Chapter Eight |
TABLE METHODS FOR |
CONTINUOUS RANDOM VARIATES

1. COMPOSITION VERSUS REJECTION.

We have lllustrated how aigorlthms can be sped up if we are willlng to com-
pute certaln constants beforehand. For example, when a discrete random varlate
Is generated by the Inversion method, It pays to compute and store the individual
probabllitles p, beforehand. This Information can speed up sequential search, or
could be used In the method of gulde tables. For continuous random varlates, the
same remains true. Because we know many ultra fast discrete random varlate
generatlon methods, but very few fast continuous random varlate generation
technlques, there is a more pressing need for acceleration In the contlnuous case.
Globally speaking, discretizing the problem speeds generatlon.

We can for example cut up the graph of f into pleces, and use the composi-
tlon method. Choosing a plece Is a discrete random varlate generation problem.
Generating a continuous random varlate for an individual plece is usually simple
because of the shape of the plece which Is selected by us. There are only a few
drawbacks: first of all, we need to know the areas of the pleces. Typleally, this is
equlvalent to knowlng the distribution function. Very often, as with the normal
density for example, the distribution function must be computed as the Integral
of the denslty, which In our model iIs an infilnlte time operation. In particular, the
composition method can hardly be made automatic because of thls. Secondly, we
observe that there usually are several nonrectangular pleces, which are commonly
handled via the lrejectlon method. Rectangular pleces are of course most con-
venlent slnce we can Just return a properly translated and scaled uniform random
variate. For this reason, the total area of the nonrectangular pleces should be
kept as small as possible.

There 1s another approach which does not requlre integration of f . If we
find a functlon ¢ > f, and use rejection, then similar acceleratlons can be
obtalned If we cut the graph of ¢ up Into convenlent pleces. But because ¢ Is
picked by us, we do of course know the areas (welghts) of the pleces, and we can
choose ¢ Dlecewlse constant so that each component plece s for example

VIIL.1.COMPOSITION VERSUS REJECTION - 359

rectangular. One could object that for this method, we neéd to compute the ratlo
[/g rather often as part of the rejectlon algorithm. But thls too can be avolded
whenever a glven plece lles completely under the graph of f/ . Thus, In the deslgn

of pleces, we should try to maximlze the area of all the pleces entirely covered by
the graph of [.

From this general description, It 1s seen that all bolls down to decomposl-
tlons of densltles Into small manageable pleces. Baslcally, such decompositions
account for nearly all very fast methods avallable today: Marsaglia’s rectangle-
wedge-tall method for normal and exponentlal densltles (Marsaglla, Maclaren and
Bray, 1964; Marsaglla, Ananthanarayanan and Paul, 1978), the method of Ahrens
and Kohrt (1981), the allas-rejectlon-mixture method (Kronmal and Peterson,
1980), and the ziggurat method (Marsaglla and Tsang, 1984). The acceleration
can only work well If we have a finite decomposition. Thus, Infinite talls must be
cut off and dealt with separately. Also, from a dldactical polnt of view, rectangu-
lar decompositions are by far the most Important ones. We could add triangles,
but thls would detract from the maln polnts. Since we do care about the general-
Ity of the results, 1t seems polntless to describe a particular normal generator for

~example. Instead, we will present algorithms which are applicable to large classes
of densltles. Our treatment differs from that found In the references clted above.
But at the same time, all the ldeas are borrowed from those same references.

In sectlon 2, we wlll discuss strlp methods, l.e. methods that are based upon
the partition of f Into parallel strips. Because the strips have unequal probabili-
tles, the strip selectlon part of the algorithm Is usually based upon the allas or
allas-urn methods. Partitlons lnto equal parts are convenlent because then fast
table methods can be used directly. This Is further explored In sectlon 3.

2. STRIP METHODS.

2.1. Definition.

The following will be our standing assumptions In thls sectlon: f Is a
bounded density on [0,1]; the Interval [0,1] 1s divided Into n equal parts (n Is
chosen by the user); ¢ Is a function constant on the n Intervals, O outstde [0,1],
and at least equal to f everywhere. We set

9(z)=g; (-’—:zi_<_x<-:;) 1<i<n).

Define the strip probabllities

g .
pi = —— (1<i<n).
2 9
J=1
Then, the following rejectlon algorithm is valld for generating a random varlate
with density [:

360 VIII.2.STRIP METHODS

REPEAT
Generate a discrete random variate Z whose distribution is determined by
P(Z=1i)=p; (1<i<n).
Generate two iid uniform [0,1) random variate U,V .
Y Z-1+V
n
UNTIL Ugz <f (X)
RETURN X

As n Increases, the relection rate should diminish since 1t 1s possible to find
better and better dominating functlons g. But regardless of how large n 1s
picked, there Is no avolding the two uniform random varlates and the computa-
tlon of f (X'). Suppose now that each strlp Is cut Into two parts by a horlzontal
line, and that the bottom part s completely tucked under the graph of f . For
part ¢, the horizontal line has helght h;. We can set up a table of 2n probablii-
tles: p,, . . ., p, correspond to the bottom portions, and p,, +17 - -+ 5 Pap tO the
top portions. Then, random varlate generatlon can proceed as follows:

REPEAT
Generate a discrete random variate Z whose distribution is determined by
P(Z=i)=p; (1<Si<2n).
Generate a uniform [0,1] random variate V.
P Z-14+V
n
IFZ<n
THEN RETURN X
ELSE
Generate a uniform [0,1] random variate U .
, IF hgy o +U(g7-n~hz_s)< [(X-1) THEN RETURN X -1
UNTIL False

When the bottom probabllitles are dominant, we can get away with generating
Just one dlscrete random varlate Z and one uniform [0,1] random varlate V most
of the time. The performance of the algorithm is summarlzed in Theorem 2.1:

VIIL2.STRIP METHODS ' 361

Theorem 2.1.

For the rejectlon method based upon n split strips of equal wldth, we have:

n
1. The expected number of iterations Is L 2 g;. This Is also equal to the
n

=1
expected number of discrete random varlates Z per returned random varlate
X.

) n
2. The expected number of computations of f Is L 3 (g k).
n.
t =1
3. The expected number of unlform [0,1] random varlates s

—'th+ E(gx"h)

t—'l x-—l

Proof of Theorem 2.1.

The proof uses standard propertles of rejection algorithms, together with
Wald'’s equation. Jj :

The algorithm requilres tables for g;,h;, 1<: <n, and p; , 1<: <2n. Some
of the 4n numbers stored away contaln redundant informatlon. Indeed, the p;’s
can be computed from the g¢;'s and k;’s. We store redundant Information to
Increase the speed of the algorithm. There may be addltlonal storage require-
ments depending upon the discrete random varlate generatlon method: see for
example what 1s needed for the method of gulde tables, and the allas and allas-
urn methods which are recommended for thls application. Recall that the
expected tlme of these generators does not depend upon n.

Thus, we are left only with the computat!on of the ¢;’s and h 's. Consider
first the best posslble constants:

gi = _sup _f(z);
t-1 !
__..Sz<_..

n n

hy = It f(z).
L:LS:<-’..

n n

Normally, we cannot hope to compute these values In a flnlte amount of time.
For speclally restricted densltles f , 1t 1s posslble however to do so qulte easily.
Regardless of whether we can actually compute them or not, we have the follow-
Ing important observatlon:

362 VIIL.2.STRIP METHODS

Theorem 2.2,

Assume that [Is a Rlemann Integrable density on [0,1]. Then, If g, , h; are
deflned by:

gi = _ sup f(z);
.’_"_1.53 < -
n
hy = inf f (),
i.:_l.Sz <_'..
we have:
1. lm — 2 g =1
n—00 N .

1—1

2. llm—E(g, .)=O.

n—o i

Proof of Theorem 2.2.

It suffices to prove the second statement, In view of the fact that

-Egz — 1+_2(gt_h’)

1'—1 1""1

But the second statement Is a direc¢t consequence of the definition of Riemann
Integrabtiity. ||

Thus, for sufficlently well-behaved densitles, 1f we have optimal bounds g¢;,
h,- at our disposal, the algorithm becomes very efficlent when n grows large.

2.2. Example 1: monotone densities on [0,1].
When f 1is monotone on [0,1], we can set

- .
= (=) by = f(2).
n n
We also have

oL, o
TRk =TS0 (- ()

l—l

=Ly o-rap< L9

n

VIIL.2.STRIP METHODS 363

The performance of the algorithm can be summarized quite simply:
1. The expected number of lteratlons Is < 1+ i_@_)_ This 1s also equal to the
n

expecte'd number of dlscrete random varlates Z per returned random varlate
X.

2. The expected number of computations of f Is < / (0) .
n

3. The expected number of unlform [0,1] random varlates Is < 1+2f—(—0—)—.
n

We also note that to set up the tables g¢;, h,-, It suffices to evaluate f at the
n +1 mesh polnts. Furthermore, the extremes of f/ are reached at the endpolnts
of the Intervals, so that the constants are In thls case best possible. The only way
to Improve the performance of the algorithm would be by considering unequal
Interval sizes. It should be clear that the Interval slzes should become smaller as
we approach the origin. The unequal Intervals need to be plcked with care If real

savings are needed. For a falr comparlison, we wlll use n Intervals with break-
points

O=z,<2,<2,< " -+ <z, =1,

n
where
Ti g1~y = 6b ‘ (052 Sn“l) ’
5 — b-1 ,
b" -1

and b >1 1s a deslgn constant. The algorithm is only slightly different now-.
because an addltlonal array of z;’s Is stored.

VIIL.2.STRIP METHODS 365

Theorem 2.3.

strip method shown above,

A. The expected number of Iterations does not exceed

b+f (0) b-1 .
b™ -1

form

1+=-(log(1+/ (0)+/ (0)log(f @)1+~ +0 (1))

1
+log(f (0))

0
as n —co. (Note: when f (0) Is large, we have approximately 1+1—Og—(-i;z—(-——)l.)

Assume that f 1s a monotone density on [0,1]. Then for the rejection-based

B. If b=1+-l-log(1+f (0)+f (O)og(f (0))), then the upper bound Is of the
n

Proof of Theorem 2.3.
The expected number of lterations is

ni]l / (x,; ;41—)

{ =0

= Y ebif (z)

§ =0
<SFO+0[7 (y)dy
t=1 ;4

b-1
<b+f(0 .
()bn_1

When b =—--1+i for some constant ¢ >0, then 1t Is easy to see that the upper
n
bound 1s

—_
e ~1+0 (1)
Replace ¢ by log(1+/ (0)+/f (O)og(f = .)- M

1+l(c +f (0)
n

What we retaln from Theorem 2.% = that with some careful deslgn, we can

do much better than In the equl-spacz< zterval case. Roughly speaking, we have
l”Edlececi the expected number of lterz::==2s for monotone densltles on [0,1] from
(0)

I+=——x t0

1+E§(_f__(_92_)__ Several c=zz_:s of the last algorithm are dealt with In
n n

366 ~ VIII.2.STRIP METHODS

the exerclses.

2.3. Other examples.

In the absence of information about monotonleity or unimodality, 1t is virtu-
ally lmpossible to compute the best posslble constants g¢g; and h; for the
rejection-based table method. Other pleces of Information can ald In the deriva-
tlon of slightly sub-optimal constants. For example, when f €Lip,(C), then

AL (4
n n

C
gi = 2_'n-+ S ,
1
c ()
h, = __"+ y
2n 2

will do. These numbers can agaln be computed from the values of f at the n +1
mesh points. We can work out the detalls of Theorem 2.1:

Theorem 2.4.

For the reJection method based upon n split strips of equal width, used on a
Lip ,(C) density f on [0,1], we have:

1. The expected number of lterations Ié

1 n-1

JOH+2f (=) +2f (7)

...g.+ n n S 1+—g- .
2n 2 n

This 1s also equal to the expected number of discrete random varlates Z per

returned random varlate X .
2. The expected number of computations of f Is _<_—C--.
n

3. The expected number of uniform [0,1] random varlates Is §1+—2£.
n

Proof of Theorem 2.4.

The first expression follows directly after resubstltution of the values of ¢;
and h,- Into Theorem 2.1. The upper bound of parts 1 and 2 are obtained by not-

t 1 .

Ing that g-—h.=-'-C— for all 1. Finally, part 3 1s obtained by summing the bounds
n
obtalned In parts 1 and 2. [Jjj

VIII.2.STRIP METHODS ' 367

Once agaln, we can control the performance characteristics of the algorithm
by our cholce of n. The characteristics can be improved slightly If we make use
of the fact that for Lipschitz densitles known at mesh polnts, the obvious plece-
wise llnear domlnating curve has slightly smaller integral than the plecewise con-
stant domlnating curve suggested here. It should be noted that the switch to
plecewlse llnear dominating curves Is costly in terms of the number of unlform
random varlates needed, and In terms of the length of the program. It Is much
slmpler to lmprove the performance by lncreasing n.

2.4. Exercises.

1. For the algorithm for monotone denslties analyzed In Theorem 2.3, glve a
good upper bound for the expected number of computations of f, both In
terms of general constants b >1 and for the constant actually suggested In
Theorem 2.3.

2. When f 1s monotone and convex on [0,1], then the plecewlse llnear curve
which touches the curve of f at the mesh polnts can be used as a domlnat-
ing curve. If n equal Intervals are used, show that the expected number of
evaluations of f can be reduced by 509 over the corresponding plecewise
constant case. Glve the detalls of the algorlthm. Compare the expected
number of uniform [0,1] random varlates for both cases.

3. Develop the detalls of the rejectlon-based strip method for Lipschltz densl-
tles which uses a plecewise llnear domlnating curve and n equl-spaced inter-
vals. Compute good bounds for the expected number of Iterations, the
expected number of computations of f, and the expected number of uni-
form [0,1] random varlates actually required.

4. Adaptive methods. Consider a bounded monotone density f on [0,1].
When f (0) Is known, we can generate a random varlate by rejection from a
uniform density on [0,1]. This corresponds to the strip method with one
Interval. As random varlates are generated, the domlnating curve for the
strlp method can be adjusted by consldering a stalrcase function with break-
points at the X,~ 's. This calls for a dynamle data structure for adjusting the
probabllities and sampling from a varying discrete dlstribution. Deslgn such
a structure, and prove that the expected tlme needed per adjustment Is O (1)
as n —o00, and that the expected number of f evaluations Is o (1) as n —oo0.

5. Let F be a contlnuous distributlon function. For fixed but large n, compute
T; =F‘1(—z—) , 0<i <n. Select one of the z;'s (0<¢ <n) with equal proba-
n

billty 1/n, and define X =uz; +U (z; .,—2;) where U 1s a uniform [0,1] ran-
dom varlate. The random varlable X has distribution function G, which is -
close to F. It has been suggested as a fast universal table method In a
varlety of papers; for slmllar approaches, see Barnard and Cawdery (1974)
and Mitchell (1977). When z y=-00 or z, =00, deflne X 1n a sensible way on
the Interval In question.

364 VIII.2.STRIP METHODS

[SET-UP]

Choose b >1, and integer n >1. Set f— bb;l

. Set 2 4«0.

FOR {:=1 TO n DO
bi-1
b-1
gief (i) by —f (%)
pi —h; (2;-2;)
P i (9 ~hs Yz ~2;)
Normalize the vector of p;'s.
[GENERATOR]
REPEAT :
 Generate a discrete random variate Z whose distribution is determined by
P(Z=t)=p; (1<{<2n).
Generate a uniform [0,1] random variate V.
W «(Z -1)modn
Xe—zw+V (2w -2w))
IF Z<n
THEN RETURN X
ELSE

z; 6

Generate a uniform [0,1) random variate U .
IF hzp +U(9g-u~hz-,)< [(X) THEN RETURN X
UNTIL False

368 VIII.2.STRIP METHODS

>

Prove that In all cases, sup | F -G, | —0 as n —oo.

B. Prove that when F has a denslty f, then [| f -g, | 50 as n —oo,
where g, Is the density of G, . This property holds true without excep-
tion.

C. Determine an upper bound on the L, error of part B In terms of /' and

n whenever f Is absolutely continuous with almost everywhere derlva-
tive f'.

3. GRID METHODS.

3.1. Introduction.

Some acceleration can be obtalned over strlp methods If we make sure that
all the components boxes (usually rectangles) are of equal area. In that case, the
standard (very fast) table methods can be used for generation. The cost can be

prohlbitive: the boxes must be fine so that they can capture the detall In the out- .

line of the density f , and thls forces us to store very many small boxes.

The versatllity of the princlple Is llustrated here on a varlety of problems,
ranging from the problem of the generation of a uniformly distributed random
vector in a compact set of R d , to avoldance problems, and fast random wvarlate
generation.

3.2. Generating a point uniformly in a compact set.
Let us enclose the compact set A of R d with a hyperrectangle H with sldes

‘ h:
hyhg ..., hy. Divide each side up Into N; Intervals of length —1-\-;—-,1§i <d.
t .
There are three types of grid rectangles, the good rectangles (entirely contained

In A), the bad rectangles (those partlally overlapping with A), and the useless
rectangles (those entlrely outside A). Before we start generating, we need to set
up an array of addresses of rectangles, which we shall call a directory. For the
time belng, we can think of an address of a rectangle as the coordinates of Its
leftmost vertex (In all directlons). The directory (called D) Is such that In posl-
tlons 1 through k we have good rectangles, and In positions k +1 through £+,
we have bad rectangles. Useless rectangles are not represented In the array. The
Informal algorithm for generating a uniformly distributed point in A 1s as fol-
lows:

VIIL.3.GRID METHODS 369

REPEAT
Generate an integer Z uniformly distributed in 1,2, ..., k+{.
Generate X uniformly in rectangle D [Z] (D [Z] contains the address of rectangle
Z).

Accept «[Z <k] (Accept is a boolean variable.)
IFF NOT Accept THEN Accept —[X €A .
UNTIL Accept
RETURN X

The expected number of lterations Is equal to
area(C')
area(A)

where C 1s the unlon of the good and bad rectangles (If the useless rectangles are
not discarded, then C=H). If the area of one rectangle 1s a, then
area(C)=a (k +!). For most bounded sets A, thls can be made to go to 1 as the
grid becomes flner. That thls 1s not always the case follows from this simple
example: let A be [0,1]¢ unlon all the ratlonal vectors In [1,2]d. Since the ration-
als are dense In the real line, any grid cover of A necessarlly covers [0,1]¢ and
[1,2]“ , 50 that the ratlo of the areas Is always at least 2. Fortunately, for all com-
pact (l.e., closed and bounded) sets A, the glven ratlo of areas tends to one as
the grid becomes finer (see Theorem 3.1).

The speed of the algorithm follows from the fact that when a good rectangle
1s chosen, no boundary checking needs to be done. Also, there are many more
good rectangles than bad rectangles, so that the contrlbutlon to the expected
tlme from boundary checking Is small. Of course, we must In any case look up an
entry In a directory. Thls Is remlinlscent of the urn or table look-up method and
1ts modifications (such as the allas method (Walker, 1977) and the allas-urn
method (Peterson and Kronmal, 1982)). Finer grids yleld faster generators but
requlre more space.

One of the measures of the efflclency of the algorithm s the expected
number of lterations. We have to make sure that as the grid becomes finer, this
expected number tends to one.

370 VIII.3.GRID METHODS

Theorem 3.1.

Let A be a compact set of nonzero area (Lebesgue measure), and let us con-
sider a sequence of grids G ;,G,,... which Is such that as n —oo, the dlameter of

the prototype grid rectangle tends to 0. If C, s the grid cover of A defined by

area(C,)
G, , then the ratlo ————— tends to 1 as n —oo.
area(A)

Proof of Theorem 3.1.

Let H be an open rectangle covering A, and let B be the Intersectlon of H
with the complement of A. Then, B is open. Thus, for every z €B, we know
that the grid rectangle In G, to which It belongs Is entirely contalned In B for
all n - large enough. Thus, by the Lebesgue domlinated convergence theorem, the
Lebesgue measure of the “useless” rectangles tends to the Lebesgue measure of
B . But then, the Lebesgue measure of C, must tend to the Lebesgue measure of

A. N

The dlrectory ltself can be constructed as follows: deflne a large enough
array (of slze n =N N, - - - N;), Inltlally unused, and keep two stack polnters,
one for a top stack growlng from poslition 1 down, and one for a bottom stack
growing from the last posltion up. The two stacks are tled down at the ends of
the array and grow towards each other. Travel from grid rectangle to grid rectan-
gle, 1dentify the type of rectangle, and push the address onto the top stack when
It corresponds to a good rectangle, and onto the bottom stack when we have a
bad rectangle. Useless rectangles are lgnored. After this, the array is partially full,
and we can move the bottom stack up to flll positions k£ -1 through k +/. If the
number of useless rectangles 1s expected to be unreasonably large, then the stacks
should first be Implemented as linked lists and at the end copled to the directory
of size k +!{. In any case, the preprocessing step takes time equal to n, the cardl-
nallty of the grid.

It Is lmportant to obtaln a good estlmate of the slze of the directory. We
have '

area(Ad) area(4d) n
a area(H)
We know from Theorem 3.1 and the fact that area(Cn')=(lc +1)a, that

m k+1 _ area(4)
n—co T area(H) '

k+l >

provided that as n —o00, we make sure that Inf /V; —oo (this will Insure that the

H .
diameter of the prototype rectangle tends to 0). Upper bounds on the size of the
directory are harder to come by In general. Let us consider a few speclal cases In

VII.3.GRID METHODS 371

the plane, to lllustrate some polnts. If A 1s a convex set for example, then we can
look at all NV, columns and IV, rows In the grid, and mark the extremal bad rec-
tangles on elther slde, together with thelr Immediate nelghbors on the Inside.
Thus, In each row and column, we are putting at most 4 marks. Our clalm s that
unmarked rectangles are elther useless or good. For If a bad rectangle 1s not
marked, then 1t has at least two nelghbors due north, south, east and west that
are marked. By the convexity of A, It Is physlcally impossible that this rectangle
1s not completely contalned In A. Thus, the number of bad rectangles Is at most
4(N +N,). Therefore,

area(A)
" ea(H)

It A consists of a union of K convex sets, then a very crude bound for k -+

could be obtalned by replacing 4 by 4K (Just repeat the marking procedure for
each convex set). We summarize:

b+l < +4(N,+N,) .

Theorem 3.2.
The size of the directory Is k£ +/, where

area(A) k+l area(A)
area(H) = n (140 (1)) area(H)

The asymptotic result I1s valld whenever the dlameter of the grid rectangle tends
to 0. For convex sets A on R 2, we also have the upper bound -
k+l _ area(d) + N,+N,
n — area(H) NN,

We are left now with the cholce of the [V;'s. In the example of a convex set
In the plane, the expected number of lterations Is
l area(H) 4
Lk+l)a < 1 2reald) Z(N,+N,) .
area(A) area(A) n

‘The upper bound Is minimal for N ,=N,=vn" (assume for the sake of convenl-
~ence that n Is a perfect square). Thus, the expected number of lteratlons does
not exceed

area(H) 8

area(A) Vn

This 1s of the form 1+£oi\;_t_§_r_x_§_ where n 1s the cardinality of the enclosing grid.

n . .
By controlllng n, we can now control the expected tlme taken by the algorithm.
The algorithm is fast If we avold the bad rectangles very often. It Is easy to see
that the expected number of inspectlons of bad rectangles before halting Is the

[area(H)
—2) 0 (1
7 which equals to area(A) =0 (1)

expected number of lteratlons tlmes

372 VIIL.3.GRID METHODS

{
since ;-—»0 (as a consequence of Theorem 3.1). Thus, asymptotically, we spend a

negligible fractlon of time Inspecting bad rectangles. In fact, uslng the special
example of a convex set In the plane with N,;=N,=vn , we see that the
expected number of bad rectangle Inspections Is at most

area(H) 8
area(A) vn

3.3. Avoidance problems.

In some simulatlons, usually with geometric Implications, one Is asked to
generate polnts uniformly In a set A but not In UA; where the A;’'s are given
sets of R ¢. For example, when one slmulates the random parking process (cars of
length one park at random In a street of length L but should avold each other),
it 1s important to generate polnts uniformly in [0,L] minus the unlon of some
Intervals of the same length. Towards the end of one slmulation run, when the
street fllls up, 1t 1s not feaslble to keep generating new points untll one falls in a
good spot. Here a grid structure will be useful. In two dimenslons, silmilar prob-
lems occur: for example, the circle avoldance problem Is concerned with the gen-
eration of uniform polnts In a circle given that the polnt cannot belong to any of
a glven number of circles (usually, but not necessarily, having the same radius).
For applications Involving nonoverlapping clrcles, see Alder and Walnwright
(1962), Diggle, Besag and Gleaves (1976), Talbot and Wiills (1980), Kelly and
Ripley (1978) and Ripley (1977, 1979). Ripley (1979) employs the relection
method for sampling, and Lotwick (1982) trlangulates the space in such a way
that each triangle has one of the data polnts as a vertex. The trlangulation s
designed to make sampling easy, and to Improve the rejection constant. Lotwick
also Investigates the performance of the ordinary rejectlon method when checking

for Incluslon In a circle 1s done based upon an algorithm of Green and Sibson
(1978).

We could use the grid method In all the examples given above. Note that
unlike the problems dealt with in the previous subsection, avoldance problems are
dynamilc. We cannot afford to recompute the entire directory each tlme. Thus, we
also need a fast method for updating the directory. For this, we will employ a
dual data structure (see e.g. Aho, Hopcroft and Ullman, 1983). The operations
that we are Interested In are "Select a random rectangle among the good and bad
rectangles”, and "Update the directory” (which Involves changing the status of
good or bad rectangles to bad or useless rectangles, because the avoldance region
grows continuously). Also, for reasons explalned above, we would like to keep the
good rectangles together. Assume that we have a d -dimensional table for the rec-
tangles contalning three pleces of Information:

(1) The coordinates of the rectangle (usually of vector of Integers, one per coor-
dinate).

VIII.3.GRID METHODS 373

(11) The status of the rectangle (good, bad or useless).

(1i1) The posltion of the rectangle In the directory (this s called a polnter to the
directory).

The directory is as before, except that it wlill shrink In size as more and more rec-
tangles are declared useless. The update operatlon Involves changlng the status of
a number of rectangles (for example, If a new circle to be avolded is added, then
all the rectangles entlrely wlthin that circle are declared useless, and those that
straddle the boundary are declared bad). Slnce we would like to keep the time of
the update proportlonal to the number of cells Involved tlmes a constant, 1t ls
obvious that we wlll have to reorganlze the directory. Let us use two lists agaln,
a list of good rectangles tled down at 1 and with top at &k, and a list of bad rec-

tangles tled down at n and with top at n—{+1 (1t has [elements). There are
three situatlons:

(A) A good rectangle becomes bad: transfer from one list to the other. F1ll the
hole In the good list by filllng 1t with the top element. Update £ and {.

(B) A good or bad rectangle becomes useless: remove the element from the
appropriate list, and fill the hole as In case (A). Update k or [.

(C) A bad rectangle remalns bad: lgnore thls case.

For generation, there Is only a problem when Z >k : when this happens, replace

Z by Z+n-l-k, and proceed as before. This replacement makes us jump to the
end of the dlrectory.

Let us turn now to the car parking problem, to see why the grid structure Is
to be used with care, If at all, In avoldance problems. At first, one might be
tempted to think that for fine enough grids, the performance Is excellent. Also,
the number of cars (/N) that are eventually parked on the street cannot exceed
L, the length of the street. In fact, £ (V) ~ XL as L —oco where

t
e —2f(1—e"‘)/u du
A= [e ° dt = 0.748...
0

(see e.g. Reny! (1958), Dvoretzky and Robbins (1964) or Mannion (1964)). What
determines the tlme of the simulatlon run !s of course the number of uniform
[0,1] random varlates needed In the process. Let EE be the event

[Car 1 does not Intersect [0,1]].

Let T be the tlme (number of uniforms) needed before we can park a car to the
left of the first car. This s Infinite on the complement of E, so we will only con-
slder E. The expected tlme of the entire slmulatlon Is at least equal to
P(E)E (T | E). Clearly, P (E)=(L -1)/L 1s posltive for all L >1. We will show
that E(T | E)=oco0, which leads us to the concluslon that for all L >1, and for
all grid slzes n, the expected number of unlform random varlates needed 1s co.
Recall however that the actual simulation time s finlte with probabllity one.

Let W be the positlon of the leftmost end of the first car. Then
L
L dt
E(T |E)= —[E(T | W=t) —
(T|B)= g3 JET | W=7

374 VIII.3.GRID METHODS

1+-;-

L dt
> pu— fhadet
__L_I{E(TIWt)L

1+-'17

1 1
> dt = .
el M ©

Stmllar distressing results are true for d-dimenslonal generallzatlons of the car
parking problem, such as the hyperrectangle parking problem, or the problem of
parking circles In the plane (Lotwick, 1984)(the circle avoldance problem of figure
3 Is that of parking circles with centers In uncovered areas untll the unit square 1s
covered, and Is closely related to the clrcle parking problem). Thus, the rejection
method of Ripley (1979) for the circle parking problem, which Is nothing but the
grld method with one glant grld rectangle, suffers from the same drawbacks as
the grid method in the car parking problem. There are several possible cures.
Green and Sibson (1978) and Lotwick (1984) for example zoom in on the good
areas In parking problems by using Dirichlet tessellations. Another possibility is
to use a search tree. In the car parking problem, the search tree can be defined
very simply as follows: the tree 1s binary; every Internal node corresponds to a
parked car, and every termlnal node corresponds to a free interval, l.e. an Inter-
val In which we are allowed to park. Some parked cars may not be represented at
all. The Iinformation in one internal node consists of:

p; : the total amount of free space In the left subtree
of that node;
P, : the total amount of free space In the right subtree.

For a terminal node, we store the endpoints of the Interval for that node. To
park a car, no rejection s used at all. Just travel down the tree taklng left turns
with probabllity equal to p; /(p; +p,), and right turns otherwise, until a terminal
node is reached. Thils can be done by using one unlform random variate for each
internal node, or by reusing (mllking) one uniform random varlate time and
agaln. When a terminal node Is reached, a car Is parked, l.e. the mldpolnt of the
car Is put uniformly on the interval In question. This car causes one of three
sltuations to occur: ‘

1. The Interval of length 2 centered at the midpolnt of the car
covers the entire original interval.

2. The Interval of length 2 centered at the midpolnt of the car
forces the original Interval to shrink.

3. The Interval of length 2 centered at the midpoint of the car
splits the original Interval In two Intervals, separated by the
parked car.

In case 1, the terminal node is deleted, and the sibling termlnal node Is deleted
too by moving It up to its parent node. In case 2, the structure of the tree Is

VIIL.3.GRID METHODS 375

unaltered. In case 3, the terminal node becomes an Internal node, and two new
terminal nodes are added. In all cases, the Internal nodes on the path from the
root to the terminal node In questlon need to be updated. It can be shown that
the expected time needed In the simulation I1s O (L log(L)) as L —oo. Intultively,
this can be seen as follows: the tree has Inltlally one node, the root. At the end, 1t
has no nodes. In between, the tree grows and shrinks, but can never have more
than L Internal nodes. It Is known that the random blnary search tree has
expected depth O (log(L)) when there are L nodes, so that, even though our tree
1s not distributed as a random binary search tree, It comes as no surprise that the
expected tlme per car parked Is bounded from above by a constant time log(L).

3.4. Fast random variate generators.

It 1s known that when (X ,U) 1s uniformly distributed under the curve of a
density f, then X has density f . This could be a denslty In R¢, but we wlll
only consider d =1 here. All of our presentation can easlly be extended to R?.
Assume that f 1s a denslty on [0,1], bounded by M. The Interval [0,1] Is divided
into IV, equal Intervals, and the interval [0,M] for the y-directlon Is divided Into
N o equal Intervals. Then, a dlrectory 1Is set up with k good rectangles (those
completely under the curve of f), and [bad rectangles. For all rectangles, we
store an Integer ¢ which Indlcates that the rectangle has z-coordinates
[—— 241

N, N,
we need to store a second Integer 7 Indlcating that the y coordlnates are

[M-NJ—,M]T_H). Thus, 0<j <N,. It 1s worth repeating the algorithm now,
2 2

because we can re-use some uniform random varlates.

)- Thus, ¢+ ranges from O to N,-1. In additlon, for the bad rectangles,

376 VIII.3.GRID METHODS

Generator for density f on [0,1] bounded by M

(NOTE: D[1},...,D[k+!l] is a directory of integer-valued z-coordinates, and
Y{k+1),..., Y[k+!] is a directory of integer-valued y-coordinates for the bad rectan-
gles.)

REPEAT

Generate a uniform [0,1] random variate U.
Z « (k+1)U] (Z chooses a random element in D)
A«—(k +1)U-Z (A is again uniform [0,1])
D[Z)+A
X 1——-——-——[N]x
Accept —[Z <k}
IFF NOT Accept THEN
Generate a uniform (0,1} random variate V.
Accept —[M(Y[Z]+V)< [(X)N,]
UNTIL Accept
RETURN X

This algorithm uses only one table-look-up and one uniform random variate most
of the time. It should be obvlous that more can be galned If we replace the D [7]

1] , and that in most high level languages we should Just return
1
from Inslde the loop. The awkward structured exit was added for readabllity.

Note further that in the algorithm, 1t is Irrelevant whether f s used or c¢f
where ¢ 1s a convenlent constant. Usually, one might want to choose ¢ 1n such a
way that an annoying normalization constant cancels out.

entries by

When f Is nonincreasing (an lmportant speclal case), the set-up Is faclll-
tated. It becomes trivial to declde qulckly whether a rectangle 1s good, bad or
useless. Notice that when f Is In a black box, we will not be able to declare a
particular rectangle good or useless In our lifetime, and thus all rectangles must
be classifled as bad. This willl of course slow down the expected tlme qulte a bit.
Still for nonincreasing f , the number of bad rectangles cannot exceed IN,+N,.

M
Thus, noting that the area of a grid rectangle 1s —, we observe that the
n

expected number of iterations does not exceed

N,+N,
1+M-———n—-—- .

: 1
Taking N1=N2=\/7z—, we note that the bound Is 14O (—\/.—.=-). We can adjust n
n

to off-set large values of M, the bound on f . But In comparison with strip
methods, the performance Is slightly worse In terms of n: In strip methods with
n equal-size Intervals, the expected number of Iterations for monotone densities

VIIL.3.GRID METHODS 377

M
does not exceed 1+—1—2—. For grld methods, the n s replaced by vn . The
expected number of computations of f for monotone densitles does not exceed
L k+My M MV, HN)

/c+l(n n — n

For unimodal densitles, a simllar discussion can be glven. Note that 1n the case of
a monotone or unimodal density, the set-up of the directory can be automated.

It 1s also Important to prove that as the grid becomes finer, the expected
number of 1terations tends to 1. This Is done below.

Theorem 3.3.

For all Rlemann Integrable densitles f/ on [0,1] bounded by M, we have, as
Inf (N,,N,)—00, the expected number of Iterations,

6+

tends to 1. The expected number of evaluations of f 1s o (1).

Proof of Theorem 3.3.

Glven an n-grid, we can construct two estimates of ff ,

N;-1 1
N . Su. [(=),
i=0 ‘Y1 ',
1o T N,
and
Ni-1 1

— inf x).
i§0N1_£_<z<i+1f()
N,7 T N,

By the definltlon of Rlemann Integrablllty (Whittaker and Watson, 1927, p.83),
these tend to ff as IN ;—o0. Thus, the difference between the estimates tends to
0. By a slmple geometrical argument, 1t Is seen that the area taken by the bad
rectangles 1s at most this difference plus 2N1 times the area of one grid rectangle,

that 1s, 0 (1)+—2L—0 (1). i
N,

Denslitles that are bounded and not Riemann integrable are somehow pecu-
llar, and less Interesting 1n practice. Let us close this sectlon by noting that extra
savings In space can be obtalned by grouplng rectangles In groups of slze m , and
putting the groups In an aux!llary directory. If we can do this In such a way that
many groups are homogeneous (all rectangles In 1t have the same value for D [¢]

378 VIIL.3.GRID METHODS

and are all good), then the corresponding rectangies In the directory can be dls-
carded. This, of course, Is the sort of savings advocated In the multiple table
look-up method of Marsaglla (1983) (see section III.3.2). The price pald for this Is
an extra comparlson needed to examlne the auxillary directory.

A final remark s In order about the space-time trade-off. Storage Is needed
n
M
The bound on the expected number of Iteratlons on the other hand 1s

M
1+-;2-(N1+N2). If N;=N,=vn , then keeping the storage fixed shows that the

for at most N ,+N, bad rectangles and good rectangles when f Is monotone.

expected tlme Increases In proportion to M. The same rate of Increase, albelt
with a different constant, can be observed for the ordinary rejectlon method with
a rectangular domlnating curve. If we Keep the expected time fixed, then the
storage Increases In proportion to M. The product of storage (1+2M / Vn) and
expected time (2Vn +n /M) 1s 4Vn +n /M +4M. This product is minimal for
n=1M=vVn /2, and the minimal value is 8. Also, the fact that storage times
expected time Is at least 4M shows that there is no hope of obtalning a cheap
generator when M s large. This Is not unexpected since no condltions on f
besldes the monotonlcity are Imposed. It s well-known for example that for
specific classes of monotone or unimodal densitles (such as all beta or gamma
densities), algorithms exist which have uniformly bounded (in M) expected time
and storage. On the other hand, table look-up ls so fast that grid methods may
well outperform standard rejectlon methods for many well known densities.

