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Abstract. We analyze the expected time complexity of range searching
with k-d trees in all dimensions when the data points are uniformly dis-
tributed in the unit hypercube. The partial match results of Flajolet and
Puech are reproved using elementary probabilistic methods. In addition, we
give asymptotic expected time analysis for orthogonal and convex range
search, as well as nearest neighbor search. We disprove a conjecture by
Bentley that nearest neighbor search for a given random point in the k-d tree
can be done inO(1) expected time.

1 Introduction

The k-d tree, or k-dimensional binary search tree, was proposed by Bentley
in 1975. It is a binary tree in which each record containsk keys, right and left
pointers to its subtrees, and an index integer between 1 andk that indicates
which key in the record is used for splitting. On any path from the root,
splitting is performed in a cyclical fashion as explained below. The index
of a node at distance� from the root is1 + � modk. Fork = 1, we obtain
the standard binary search tree. Fork > 1, consider a nodeu having index
j ∈ {1, . . . , k}. All nodes in its left subtree are such that theirjth key is
less than thejth key in u, and all nodes in its right subtree are such that
their jth key is greater than or equal to thejth key in u. As the indices
are1, 2, . . . , k, 1, 2, . . . on any path from the root down, we see that each
coordinate axis gets cut in turn, in a cyclical fashion. Insertion, deletion and
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Fig. 1. The k-d tree and its partition of the plane. The query rectangle is shaded

search are implemented as for the standard binary search tree algorithms.
These trees are used for a variety of other operations, including orthogonal
range searching (report all points within a given rectangle), partial match
queries (report all points whose values match a givenk-dimensional vector
with possibly a number of wild cards, e.g., we may search for all points
with values(a1, ∗, ∗, a4, a5, ∗), where∗ denotes a wild card). Additionally,
nearest neighbor searching is greatly facilitated by k-d trees. For orthogonal
range searching, a host of particular data structures have been developed,
such as the range tree and variations or improvements of it (for surveys, see
Bentley and Friedman (1979), Yao (1990), Matous̆ek (1994), and Agarwal
(1997)). However, the k-d tree offers several advantages–it takesO(kn)
space forn data points, it is easily updated and maintained, it is simple to
implement and comprehend, and it is useful for other operations besides
orthogonal range search.

It is instructive to associate with each node the unique rectangle in the
partition in which the node falls when it is last added to the tree. Bentley’s
range search algorithm simply visits recursively all nodes whose rectangle
has a nonempty intersection with the query rectangle. In addition, it visits
all such rectangles that have no points (and correspond to children of leaves
in the tree, see Figure 1—these rectangles will be called leaf regions, and
correspond to the nodeless bottom edges in the tree of Figure 1). The query
time for orthogonal search time depends upon many factors, such as the
location of the query rectangle, and the distribution of the points. One may
construct a median k-d tree off-line by splitting each time about the me-
dian, thus obtaining a perfectly balanced binary tree, in which search takes
Θ(log n) worst-case time, and a partial match query takes worst-case time
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Fig. 2. Two random k-d tree partitions clearly show the elongated rectangles

O(n1−1/k +N), whereN is the number of points returned (see, for exam-
ple, Lee and Wong, 1977). For on-line insertion, balancing is notoriously
difficult. If we assume that the data are independent and have a common
distribution, then the expected query time is clearly of interest. For standard
random binary search trees, it is known (Knuth, 1997; Devroye, 1986; Mah-
moud, 1992) that most properties of balanced search trees are inherited: the
expected depth of a randomly selected node is about2 log n and the expected
height isO(log n). One would hope that the random k-d tree, constructed
by consecutive insertion ofn data points, would also have a performance
close to that of the median (off-line) k-d tree. This hope was shattered by
Flajolet and Puech (1986). They assumed that the data points are drawn
from the uniform distribution on the unitk-cube, and that a partial match
query is carried out withs values also drawn uniformly and independently
on [0, 1] (so, there arek − s wildcards). The partial match query algorithm
is Bentley’s range search algorithm with a rectangle havings sides of zero
length. On a median k-d tree, partial match query is easily shown to take
time aboutn1−s/k. However, Flajolet and Puech stunned the computational
geometry community by showing that the expected time performance is
Θ(n1−s/k+θ(s/k)), whereθ(u) is a strictly positive function ofu ∈ (0, 1),
with maximum not exceeding0.07. Thus, random k-d trees behave a bit
worse than their balanced counterparts. Surveys of related known proba-
bilistic results are provided by Vitter and Flajolet (1990), and Gonnet and
Baeza-Yates (1991).

The purpose of this paper is to complement, extend, and deepen the
results of Flajolet and Puech. We will show that the poor behavior of k-
d trees for orthogonal range queries is due to the elongated character of
most rectangles in the random partitions of the plane defined by the k-d
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tree. Elongated rectangles have less information (fewer dimensions, if you
wish) than squarish rectangles, and will increase search times. We will treat
partial match queries as a special case of orthogonal range queries, and
derive explicit and tight bounds for random orthogonal range search queries
when the query rectangle may have dimensions that depend uponn in an
arbitrary fashion. Theproofs areentirely probabilistic, rather thananalytical,
and do not offer explicit constants for expected times but onlyΘ(.) results.
However, they are short and explain many of the phenomena at work. To
illustrate the power of our approach, we finish with results regarding k-d
trees queries for membership in random convex sets of a given shape, and
look at the expected time for a simple nearest neighbor query. As pointed
out in the thesis of Chanzy (1993), nearest neighbor queries based on k-d
trees cannot possibly have logarithmic expected times—rather, they grow
polynomially inn.

2 Partial match queries

Bentley’s algorithm starts the search at the root. At each node, it looks at its
indexi ∈ {1, . . . , k}, and compares theith key of the current node with the
ith range in the search region. If the range is entirely to the left, the search
continues only on the left child of the node, if it is entirely to the right, then
the search continues only on the right child. Otherwise, the search continues
on both children. Given a nodeu we denote byleft(u) its left child, by
right(u) its right child, and byindex[u] its index.

Let u1, u2, . . . , un, n ≥ 1 denote the nodes in the k-d tree, and let
U1, . . . , Un denote the data points, which are i.i.d. and uniformly distributed
on [0, 1]k. Thus,Ui is the data point corresponding toui. The rectangle split
byui isRi. Thus,R1 = [0, 1]k. Then+1 leaf rectangles (the dangling edges
in Figure 1) are also denotedRi, with the indexi now running fromn+ 1
to 2n + 1. The collection of rectangles is denoted byRn. We will denote
by T the k-d tree constructed by inserting successivelyu1, u2, . . . , un into
an initially empty k-d tree. Given a nodeu in T , we will denote byTu the
subtree ofT rooted atu. The dimensions of rectangleRi arexij , 1 ≤ j ≤ k.
We will consider a query rectangleQ = [m1,M1] × · · · × [mk,Mk] with
centerz = (M1+m1

2 , . . . Mk+mk
2 ). Note that a nodeui is visited by the

range search algorithm if and only if the query rectangleQ intersectsRi. A
leaf rectangle is visited if its rectangleRi intersectsQ. LetNn be the time
complexity of Bentley’s orthogonal range search. Then,

Nn =
2n+1∑
i=1

11[Ri ∩Q�=∅] .
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Fig. 3. The top curve is the Flajolet-Puech functionα(.). The bottom curve is the function
θ(.)

Now, let1 ≤ s ≤ k, andvj1 , . . . , vjs ∈ [0, 1]. A partialmatch query asks for
all points in{u1, . . . , un} satisfyinguijt = vjt , for all 1 ≤ t ≤ s. We say
that the query fixes coordinatesj1, . . . , js. We also defineL as the set all of
points in[0, 1]k whosejt-th coordinate is equal tovjt , for all 1 ≤ t ≤ s. In
a random partial match query, we let thes fixed coordinates be independent
and uniformly distributed over[0, 1].

The flajolet-puech function.For0 ≤ u ≤ 1, letθ(u) be the rootθ ∈ [0, 1] of
the equation(θ+ 3−u)u(θ+ 2−u)1−u−2 = 0. We shall call the function
α(u) = 1−u+θ(u) the Flajolet-Puech function on[0, 1]. Note in particular
thatα is decreasing, and that1 − u ≤ α(u) ≤ 1.07 − u. Equivalently,

α(u) = max
0≤t≤1

{
t+ 2

(
1 − t
1 − u

)1−u( t
u

)u
− 2

}
.

Particular values of interest further on areα(0) = 1, α(1/2) = 0.5616,
α(1/3) = 0.7162, α(2/3) = 0.3949, α(1) = 0.

Theorem1 (Flajolet and Puech, 1986)Given is a random k-d tree based on
i.i.d. random variablesU1, . . . , Un, distributed uniformly on[0, 1]k. Con-
sider a random partial match query, in whichs of thek fields are specified



360 P. Chanzy et al.

with k > s ≥ 0. LetN (s)
n be the number of comparisons that Bentley’s

orthogonal range search performs. Then

E
{
N (s)
n

}
= (c+ o(1))nα(s/k) ,

wherec is a constant depending ons andk only.

The following proposition is useful in relating random partial match
queries to the range search problem.

Proposition 1 Given is a random k-d tree based on i.i.d. random variables
U1, . . . , Un, distributed uniformly on[0, 1]k. Consider a random partial

match query, in whichs > 0 of thek fields are specified. LetN (s)
n be the

number of comparisons that Bentley’s orthogonal range search performs.
LetS be the set of specified coordinates. Then

E
{
N (s)
n

}
= E




2n+1∑
i=1

∏
j∈S
Wij


 ,

whereWij , 1 ≤ j ≤ k are the widths of the sides of rectangleRi in Rn.

Proof.Note thatP {L ∩Ri �= ∅ |U1, . . . , Un} =
∏
j∈SWij . Thuswehave,

E
{
N (s)
n

}
= E

{
2n+1∑
i=1

11[L∩Ri �=∅]

}

=
2n+1∑
i=1

P {L ∩Ri �= ∅} = E




2n+1∑
i=1

∏
j∈S
Wij


 . ��

Bibliographical remarks.We know much more aboutN (s)
n than what is

given in Theorem 1. Neininger and Rüschendorf (1999) showed that the

first asymptotic term forVar
{
N

(s)
n

}
isΘ

((
E

{
N

(s)
n

})2
)
, and showed

that
(
N

(s)
n − E

{
N

(s)
n

})/√
Var

{
N

(s)
n

}
tends in distribution to a non-

degenerate limit law. That is,N (s)
n is asymptotically not concentrated about

E
{
N

(s)
n

}
. Their method of proof uses contractions, and may also be used

for analyzing partial match queries for random quadtrees, thus extending
results of Flajolet, Gonnet, Puech and Robson (1990, 1992). Partial match
queries have also been analyzed for kdt trees, a balanced version of random
k-d trees, by Cunto, Lau and Flajolet (1989). For a random k-d tree in which
the cut directions are randomly picked, a complete analysis of is given by
Duch, Estivill-Castro and Martinez (1998), and Martinez, Panholzer and
Prodinger (1998).
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3 Orthogonal range search

In this section, we obtain tight upper bounds for the expected complexity
for Bentley’s range search algorithm.

Lemma 1 LetU1, . . . , Un be independent uniformly distributed random
variables over[0, 1]k. LetRn = {R1, R2, . . . , R2n+1} be the rectangles in
the partition defined by the random k-d tree based onU1, . . . , Un. LetWij
be the length on thejth coordinate of theith rectangle. Then,

E

{
2n+1∑
i=1

Wi1 · · ·Wik
}

= 2Hn+1 − 1,

whereHn is thenth harmonic number.

Proof.First, note that for any1 ≤ i ≤ n,Wi1 · · ·Wik is the volume|Ri|
of the rectangleRi. Note that ifU1, . . . , Ui have already been inserted in
[0, 1]k, andUi+1 is a new point, then the combined size of the two rectangles
generated byUi+1 is equal to the size of the rectangle in the final partition of
[0, 1]k in whichUi+1 falls. Let us denote byR(Ui+1) this rectangle. Thus,
summing over all nodes, we obtain the following identity:

E

{
2n+1∑
i=1

Wi1 · · ·Wik
}

= 1 +
n−1∑
i=0

E {E {|R(Ui+1)| |U1, . . . , Ui}} ,

where the 1 accounts for the root rectangle. We claim thatE {|R(Ui+1)|} =
2
i+2 . Note that the claim is obviously true fori = 0. Now, suppose that
U1, . . . , Ui have already been inserted in the k-d tree, so that there are
i + 1 external nodes. These external nodes represent thei + 1 rectangles
partitioning[0, 1]k. Let these rectangles beS1, . . . , Si+1, numbered so that
the leaves are taken from left to right, in order of appearance as leaves in
the k-d tree ofU1, . . . , Ui. Then,

E {|R(Ui+1)|} = E

{
E

{
i+1∑
�=1

11[Ui+1∈S�] |S�|
∣∣ U1, . . . , Ui

}}

= E

{
i+1∑
�=1

|S�|P
{
Ui+1 ∈ S�

∣∣ U1, . . . , Ui
}}

= E

{
i+1∑
�=1

|S�|2
}
.

Observe that(|S1|, . . . , |Si+1|) are jointly distributed as uniform spacings,
that is the lengths of the intervals on[0, 1] defined by an i.i.d. uniform
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[0, 1] sample of sizei. This is best seen inductively, as the next point added
“chooses” a rectangleSj with probability |Sj |, and replaces it by two rect-
angles, of sizesU |Sj | and(1 −U)|Sj | respectively, so that the new rectan-
gle sizes jointly are once again distributed as uniform spacings. All these
spacings are identically distributed following a Beta(1, i) distribution. If
B is a Beta(1, i) random variable, then we haveE {B} = 1/(i + 1) and
E

{
B2

}
= 2/((i+ 1)(i+ 2)). Therefore,

E {|R(Ui+1)|} = (i+ 1) E
{
B2} =

2
i+ 2

.

and thus,

1 +
n−1∑
i=0

E {|R(Ui+1)|} = 1 + 2(Hn+1 − 1). ��

We will also need the following proposition.

Proposition 2 Given is a random k-d tree based on i.i.d. random variables
U1, . . . , Un, distributed uniformly on[0, 1]k. LetWij be the length of the
jth side of rectangleRi ∈ Rn. Then, there is a constantC > 0, depending
onk only, such that

E

{
2n+1∑
i=1

11[maxj∈{1,... ,k}Wij≥ 1
2 ]

}
≤ C.

In other words, the expected number of rectangleswith any side greater than
1/2 does not exceedC.

Proof.For� ≥ 1, letX(�) be the product of��/k� independent uniform[0, 1]
random variables. Then, letting� denote the level in the tree,

E

{
2n+1∑
i=1

11[maxj∈{1,... ,k}Wij≥ 1
2 ]

}
≤ E




2n+1∑
i=1

k∑
j=1

11[Wij≥ 1
2 ]




≤
∞∑
�=1

2�kE
{

11[X(�)≥ 1
2 ]
}

≤
∞∑
�=1

2�kE
{(
X(�)

)p}
2p

≤ k2p(p+ 1)
∞∑
�=1

(
2

(p+ 1)
1
k

)�
,

for anyp ≥ 0. The last expression is finite, for example, if we takep = 2k,
ask ≥ 2. ��
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Theorem 2 Given is a random k-d tree based on i.i.d. random variables
U1, . . . , Un, distributed uniformly on[0, 1]k. LetQ be a random query rect-
angle of dimensions∆1 × · · · × ∆k (which are deterministic functions of
n taking values in[0, 1]), with center atZ which is uniformly distributed
on [0, 1]k, and independent ofU1, . . . , Un. LetNn be the number of com-
parisons that Bentley’s orthogonal range search algorithm performs. Then,
there exist constantsγ′, γ > 0 depending uponk only such that

γ′ ≤ E {Nn}(
log n+

∑
S⊆{1,... ,k}

|S|<k

(∏
j /∈S ∆j

)
nα(|S|/k)

) ≤ γ.

Proof.Note that givenU1, . . . , Un, the probability thatQ intersectsRi is
the probability thatZ has some coordinateZj that is within distance∆j/2
ofRi, and this probability is clearly bounded by the volume ofRi expanded
by∆j in thej-th direction, for allj. Thus,

E {Nn} ≤ E




2n+1∑
i=1

k∏
j=1

(Wij +∆j)




=
∑

S⊆{1,... ,k}


∏
j /∈S
∆j


E




2n+1∑
i=1

∏
j∈S
Wij




≤ C
∑

S⊆{1,... ,k}:|S|<k


∏
j /∈S
∆j


nα(|S|/k) + 2Hn+1 − 1

for some constantC > 0 and for alln large enough, by Theorem 1 and
Lemma 1. For the lower bound notice that,

E {Nn} ≥ E

{
2n+1∑
i=1

11[Q∩Ri �=∅]11[∀j∈{1,... ,k}:Wij<1/2]

}

≥ E




2n+1∑
i=1

k∏
j=1

(
Wij +

∆j
2

)
11[∀�∈{1,... ,k}:Wi�<1/2]




= E




2n+1∑
i=1

k∏
j=1

(
Wij +

∆j
2

)

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−E




2n+1∑
i=1

k∏
j=1

(
Wij +

∆j
2

)
11[∃�∈{1,... ,k}:Wi�≥1/2]




=
∑

S⊆{1,... ,k}

∏
j /∈S

∆j
2 E




2n+1∑
i=1

∏
j∈S
Wij




−
∑

S⊆{1,... ,k}

∏
j /∈S

∆j
2 E




2n+1∑
i=1

∏
j∈S
Wij11[∃�∈{1,... ,k}:Wi�>1/2]


 .

We can bound the second term above for any givenS ⊆ {1, . . . , k} as
follows:

E




2n+1∑
i=1

∏
j∈S
Wij11[∃�∈{1,... ,k}:Wi�>1/2]




≤ E

{
2n+1∑
i=1

11[maxj∈{1,... ,k}Wij≥ 1
2 ]

}
≤ C ′,

by thepreviousproposition.The result followsbyTheorem1andLemma1.��
Put differently, there exists a constantγ > 0 depending uponk only such

that

E {Nn} ≤ γ


n|Q| +

k−1∑
s=1

nα(s/k)
∑

S⊆{1,... ,k}
|S|=s


∏
j /∈S
∆j


 + log n


 ,

where the first term accounts for the number of points returned in the query
(which is unavoidable), the last term represents the height of the tree (and
is unavoidable as well), and the other terms represent contributions from
lower-dimensional searches. By Theorem 1, each of these is necessary as
well. Note in particular that fors ∈ {0, 1, . . . , k}, there exists a choice for
the∆j ’s that makes a different term in the upper bound dominate. That is,
for any givens < k, there is a selection of∆j ’s such that the upper bound
is O

(
nα(s/k)

)
. Just set∆j = 0, j ≤ s, ∆j = 1, j > s. For s = k, the

complexity isO(log n) when all values of∆j are zero.

Two-dimensional special case.For k = 2, asα(1/2) =
√

17−3
2 ≈ 0.5616,

we see that the expected complexity bound is

O
(

log n+ n
√

17−3
2 (∆1 +∆2) + n∆1∆2

)
.
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Fig. 4. The complexity regions: in I, the output size dominates. In II, the 1-d complexity
term is largest, and III is like point search

The first term accounts for complexity due to search in a tree of height
log n. The last term is a volume term, approximately equal to the number
of points returned by the query. Both are unavoidable. The middle term is
due to complexity related to the perimeter of the query rectangle as a long
perimeter cuts many rectangles in the partition. In case∆1 = 1/na and
∆2 = 1/nb with a, b ≥ 0, Figure 4 below shows the regions of the(a, b)
plane in which each of the terms dominates. The perimeter term dominates
in the white region, the volume term dominates in the dark region, and the
search term (log n) dominates in the light region. Point search corresponds
to a = b = ∞, and a partial match query corresponds toa = 0, b = ∞ or
vice versa, which falls plainly in the white region. Put differently, we have

E {Nn} =



O(log n) if min(a, b) ≥ α(1/2) =

√
17−3
2

O(n1−a−b) if max(a, b) ≤ 1 − α(1/2) = 5−√
17

2

O(n
√

17−3
2 −min(a,b)) otherwise.

Three-dimensional special case.For k = 3, with α(1/3) ≈ 0.7162 and
α(2/3) ≈ 0.3949, the expected complexity bound is

O
(
log n+ n0.3949(∆1 +∆2 +∆3) + n0.7162(∆1∆2 +∆1∆3 +∆2∆3)

+n∆1∆2∆3) ,

where we took the liberty of replacing irrational numbers by rational num-
bers with four significant digits. Note that the two middle terms are the
perimeteror lower-dimensional terms.Oneaccounts for theone-dimensional
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perimeter, and one for the two-dimensional surface area of the query rect-
angle. Interestingly, there are situations in which each term dominates. For
a full picture, let∆1 = 1/na,∆2 = 1/nb and∆3 = 1/nc with a, b, c ≥ 0.
Then we have

E {Nn} =




O(log n) if min(a, b, c) ≥ α(2/3)
= 0.3949 (∗)

O(n1−a−b−c) if max(a, b, c) ≤ 1 − α(1/3)
= 0.2838 (∗∗)

O(n0.7162−min(a,b,c)−(a,b,c)) if (*) and (**) fail and

med(a, b, c) < α(1/3)
−α(2/3) = 0.3213

O(n0.3949−min(a,b,c)) otherwise.

4 Proof of Theorem 2

In this section, we give a direct probability theoretical proof of the main
theorem. By Proposition 1 and the arguments of the previous section, it
suffices to prove the following.

Proposition 3 For fixeds with 0 < s < k, there exist constantsC andC ′
depending upons andk only such that in the notation of Proposition 1, for
all subsetsS ⊆ {1, . . . , k} with |S| = s,

C ′nα(s/k) ≤ E




2n+1∑
i=1

∏
j∈S
Wij


 ≤ Cnα(s/k) .

Proof.We will prove the upper bound only. The proof uses an embedding
argument that constructs an equivalent k-d tree using a different probability
model. Assume without loss of generality that the setS consists of the first
s coordinates in the rotation (the other cases are not equivalent, but trivially
similar). A split along coordinatej will be called aj-split. To determine
a split, we just need a uniform[0, 1] random variable. So, the construc-
tion of the k-d tree may be viewed recursively as follows: at the root, the
root rectangleR1 = [0, 1]k is subjected to a1-split based on a uniform
[0, 1] random variableU . One data point is associated with the root (this
requiresk − 1 other uniformly distributed coordinates, but they will not be
needed for what we need to study), and the sizes of the subtrees associated
with the two subrectangles are multinomially distributed with parameters
(n−1, U, 1−U). Wemay apply this procedure recursively, cycling through
axes for splitting. Afterk rounds, thus for rectangles at distancek from the
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Fig. 5. Tree showing argument in proof of Proposition 3

root, the dimensions of a rectangle are described by a vector(V1, . . . , Vk),
with independent uniform[0, 1] components. As a Binomial(N, p), where
N is Binomial(n, q), is Binomial(n, pq), we see that the size of the subtree
associatedwith the rectanglewith dimensions(V1, . . . , Vk) is stochastically
not larger than a Binomial(n,

∏k
i=1 Vi) random variableN . If N = 0, then

the rectangle is either non-existent or a leaf in the final k-d tree. With this
mechanism, our tree is an infinite complete binary tree. The actual k-d tree
with 2n+1 rectangles is a subtree of the tree whose nodes represent rectan-
glesR such thatN = Binomial(n, |R|) > 0. TheseN ’s are dependent, but
that will notmatter in what follows, by linearity of expectation.We note thus
that with each node in the infinite tree, an independent uniform[0, 1] random
variable is associated, and that the size of a rectangleR whose path from
the root to the parent of the rectangle node has uniform random variables
V1, V2, . . . is given by

(V1Vk+1V2k+1 . . . , V2Vk+2V2k+2 . . . , . . . , VkV2kV3k . . . ) .

Returning to the problem at hand, we introduceV (R) andW (R) for a
rectangleR at distance� from the root. HereV (R) is the product of all
uniforms on that path to the root that correspond toj-splits,1 ≤ j ≤ s, and
W (R) is the product fors + 1 ≤ j ≤ k. Clearly,|R| = V (R)W (R). The
quantity of interest to us is

E

{
2n+1∑
i=1

V (Ri)

}
≤ 2

∞∑
�=0

E




∑
all rectanglesR at depth�

V (R)11[Binomial(n,|R|)>0]


 .

Here we consider the infinite tree. Leaf nodes in the k-d tree have zero car-
dinality, but their parents do not. For this reason, we consider only parent
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nodes, which explains the coefficient 2. LetZr andZ ′
m represent inde-

pendent products ofr andm independent uniform[0, 1] random variables
respectively. Then, by looking at levels that are multiples ofk only, the last
upper bound is not more than2k+1 + 2k+1M , where

M =
∞∑
�=1

2k�E
{
Zs�11[

Binomial(n,Zs�Z
′
(k−s)�)>0

]
}
.

To studyM , note first that a uniform[0, 1] random variable is distributed
ase−E , whereE is a standard exponential random variable. Thus,Zs� is
distributed ase−Gs� , whereGr denotes a Gamma(r) random variable, that
is, a random variable with density

f(x) =
xr−1e−x

Γ (r)
, x > 0 .

Similarly,Z ′
(k−s)� is distributed ase

−G(k−s)� . We will write from now onG
andG′ for independent gamma random variables. We have then,

M ≤
∞∑
�=1

2k�E
{
Zs�min

(
1, nZs�Z ′

(k−s)�
)}

=
∞∑
�=1

2k�
(
E

{
Zs�11[

nZs�Z
′
(k−s)�≥1

]
}

+ E

{
nZ2

s�Z
′
(k−s)�11[

nZs�Z
′
(k−s)�<1

]
})

=
∞∑
�=1

2k�E
{
Zs�11[

nZs�Z
′
(k−s)�≥1

]
}

+
∞∑
�=1

2k�E
{
nZ2

s�Z
′
(k−s)�11[

nZs�Z
′
(k−s)�<1

]
}

= I + II .

First we handle I. We have

I =
∞∑
�=1

2k�E
{
Zs�11[

nZs�Z
′
(k−s)�≥1

]
}

=
∞∑
�=1

2k�E
{
e−Gs�11[

Gs�+G′
(k−s)�≤logn

]
}
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=
∞∑
�=1

2k�
∫
x+y<logn
x≥0,y≥0

e−x
xs�−1y(k−s)�−1

Γ (s�)Γ ((k − s)�) e
−x−y dx dy

=
∞∑
�=1

2k�
∫

0<z<logn

∫
0<t<1

zk�−1e−2tz−(1−t)z ts�−1(1 − t)(k−s)�−1

Γ (s�)Γ ((k − s)�) dt dz

(by the transformx = tz, y = (1 − t)z, 0 < t < 1) .

Similarly, II yields

II =
∞∑
�=1

2k�E
{
nZ2

s�Z
′
(k−s)�11[

nZs�Z
′
(k−s)�<1

]
}

=
∞∑
�=1

2k�n
∫

logn≤z

∫
0<t<1

zk�−1e−3tz−2(1−t)z ts�−1(1 − t)(k−s)�−1

Γ (s�)Γ ((k − s)�) dt dz

so that

I + II =
∞∑
�=1

2k�
∫

0<z<∞

∫
0<t<1

zk�−1 min(1, ne−z)

×e−2tz−(1−t)z ts�(1 − t)(k−s)�
t(1 − t)Γ (s�)Γ ((k − s)�) dt dz

We first estimate the sum over�, taking only those terms that depend upon
�:

III =
∞∑
�=1

a�

Γ (s�)Γ ((k − s)�) ,

wherea = 2kxsy(k−s), and we recall thatx = tz, y = (1 − t)z. Thus,

I + II =
∫

0<z<∞

∫
0<t<1

III × min(1, ne−z) e−2tz−(1−t)z

zt(1 − t) dt dz .

Employing the Stirling approximation

Γ (�) =
(
�

e

)�√2π
�
e

θ
12�

for someθ ∈ [0, 1] (Whittaker andWatson, 1927, p. 253), we have for� > 0,

Γ (s�)Γ ((k − s)�)
Γ (k�)

≥
√

2πe−1/12

√
k

s(k − s)�
(
ss(k − s)k−s

kk

)�
.

Definingu = s/k, and

β =
2xuy1−u

uu(1 − u)1−u = 2z
(
t

u

)u( 1 − t
1 − u

)1−u
,
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we obtain the bound

III ≤ e
1/12

√
s(k − s)√
2πk

∞∑
�=1

√
�

(
a1/k

uu(1−u)1−u

)k�
Γ (k�)

=
e1/12

√
s(k − s)√
2πk

∞∑
�=1

√
�βk�

Γ (k�)

=
e1/12

√
u(1 − u) eβ√

2π

∞∑
�=1

(k�)
3
2βk�e−β

(k�)!
.

We will now show that there is a constantC0 > 0 such that for allβ > 0,

e1/12eβ√
2π

∞∑
�=1

(k�)
3
2βk�e−β

(k�)!
≤ C0e

ββ3/2,

and thus,

III ≤ C0
√
u(1 − u) eββ 3

2 .

Forβ > 1, we have by Jensen’s inequality

e1/12eβ√
2π

∞∑
�=1

(k�)
3
2βk�e−β

(k�)!
≤ e

1/12eβ√
2π

E
{

Poisson2(β)
}3/4

≤ e
1/12eβ√

2π

(
β2 + β

)3/4 ≤ e
1/1223/4
√

2π
eββ3/2.

Forβ ≤ 1,

e1/12eβ√
2π

∞∑
�=1

(k�)
3
2βk�e−β

(k�)!
≤ e

1/12eββk√
2π

∞∑
j=1

j3/2

j!
≤ C∗eββ3/2,

as
∑∞
j=1

j3/2

j! converges andk ≥ 2. Resubstitution yields

I + II

≤ C0

∫ ∞

0

∫ 1

0

√√√√zu(1 − u) ( tu)3u
(

1−t
1−u

)3(1−u)

t2(1 − t)2

× min(1, ne−z) ez
(
2( t

u)u( 1−t
1−u)1−u−t−1

)
dt dz

= C
∫ ∞

0

√
zmin(1, ne−z)

[∫ 1

0
h(t)ezg(t) dt

]
dz ,
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whereC = C0
√
u(1 − u)/(u3u(1 − u)3(1−u)),

h(t) = t3u/2−1(1 − t)3(1−u)/2−1, and

g(t) = 2
(
t

u

)u( 1 − t
1 − u

)1−u
− t− 1 .

The behavior ofg is easily established: by definition of the Flajolet-Puech
function, we havesup0<t<1 g(t) = α(u), and the maximum occurs att0 ∈
(0, 1). Furthermore,g is unimodal and locally concave aboutt0. Hence,
there exists a constantν > 0 such thatg(t) ≤ α(u) − ν(t − t0)2 for all
t ∈ (0, 1). Pickε > 0 such thatB = (t0 − ε, t0 + ε) ⊆ (0, 1). Then∫

0<t<1
h(t)ezg(t)dt

≤ sup
B
h(t)

∫ ∞

−∞
ez(α(u)−ν(t−t0)2)dt+ ez(α(u)−νε2)

∫ 1

0
h(t)dt

≤ D√
z
ezα(u) +D′ez(α(u)−νε2)

whereD andD′ are positive constants only depending uponu (through the
functionh and the constantν). Resubstitution now yields

I + II ≤ C
∫ ∞

0

√
zmin(1, ne−z)

(
D√
z
ezα(u) +D′ez(α(u)−νε2)

)
dz .

Split the integral over(0, log n) and(log n,∞), and verify that the result is
O(nα(u)), and that all multiplicative constants indeed only depend uponu
andk. ��

5 Searching with convex sets

To perform a range search with a convex setC, we may also recursively de-
scend the k-d tree, and visit all subtreeswhose root rectangle has a nonempty
intersection withC. In this section, to fix the ideas, we will considerk = 2
only, although the generalizations to higher dimensions are straightforward.
For a fixed convex setC, we letEC denote the minimal ellipse containing
C. Let the center ofEC be the origin. LetEC have principal axesu andv,
with u perpendicular tov. Let RC be the smallest rectangle aligned with
the (u, v) pair that containsEC (and thus touches the ellipse in just four
points). Let the dimensions of the rectangleRC (and thus ofEC) in theu
andv directions be∆ > 0 and∆′ > 0 respectively. These dimensions are
deterministic but may depend onn. A random range search is defined as
a range search with convex setZ + C, the translation byZ (a uniformly
distributed random variable on[0, 1]k) of C.
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Fig. 6. Areas in Theorem 3

First we generalize Theorem 2 to rotated rectangles. LetQ be a rectangle
of size∆×∆′ parallel to[0, 1]2 and centered at the origin. Forφ ∈ [0, 2π),
we defineQφ as the rectangle resulting from rotatingQ by φ about the
origin.

Theorem 3 LetU1, . . . , Un be independent and uniform random variables
over [0, 1]2, used to construct a 2-d tree, and letRn be the partition into
rectangles. LetZ be uniformly distributed over[0, 1]2, independent of the
Ui’s, and letNn be the number of rectangles inRn that intersectZ + Qφ
(and thus the complexity of range search with this set). IfQ has dimensions
∆ × ∆′, then there is a universal constantγ > 0 (not depending uponn,
∆,∆′ or φ), such that

E {Nn} ≤ γ (n∆∆′ + (∆+∆′)nα + log n
)
,

whereα =
√

17−3
2 .

Proof.If a rectangleRi inRn hasdimensionsXi×Yi, thenZ+Qφ intersects
it if and only if Z falls in the octagon outlined in Figure 6, where the tilted
rectangles are various positions of the tilted query rectangle. It is easy to see
that this octagon in turn is contained in the rectangleRi extended on top
and bottom byly (see Figure 6) and on left and right bylx. Using the same
reasoning as in Theorem 2, we note that givenU1, . . . , Un, the probability
thatZ +Qφ intersectsRi, is bounded byXiYi + 2 max(lx, ly)(Xi + Yi) +
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2∆∆′. Clearly,max(lx, ly) ≤ (∆+∆′)/
√

2. Thus,

E {Nn} ≤ E

{
2n+1∑
i=1

(XiYi)

}
+

√
2(∆+∆′) E

{
2n+1∑
i=1

(Xi + Yi)

}

+(4n+ 2)∆∆′

≤ 2Hn+1 − 1 + c
√

2(∆+∆′)nα + (4n+ 2)∆∆′

for some constantc > 0 by Lemma 1 and Proposition 3. Note in particular
that the constantc does not depend uponφ. ��

To prepare for the main result of this section, we will use a fact from
classical geometry, stated here in its high-dimensional form.Wewill use the
following result by John (1948).

Lemma 2 Let S be any bounded set inIRk not contained in any linear
subspace of it. LetES be the smallest ellipsoid containingS (called John’s
ellipsoid) andE ′

S be the concentric and homothetic ellipsoid at the ratio of
1
k . ThenE ′

S ⊆ ch(S) ⊆ ES , wherech(S) denotes the convex hull ofS.

In particular, John’s result implies that|ES | ≤ kk|E ′
S | ≤ kk|ch(S)|. Let

E be an ellipsoid with principal axes of lengthsa1, . . . , ak, and letB be the
unit ball of IRk. Then

|E| =
a1 · · · ak

2k
|B| =

a1 · · · ak
Γ

(
k+2
2

) (√
π

2

)k
.

Let S be a set as in the previous lemma, and letES be John’s ellipsoid.
Assume thatES has principal axes of lengthsa1, . . . , ak. Let RS be the
smallest rectangle whose axes are aligned with those ofES that containsES
(so that its volume isa1 × · · · × ak). Then

|RS | ≤
(

2√
π

)k
Γ

(
k + 2

2

)
|ch(S)| .

Themain result of this section clearly showswhywe call thenα term the
perimeter complexity. In higher dimensions, the complexity of range search
involves the volumes of all the lower-dimensional “facets” ofC.

Theorem 4 LetU1, . . . , Un be independent and uniform random variables
over [0, 1]2, used to construct a 2-d tree, and letRn be the partition into
rectangles. LetZ be uniformly distributed over[0, 1]2, independent of the
Ui’s, and letNn be the number of rectangles inRn that intersectZ + C,
whereC is a convex set. Then there is a universal constantγ > 0 (not
depending uponn,∆,∆′ or C), such that
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E {Nn} ≤ γ (n area(C) + nα perimeter(C) + log n) ,

whereα =
√

17−3
2 .

Proof.Let RC be the rectangle associated to John’s ellipsoidEC for C, as
defined above. Suppose that it is of size∆ × ∆′. Note that the number of
comparisons that range search performs withZ + C is not more than that
for Z +RC . Therefore, by Theorem 4, for someγ′ > 0,

E {Nn} ≤ γ′ (n∆∆′ + (∆+∆′)nα + log n
)
.

As we noted earlier,∆∆′ ≤ 4
π Area(C). By the convexity ofC, and using

the small ellipsoid(1/4)EC from Lemma 2, we have

4

√(
∆

2

)2

+
(
∆′

2

)2

≤ Perimeter(C).

Also,

Perimeter(RC) = 2(∆+∆′) ≤ 2
√

2
√

(∆)2 + (∆′)2 ≤
√

8Perimeter(C) .

Thus we obtain the inequality

E {Nn} ≤ γ′
(

(4/π)nArea(C) +
√

8 Perimeter(C)nα + log n
)
. ��

6 Local complexities

Ourmodel involvedaquery rectangle thatwas centeredat a randomly picked
point. One may wonder why we did not choose a fixed point. That would
have been possible, but reporting the results would have been a nightmare,
as we must consider the position of the query rectangle (as a function ofn).
The answers are indeed affected by border effects. To see this, we indicate
why a partial match query in a 2-d tree for all points matching(∗, 0) takes
expected timeΘ(n

√
2−1)andnotΘ(n0.5616)as onewould expect by looking

at the results of Flajolet and Puech. If the partial match query is for(∗, yn)
with yn going to zero, onemust consider the rate with which it tends to zero.
There is no room in this paper for this analysis. So, we consider the query
(∗, 0). Let Tn be the expected time for a 2-d tree of size n. Then, a simple
recursive argument shows that roughly speaking,

Tn = 1 + 2 E {TnU1U2}
whereU1, U2 are i.i.d. uniform[0, 1] random variables. By induction, as-
sumingTn ≤ Cnγ , we see thatγ must be the smallest positive number such
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that2/(γ + 1)2 ≤ 1. Therefore,γ =
√

2 − 1. In general, withk − s wild
cards inIRk, and all coordinates that participate in a partial match query
equal to zero, the recursion is of the type

Tn = 1 + 2k−sE {TnU1U2···Uk
} .

This yields the equation2k−s = (γ + 1)k. Thus,γ = 21− s/k − 1, and the
expected partial match complexity isΘ

(
n21− s/k−1

)
.

7 Nearest neighbor search

Consider a random k-d tree as defined above. LetX be a query point uni-
formly distributed in the unit square. The natural nearest neighbor algorithm
referred we will look at is the following. Start with an orthogonal range
search with a square box of size1/n1/k centered atX. Repeat with boxes of
sizeskt/2/n1/k for t = 0, 1, 2, 3, . . . until t+1, wheret is the first nonempty
box. Report the nearest point in thet+ 1-st box. We call this algorithmA.
The purpose of this section is to prove that the expected complexity of this
algorithm isΘ(nρ), where

ρ = max
0≤s≤k

(α(s/k) − 1 + s/k).

The constantρ ∈ (0.061, 0.064)depends uponk only, and is(
√

17−4)/2 ≈
0.0615536 for k = 2, is minimal fork = 3 (ρ ≈ 0.0615254), and oscillates
from that point on. For example, nearest neighbor search in dimensions 2, 4
and 6 have the same expected complexity (as a function ofn—the constants
may be different), and nearest neighbor search in 3-d is slightly easier than
in any other dimension as itsρ-value is smallest! The maximal value forρ
never exceeds0.064.

We set first the notation we will use. Lett ≥ 1, we set for all1 ≤ j ≤ k,
∆j = kt/2/n1/k. LetQt be the hypercube with sides all equal tokt/2/n1/k,
centered atX, a random vector uniformly distributed in[0, 1]k, on which an
orthogonal range search is performed. LetNt be the number of data points
amongU1, . . . , Un falling in Qt. Let Tt be the complexity of Bentley’s
orthogonal range search algorithm onQt, so that

Tt =
2n+1∑
i=1

11[Ri∩Qt �=∅] ,

whereRi is the rectangle in the partition determined byU1, . . . , Ui−1 in
whichUi falls. Thus,Rn+1, . . . , R2n+1 are leaf rectangles. The time taken
by algorithm A is

T = T1 + T2 +
∑
t≥3

Tt11[Nt−2=0] .
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Fig. 7. The functionρ versusk, the dimension. The expected complexity of a natural nearest
neighbor algorithm grows asnρ

We note that by assumption all points fall in the unit hypercube, and there-
fore, themaximal index in the last sumcannotexceedt∗ =�2 log n/(k log k)�.
Fact 1 Letρ = max{θ(1/k), θ(2/k), . . . , θ((k−1)/k)}. Then there exists
a constantC not depending upont or n such that

E {Tt} ≤ C
(
k

(k−1)t
2 nρ + k

kt
2

)
.

Also,

P {Ri ∩Qt �= ∅} ≤ C
i

(
k

(k−1)t
2 iρ + k

kt
2

)
.

Proof.We apply Theorem 2 with the∆j ’s as given here, and note that

E {Tt} ≤ C
(
k

kt
2 + k

(k−1)t
2 nθ(1/k) + k

(k−2)t
2 nθ(2/k) + · · ·

· · · + k
t
2nθ((k−1)/k) + log n

)
.

The first inequality follows immediately from this and the definition of
ρ, and the fact thatlog n = o(nρ). The second inequality uses the fact that



Analysis of range search for random k-d trees 377

P {Ri ∩Qt �= ∅} is decreasing ini up ton, and thus,iP {Ri ∩Qt �= ∅} ≤
E {Tt} if the sample size used for orthogonal range search isi. The first
inequality, withn replaced byi concludes the proof.��

Lemma 3 Let the following constants be given:A > 0, γ > 0, δ > 0,
β ≥ 1, 1 > ρ > 0, subject to the conditionsA log β ≤ 1, log β < δ. Then

�A logn�∑
t=1

βt
n∑
i=1

iρ−1e−γ(1−i/n)eδt
= O(nρ) .

If the conditions are altered so thatρ = 0 andδ = log β, then

�A logn�∑
t=1

βt
n∑
i=1

1
i
e−γ(1−i/n)eδt

= O(log n) .

Proof. It is clear that we may assume without loss of generality thatA log n
is integer-valued. Consider first the sum

∞∑
t=1

βte−ηe
δt

whereηwill later be replacedbyγ(1−i/n). By comparisonwith an integral,
we see that this is not more than

β

∫ ∞

0
βxe−ηe

δx
dx .

Setz = ηexδ, and verify that the latter expression is smaller than

β

δη

∫ ∞

0
(z/η)log β/δ−1e−z dz ≤ βΓ (log β/δ)

δηlog β/δ
.

With this inequality in hand, we note that

A logn∑
t=1

βt
n∑
i=1

iρ−1e−γ(1−i/n)eδt ≤ nρ−1
A logn∑
t=1

βt ≤ n
ρ−1nA log β

1 − 1
β

≤ nρ

1 − 1
β

.

Furthermore,

n−1∑
i=1

iρ−1
A logn∑
t=1

βte−γ(1−i/n)eδt ≤
n−1∑
i=1

iρ−1 βΓ (log β/δ)
δ(γ(1 − i/n))log β/δ
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and thus, it suffices to show that
∑n−1
i=1 i

ρ−1(1 − i/n)−b = O(nρ), where
b ∈ [0, 1). By comparison with an integral, we have

n−1∑
i=1

iρ−1(1 − i/n)−b = nρ
1
n

n−1∑
i=1

(i/n)ρ−1(1 − i/n)−b

≤ nρ
∫ 1

0
xρ−1(1 − x)−b dx

≤ B(ρ, 1 − b)nρ ,

whereB(·, ·) is the beta integral. This concludes the first part of Lemma 3.
For the second part, note as before that the contributions in the double sum
corresponding toi = n andi = n− 1 areO(1). For the remainder, we have

A logn∑
t=1

n−2∑
i=1

i−1βte−γ(1−i/n)eδt

≤
∞∑
t=1

βte−γ(1−1/n)eδt
+
A logn∑
t=1

∫ n−2

1

βt

x
e−γ(1−(x+1)/n)eδt

dx

≤ O(1) +
β

δγ

∫ n−2

1

1
x(1 − (x+ 1)/n)

dx

= O(log n) .

This concludes the proof of the second part of Lemma 3.��

Theorem 5 If T is the time for a nearest neighbor search for algorithm A,
thenE {T} = Θ(nρ).

Proof.For the lower bound, we note thatT ≥ T1, and conclude by the lower
bound of Theorem 2 applied toQ1 and the definition ofρ. For the upper
bound, we begin with

T = T1 + T2 +
∑
t≥3

Tt11[Nt−2=0] .

Taking expected values, Theorem 2 implies thatE {T1 + T2} = O(nρ).
We fix t ≥ 3 and boundE

{
Tt11[Nt−2=0]

}
. The two factors in the expected

value are dependent. However, ifNt−2,i denotes the number of points among
Ui+1, . . . , Un that fall in Qt−2, then we note that givenX, Nt−2,i and
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[Ri ∩Qt �= ∅] are independent. Now note that

P {Nt−2,i = 0|X} ≤ sup
x∈[0,1]k

P {Nt−2,i = 0|X = x}

≤
(

1 −
(
∆t−2

2

)k)n−i

≤ exp

(
−(n− i)k k(t−2)

2

2kn

)
.

Thus, asNt−2 ≥ Nt−2,i, we have

E
{
Tt11[Nt−2=0]

}
= E

{
2n+1∑
i=1

11[Ri∩Qt �=∅]11[Nt−2=0]

}

≤ 2 E

{
n∑
i=1

11[Ri∩Qt �=∅]11[Nt−2,i=0]

}

= 2 E

{
n∑
i=1

P {Ri ∩Qt �= ∅|X}P {Nt−2,i = 0|X}
}

≤ 2
n∑
i=1

exp

(
−(n− i)k k(t−2)

2

2kn

)
E {P {Ri ∩Qt �= ∅|X}}

= 2
n∑
i=1

exp

(
−(n− i)k k(t−2)

2

2kn

)
P {Ri ∩Qt �= ∅}

≤
n∑
i=1

exp

(
−(1 − i/n)k

k(t−2)
2

2k

)
2C
i

(
k

(k−1)t
2 iρ + k

kt
2

)
.

Thus,

E {T} ≤ O(nρ) +
t∗∑
t=3

2Ck
(k−1)t

2

n∑
i=1

exp

(
−(1 − i/n)k

k(t−2)
2

2k

)
iρ−1

+
t∗∑
t=3

2Ck
kt
2

n∑
i=1

1
i

exp

(
−(1 − i/n)k

k(t−2)
2

2k

)

= O(nρ) + I + II .

Lemma 3 applies to I if we formally take thereβ = k(k−1)/2, γ = 1/(2k)k,
A = 2/(k log k), andδ = (k log k)/2. The conditions of the the first part of
Lemma 3,A log β ≤ 1 andlog β < δ, hold, so thatI = O(nρ). The last part
of Lemma 3 applies to II if we setβ = kk/2,γ = 1/(2k)k,A = 2/(k log k),
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andδ = (k log k)/2 = log β. Therefore,II = O(log n). This concludes
the proof.��

Bentley conjectured that if one takes a point at random from among the
n data pointsU1, . . . , Un in the 2-d tree, its nearest neighbor can be found in
O(1) expected time. If the data are put in a

√
n× √

n regular grid partition
of [0, 1]2, then each cell would receive on average one data point. It is not
hard to see then that the expected time for nearest neighboring searching
starting from a given point in a cell takesO(1) expected time. The same
is true for all sufficiently regular, dense and rotund partitions, including,
for example, the Voronoi diagram or the Delaunay triangulation. If the data
are stored in a 2-d tree however, the property fails to hold because of the
skinny rectangles. First, to see intuitively what is going on, letX beU1 and
letX ′ be the nearest neighbor ofX amongU2, . . . , Un. Define the nearest
neighbor distanceDn = ‖X−X ′‖. Note thatDn isΘ(1/

√
n) in probability,

i.e.,P{Dn = o(1/
√
n)} = o(1) andP{Dn = ω(1/

√
n)} = o(1). For

example, fort > 0,

P{√
nDn > t} ≥ (

1 − πt2/n)n ,
so that

lim inf
n→∞ E

{√
nDn

} ≥ lim inf
n→∞

∫ ∞

0
(1 − πt2/n)n dt

≥
∫ ∞

0
lim inf
n→∞ (1 − πt2/n)n dt (by Fatou’s lemma)

=
∫ ∞

0
e−πt

2
dt =

1
2
.

This means that a nearest neighbor search forX is roughly equivalent to
a c/

√
n × c/√n range search. Indeed, just to verify thatX ′ is in fact the

claimed nearest neighbor ofX, one must at the very least inspect all nodes
on rectangle edges that cut the circleS centered atX with radiusDn. Since
the rectangles are skinny, the points on the edges may in fact be far fromX.
Thus a lower bound on the complexity is

E

{
2n+1∑
i=n+1

11[Ri∩Q�=∅]

}
,

whereQ is the circle of radiusDn centered atX. AsDn is in probability
Θ(1/

√
n), Theorem1 implies that theexpectedcomplexity isΩ(nα(1/2)−1/2)

≥ Ω(n0.0615), thus disproving Bentley’s conjecture.
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X

X’

D
n

Fig. 8. The nearest neighbor circle is shown. To verify thatX ′ is the nearest neighbor of
X, any verification algorithm must examine all points on edges of rectangles that cut the
nearest neighbor circle

8 Further work and open problems

Other partitioning algorithms.Our proof method shows the way for the
analysis of other partitioning algorithms, such as schemes in which splits
aremadeaboutmedians of2�+1elements, as long as the coordinate rotation
is respected.

Quadtrees.For quadtree splitting ink dimensions, it is easy to see that not
much changes in the analysis, and that in fact Theorem 2 remains valid. This
confirms results on partial match queries in random quadtrees by Flajolet,
Gonnet, Puech and Robson (1990, 1992).

Expected worst-case complexity.We conjecture that the expected worst case
complexity over all range search rectangles of dimensions∆j (but with
worst-case location of the center) is also bounded from above by the bound
given in Theorem 2.

Longest-edge cuts.When we cut rectangles along their longest side, the
analysis and the results are very different. The k-d trees are much better
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behaved, to the point that they are called squarish k-d trees by Devroye,
Jabbour, and Zamora (1999).

Non-uniform distributions.Finally, we also intend to study the behavior of
k-d trees for nonuniform distributions, although it appears once again that
the upper bound of Theorem 2 remains valid for all distributions with a joint
density on[0, 1]k.
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