of the sides of rectangte in R,,.
Proof.Notetha? {L N R; # 0 |Uy,... ,Un} = [[;cq Wij. Thus we have,

2n+1
E{N(S}— {Z lmR#@}
2n+1 2n+1
= ZP{LmR #0} = E{Z HWH}

i=1 jE€S

Bibliographical remarksWe know much more abowv,\” than what is
given in Theorem 1. Neininger andiBchendorf (1999) showed that the

first asymptotic term foVar {N,(f)} is @ ((E {N,(f) }) 2) , and showed

that( N {N,(f) }) /, /| Var {fo)} tends in distribution to a non-

degenerate limit law. That isv\ is asymptotically not concentrated about
E {N,(f) . Their method of proof uses contractions, and may also be used

for analyzing partial match queries for random quadtrees, thus extending
results of Flajolet, Gonnet, Puech and Robson (1990, 1992). Partial match
gueries have also been analyzed for kdt trees, a balanced version of random
k-d trees, by Cunto, Lau and Flajolet (1989). For a random k-d tree in which
the cut directions are randomly picked, a complete analysis of is given by
Duch, Estivill-Castro and Martinez (1998), and Martinez, Panholzer and
Prodinger (1998).
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3 Orthogonal range search

In this section, we obtain tight upper bounds for the expected complexity
for Bentley’s range search algorithm.

Lemmal LetUy,...,U, beindependent uniformly distributed random
variables ovef0, 1]*. LetR,, = {R1, Rs, ... , Ron1} be the rectangles in
the partition defined by the random k-d tree based/en .. , U,,. LetW;;

be the length on thg'" coordinate of the' rectangle. Then,

2n+1
E{Z Wil"‘Wik} =2H,41 — 1,
i—1

whereH,, is thent™ harmonic number.

Proof. First, note that for any < ¢ < n, Wj; - - - Wy is the volume|R;|

of the rectangleR;. Note that ifUy, ... , U; have already been inserted in
[0, 1}’“, andU; 1 is a new point, then the combined size of the two rectangles
generated b¥/; ;1 is equal to the size of the rectangle in the final partition of
[0, 1]* in which U; ., falls. Let us denote byz(U,, ) this rectangle. Thus,
summing over all nodes, we obtain the following identity:

2n+1 n—1
E{Z Wﬂ---Wik} =1+ > E{E{[RU1)||U1,... ,U}},
=1

1=0

where the 1 accounts for the root rectangle. We claimBhgiR (U;+1)|} =
H—%' Note that the claim is obviously true fér= 0. Now, suppose that
Uy,...,U; have already been inserted in the k-d tree, so that there are
1 + 1 external nodes. These external nodes represernit-thé rectangles
partitioning[0, 1]*. Let these rectangles Is&, . . . , S;.1, numbered so that
the leaves are taken from left to right, in order of appearance as leaves in

the k-d tree of/y, ... ,U;. Then,

i+1
E{’R(Ul+1)’} =E {E {Z]]‘[Ui+1€3d ‘SA ‘ U17 v 7UZ}}

(=1

i+l
E{Z|SZ|P{Ui+1 €S| Uy,... 7Ui}}

=
i+1

E {Z |54|2} :
=1

Observe that| S|, . .. ,|Si+1|) are jointly distributed as uniform spacings,
that is the lengths of the intervals d6, 1] defined by an i.i.d. uniform
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[0, 1] sample of size. This is best seen inductively, as the next point added
“chooses” a rectanglg; with probability |S;|, and replaces it by two rect-
angles, of size#’|S;| and(1 — U)|S;| respectively, so that the new rectan-
gle sizes jointly are once again distributed as uniform spacings. All these
spacings are identically distributed following a B@ta) distribution. If

B is a Betdl, i) random variable, then we ha®{B} = 1/(i + 1) and

E {B*} =2/((i +1)(i + 2)). Therefore,

E{IRWl} = (+ DE{B) =
and thus,
n—1
1+ Y E{|RUi1)|} =1+ 2(Hpp1 — 1). 0
=0

We will also need the following proposition.

Proposition 2 Given is a random k-d tree based oni.i.d. random variables
Ui,...,Uy,, distributed uniformly or0, 1]*. Let W;; be the length of the
7" side of rectangle?; € R,,. Then, there is a constagt > 0, depending

on k only, such that

2n+1
E { Z ]]‘[mane{l,m,k} Wlﬂzé]} S ¢

=1
In other words, the expected number of rectangles with any side greater than
1/2 does not exceed.

Proof.For/ > 1, let X (¥) be the product of¢/k | independent unifori, 1]
random variables. Then, lettifgdenote the level in the tree,

2n+1 2n+1 k
E { Z ]l[mane{L.,.,k} Wz‘jZé]} <E Z Z ]l[WL-jZ%]

=1

for anyp > 0. The last expression is finite, for example, if we take 2%,
ask > 2. 0O
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Theorem 2 Given is a random k-d tree based on i.i.d. random variables
Ui,...,Up,, distributed uniformly orf0, 1]*. LetQ be a random query rect-
angle of dimensions\; x --- x A (which are deterministic functions of

n taking values in0, 1]), with center atZ which is uniformly distributed

on [0, 1]%, and independent dfy, ... ,U,. Let N,, be the number of com-
parisons that Bentley’s orthogonal range search algorithm performs. Then,
there exist constantg, v > 0 depending upo# only such that

< B{N.}

<1Ogn + s, k) (ng_fs Aj) ”a(w'/k))

|S|<k

<.

Proof. Note that given/, ... , U,, the probability that) intersectsR; is
the probability thatZ has some coordinaté; that is within distanced; /2
of R;, and this probability is clearly bounded by the volumdgiexpanded
by A; in the j-th direction, for allj. Thus,

2n+1 k

E{N,} <E Z H (Wij + 4;)

i=1 j=1

2n+1

= > (I eq > Ty

SC{L.. k} \j¢S i=1 jes

<C > [14; ] ne®V® +2m, 4 —1
SC{1,... \k}:|S|<k \j¢S

for some constant’ > 0 and for alln large enough, by Theorem 1 and
Lemma 1. For the lower bound notice that,

2n+1
E{N.} > E { > Lonrn e, . k- WU<1/2}}
=1

2n+1 k A
> E Z H (Wij + 2]> Livee(s,... ky:wip<1/2]

=E9 | H(Wij—i-AQj)



364 P. Chanzy et al.

2n+1
-E H <sz + 2]> Lizoeqa,... ky:wi>1/2]
=1 j5=1
A 2n+1
- ¥ Oys 21w
SC{1,....k} j¢S i=1 jes
A 2n+1
S DN I G205 D8 | L ERTST
SC{1,...,k} j¢S i=1 jes
We can bound the second term above for any gisea {1,...,k} as
follows:
2n+1
E Z HWij]l[ﬂfe{l,...,k}:W¢g>1/2]
i=1 jes

2n+1
/
<E { Z ]I-[maxje{l,m,k} Wz‘jZ;}} <,

i=1
by the previous proposition. The result follows by Theorem 1 and Lemma 1.

Put differently, there exists a constant- 0 depending upok only such
that

k—1
E{Na} < [ nlQI+3 0?37 ] 4] +logn |,
s=1 SC{1,..,k} \J¢S
|S|=s

where the first term accounts for the number of points returned in the query
(which is unavoidable), the last term represents the height of the tree (and
is unavoidable as well), and the other terms represent contributions from
lower-dimensional searches. By Theorem 1, each of these is necessary as
well. Note in particular that fos € {0, 1, ... , k}, there exists a choice for

the A;’s that makes a different term in the upper bound dominate. That is,
for any givens < k, there is a selection af\;’s such that the upper bound

is O (n®s/})). Just setd; = 0, j < s, A; = 1,j > s. Fors = k, the
complexity isO(log n) when all values ofA; are zero.

Two-dimensional special caseor k = 2, asa(1/2) = @ ~ 0.5616,
we see that the expected complexity bound is

0] <logn + n\/i%)’ (A1 + A9) + nA1A2) )
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Fig. 4. The complexity regions: in |, the output size dominates. In Il, the 1-d complexity
term is largest, and Il is like point search

The first term accounts for complexity due to search in a tree of height
logn. The last term is a volume term, approximately equal to the number
of points returned by the query. Both are unavoidable. The middle term is
due to complexity related to the perimeter of the query rectangle as a long
perimeter cuts many rectangles in the partition. In case= 1/n* and

Ay = 1/nb with a,b > 0, Figure 4 below shows the regions of the b)

plane in which each of the terms dominates. The perimeter term dominates
in the white region, the volume term dominates in the dark region, and the
search termlog n) dominates in the light region. Point search corresponds
to a = b = o0, and a partial match query correspondste: 0,b = oo or

vice versa, which falls plainly in the white region. Put differently, we have

O(logn) if min(a,b) > a(1/2) = @
E{N,} = { O(n'=) if max(a,b) < 1-a(1/2) = =17
O(n 52 -min(@d))  otherwise.

Three-dimensional special cadeor £ = 3, with a(1/3) ~ 0.7162 and
a(2/3) =~ 0.3949, the expected complexity bound is

O (logn + ™39 ( Ay + Ay + Ag) +nO T2 (A1 Ay + A1 Ag + ArAy)
+nA1A2A3) s
where we took the liberty of replacing irrational numbers by rational num-

bers with four significant digits. Note that the two middle terms are the
perimeter or lower-dimensional terms. One accounts for the one-dimensional



366 P. Chanzy et al.

perimeter, and one for the two-dimensional surface area of the query rect-
angle. Interestingly, there are situations in which each term dominates. For
a full picture, letA; = 1/n%, Ay = 1/n® andAs = 1/n° with a, b, ¢ > 0.

Then we have

O(logn) if min(a,b,c) > «(2/3)
— 0.3949 (%)
O(n'—a=b=¢) if max(a,b,c) <1—a(1/3)
— 0.2838 (+%)

Nn = : . .
E{ } O(n0.71627m1n(a,b,c)f(a,b,c)) if (*) and (**) fail and

meda, b, c) < a(1/3)
O(no.3949—min(a,bvc)) otherwise.

4 Proof of Theorem 2

In this section, we give a direct probability theoretical proof of the main
theorem. By Proposition 1 and the arguments of the previous section, it
suffices to prove the following.

Proposition 3 For fixeds with 0 < s < k, there exist constants and C’
depending upon andk only such that in the notation of Proposition 1, for
all subsetsS C {1,... ,k} with |S| = s,

2n+1
Clna(s/k) <E Z H Wij < Cna(s/k) )
i=1 jeS

Proof. We will prove the upper bound only. The proof uses an embedding
argument that constructs an equivalent k-d tree using a different probability
model. Assume without loss of generality that the$ebnsists of the first

s coordinates in the rotation (the other cases are not equivalent, but trivially
similar). A split along coordinatg will be called aj-split. To determine

a split, we just need a uniforrj), 1] random variable. So, the construc-
tion of the k-d tree may be viewed recursively as follows: at the root, the
root rectangleR; = [0, 1]* is subjected to d-split based on a uniform

[0, 1] random variabld/. One data point is associated with the root (this
requiresk — 1 other uniformly distributed coordinates, but they will not be
needed for what we need to study), and the sizes of the subtrees associated
with the two subrectangles are multinomially distributed with parameters
(n—1,U,1-U). We may apply this procedure recursively, cycling through
axes for splitting. Aftetk rounds, thus for rectangles at distaricieom the
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Fig. 5. Tree showing argument in proof of Proposition 3

root, the dimensions of a rectangle are described by a végtor.. , V4),

with independent unifornf0, 1] components. As a Binomi@V, p), where

N is Binomialn, ¢), is Binomialn, pq), we see that the size of the subtree
associated with the rectangle with dimensiVis . . . , V}) is stochastically

not larger than a Binomi&h, Hle Vi) random variableV. If N = 0, then

the rectangle is either non-existent or a leaf in the final k-d tree. With this
mechanism, our tree is an infinite complete binary tree. The actual k-d tree
with 2n + 1 rectangles is a subtree of the tree whose nodes represent rectan-
glesR such thatV = Binomial(n, |R|) > 0. TheseN’s are dependent, but
that will not matter in what follows, by linearity of expectation. We note thus
that with each node in the infinite tree, an independent uniforij random
variable is associated, and that the size of a rectaRglhose path from

the root to the parent of the rectangle node has uniform random variables
Vi, Va, ... is given by

ViVieriVorgr -, VaViepa Voo oo oo ViV Vag ..o )

Returning to the problem at hand, we introdu¢€éR) and W (R) for a
rectangleR at distance/ from the root. Heré/(R) is the product of all
uniforms on that path to the root that correspong-gplits,1 < j < s, and
W (R) is the product fos + 1 < j < k. Clearly,|R| = V(R)W(R). The
guantity of interest to us is

2n+1 00
E { Z V(RZ)} <2 Z E Z V(R)]l[Binomial(n,|R\)>0]
i=1 =0

all rectanglesR at depth?

Here we consider the infinite tree. Leaf nodes in the k-d tree have zero car-
dinality, but their parents do not. For this reason, we consider only parent
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nodes, which explains the coefficient 2. L6t and Z/, represent inde-
pendent products of andm independent unifornf0, 1] random variables
respectively. Then, by looking at levels that are multiples ohly, the last
upper bound is not more tha@h*! + 2*+1 )/, where

ke
M= 22 { sel B|nomial(n,ngZ(’kS)£)>O]} '

To study M, note first that a unifornj0, 1] random variable is distributed
ase” P, whereE is a standard exponential random variable. THg,is
distributed ag—“s¢, whereG, denotes a Gamnfa) random variable, that
is, a random variable with density

Similarly, Z{, ), is distributed ag~“¢—»¢. We will write from now onG
andG’ for independent gamma random variables. We have then,

o0

M S Z 2k€ E {Zsf min (1, nZSEZEk_S)£>}
(=1

o
= okt <E {Z 2 }
5:21 0 [0 Zee 2y ye>1]
2 1
+E {nZsz(k—s)él [nZseZ€k73)2<1] }>

sZ]l
{ [nZ.e2,_021] }

o0
-2
+Z2ME {nZSQfZEk—S)El[nZ,[Z/ <1]}
= 54 (p—s)e
=I1+1I

First we handle I. We have

= szé { 851 [ 1]}

- ;2ME {e Sq[GS”G( 5)e <1°g"]}
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xsﬂ—ly(k—s)z—l

— ke —x —T=Y dr d
2.2 Josgrepe rsOre—s0° %

z20,y20

=1
:iW/ m/ PR e £)(k=s)=1 .
=1 0<z<logn/ 0<t<1 I'(st)T((k — s)0)

(by the transforme = tz,y = (1 —t)2,0 <t < 1) .

Similarly, Il yields

II = ZQM { ZZk s)el{nZseZ(k SV<1}}

1 —t)(k=s)t=1
— 2k‘€ / / k‘f 1 —3tZ 2(1— t)z ( dt dz
Z log n<z 0<t<1 (35) ((k—s)0)

so that

oo
I—G-II:ZT%/ / L min(1, ne™?)
/=1 0<z<0 0<t<1

—2tz—(1—t)z tse(l — t)(k*S)f
t(1—t) I (st)I((k — s)0)

We first estimate the sum ovértaking only those terms that depend upon
L - y

= ; I(sOT((k—s)t)’
wherea = 2F2°y(*=*), and we recall that = tz,y = (1 — t)z. Thus,

in(1 —z\ ,—2tz—(1-t)z
I+H:/ / [17 5 mintne e dtdz .
0<z<o0 JO<t<1 2t(1 —t)

Employing the Stirling approximation

() = (i)e ﬁe&

forsomef € [0, 1] (Whittaker and Watson, 1927, p. 253), we have/for 0,

I(st)((k — s)0) B k s5(k — s)F==\ "
T (k0) > Vame /1 s(k—s)£< o ) ‘

xe dtdz

Definingu = s/k, and

2atyl—u N 1=t \'
/3: *Y :2Z - 9
ut(1 —u)t—v u 1—u
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we obtain the bound
1 12 ( al/k )M
<! \/7_52\[—”“(1 T
V2m ke)
e1/12\/ﬁ Vi

2rk = (kL)

B e12, fu(1 — u) e i (kﬁ)%ﬂkée_ﬁ
B Nz (k0)!

We will now show that there is a constarly > 0 such that for all3 > 0,

(=1

el/12,8 2 (kf)%ﬁ’ffe_ﬁ

< 00€ﬁ53/27
Vo = (kf)'

and thus,
11T < Co/u(l —u) 3.

For 3 > 1, we have by Jensen’s inequality

el/12,8 2 (M)gﬂkze—ﬁ el/12,8

. 3/4
V2m (kt)! - Vo B {PmssonQ(ﬁ)}
=1
< g gy < P g
V27 T V27
Forp <1,

el/12,8 X (M)gﬁkeefﬁ 61/1265ﬁk o j3/2
vem (k£)! T V2

< 0*6563/27
j=1

aszj 1 j_ converges andé > 2. Resubstitution yields

I+1I

3u _ 3(1—u)
u(t—w) ()™ ()
<C°/ / 2112
1—¢\1

« min(1, ne=*) ) (=) =1) gy g
_ c/ooo JZmin(1, ne=?) [/01 h(t)e=a® dt] dz |
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whereC' = Cov/u(1 — u)/(u?4(1 — u)30-W),
h(t) — t?’u/2*1(1 _ t)3(17u)/271, and

g(t) =2 <z>u <11:i>1_u—t— 1.

The behavior of; is easily established: by definition of the Flajolet-Puech
function, we haveup,_;; g(t) = a(u), and the maximum occurs &t €
(0,1). Furthermoreg is unimodal and locally concave abotst Hence,
there exists a constant > 0 such thaty(t) < a(u) — v(t — to)? for all

€ (0,1). Picke > 0 such thatB = (tp — ¢,to + €) C (0,1). Then

/ h(t)e 9 dt
0<t<1
o0 1
< Suph(t)/ ez(a(u)—u(t—t())Q)dt+ez(a(u)—ysz)/ h(t)dt

—00 0

< D o) o presta-ve)

vz

whereD and D’ are positive constants only depending upadithrough the
function~ and the constant). Resubstitution now yields

NE

Split the integral ove(0, log n) and(log n, c0), and verify that the result is
O(n*™®)), and that all multiplicative constants indeed only depend upon
andk. O

I+1I< C/ \/Emin(ljnefz) <Deza(u) + D/ez(a(u)y62)> ds .
0

5 Searching with convex sets

To perform a range search with a convex@etve may also recursively de-
scend the k-d tree, and visit all subtrees whose root rectangle has a nonempty
intersection withC'. In this section, to fix the ideas, we will consider= 2

only, although the generalizations to higher dimensions are straightforward.
For a fixed convex set’, we let€- denote the minimal ellipse containing

C. Let the center of¢ be the origin. Le€- have principal axes andwv,

with « perpendicular ta. Let Ro be the smallest rectangle aligned with
the (u,v) pair that contain€x (and thus touches the ellipse in just four
points). Let the dimensions of the rectangte (and thus o) in the

andv directions beA > 0 andA’ > 0 respectively. These dimensions are
deterministic but may depend an A random range search is defined as

a range search with convex sét+ C, the translation byZ (a uniformly
distributed random variable df, 1)*) of C.
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Fig. 6. Areas in Theorem 3

First we generalize Theorem 2 to rotated rectanglesilst a rectangle
of sizeA x A’ parallel to[0, 1]? and centered at the origin. Fere [0, 27),
we defineQy as the rectangle resulting from rotatidy by ¢ about the
origin.

Theorem 3 Letlh,... , U, beindependent and uniform random variables
over [0, 1]2, used to construct a 2-d tree, and [Bt, be the partition into
rectangles. LetZ be uniformly distributed ovei0, 1)2, independent of the
U;’'s, and letV,, be the number of rectangles T, that intersectZ + Q,,
(and thus the complexity of range search with this set). ilas dimensions
A x A, then there is a universal constant> 0 (not depending upon,

A, A’ or ¢), such that

E{N,} <7 (nAA + (A+ A)n® +logn) ,

wherea = \/@‘3.

Proof.IfarectangleR; in R,, has dimensionX’; xY;, thenZ 4 Q4 intersects

it if and only if Z falls in the octagon outlined in Figure 6, where the tilted
rectangles are various positions of the tilted query rectangle. It is easy to see
that this octagon in turn is contained in the rectanleextended on top

and bottom by, (see Figure 6) and on left and right by Using the same
reasoning as in Theorem 2, we note that gitgn. . . , U,,, the probability
thatZ + Q, intersectsR;, is bounded byX;Y; + 2 max(l,, l,)(X; + Y;) +
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2AA. Clearly,max(l;,1,) < (A + A")/+v/2. Thus,

2n+1 2n+1
E{N,} < E{ > (Xm)} + \/E(A+A’)E{ > (X +Y¢)}
i=1 =1
+(4n +2)AA

<2H,41 — 14 eV2(A + AYn® 4 (4n + 2)AA

for some constant > 0 by Lemma 1 and Proposition 3. Note in particular
that the constant does not depend upakh O

To prepare for the main result of this section, we will use a fact from
classical geometry, stated here in its high-dimensional form. We will use the
following result by John (1948).

Lemma 2 LetS be any bounded set iR* not contained in any linear
subspace of it. Lefg be the smallest ellipsoid containirfg(called John’s
ellipsoid) and€; be the concentric and homothetic ellipsoid at the ratio of
1. Thenél, C cu(S) C &g, wherect(S) denotes the convex hull 6t

In particular, John's result implies this| < k*|€%| < k*|cu(9)|. Let
£ be an ellipsoid with principal axes of lengths . . . , ax, and letB be the
unit ball of R*. Then

k

% +2
2 I'(%°) \ 2

Let S be a set as in the previous lemma, anddetbe John’s ellipsoid.

Assume thats has principal axes of lengths, ... ,a.. Let Rg be the

smallest rectangle whose axes are aligned with tho§g tfat containgg
(so thatits volume igy x --- x ag). Then

Rg| < (%)kf (552 fon(s)1

The main result of this section clearly shows why we calbtfi¢erm the
perimeter complexity. In higher dimensions, the complexity of range search
involves the volumes of all the lower-dimensional “facetsCof

Theorem 4 LetU,... , U, beindependent and uniform random variables
over [0, 1]2, used to construct a 2-d tree, and [Bt, be the partition into
rectangles. LetZ be uniformly distributed ovei0, 1)2, independent of the
U;'s, and letN,, be the number of rectangles M,, that intersectZ + C,
where(C is a convex set. Then there is a universal constant 0 (not
depending upon, A, A’ or C), such that
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E{N,} <~ (naredC) + n® perimete(C) + logn),
whereq = Y17=3,

Proof. Let R- be the rectangle associated to John's ellipgiidor C, as
defined above. Suppose that it is of siaex A’. Note that the number of
comparisons that range search performs ith- C is not more than that
for Z + Rc. Therefore, by Theorem 4, for somé> 0,

E{N,} <+ (nAA" + (A+ A')n® +logn).

As we noted earlietAA’ < 2 Area(C). By the convexity ofC, and using
the small ellipsoid1/4)E¢ from Lemma 2, we have

2 N 2
4\/(A> + <A> < Perimeter(C).
2 2
Also,

PerimetefRc) = 2(A+A") < 2v2,/(A)2 + (4)2 < V8 Perimete(C) .

Thus we obtain the inequality

E{N,} <+ ((4/7r)nArea(C) + V8 Perimeter(C)n® + log n) .0

6 Local complexities

Our modelinvolved a query rectangle that was centered at a randomly picked
point. One may wonder why we did not choose a fixed point. That would
have been possible, but reporting the results would have been a nightmare,
as we must consider the position of the query rectangle (as a functign of
The answers are indeed affected by border effects. To see this, we indicate
why a partial match query in a 2-d tree for all points matching)) takes

expected timé (n¥2~1) and no© (n-5616) as one would expect by looking

at the results of Flajolet and Puech. If the partial match query is€ay,,)

with ,, going to zero, one must consider the rate with which it tends to zero.
There is no room in this paper for this analysis. So, we consider the query
(%,0). Let T,, be the expected time for a 2-d tree of size n. Then, a simple
recursive argument shows that roughly speaking,

Tn =14+ QE{TnU1U2}

whereU;, U; are i.i.d. uniform[0, 1] random variables. By induction, as-
sumingT;,, < Cn?, we see that must be the smallest positive number such
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that2/(y + 1)? < 1. Therefore;y = v/2 — 1. In general, withk — s wild
cards inIR*, and all coordinates that participate in a partial match query
equal to zero, the recursion is of the type

Tn =1 + 2k78 E{TnUlUQ---Uk} .
This yields the equatiod* ¢ = (y + 1)*. Thus,y = 21~ /¥ — 1, and the
expected partial match complexityds (n21*5/ ’t1)_

7 Nearest neighbor search

Consider a random k-d tree as defined above X dte a query point uni-
formly distributed in the unit square. The natural nearest neighbor algorithm
referred we will look at is the following. Start with an orthogonal range
search with a square box of sit;énl/ k centered ak . Repeat with boxes of
sizesk!/? /n'/kfort = 0,1,2,3, ... untilt+1, wheret is the first nonempty
box. Report the nearest point in the- 1-st box. We call this algorithrA.
The purpose of this section is to prove that the expected complexity of this
algorithm is©@(n”), where
p= Orgsagxk(a(s/k:) 1+ s/k).

The constant € (0.061,0.064) depends upohonly, and ig(v/17—4)/2 ~
0.0615536 for k = 2, is minimal fork = 3 (p ~ 0.0615254), and oscillates
from that point on. For example, nearest neighbor search in dimensions 2, 4
and 6 have the same expected complexity (as a functior-dhe constants
may be different), and nearest neighbor search in 3-d is slightly easier than
in any other dimension as itsvalue is smallest! The maximal value for
never exceeds.064.

We set first the notation we will use. Let> 1, we setforalll < j <k,
Aj = k2 /n'/*_ LetQ, be the hypercube with sides all equakte? /n!/*,
centered aK’, a random vector uniformly distributed 0, 1]"3, on which an
orthogonal range search is performed. Dgtbe the number of data points
amongUy, ... ,U, falling in Q;. Let T; be the complexity of Bentley's
orthogonal range search algorithm @g, so that

2n+1
Tr= ) VrnQite)
1=1
where R; is the rectangle in the partition determined @y, ... ,U; 1 in
whichU; falls. Thus,R,, .1, ... , Rony1 are leaf rectangles. The time taken

by algorithm A is

T=Ti+Ta+ Y Tily,_,—q-
t>3
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Fig. 7. The functionp versusk, the dimension. The expected complexity of a natural nearest
neighbor algorithm grows as’

We note that by assumption all points fall in the unit hypercube, and there-
fore, the maximalindexinthe lastsum cannotexaéed|2logn/(klogk)].

Factl Letp = max{6(1/k),0(2/k),...,0((k—1)/k)}. Thenthere exists
a constantC not depending upohor n such that

(k—1)t

E{ﬂ}gC(k : nﬂ+k%) .

Also,
(k—1)t

P{RiﬂQt#@}Sg(lﬁr 2 z‘ﬂ+k%> .

Proof. We apply Theorem 2 with thél;'s as given here, and note that

E{T}} <C (k% 4B eark) | Rt ek o
ookl D/R) log n) .

The first inequality follows immediately from this and the definition of
p, and the fact thabbg n = o(n”). The second inequality uses the fact that
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P{R;NQ; # 0} is decreasing inup ton, and thus; P {R; N Q; # 0} <
E {1} if the sample size used for orthogonal range searah The first
inequality, withn replaced by concludes the proofi

Lemma 3 Let the following constants be gived: > 0, v > 0, > 0,
8 >1,1> p>0,subjectto the conditiond log 5 < 1, log 6 < é. Then

[Alogn] n

Z ﬂt Z Z-pflef'y(lfi/n)eét _ O(np) )
=1

t=1
If the conditions are altered so that= 0 andd = log 3, then

[Alogn] n

Z 5t2 ; e~ (1=i/m)e’t = O(logn) .

t=1 =1

Proof. It is clear that we may assume without loss of generality thialg n
is integer-valued. Consider first the sum

o0
> gl

t=1

wheren will later be replaced by (1—i/n). By comparison with an integral,
we see that this is not more than

o0 Sz
ﬂ/ G%e "¢ dx .
0
Setz = ne®®, and verify that the latter expression is smaller than

ﬁ Oo(z/n)log,@/(sflefz dz < /BF(logﬁ/é) )

on Snlos B/
With this inequality in hand, we note that
Afnﬂtizf) e et . 1A§g:nﬂt nP—1pAlogp < 1np1'
t=1 i=1 B B
Furthermore,
n—1 Alogn

ZZP 1 Z ﬁt —y(1—i/n)e’t <Z p— 1 /BF logﬂ/d)

(1 —i/n))lsh/o
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and thus, it suffices to show tha?—' i*~1(1 — i/n) " = O(n?), where
b € [0,1). By comparison with an mtegral, we have

n—1
Zzp Y1 —i/n)= = %Z(i/n)pfl(l—i/n)*b
1

1
< np/ 2”1 —2)de
0
< B(p, 1- b)np

whereB(-, -) is the beta integral. This concludes the first part of Lemma 3.
For the second part, note as before that the contributions in the double sum
corresponding té = n andi = n — 1 areO(1). For the remainder, we have

Alognn—2

Z ZZ e'yl i/n)edt

t=1 i=1
Alogn

n—2
< Zﬁte Y11 /m)est Z / B —r-@rmet g,

Q

/ (= (@rm ™
= O(logn

This concludes the proof of the second part of Lemma 3.

Theorem 5 If T'is the time for a nearest neighbor search for algorithm A,
thenE {T'} = O(n”).

Proof.For the lower bound, we note tH&at> T}, and conclude by the lower
bound of Theorem 2 applied 1@, and the definition op. For the upper
bound, we begin with

T=Ti+To+ Y Ty, ,—q-
t>3

Taking expected values, Theorem 2 implies tRa{7 + 7>} = O(n”).
We fix t > 3 and boundg {731y, ,—o }. The two factors in the expected
value are dependent. HoweveiNf_, ; denotes the number of points among
Uiti,...,U, that fall in @Q;—2, then we note that giverX, N;_»; and
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[R; N Q: # (] are independent. Now note that

P {Nt,Q’Z’ = O|X} < sup P {Nt72,i = 0|X = :L‘}
z€[0,1]*

. (1_ <At2_2>k>n—i

Thus, asN;_» > N;_o;, we have

2n+1
E {Ttl[sz:O}} =E { Z 1[RmQﬁé@]]l[Ntz:0}}

i=1

S2ZE {Z ]]'[RiﬂQt?ém]]l[Nt_li:()]}

i=1

— ZE{iP{RiﬂQt #®|X}P{Nt72,i :O|X}}

=1

o k(t—2)
< 226Xp< )k> E{P{R,NQ: #0|X}}

L E(t—2)
= QZexp ( )k> P{R;NQ: # 0}
k(t—2)

1—i/n)k 2 C /. (-1t
S;exp<— ok >z<k p zp—i-lm).

Thus,
k(t—2)
1t (1—1i/n)k 2 o
E{T} < O(n”) +tz;20k‘ Zexp( ok )zp
k(t—2)
1—i/n)k 2
R
i=1

:0(np)+1+11.

Lemma 3 applies to | if we formally take thefle= k(*~1/2 ~ = 1/(2k)*,

A =2/(klogk),ands = (klog k) /2. The conditions of the the first part of
Lemma3,Alog 3 < landlog 8 < §, hold, sothal = O(n”). The last part
of Lemma 3 appliesto Il if we set = k¥/2, v = 1/(2k)*, A = 2/(klog k),
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andd = (klogk)/2 = log 8. Therefore,/I = O(logn). This concludes
the proof.0

Bentley conjectured that if one takes a point at random from among the
n datapointd/y, ... , U, inthe 2-d tree, its nearest neighbor can be found in
O(1) expected time. If the data are putiR/a x /n regular grid partition
of [0, 1]2, then each cell would receive on average one data point. It is not
hard to see then that the expected time for nearest neighboring searching
starting from a given point in a cell také3(1) expected time. The same
is true for all sufficiently regular, dense and rotund partitions, including,
for example, the Voronoi diagram or the Delaunay triangulation. If the data
are stored in a 2-d tree however, the property fails to hold because of the
skinny rectangles. First, to see intuitively what is going onXete U; and
let X’ be the nearest neighbor &f amongls, ... , U,,. Define the nearest
neighbordistanc®,, = || X — X’||. Note thatD,, is©(1/+/n) in probability,
ie.,P{D, = o(1/y/n)} = o(1) andP{D,, = w(1/y/n)} = o(1). For

example, fort > 0,
P{\/nD, >t} > (1 —7t*/n)" ,

so that
liminf E {v/nDy} > lim inf/ (1 — 7t /n)™ dt

n—o0

:/Ooeﬂthdt:l
0 2

This means that a nearest neighbor searchXfas roughly equivalent to
ac/y/n x ¢/+/n range search. Indeed, just to verify thét is in fact the
claimed nearest neighbor &f, one must at the very least inspect all nodes
on rectangle edges that cut the cirSleentered a with radiusD,,. Since
the rectangles are skinny, the points on the edges may in fact be fa’from
Thus a lower bound on the complexity is

2n+1
E{ > ]l[Rszé@]}?

i=n-+1

> / liminf(1 — wt?/n)"dt (by Fatou’s lemma)
0

where( is the circle of radiugD,, centered afX. As D,, is in probability
©(1/+/n), Theorem 1implies that the expected complexit® jg*(1/2)~1/2)
> 2(n%961%) thus disproving Bentley’s conjecture.



Analysis of range search for random k-d trees 381

X x'/

Fig. 8. The nearest neighbor circle is shown. To verify thdtis the nearest neighbor of
X, any verification algorithm must examine all points on edges of rectangles that cut the
nearest neighbor circle

8 Further work and open problems

Other partitioning algorithmsQOur proof method shows the way for the
analysis of other partitioning algorithms, such as schemes in which splits
are made about medians2#f+ 1 elements, as long as the coordinate rotation
is respected.

QuadtreesFor quadtree splitting it dimensions, it is easy to see that not
much changes in the analysis, and that in fact Theorem 2 remains valid. This
confirms results on partial match queries in random quadtrees by Flajolet,
Gonnet, Puech and Robson (1990, 1992).

Expected worst-case complexitye conjecture that the expected worst case
complexity over all range search rectangles of dimensidngbut with
worst-case location of the center) is also bounded from above by the bound
given in Theorem 2.

Longest-edge cutdVhen we cut rectangles along their longest side, the
analysis and the results are very different. The k-d trees are much better
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behaved, to the point that they are called squarish k-d trees by Devroye,
Jabbour, and Zamora (1999).

Non-uniform distributionsk-inally, we also intend to study the behavior of
k-d trees for nonuniform distributions, although it appears once again that
the upper bound of Theorem 2 remains valid for all distributions with a joint
density on|0, 1]*.
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