Chapter Four
SPECIALIZED ALGORITHMS

1. INTRODUCTION.

1.1. Motivation for the chapter.

The maln techniques for random varlate generation were developed 1n
chapters II and III. These will be supplemented In thls chapter with a host of
other technlques: these Include historically Important methods (such as the
Forsythe-von Neumann method), methods based upon speclfic properties of the
unlform distrlbutlon (such as the polar method for the normal density), methods
for densltles that are glven as convergent serles (the serles method) and methods
that have proven: particularly successful for many distributions (such as the
ratlo-of-uniforms method). :

To start off, we Insert a section of exerclses requiring technlques of chapters
IT and III.

1.2. Exercises,

1.  Gtlve one or more reasonably efficient methods for the generation of random
varlates from the following densitles (which should be plotted too to galn
some Inslght):
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Density Range for z Range for the parameter(s)
1
1.2
(1rlog(-z-)) o<z <1
1
2 ;—log(-]-‘—) o<z <1
4 1+2
—1log( + ) o<z <1
Tz 1-z
8 1
log(— o<z <1
TR g( z)
2
2 4
AT
e * z >0 a>0
Uer
5 -
z
-‘t—/--e"z z >0
T
o _gs
— z >0 >0
x

‘Write short and fast programs for generating random varlates with the den-

sitles given In the table below. In the programs, use only uniform [0,1]
and/or unlform [-1,1] random varlates.

variates

Density Range for z Range for the parameter(s)
nl (1-z™1) 0<z<1 n >2, n. integer
n —
1 L
e * z >0
2r*
2
—_— z€R
e Tz +C -2
4log(2z —
—————-—g( 1) x>1
2z =z

Wrlte one-line generators (l.e., assignment statements) for generatlng ran-
dom

wlith densltles

as described below.

You

can use
log,exp,cos,atan,max,min and functlons that generate uniform [0,1] and nor-
mal random varlates.

sity.

Density Range of z Range of the parameter(s)
n
-(—Blg—f—?—-— o<z <1 n positive integer
n.
1
-2—c -le ] z ER
2
— 2 z" e z>0 n positive integer
ry n
22p(—
( 2 )
1
2+e®+e”? z€R
a—(2a-2)z 0<z <1 1<a <2

In number 2 we recognlze the Laplace density. Number 4 is the loglstic den-
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4.

5.

_ Find a direct method (l.e., one not involving rejectlon of any kind) for gen-

IV.1.INTRODUCTION

Show how one can generate a random varlate of one’s cholce having a den-
sity f on [0,00) with the property that imf (z )=c0 , f (z)>0 for all z.
. z |0

Glve random varlate generators for the following slmple densitles:

Density Range for =
L.z z >0
72 e®-1
-1—2— z T >0
T e’ +1
1
6 108(';)
—_ o<z <1
2 1-z
12 log(i+z) o<z <1
72 z
arctan(z) o<z <1
Gz
1.
log(;)
e o<y <1
G(1+z?
2tan(z ) 2 >0
S
_2_( sin(z )) £ >0
iy z

Here G s Catalan’s constant (0.9159655941772190... ).

erating random varlates with distribution functlon F (z)=1-¢% b2 -ex®

(z >0), where a,b ,c >0 are parameters.

Someone shows you the rejection algorithm glven below. Find the denslty of
the generated random varilate. Find the dominating density used in the
rejection method, and determline the relection constant.

REPEAT

Generate iid uniform {0,1) random variates U,,U,, Us.
UNTIL U(1+U,U,)<1
RETURN X «—-log(U,U,)

Find a simple function of two iid uniform [0,1] random varlates which has
distribution function F(z )=1——19§(—1j$—)- (z >0). This distribution func-
T

tion is Important In the theory of records (see e.g. Shorrock, 1972).

Glve simple rejection algorithms with good rejection constants for generating
discrete random varlates with distrlbutions determined as follows:
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Pn Range for n
iarct/an( 1 ) n>1
L8 2n? —

8 1
—_—_— n >0
T (40 +1)(4n +3) —
8 1
—_—— n >0
™ (2n +1)2 -
4 1
—arctan(————— n>1
m ntn+1

10. The hypoexponential distribution. Give a uniformly fast generator for
the family of hypoexponentlal densltles given by

f(z)=

:_’;\ (e~ —-e7H#*)y (2 >0),

where £>X>0 are the parameters of the distribution.

2. THE FORSYTHE-VON NEUMANN 1METHOD.

2.1. Description of the method.

In 1951, von Neumann presented an ingenlous method for generating
exponentlal random varlates which requires only comparisons and a perfect unl-
form [0,1] random varlate generator. The exponentlal distributlon Is entlrely
obtalned by manlpulating the outcomes of the comparlsons. Forsythe (1972) later
generallzed the technlque to other distrlbutlons, albelt at the expense of simpli-
clty silnce the method requires more than Just comparlsons. The method was then
applled with a great deal of success In normal random varlate generation (Ahrens
and Dileter, 1973; Brent, 1974) and even In beta and gamma generators (Atklnson
and Pearce, 1976). Unfortunately, In the last decade, most of the algorithms
based on the Forsythe-von Neumann method have been surpassed by other algo-
rithms partlally due to the discovery of the allas and acceptance-complement
methods. The method 1s expensive In terms of uniform [0,1] random variates
unless speclal "tricks” are used to reduce the number. In addltlon, for general dis-
tributlons, there 1s a tedlous set-up step which makes the algorithm virtually
Inaccessible to the average user.

Just how comparlsons can be manipulated to create exponentlally distril-
buted random varlables Is clear from the followlng Theorem.
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Theorem 2.1.

——

Let X ;,X,,... be 11d random varlables with distributlon function F . Then:
k-1 k
W) P@2X,2 - 2X,<X) =28 TV - gy
_ (k-1) k!
(1) If the random varlable K Is determined by the condition
z2>2X,> - 2Xg_ <X, then P(K odd) == e FE) alx,

(1) If Y has distribution functlon G and Is Independent of the X;'s, and If
K s defined by the conditlon ¥ 2X,> - - - >Xp_; <Xy, then

z
JeT@ dG (y)
P(Y <z | K odd) = ;‘;’; (all z) .
[ e FWdG (y)
-0

Proof of Theorem 2.1.
For fixed z,

Thus,

Also,

C _ 1 _ F(a)
P(z2X,2 ZXk)— KP(gngJ(,-sx) =—
PEz2X,2 - 2X.,<X)
=PE>X,> 22X, PE>X,> - >X;)
_ F@)}* F@)t
(k-1)! k!

F),, F@® F@® . _ _re
P (K odd) = (1- T )+( YE— )+ _CF().‘

Part (111) of the theorem finally follows from the following equalities:

z xz
P(Y<z,K odd)= [P(K odd|Y=y)dG(y)= [eTW dG(y),

—00 -0
+o00

P(K odd) = [eTWdG(y). N
-0



IV.2FORSYTHE-VON NEUMANN METHOD 123

We can now describe Forsythe's method (Forsythe, 1972) for densltles f
which can be written as follows:

f(@)=cg(z)eFE),

where ¢ Is a denslty, 0<F (z )<1 1Is some functlon (not necessarlly a distribution
function), and ¢ 1s a normallzation constant.

Forsythe’s method

REPEAT
Generate a random variate X with density g .
W—F(X)
Stop + False (Stop is an auxiliary variable for getting out of the next loop.)
REPEAT
Generate a uniform [0,1) random variate U.
FU>W
THEN Stop +« True
ELSE W+«U K «—K +1
UNTIL Stop®
UNTIL K odd
RETURN X

We wlll first verlfy with the help of Theorem 2.1 that thls algorithm Is valid.
First, for fixed X =z, we have for the first lteratlon of the outer loop,

P (K odd) = e F@)

Thus, at the end of the first iteration,

z
P(X<z,K odd)= [eFWlg(y)dy .
00
Argulng as In the proof of the properties of the rejection method, we deduce that:
(1) The returned random varlate X satlsfles

z
PX<z)= [ceTWyg(y)dy .

-00
Thus, 1t has density ce F g (z).

1
(1) The expected number of outer loops executed before halting Is —I;- where p 1s
+00

the probabllity of exlt, l.e. p =P (K odd)= f e TWg(y)dy .

~00
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(M) In any single iteration,

. F(z) F(z) F(x)?

E(K):f[l(l— TR A Ta ;f M+ | g(z) dz
2

=f[1+F1(f)+F(2f) + 0 g(z)de

= [efE) g(z) dzx .

(Iv) If N Is the total number of uniform [0,1] random varlates required, then (by
Wald's equation)

14+EK) _ 1H[e" g (z) dz

E(N)=
V) P JeT@g(z) dz

In additlon to the N uniform random varlates, we also need on the average L

random varlates with density ¢ . It should be mentloned though that ¢ s often
uniform on [0,1) so that this causes no major drawbacks. In that case, the total
expected number of unlform random varlates needed is at least equal to

| 1/ | | o (this follows from Letac's lower bound). From (Iv) above, we deduce
that
2 < E(N) < 1‘;‘3 = e+e? .
e

Observe that Forsythe's method does not require any exponentiation. There

1
are of course about — evaluatlons of F. If we were to use the rejectlon method

with as dominating genslty g, then p would be exactly the same as here. Per
lteration, we would also need a ¢-distributed random varlate, one uniform ran-
dom varlate, and one computation of e ¥ . In a nutshell, we have replaced the
latter evaluation by a (usually) cheaper evaluation of F and some additional unl-
form random varlates. If exponential random variates are cheap, then we can In
the rejectlon method replace the e-F evaluation by an evaluation of F if we
replace also the uniform random varlate by the exponential random varlate. In
such sltuatlons, It seems very unlikely that Forsythe’'s method will be faster.

One of the dlsadvantages of the algorithm shown above Is that F must take
values In [0,1], yet many common densities such as the exponentlal and normal
densities when put In a form useful for Forsythe's method, have unbounded F

2
z
such as F (z )==2 or F (z )=Tz—' To get around thls, the real llne must be broken

up Into pleces, and each plece treated separately. This will be documented
further on. It should be pointed out however that the rejection method for
f =ce‘F_g puts no restrictlons on the size of F .
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2.2. Von Neumann'’s exponential random variate generator.
A baslc property of the exponentlal distribution is glven in Lemma 2.1:

Lemma. 2.1.

An exponential random varlable E Is distributed as (Z-1)u+Y where Z,Y

are Independent random variables and x>0 Is an arbltrary posltive number: 7 s
geometrically distributed with

i
P(Z=i)= [ e dz = e - De~ts (i>1),
(¢ =1)u

and Y is a truncated exponential random varlable with denslty

f(z)=

e-—z

(0<z <p).
1-e

Proof of Lemma 2.1.
Straightforward. Jj

If we choose p==1, then Forsythe's method can be used directly for the gen-
eration of Y. Since In thls case F (z )=z, nothing but uniform random varlates
are requlred:
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von Neumann's exponential random variate generator

REPEAT
Generate a uniform [0,1) random variate Y. Set WY .
K +«1
Stop + False
REPEAT ,
Generate a uniform [0,1) random variate U .
FU>W
THEN Stop « True
ELSE W« U K <K +1
UNTIL Stop
UNTIL K odd

i
Generate a geometric random variate Z with P (Z =1 )=(1—-1-)(-l-) (s 21).
e e

RETURN X «(Z-1)+7Y

The remarkable fact 1s that this method requlres only comparisons, uniform ran-

dom varlates and a counter. A quick analysils shows that
1

p =P (K odd)= f e™? dr = 1~-1—. Thus, the expected number of uniform ran-
e
0 B

dom varlates needed Is
1

1+[e” dz
. ° ¢?
E(N)= — - =
fe"‘ dz
0

This Is a high bottom llne. Von Neumann has noted that to generate Z, we need
not carry out a new experiment. It suffices to count the number of executions of
the outer loop: this Is geometrically dlstributed with the correct parameter, and
turns out to be independent of Y. '
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2.3. Monahan’s generalization.

Monahan (1979) generallzed the Forsythe-von Neumann method for generat-
ing random varlates X wlth distrlbutlon function

H(-1)
where
oo
H(z)= ez,
' n=1
1=a,2a,> - - - 20 1s a glven sequence of constants, and G 1s a glven distribu-

tion function.

Theorem 2.2. (Monahan, 1979)

The followlng algorithm generates a random varlate X with distributlon
function F:

Monahan’s algorithm

REPEAT
Generate a random variate X with distribution function G .
K«1
Stop + False
REPEAT
Generate a random variate U with distribution function G .
Generate a uniform [0,1) random variate V.
K 41
ax
THEN K K +1
ELSE Stop + True
UNTIL Stop
UNTIL K odd
RETURN X

IFUZX AND VL

The expected number of random varlates with distribution function G Is

1+H (1)
~-H(=1)
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Proof of Theorem 2.2.

We deflne the event A, by [X=max(X,U,, ..., U,)Z,= " =2Z,=1],
where the U s refer to the random varlates U generated In the Inner loop, and
the Z;'s are Bernoulll random varlables equal to consecutive values of |

[Vg_aii]'
a

Thus,

P(XS‘T9A71) = ay G(m)n ’

PX<z,4,,4,,,°)=20,G(z)" ~a,,,G(z)"*!.
We will call the probabllity that X Is accepted p,. Then

[o.0}
po=P(Kodd) = ¥ a,(-1)""' = H(-1) .

n =1

Thus, the returned X has distribution function

S 0, G (z)" (c1)"+1

_ _n= _ H(G(2))
F(z)=PX<z)= . = For

The expected number of G -distributed random varlates needed 1s E (N ) where

E(N)= = f} (n+1)P(A, 4, +:°)
Po n==1
= 2 (n 1)l

n=1 pO
o0

1+ 37 a,
n =1
Po

A+H 1)
~H (-1) N

Example 2.1.
Conslder the distribution function

F(z)= 1—cos(—’-;f-) (0<z<1).

To put this in the form of Theorem 2.2, we choose another distribution function,
G (z)=z?% (0<z <1), and note that
H(-G(z))

F(z)= )
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where
2 4 21 -2 .
H@)=o+—24—L—a% +—— 3!
48 5760 221-3(24 )1

One can easlly show that p0=H(—1)=—§2-, while £ (V) Is approximately 2.74.
7r .

Also, all the condltions of Theorem 2.2 are satisfled. Random varlates with this

distrlbution function can of course be obtalned by the Inversion method too, as

—?—arccos(U ) where U 1s a uniform [0,1) random varlate. Monahan's algorithm

T

avolds of course any evaluation of a transcendental functlon. The complete algo-
rithm can be summarlized as follows, after we have noted that

Gntr w2 1

0, ) @n +2)2n +1)

REPEAT
Generate X «—max(U,,U,) where U,,U, are iid uniform [0,1] random variates.
K1
Stop +— False
REPEAT
Generate U, distributed as X .
Generate a uniform {[0,1] random variate V.

Xy
IFU<SX AND V<2
- 4K%+6K +2

THEN K K +1
ELSE Stop «— True
UNTIL Stop
UNTIL K odd
RETURN X i}
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2.4. An example: Vaduva’s gamma generator.

We will apply the Forsythe-von Neumann method to develop a gamma gen-
erator when the parameter a s In (0,1]. Vaduva (1977) suggests handling the
part of the gamma denslty on [0,1] separately. This part Is

f@)=c(ax®Ne* (0<z<X1),

where ¢ 1s a normallzation constant. This is in the form cg (z )e’F ) for a den-
sity ¢ and a [0,1]-valued function F . Random varlates with density ¢ (z )=az ¢!
1

can be generated as U ¢ where U s a uniform [0,1) random varlate. Thus, we
can proceed as follows:

Vaduva's generator for the left part of the gamma density

REPEAT

N

Generate a uniform [0,1} random variate U. Set X U 4.
WX
K1
Stop + False
REPEAT
Generate a uniform [0,1) random variate U.
FU>W v
THEN Stop + True
ELSE WU K «K +1
UNTIL Stop
UNTIL K odd
RETURN X

Let N be the number of uniform [0,1] random varlates requlred by this method.
Then, as we have seen,
1
1+ faz®le® dz

E(N)= —2

faz®le™* da
(o]
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Lemma 2.2.

and

ImE(N)=2.
al0

|

a

For Vaduva's partial gamma generator shown above, we have

2 < E(N) < (2+a(e-1))e °*' < Ve (e+1),

Proof of Lemma 2.2.

First, we have

1

1

1= faz®*dz > [az® e dz
0 0

= E(eY)
> eTE(Y)

-q

Also,
1

ea+1.

( where Y 1s a random variable with density az®~!)

(by Jensen's inequallty)

1 < faas"‘lez dx

0

a

a

= 1+a(e-1).

il otz T
1 1,
1+a(1+—2-!—+3+ c)

(by expanslon of ¢*)

131

Putting all of this together gives us the first inequallty. Note that the supremum
of the upper bound for F (N) Is obtained for ¢ =1. Also, the llmit as a |0 fol-

lows from the inequality. Jj

What s Important here Is that the expected time taken by the algorithm
remalns unlformly bounded In a. We have also established that the algorithm
seems most efficlent when ¢ s near 0. Nevertheless, the algorithm seems less
efficlent than the relectlon method with domlnating density ¢ developed In
Example I1.3.3. There the relectlon constant was

c =

1

faz®te™® dx

1

0
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a

which Is known to lle between 1 and e %711, Purely on the basls of expected

number of unlform random varlates required, we see that the rejection method
’ a

has 2<E (N)<2¢ ®*! <2V . This Is better than for Forsythe's method for all
values of a . See also exercise 2.2.

2.5. Exercises.

1. Apply Monahan's theorem to the exponentlal distribution where

(1-e-%)

H(z)=e*-1,G(z)=2z,0<z<1, and F(z)= Prove that

1
1——
€

p0=1—-%— and that E(N)z.—-f-i- (Monahan, 1979).
e e—

2.  'We can use decomposition to generate gamma random varlates with parame-
ter a <1. The restrictlon of the gamma density to [0,1] is dealt with In the
text. For the gamma denslty restricted to [1,00) rejectlon can be used based
upon the dominating density ¢ (z)==e* (z >1). Show that thls leads to
the followlng algorithm:

REPEAT

Generate an exponential random variate E . Set X «—1+F .
1

Generate a uniform [0,1] random variate U. Set Y« U "¢,

UNTIL X <Y
RETURN X
Show that the expected number of iterations is = ! , and that thls
fer Tzl dy
11
varles monotonically from 1 (for ¢ =1) to —— (as a |0).

1-z

fe dz
1

3. Compllcated densitles are often cut up into pleces, and each plece Is treated
separately. Thls usually ylelds problems of the followlng type:

[ (z)=ce TG (a <z <b), where 0<F (z)<F*<1, and F* s usually
much smaller than 1. Thls is another way of putting that f wvarles very Ilt-

tle on [a,b]. Show that the expected number of uniform random variates

z
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needed n Forsythe’s algorithm does not exceed ef* +e2F* . In other words,
thls approaches 2 very quickly as F'* |0.

3. ALMOST-EXACT INVERSION.

3.1. Definition.

A random varlate with absolutely contlnuous distributlon function F can be
generated as F~(U) where U 1s a unlform [0,1) random varlate. Often, F~! Is
not feaslble to compute, but can be well approximated by an easy-to-compute
strictly Increasing absolutely contlnuous functlon . Of course, ¥{U) does not
have the deslred distributlon unless ¥=F~1. But 1t Is true that ¥(Y) has distri-

bution function F where Y 1s a random varlate with a nearly uniform density.
The density A of Y 1s given by

h(y)=f (WyNV(y),

where f 1s the denslty corresponding to F. The almost-exact Inverslon method
can be summarlzed as follows:

Almost-exact inversion

Generate a random variate Y with density A .
RETURN ¥%(Y)

The polnt Is that we galn If two condltlons are satisfled: (1) ¥ Is easy to compute;
(1) random varlates with density A are easy to generate. But because we can
choose % from among wide classes of transformations, 1t should be obvious that
this freedom can be explolted to make generation with density A easier. Mar-
saglia (1977, 1980, 1984) has made the almost-exact Inverslon method Into an art.
His contributions are best explalned in a serles of examples and exerclses, Includ-
Ing generators for the gamma and t distributlons.

Just how one measures the goodness of a certain transformation % depends
upon how one wants to generate Y. For example, If stralghtforward relectlon
from a uniform density 1s used, then the smallness of the rejectlon constant

c =sup h(y)
¥
would be a good measure. On the other hand, If 2 1s treated via the mixture
method and A 1s decomposed as

h(y)=plgoyly)+ @-p)ry),
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then the probabllity p Is a good measure, since the residual denslty r 1Is normally
difficult. A value close to 1 Is highly desirable here. Note that in any case,

p < Inf A(y).
¥y €[0,1]

Thus, 9 will often be chosen so as to minlmize ¢ or to maximize P, depending
upon the generator for h.

All of the above can be repeated If we take a convenlent non-unlform distri-
butlon as our starting polnt. In partlcular, the normal density seems a useful
cholce when the target denslties are the gamma or t densltles. This generalization
too will be discussed In thls section.

- 3.2. Monotone densities on [0,00).
Nonincreasing densitles f/ on the positive real line have sometimes a shape
¢
that Is slmllar to that of ———— where >0 15 a parameter. Slnce this Is the

(1+0z )?
density of the distrlbution function -:;z’ we could look at transformatlons o
deflned by
Y
Yy) = ——+.
6(1-y)
In this case, h becomes:
1
h(y) = f (=) (0<y <1).

0(1~y )" B(1-y )?

For example, for the exponential density, we obtaln
4 1 |
hy)=e¢ ¥ —0u  (0<y<1).
6(1-y )?

Assume that we use rejectlon from the uniform density for generation of random
varlates with density h. This suggests that we should try to minimize sup A . By

1
elementary computations, one can see that A is maximal for 1-y =?é-, and that

the maximal value is

1
2
40e 9

4
which is minimal for §=1. The minimal value s —=1.4715177.... The rejection
e

algorithm for h requires the evaluation of an exponent In every Iteration, and is
therefore not competitive. For this reason, the composition approach 1s much
more llkely to produce good results.
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3.3. Polya’s approximation for the normal distribution.

In thils section, we will lllustrate the composition approach. The example Is
due to Marsaglla (1984). For the Inverse F~! of the absolute normal distribution
function F', Polya (1949) suggested the approximation

Wy ) = V-flog(1-y*) (0Ly <),

where he took 0=—;—r-. Let us keep § free for the time belng. For this transforma-

tlon, the density A(y)of Y 1s
g

—1

hy) = =200V DT oy <y

Var /_glog(1-y?)

Let us now choose # so that [lnf] h(y) 1s maximal. This occurs for 6~1.553
0,1

(which Is close to but not equal to Polya’s constant, because our criterlon for
closeness Is different). The corresponding value p of the Infimum Is about 0.985.
Thus, random varlates with density kA can be generated as shown In the next
algorithm:

Normal generator based on Polya’s approximation

Generate a uniform [0,1] random variate U . .
IF U <p (p ts about 0.985 for the optimal choice of §)

THEN RETURN ¢(?U) (where 9(y )=v/flog(1=77) )

ELSE
Generate a random variate ¥ with residual density -(—’-l(—(f/:)———)'i (0<y <1).
RETURN %(Y) ’

The detalls, such as a generator for the residual density, are delegated to exerclse
3.5. It is worth polnting out however that the uniform random varlate U is used

U
in the selectlon of a mixture denslty and In the returned varlate ¥(—). For this

reason, 1t 1s "almost” true that we have one normal random varlate per uniform
random variate.
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3.4. Approximations by simple functions of normal random variates.

In.analogy with the development for the uniform dlstribution, we can look
at other common distrlbutions such as the normal distribution. The question
now s to find an easy to compute functlion ¢ such that ¥(Y ) has the desired den-
sity, where now Y Is nearly normally distributed. In fact, ¥ should have denslity
h glven In the Introduction:

h(y) =171 (WyN¥(y) (yeER).

Usually, the purpose Is to maximize p In the decomposition
2

h(y)=p(¢;—we'7>+<1—p>r(y)

where r Is a resldual density. Then, the followlng algorithm suggested by Mar-
saglla (1984) can be used:

Marsaglia’s almost-exact inversion algorithm

Generate a uniform [0,1] random variate U.
IFU<Zp

THEN Generate a normal random variate Y .

ELSE Generate a random variate Y with residual density r.
RETURN ¢(Y)

For the selectlon of 4, one can elther look at large classes of simple functions or
scan the literature for transformations. For popular distributlons, the latter route
Is often surprisingly efficlent. Let us illustrate this for the gamma (a ) denslty. In
the table shown below, several cholces for 1 are glverd that transform normal ran-

dom varlates In nearly gamma random variates (and hopefully nearly normal ran-
dom varlates Into exact gamma random variates).

Method Y(y) Reference
' a+yVa Central limit theorem
/ 2
Freeman-Tukey -(l+—442—)—— Freeman and Tukey (1950)
~1)2
Fisher (—yj:\/—‘ia__i
4 3
. Y 1 . .
Wilson-Hilfert a +1-— Wilson and Hilferty (1931
G el v :
2 0.16
Marsaglia a ——;—+py Vo +—y3— , P =1———a— Marsaglia (1984)

In this table we omitted on purpose more complicated and often better approxi-
mations such as those of Cornish-Fisher, Severo-Zelen and Pelzer-Pratt. For a
comparative studf and a3 blbllography of such approximations, the reader should
consult Narula and L1 (1977). Bolshev (1959, 1863) glves a good account of how
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one can obtaln normallzing transformations In general. Note that our table con-
talns only slmple polynomlal transformations. For example, Marsaglia’s quadratic
transformation 1s such that
y2
1 _y-
h(y)=p( e %)+@-p)r(y),

where p =1- . For example, when a =16, we have p =0.99. See exerclse 3.1
for more Information.

The Wilson-Hllferty transformation was first used by Greenwood (1874) and
later by Marsaglla (1977). We first verlfy that & now lIs

h(y)=cz®teme® (p=-b 43 L >q)

voa 9a

where ¢ 1s a normallzation constant. The algorithm now becomes:

Gamma generator based upon the Wilson-Hilferty approximation

Generate a random variate Y with density & .

3
RETURN X «—(Y )=a (%4—1—;10—)

Generatlon from £ 1s done now by rejectlon from a normal denslty. The detalls
require careful analysls, and 1t Is worthwhile to do thls once. The normal density
used for the relectlon differs slightly from that used by Marsaglla (1977). The
story Is told In terms of Inequallties. We have

Lemma 3.1.
1
3

Y 1 3a—1) . Define

1
Assume that a >—. Deflne z == +1-— , and z,==
3 Vsa 9a 0=

the denslty A(y) = cz3%1e~%’ ;>0 (note: this 1s a denslty In y,not In z) ,
where ¢ Is a normallzation constant. Then, the followlng lnequallty Is valld for
2 >0:

(2-20)

where o?=




138 IV.3.ALMOST-EXACT INVERSION

Proof of Lemma 3.1.

The proof Is based upon the Taylor serles expanslon. We will write ¢ 9 (%)
instead of h (y ) for notatlonal convenlence. Thus,

g(z) = -az®+(3a-1)logz +logc .

This function I1s majorized by a quadratic polynomlal in 2z for this will glve us a
normal dominating density. In such sltuations, 1t helps to expand the function
about a polnt z,. Thls polnt should be picked In such a way that 1t corresponds
to the peak of ¢ because dolng so will ellminate the linear term In Taylor's serles
expansion. Note that

¢'(z) = -3az2+ 222
Z
(z) =A—6az—3a_1 ’
2
z
g"(z) = -6a+ a2
23

We see that ¢'(z)=0 for z =2z, Thus, by Taylor's serles expansion,
1
g(z)=g (zo)+-é-(z—zo)29"(€) '

where £ Is In the Interval [z,z,] (or [24,2]). We obtaln our result If we can show
that

1
sup ¢""(§) < —— .
£>0 © o?
RS
3a-1.83
But when we look at ¢’’’, we notice that 1t Is zero for z==( ) . It is not

difficult to verlfy that for this value, ¢’/ attalns a maximum on the positive half
of the real line. Thus,
1

1.3
1) < —ga (1-—)" .
g% g'"(€) < -9a( 3m)

This concludes the proof of Lemma 3.1. ]

The first version of the rejection algorithm 1s given below.
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First version of the Wilson-Hilferty based gamma generator

[SET-UP)
1
Set 0% — ! —, zo=(3a—1)a .
1.8 3a
9¢ (1——
( 3a)

[GENERATOR]
REPEAT

Generate a normal random variate N and a uniform [0,1] random variate U.

Set Z +—z4t+aN
(Z-29)°2

Py 8671 _4(2%-24Y
e

UNTIL Z 20 AND Ue 2 <(=)
%0

RETURN X «aZ?

Note that we have used here the fact that z=-—=2 +1——1-. There are two
V9a ga

things left to the deslgner. First, we need to check how efflclent the algorithm Is.
This In effect bolls down to verifying what the relectlon constant Is. Then, we
need to streamllne the algorithm. This can be done in several ways. For example,
the acceptance condltlon can be replaced by

(Z-2¢)

2
UNTIL Z 20 AND -E - > <(3a —l)log(-z—Z—)—-a (2329
g [}

(Z -z ,)* 2
where £ 1s an exponentlal random varlate. Also, A nothing but -
20
Additionally, we could add a squeeze step by using sharp Inequalities for the loga-

rithm. Note that —€-=1+g£v—, so that for large values of a, Z Is close to 2z,
2o 29

which In turn Is close to 1. Thus, Inequalltlies for the logarithm should be sharp
near 1. Such Inequallties are glven for example in the next Lemma.
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Lemma 3.2.

Let z €[0,1). Then the following serles expansion Is valid:

1 21 3
log(1-2 ) = ~ZL —=—=Z “mT "~ " *
(1-z) 573

Thus, for k >1,

k
ap>

=]

. : k
-}.-z’ > log(l-z) > -3 ..1_-x' itz
1

"<k 7 k; l—x
Furthermore, for z <0, and k odd,

E+1 4 i'< <- kFoq ;
-3 - _log(l—x)_—z—z_—x .

f==1 §=1

Proof of Lemma 3.2.

We note that In all cases,

~log(l-z ) = é Lo +—-§i——
=11 k (1-6)F

where £ Is between O and z. The bounds are obtalned by looking at the k-th
term In the sums. Consider first 0< <z <1. Then, the k-th term Is at least

k
equal to ﬁk—- It 2 <£<0 and k Is odd, then the same Is true. If however &k Is

k
even, then the k-th term Is majorized by I,

k
We also note that for 0<z <1,
-log(1-z ) = m+%m2+ e L +%x"(1+x+x2+x3+ )
k {
1z
- 1'5=31 k 1-z n

Let us return now to the algorithm, and use these Inequalities to avold com-
puting the logarithm most of the time by Introduclng a quick acceptance step.
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Second version of the Wilson-Hilferty based gamma generator

[SET-UP]
1
1 3a-1.3 1

Set 0% : ?1;-;20: 32 ) ,h«—-a—-;.

9a (1-—

a 3a)

[GENERATOR)
REPEAT

Generate a normal random variate N and an exponential random variate & .
Set Z «—zot+oN (auxiliary variate)
Set X «aZ® (variate to be returned)

7
2
Set S —F ——Iyz-—+(x-z )

Whﬂ (note that W=1—EZ£)

. Accept —[S <(3a-1)( W—+—-;— W2+-;- W%] AND (Z >0]

IF NOT Accept
THEN Accept «—[S <-(3a ~1)log(1-W )] AND [Z >0]
UNTIL Accept
RETURN X

In thls second verslon, we have Implemented most of the suggested lmprove-
ments. The algorithm 1s only applicable for a >-§- and differs slightly from the
algorithms proposed In Greenwood (1974) and Marsaglla (1977). Obvious things
such as the observation that (W+—;— W2+—§-W3) should be evaluated by Horner's

rule, are not usually shown In our algorithms. There are two quantities that
should be analyzed: :

(1) The expected number of iteratlons before halting.

(1) The expected number of computations of the logarithm in the acceptance
step (a comparison with (1) will show us how efficlent the squeeze step Is).
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Lemma 3.3.

The expected number of lteratlons of the algorithm glven above (or 1ts rejec-
tlon constant) Is

1

Vaa®?! 3a-1""2 e+
( T(a) X e ) e 3or .

1

For a Z—;—, this Is less than e . It tends to 1 as @ — oo and to oo as a l-—;—-.

Proof of Lemma 3.3.
The area under the domlnating curve for h s
(z-20)

m - ——————
f h(zg)e 20° dy
—00

1

\/g_&_+1—513, 2z o=( 3‘;;1 )3 . Since dy =v9a dz, we

where we recall that z =

see that this equals

h(20)V2mV0a o

8
= cz>* e 70 Van -
1.6
]——
(-2
1 1
Vaa®! 3a-1.""3 “¢t3 3a
= e van
(‘I‘(a) X 3a ) (3a—1_

1

)6

Here we used the fact that the normallzatlon constant ¢ In the definltlon of b s

Vaat?
e Which Is verifled by noting that

j’ zaa-—lc—az" dy = I'(a)

220 \/Z-a“'l '

The remalnder of the proof is based upon simple facts about the I" functlon: for
example, the functlon stays bounded away from O on [0,00). Also, for a >0,

: o
ro) = (&) 4 /275

where 036’51. We will also need the elementary exponentlal Inequalities

-

e > (1-z) 2 e ' (p20,0<z<1).

Using this In our expression for the relectlon constant glves an upper bound
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—( 1
Vaa®le®/2rae 8 3¢-1."73
A ( )
a®vaer 3a
L 1 a-2
3 2
= ¢ 1 ——
(1-=)

1 1 _
. ;—(a —?)(34 >t

L
6a

= ¢ ,

which 1s 1+-—1—+O (—L) as a —oo. [}
B8a a2

From Lemma 3.3, we conclude that the algorithm 1s not uniformly fast for

1
a E(E,oo). On the other hand, slnce the rejection constant ls 1+El—+0 (—-1—2-) as
a

a

¢ —00, 1t should be very efficlent for large values of a . Because of thls good fit, it
does not pay to Introduce a qulck rejectlon step. The quick acceptance step on
the other hand lIs very effectlve, since asymptotlcally, the expected number of
computations of a logarithm 1s o (1) (exerclse 3.1). In fact, this example 1s one of
the most beautiful applications of the effectlve use of the squeeze principle.

3.5. Exercises.

1.

Conslder the Wilson-Hilferty based gamma generator developed In the text.
Prove that the expected number of logarlthm calls Is o (1) as a —c0.

For the same generator, give all the detalls of the proof that the expected

1
number of lterations tends to co as a l}?‘

For Marsaglla’s quadratic gamma-normal transformation, develop the entlre
comparison-based algorithm. Prove the valldity of his clalms about the value
of p as a function of a. Develop a flxed resldual density generator based
upon rejection for
r#¥(z)= sup r(z).

aap
Here a, Is a real number. Thls helps because It avolds setting up constants
each time. See Marsaglia (1984) for graphs of the resldual densltles r.

Student’s t-distribution. Consider the ¢ -density

I,(a+1)
f(z) = 1 2 1
\/7?(1_ F(i) a-+1

2 T2
2’ (1+I-)
a
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Find the best constant p if f Is to be decomposed Into a mixture of a nor-
mal and a resldual density (p Is the welght of the normal density). Repeat

the same thing for h (y) If we use almost-exact Inversion with transforma-
tlon

3
4a

Compare both values of p as a function of a. (This transformatlon was sug-
gested by Marsaglla (1984).)

5. Work out all the detalls of the normal generator based on Polya's approxl-
matlon.

6. Bolshev (1959, 1963) suggests the following transformations which are sup-
posed to produce nearly normally distributed random variables based upon

n
sums of 1id uniform [0,1] random varlates. If X, Is 2 33 U; where the
t=1
U, s are 11d uniform [0,1} random variates, then

Y, =X, 20n(3X” X, %)
and

zZ, = x,-—11

— 2 (X, 510X, %+15X,)
13440n %

are nearly normally distrlbuted. Use this to generate normal random vari-

ates. Take n =1,2,3.

1
2 -

6
7. Show that the relection constant of Lemma 3.3 Is at most (36 1) when
a__
1
—<a <-1—-.
3 -2
8. For the gamma denslity, the quadratic transformations lead to very simple
s
reJection algorlthms. As an example, take s———_a~—1-—,t= re Prove the
following:

A. The density of X =s ( £—1) (where Z 1s gamma (a ) dlstributed) Is
s

[@)=c@+2) ee * (z2-5)

where ¢ =2s°"1e~**/T'(a).
B. We have

12

f@)<ce *
C. It this inequality is used to generate random variates with denslty f

27
then the relectlon constant, ¢ v7s , Is —at ¢ =1, and tends to
€
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\/5 as a _Too. Prove also that for all values a >—1—, the rejection constant
. _L' 2
1s bounded from above by V2e 42,

D. The raw almost-exact Inverslon algorithm Is:

Almost-exact inversion algorithm for gamma variates

REPEAT

Generate a normal random variate N and an exponential random
variate E .

X—tN
UNTIL X 28 AND E-2X +2s log(1+-¥—)20
3

RETURN s (1+-}§)°

E. Introduce qulck acceptance and rejection steps In the algorithm that are
so accurate that the expected number of evaluations of the logarithm Is
o (1) as a foo. Prove the claim.

Remark: for a very efficlent implementation based upon another quadratic
transformation, see Ahrens and Dieter (19882).

4. MANY-TO-ONE TRANSFORMATIONS.

4.1. The principle.

Sometimes 1t Is posslble to explolt some distrlbutlonal properties of random
varlables. Assume for example that (X ) has an easy denslty h,where X has
density f . When % Is a one-to-one transformatlon, X can then be generated as
YY) where Y 1s a random varlate with the easy denslty A. A point In case Is
the Inversion method of course where the easy density 1s the uniform density.
There are Important examples In which the transformatlon % s many-to-one, so
that the Inverse s not uniquely deflned. In that case, If there are k solutlons
X, ...,X, of the equatlon ¥(X )=Y, 1t suffices to choose among the X;' s.
The probabilitles however depend upon Y. The usefulness of thls approach was
first reallzed by Michael, Schucany and Haas (1976), who gave a comprehenslve
description and dlscussion of the method. They were motivated by a slmple fast
algorithm for the Inverse gausslan famlly based upon this approach.

By far the most Important case 1s £k =2, which 1s the one that we shall deal
wlith here. Several Important examples are developed In subsectlons.
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Assume that there exlists a point ¢{ such that ¢/ 1s of one sign on (~o0,t ) and
on (t,00). For example, If +(x )=x2, then 1/(z)==2x s nonpositive on (-co,0)
and nonnegative on (0,00), so that we can take { =0. We will use the notatlon

z =Il(y),z =r(y)

for the two solutlons of y =1(z ): here, ! is the solution in (-o0o,t), and r 1Is the
solutlon in (¢,00). If 7 satisfies the conditlons of Theorem I.4.1 on each Interval,
and X has density f , then (X ) has density

h(y)y= V)T Q@)+ [P/ (®).

This 1s quickly verified by computing the distributlon functlon of ¥(X ) and then
taking the derlvatlve. Vice versa, glven a random varlate Y with density A, we
can obtaln a random varlate X with denslty f by choosing X =I(Y) with pro-
babllity
[P(Y) |/ @Y
h(Y) ’

and choosing X ==r(Y ) otherwise. Note that |{(y)}= 1/|¢((y))}. This,
the method of Michael, Schucany and Haas (1978), can be summarized as follows:

Inversion of a many-to-one transformation

Generate a random variate Y with density A .
Generate a uniform [0,1] random variate U.
Set X ,+I(Y), Xye—r(Y)
1
FU<
- + S (Xo) l V(X)) |
&) vXD

THEN RETURN X «X,
ELSE RETURN X X,

It wlll be clear from the examples that In many cases the expression in the selec-
tion spen takes a simple form.
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4.2. The absolute value transformation.

The transformation y=|z—t | for fixed ¢ satlsfles the conditions of the
previous sectlon. Here we have (y)=t-y , r(y)=t-+y. Slnce |/ | remalns
constant, the decislon Is extremely simple. Thus, we have

Generate a random variate Y with density h(y)=f (t-y)+f (¢t +y).
Generate a uniform [0,1] random variate U.
t-Y)
F U<—0Ho~>LL
T S-S (E+Y)
THEN RETURN X «—t-Y
ELSE RETURN X «—t+Y

If f 1is symmetric about £, then the decislons £-Y and t+Y are equally likely.

Another Interesting case occurs when A 1s the uniform denslity. For example, con-
sider the density

@)= (e <m.

Then, taking t=-721, we see that

h(y)=f (t-y)+f (t+y) = ;2; (0<y<3).

Thus, we can generate random varlates with thls density as follows:

Generate two iid uniform [0,1] random variates U, V.

Set, Y«——lzz.

FU< 1+cosY
- 2

THEN RETURN X «Y
ELSE RETURN X «—n-Y

Here we have made use of additlonal symmetry In the problem. It should be
noted that the evaluation of the cos can be avolded altogether by applicatlon of
the serles method (see section 5.4).
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4.3. The inverse gaussian distribution.

Michael, Schucany and Haas (1978) have successfully applled the many-to-
one transformation method to the inverse gaussian distribution. Before we
proceed with the detalls of thelr algorithm, 1t Is necessary to glve a short Intro-
ductory tour of the distributlon (see Folks and Chhlkara (1978) for a survey).

A random varlable X >0 with denslty
Mz -p)?

A e 247 (z >0)

2nx

[(z)=

3

Is sald to have the Inverse gausslan distribution with parameters >0 and A>0.
We will say that a random varlate X s I(u,\). Sometimes, the distribution Is
also called Wald’s distribution, or the first passage time distribution of Brownlan
motlon with positive drift.

The densltles are unimodal and have the appearance of gamma densities.
The mode 1s at

ou® 3p
14— .
#( +4)\2 2)\)

The densitles are very flat near the origin and have exponentlal talls. For this
reason, all positive and negative moments exlst. For example,

3

E(X%)=FE(X®*t1)/u?**!, all a €R. The mean Is y and the varlance is —L;T—

The maln distributional property I1s captured In the following Lemmas

Lemma 4.1. (Shuster, 1968)
When X is I(u,\), then
X —p)?
uX
is distributed as the square of a normal random varlable , l.e. 1t 1s chi-square with
one degree of freedom.

Proof of Lemma 4.1.
Straightforward. JJj

Based upon Lemma 4.1, we can apply a many-to-one transformation

)2
¢(m)-_..-..>‘_(_$71£_)_‘
Thet'
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Here, the Inverse has two solutlons, one on each slde of u. The solutlons of
WYX )=Y are

2

I S Y 2y2
X, = p+ o o 4puNY +p°Y
2
X, = F
2 X1

One can verlfy that
[ X
f Xy poo
(X)) 2

P “ .
V(X ;) (Xl)

Thus, X, should be selected with probabllity rX . Thils leads to the following
u

1
algorithm:

Inverse gaussian distribution generator of Michael, Schucany and Haas

Generate a normal random variate V.
Set Y N2
set X, pt X B SanT 1T
2X 2\
Generate a uniform [0,1] random variate U .
B
FUs p+X,

THEN RETURN X «X,
2

ELSE RETURN X«——;‘—(—
1

Thils algorlthm was later redlscovered by Padgett (1978). The time-consuming
components of the algorithm are the square root and the normal random varlate
generation. There are a few shortcuts: a few multiplications can be saved If we
replace Y by uY at the outset, for example. There are several exerclses about
the Inverse gausslan distribution following thls sub-sectlon.
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4.4, Exercises.

1. First passage time distribution of drift-free Brownian motion. Show
that as y—oo while A remalns fixed, the [ (u,\) density tends to the denslty
A

f@)= /2o @20,
27X -

which s the one-slded stable denslty with exponent —;—, or the density for the

first passage time of drift-free Brownlan motlon. Show that this is the den-

1
slty of the Inverse of a gamma (-5-,%) random varlable (Wasan and Roy,

1967). This Is equlvalent to showing that it Is the density of -A; where N s

a normal random varlable.

2. This Is a further exerclse about the propertles of the Inverse gausslan distri-
bution. Show the followlng:

(1) It X isI(u,\), then ¢cX 1sI(cu,cN).

21 u“t
._(1._. ——
(11) The characteristic functlon of X 1s e ¥ A

(1) If X; ,1<i{<n, are Independent [(u;,c ;%) random varlables, then
5_‘; X; 15 I(Duy,¢ (36 ). Thus, if the X, s are id I (,)\), then S.X;

{=1

1s I(n u,n2\).
(Iv) Show that when IN,, N, are independent normal random varlables

)

NN
with varlances 0,2 and 0, then —=———2—— Is normal with varlance
VN N2
1 1 1
5~ determined by the relation —=-—+—,

O3 0; Oy
(v) The distribution function of X Is

2\
F(z)= o (-——1))+ K <I>(—\/-Z\_-‘(1+—£)) ’
T p

where ® 1s the standard normal distribution function (Zlganglrov, 1962).
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5. THE SERIES METHOD.

5.1. Description.

In this sectlon, we conslder the problem of the computer generatlon of a ran-
dom varlable X with density f where f can be approximated from above and
below by sequences of functlons f, and g, - In partlcular, we assume that:

(M nmfn::f;
lmg, = /.

n —Co
W S Sf <¢gn- :
(1) f < ch for some constant ¢ >1 and some easy
denslty A.

The sequences f, and g, should be easy to evaluate, while the domlnating den-
sity h should be easy to sample from. Note that f, need not be positive, and
that g, need not be Integrable. This setting Is common: often f 1s only known
as a serles, as In the case of the Kolmogorov-Smirnov distribution or the stable
distributlons, so that random varlate generation has to be based upon this serles.
But even If f Is explicltly known, 1t can often be expanded In a fast converging
series such as In the case of a normal or exponentlal density. The serles method
descrlbed below actually avolds the exact evaluation of f all the time. It can be
thought of as a rejection method with an infinite number of acceptance and rejec-
tlon conditlons for squeezing. Nearly everything in thls sectlon was first
developed In Devroye (1980).

The series method

REPEAT
Generate a random variate X with density A .
Generate a uniform [0,1] random variate U.
W «Uch (X)
n «0
REPEAT
n+<n+1
IF W<f,(X) THEN RETURN X
UNTIL W >g¢,(X)
UNTIL False

The fact that the outer loop In thls algorithm is an Infinite loop does not matter,
because with probabllity one we will exlt In the inner loop (In view of
fon—f ,dn — [ ). We have here a true rejection algorithm because we exit when
W <Uch (X). Thus, the expected number of outer loops is ¢, and the cholce of
the domlnating density A Is lmportant. Notlce however that the tlme should be
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measured In terms of the number of f, and 9, evaluatlons. Such analysis wlll be
given further on. While In many cases, the convergence to f Is so fast that the
expected number of f n» €valuations Is barely larger than ¢, it Is true that there
are examples In which this expected number 1s co. It Is also worth observing that
the squeeze steps are essentlal here for the correctness of the algorithm. They
actually form the algorithm.

In the remalnder of this section, we will glve three Important speclal cases of
approximating serles. The serles method and its varlants willl be lllustrated with
the ald of the exponential, Raab-Green and Kolmogorov-Smirnov distributions
further on.

Assume first that f can be written as a convergent serles

f@)= 38, (z) < ch(z)

n =1

where

| S 5@)| < Rynl)

t=n+1

Is a known estlmate of the remalinder, and & Is a given denslty. In thils speclal
instance, we can rewrlte the serles method In the following form:

The convergent series method

REPEAT
Generate a random variate X with density A .
Generate a uniform [0,1] random variate U.
W—Uech (X)
5«0
n +0
REPEAT
nen 41
S8 +8,(X)
UNTIL |S-W | >R, (X)
UNTIL S<W
RETURN X

Assume next that f can be written as an alternating serles
f(@)=ch(z)1-a,(z)ta(z)ay(z)+ )

where a, 1s a sequence of functlons satisfying the conditlon that a, (z)]0 as

n —o00, for all £, ¢ 1s a constant, and A s an easy density. Then, the serles
method can be written as follows:
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The alternating series method

REPEAT
Generate a random variate X with density h .
Generate a uniform [0,¢ | random variate U .
n+—0,W«~o0
REPEAT
n+en+1
We—W+a,(X)
IF U>W THEN RETURN X
ne—n+1
We—W-q,(X)
UNTIL U< W
UNTIL False

This algorithm Is valld because f 1s bounded from above and below by two con-
verging sequences:

L £ . f (m) k+1
+ 3 (1) ej(z) < pys <1+ Y (1) ¢;(z), k odd .
j=1 (z) = J=1

That this 1s Indeed a valld lnequallty follows from the monotonlcity of the terms
(conslder the terms palrwise). As In the ordlnary serles method, f Is never tully
computed. In addltlon, A s never evaluated elther.

A second Important speclal case occurs when
f (@)= ch(z) ¢ tEI¥eder "

where ¢ ,h,a, are as for the alternating serles method. Then, the alternating
serles method Is equlvalent to:
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The alternating series method; exponential version

REPEAT
Generate a random variate X with density A .
Generate an exponential random variate E .
n+—0,W+0
REPEAT
ne—n-+l
We—W+a,(X)
IF E>W THEN RETURN X
nen-41
We—W-q,(X)
UNTIL E<W
UNTIL False

5.2. Analysis of the alternating series algorithm.

For the four versions of the serles method defined above, we know that the
expected number of lteratlons Is equal to the rejection constant, ¢. In addition,
there 1s a hidden contributlon to the tlme complexity due to the fact that the
inner loop, needed to declde whether Uch (X )< f (X), requires a random number
of computations of @, . The computatlons of @, are assumed to take a constant
time Independent of n - if they do not, Just modify the analysis given In this sec-
tlon slightly. In all the examples that will follow, the @, computations take a
constant time.

In Theorem 5.1, we will glve a precise answer for the alternating serles
method.
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Theorem 5.1,

Conslder the alternating serles method for a denslty f decomposed as fol-
lows:

J ()= ch(z)1-a,(z)tayz) ),

where ¢ 2>1 1s a normallzatlon constant, kA 1s a denstty, and
ao=12a,2a,> - >0. Let N be the total number of computations of a fac-
tor a, before the algorithm halts. Then,

E(N)=cf[§a;(x)]h(x)dz .

0 {=0

Proof of Theorem 5.1.

By Wald's equation, £ (IV) 1s equal to ¢ tlmes the expected number of a,
computations In the flrst lteratlon. In the first iteration, we fix X =z with den-
sity h. Then, dropplng the dependence on z, we see that for the odd terms a,,
we require

with probablillty 1-a,

with probability a ,~a,
wlith probablllty a ,~a 4
with probablllty az;—a,

e LN

computatlons of @, . The expected value of this Is

§ t(a;y-a;) = § a; .

§ =1 { =0

Collecting these results glves us Theorem 5.1. .

Theorem 5.1 shows that the expected time complexity 1s equal to the oscllla-
tlon In the serles. Fast converglng serles lead to fast algorithms.
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5.3. Analysis of the convergent series algorithm.

As In the previous sectlon, we will let /N be the number of computations of
terms s, before the algorithm halts. We have:

Theorem 5.2.
For the convergent series algorithm of sectlon 5.1,

EWN) < 2[(5 B, (@)) do .

n=1

Proof of Theorem 5.2.

By Wald’s equatlon, E (V) Is equal to ¢ times the expected number of s,
computatlons In the first global iteratlon. If we fix X with density A, then If N
Is the number of s, computations in the first lteration alone,

2R, 11(X)

P(N>n | X) < o ()

Thus,

E(N|X)= 3 P(N>n | X)

n==0
< § 2Rn +1(X)
T aDe ch(X)
Hence, turﬁlng to the overall number of s, computatlons,
E(N)<cgfh( z)——- 2R, (2) dz
n=1 ch(z)
o0
== 2f( SR, (z)) dz .|}

n=1

1
It 1s Important to note that a serles converging at the rate — or slower can-
: n

not yleld finlte expected time. Luckily, many important serles, such as those of
all the remalning subsections on the serles method converge at an exponentlal
rather than a polynomilal rate. In view of Theorem 5.2, this virtually Insures the
finlteness of thelr expected time. It 1s still necessary however to verify whether
the expected time statements are not upset in an Indirect way through the depen-
dence of R, (x) upon z: for example, the bound of Theorem 5.2 Is Inflnite when
R, (z) d:c ==00 for some n .
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5.4. The exponential distribution.
It Is known that for all odd & and all z >0,

g(qy——->e4 > % (1) &

J=0 ]"'0 J'

We will apply the alternating serles method to the truncated exponential density

f(z)=

-~z

(0<z <p),
1-e”

where 12> 4>0 Is the truncation polnt. As domlnating curve, we can use the uni-

form denslty (called A ) on [0,u]. Thus, In the decomposition needed for the alter-
nating serles method, we use

7
1-e™#

1
h(z) = —I ,
(z) p [0,,u](x)

C ==

zh
an(x)=—;‘—.

The monotonicity of the a, 's Is insured when |z | <1. This forces us to choose
#<1. The expected number of a, computations ls

E(N)—cfz z” —1- dz
0j=0 K
e -1
7
eb-1
1-e7#

For example, for u=1, the value e Is obtalned. But interestingly, F (IV)|1 as
110, The truncated exponentlal denslity 1s Important, because standard exponen-
tlal random varlates can be obtalned by adding an Independent properly scaled
geometric random varlate (see for example sectlon IV.2.2 on the Forsythe-von
Neumann method or sectlon IX.2 about exponential random varlates). The algo-
rithm for the truncated exponential density Is glven below:
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A truncated exponential generator via the alternating series method

REPEAT
Generate a uniform [0,u4] random variate X .
Generate a uniform [0,1] random variate U.

n «—0,W«0,V«1 (V is used to facilitate evaluation of consecutive terms in the al-
ternating series.)

REPEAT
ne—n-+1

VX

Ve——r
n

WeW4+V
IF U>W THEN RETURN X
n«—n-+1

VX

Ve—— "
n

WeW-V
UNTIL U<W
UNTIL False

- The alternating serles method based upon Taylor's serles 1s not applicable to
the exponential distribution on [0,00) because of the Impossibllity of finding a
dominating density £ based upon thils serles. In the exercise sectlon, the ordlnary
serles method Is applled with a family of dominating densitles, but the squeezing
Is still based upon the Taylor serles for the exponential denslty.

5.5. The Raab-Green distribution.
The density
fo)y=2EE) (4 <m
2m
1 1 2?2 1zt

_(1______ — ¢+ )

T 2 2! 2 4!

v
o=

was suggested by Raab and Green (1961) as an approximation for the normal
density. The serles expanslon Is very simllar to that of the exponential function.

Agaln, We are In a posltlon to apply the alternating serles method, but now with
2n

1
h(z )='5;' (|z | <m), ¢c=2 and g, (z )=-;—; It Is easy to verlfy that a, |O

nt’
as n —00 for all z In the range:
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@y 41(2) N z? w2

= < —
a, (z) (2n +2)(2n +1) — 12

(n2>21).

Note however that ¢, Is not smaller than 1, which was a condltlon necessary for
the applicatlon of Theorem 5.1. Nevertheless, the alternating serles method
remalns formally valld, and we have:

A Raab-Green density generator via the alternating series method

REPEAT
Generate a uniform [-m,7] random variate X .
Generate a uniform [0,1] random variate U.

n+0,W +0,V+«1 (V is used to facilitate evaluation of consecutive terms in the al-
ternating series.)

REPEAT
nen-+1
Ve VX2

(2n )(2n -1)
WW+V
IF U>W THEN RETURN X
n+n-+1
Wﬁ

VeGnanD
We—W-V

UNTIL U< W

UNTIL False

The drawback with this algorithm is that ¢, the rejectlon constant, is 2. But this
can be avolded by the use of a many-to-one transformation described in section

IV.4. The princliple 1s this: If (X ,U) 1s unlformly distributed in [—%,%}x[o,z],

then we can ex!t with X when U <1+cos(X ) and with 7 slgnX -X otherwlse,
thereby avolding rejectlons altogether. WIith thls improvement, we obtaln:
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An improved Raab-Green density generator based on the alternating series
method

T
Generate a uniform [——2—,-;] random variate X .

Generate a.uniform {0,1) random variate U .

n+—0,W 0,V 1 (V is used to facilitate evaluation of consecutive terms in the alternating
series.)

REPEAT
n+—n+1
1/)(2
Vet
WeW+V
IF U>W THEN RETURN X
n+—n-+1
‘/X2
Ve Gmen D
WeW-V
I U<W THEN RETURN 7 signX -X
UNTIL False

Thils algorithm improves over the algorithm of section IV.4 for the same distribu-
tion 1n which the cos was evaluated once per random varlate. We won't glve a
detalled time analysls here. It 1s perhaps worth noting that the probability that
the UNTIL step Is reached, l.e. the probabliity that one lteration Is completed, Is

about 2.549%. This can be seen as follows: If N* Is the number of completed
lterations, then '

n o 4+
P(N*>i) = .z_j'i ' e = ._1_(_—2;-_)____
Ty 2 (40 ) T (43 +1)
ahd thus
- (_;L)«ﬂ
B = 2 oy
In particular, P(N* >1)= 3;:0 /20.0254. Also, E(N*) is about equal to

142P (N#* >1)~<1.0254 because P (N* >2) Is extremely small.
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5.6. The Kolmogorov-Smirnov distribution.

The Kolmogorov-Smirnov distribution function

Fe)= 3 (1)e (2>0)

n =-00

appears as the llmlt dlstributlon of the Kolmogorov-Smirnov test statistic (Kol-
mogorov (1933); Smirnov (1939); Feller (1948)). No slmple procedure for inverting
F 1s known, hence the Inverslon method 1s likely to be slow. Also, both the dls-
tribution function and the corresponding density are only known as Infinlte serles.
Thus, exact evaluation of these functions Is not possible in finlte time. Yet, by
using the serles method, we can generate random variates with thls distributlon
extremely efflclently. This illustrates once more that generating random varlates
1s slmpler than computing a distribution function.

First, it 1s necessary to obtain convenlent serles expansions for the density.
Taking the derlvative of F, we obtaln the denslty

f(z)=238 § (-1)* tin2ge —2n’z? (z >0),
n==1
which is In the format of the alternating serles method If we take
ch(z) = 8ze~2"
Gy (2) = (n +1)2e 22U +UED - (n >0) .

There 1s another serles for F and f which can be obtalned from the first series
by the theory of theta functions (see e.g. Whittaker and Watson , 1927):

5 oo -asifr
Flg)y=XZ yhe 8 (z >0) ;
z n=1
(2n -1)%n°
ver X (2n-1)2%n? 1, T
f (IL‘) T —— E [‘("'—3)"—'———]6 8z* (.'E >0) )
T n=1 4.'17 T
Again, we have the format needed for the alternating serles method, but now
wlth
7r2
ch(z) = —fﬁ-ﬁf—e 8°  (7>0),
2 _(n%n®
LLAP P (n odd , z >0)
2
o, () = _(n+12-1)r
(n +1)2%e 8z (n even, £ >0)

We will refer to thls serles expanslon as the second serles expanston. In order for
the dlternating serles method to be applicable, we must verify that the a,'s
satisfy the monotoniclty condltlon. This Is done In Lemma 5.1:
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Lemma 5.1. j

The terms a, In the first serles expanslon are monotone | for z >\/_-:13——.

s
For the second series expansion, they are monotone | when z <?'

Proof of Lemma 5.1.
In the first serles expanslon, we have
a, ,(z)

log(—m) = —2log(1+-;1z-)+2(2n -%—1):‘r2

> -—2-+2(2n +1)z2 > -2+62%2 >0.
n

For the second serles expansion, when n Is even,

a, (z 2,2 2
() - (n +1)*7m > L
ay, +1(x) 4% 4z3°
Also,
log(—=—) = —log({2% z,w )+ mrz =y -2log(n +1)-log(-%)
a, (z) 4z 2z 2

2

where y=_£_2_. The last expression Is Increasing In y for y >2 and all n >2.
2z .

Thus, It Is not smaller than 2n -210g(n +1)>0. |l

We now glve the algorithm of Devroye (1980). It uses the mixture method
because one serles by ltself does not yleld easlly identifiable upper and lower
bounds for f on the entire real llne. We are fortunate that the monotonlcity

1
conditions are satisfied on ( —é_-,oo) and on (0,-—27!-) for the two serles respec-

tively. Had these intervals been disjoint, then we would have been forced to look
for yet another approximation. We deflne the breakpoint for the mixture method

- by t€( —;—,-—g—). The value 0.75 Is suggested. Deflne also p =F (¢).
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Generate a uniform [0,1] random variate U.
IFU<p

THEN RETURN a random variate X with density -I—,0<z <t.
p

ELSE RETURN a random variate X with density %—-,t <z.
-p

For generation In the two intervals, the two serles expansions are used. Another
‘ 2
T
constant needed In the algorithm is ¢ =— We have:
8¢
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Generator for the leftmost interval

REPEAT
REPEAT

Generate two iid exponential random variates, E.E,.
E,— Eo

-4

2t

E,—2E,
G+—t'+E,

Accept —[(E P <tE, (G +t")
IF NOT Accept

THEN Accept ‘-[-t—c’;-—l—-log(-;?-)SE',]
UNTIL Accept

X
V&G
W0
1

Z——

2@
PeC
n «1
Q1
Generate a uniform [0,1] random variate U .
REPEAT '
We—W+2Q
IF U>W THEN RETURN X
n —n +2
Q<P
We—W-n2Q
UNTIL U< W
UNTIL False
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Generator for the rightmost interval

REPEAT
Generate an exponential random variate F .
Generate a uniform [0,1} random variate U.

Xe—y/ t“-i——z
2
W +o0
n+—1
Z(_c—zx"’
REPEAT
n+n+1
W W 4n227%
IF U2>W THEN RETURN X
n+n-+1
WeW-n2z"™
UNTIL U< W
UNTIL False

The algorithms are both stralghtforward applicatlons of the alternating serles
method, but perhaps a few words of explanatlon are in order regarding the algo-
rithms used for the dom!inating densities. This is done In two lemmas.

Lemma 5.2.

The random varlable 4 / t2+—}2‘i (where E 1s an exponentlal random varl-
able and ¢ >0) has denslty

cze 2" (z>t),

where ¢ >0 I1s a normallzation constant.

Proof of Lemma 5.2.

Ve;l that the distribution functlon of the random varlable s
1-e 2=t (£ >t). Taking the derlvative of this distribution function ylelds the
destred result. JJi
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Lemma 5.3.

If G I1s a random varlable with  truncated gamma (%) density

' 2
cVye¥ (y >t'=-—7r—), then
Y - st?

7(2

Le 8 (0<z<t),
74

T
has denslty
V8@

where the ¢ 's stand for (possibly different) normalizatlon constants, and ¢ >01s a
3

constant. A truncated gamma (—2—) random varlate can be generated by the algo-

rithm:

Truncated gamma generator

REPEAT
Generate two iid exponential random variates, Eqo.E,.

E
Eo*" 2

1 ——

2t
E,—2F,
G —t'+E,
Accept —[{(E )2 <V E (G +1t")
IF NOT Accept

THEN Accept h[%—l*log('}GT')SEI]

UNTIL Accept
RETURN G

Proof of Lemma 5.3.

2
- T 47

I'he Jacoblan of the transformation y = > is ol This glves the dis-

8z = :
(8y)?

tributional result without further work If we argue backwards. The validity of
the relectlon algorithm with squeezing requires a little work. First, we start from
the Incquality

n !
y <L w2y,

ot
t

which can be obtalned by maximizing ye in the sald interval. Thus,
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1
11—y
v < JESE

The upper bound Is proportional to the density of ¥4

where E 1s an

Y
exponentlal random varlate. This random varlate Is called G In the algorithm.

Thus, If U is a unlform random varlate, we can proceed by generating couples
G ,U until '

G
o !
e”'\/:-t—- S\/G.
€

This condition 1s equlvalent to

G G
—tT—-l—-lOg(—iT) < 2E1

where E'| Is another exponential random varlable. A squeeze step can be added

by noting that log(1+u )> 2?: (u >0) (exercise 5.1). |
u

All the previous algorlthms can now be collected Into one long (but fast)
algorithm. For generallties on good generators for the tall of the gamma density,
we refer to the sectlon on gamma varlate generation. In the Implementation of
Devroye (1980), two further squeezze steps were added. For the rightmost Interval,
we can return X when U >4e~%" (which Is a constant). For the leftmost Inter-

2
val, the same can be done when U 2%—. For ¢t=0.75, we have p ~0.373, and
r .
the qulck acceptance probabllitles are respectlvely ~20.86 and ~0.77 for the
latter squeeze steps.

Related distributions.

The empirical distribution function F, (z) for a sample X,, . . . , X, of
l1d random varlables 1s defined by

n
1
i=1"
where [ 1s the Indlcator function. If X; has distribution function F (z ), then the
following goodness-of-fit statistlcs have been proposed by varlous authors:

(1) The asymmetrical Kolmogorov-Smirnov statlstlcs
K, =Vn sup (F,-F), K,”=Vn sup (F-F,).
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(1) The Kolmogorov-Smirnov statistle K, =max(K, *,K, ).
(11) Kulper's statistlc V, =K, *+K, .
(1v). von Mises’ statistic W, *=n [(F, -F )*dF .

' 2
(v) Watson's stattstic U, =n.[(F, -F —([(F,-F )dF )) dF .
(V1) The Anderson-Darling statistic A, >=n [———— dF.

F(Q-F)

For surveys of the properties and appllcations of these and other statistics, see
Darling (1955), Barton and Mallows (1965), and Sahler (1968). The llmit random
variables (as n —oo) are denoted with the subscripts oco. The llmit distributions
have characteristic functlons that are Infinlte products of characteristic functions
of gamma distributed random varlables except In the case of A . From this, we
note several relatlons between the limit distributions. First, 2K *% and 2K 2
are exponentially dlstributed (Smirnov, 1939; Feller, 1948). K _ has the
Kolmogorov-Smirnov distribution function discussed in this section (Kolmogorov,
1933; Smirnov, 1939; Feller, 1948). Interestingly, V ., s distributed as the sum of
two Independent random varlables distributed as K ,, (Kulper, 1960). Also, as

shown by Watson (1961, 1962), U 1s distributed as i\/Km. Thus, generatlon
' T

for all these llmit distributions poses no problems. Unfortunately, the same can-
not be sald for A ., (Anderson and Darling, 1852) and W _ (Smirnov, 1937;
Anderson and Darling, 1952).

5.7. Exercises.
1. Prove the following Inequality needed In Lemma 5.3:

log(1+u)> 24 (u >0).
2+1U
2. The exponential distribution. For the exponential density, choose a
dominating density A from the family of densitles

nat®

(z 4q )"+t

(.’L‘ >O) ’

where n >1 and a >0 are deslgn parameters. Show the followlng:
1

(1) h 1sthe density of a (U "-1) where U 1s a uniform [0,1} random varl-
able. It 1s also the denslty of a (max™*(U,, ..., U, )-1) where the U;'s
are 11d uniform [0,1] random varlables.

n+1 n-+1 e®qg "
(11) Show that the relectlon constant Is ¢ =( ) , and show
e n

that this Is minimal when a =n.
. 1 1 n+1
(v) Show that with a =n, we have ¢ =—(14+—) -1 as n —o0.
e n
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(v) Glve the serles method based upon rejection from h (where a =n and
n>11s an Integer). Use quick acceptance and rejectlon steps based
upon the Taylor serles expanslon.

(v1) Show that the expected tlme of the algorithm Is co when n =1 (thls
shows the danger Inherent In the use of the serles method). Show also
that the expected tlme Is finlte when n >2.

(Devroye, 1980)

3. Apply the serles method for the normal density truncated to [-a,a] with
rejectlon from a yniform density. Since the expected number of lteratlons Is
2a
Ver(F (a )-F (-a))
where F' is the normal distributlon functlon, we see that It Is Important that

a be small. How would you handle the talls of the distributlon ? How would
you choose a for the combined algorlthm ?

4. In the study of spectral phenomena, the following densitles are lmportant:

: 2
(1) fz)= _}_(E_l_n(_x)_) (the Feler-de la Vallee Poussin denslty);
z

w
M) fo(z)=

4
3(§M) (the Jackson-de la Vallee Poussin density) .
T
These densltles have osclilating talls. Uslng the fact that

(L

sin(z ) - x2+x‘* o
x 3! 5!
sin(z )
and that ———= falls between consecutlve partlal sums In thils serles, derlve

a good serles algorithm for random varlate generation for f , and f g- Com-

pare the expected time complexity with that of the obvious relection algo-
rithms.

5. The normal distribution. Conslder the serles method for the normal den-

1
sity based upon the dominating density A (z )=min(a ,—-————2) where a >0 1s
16ax

a parameter. Show the followlng:

(1) It (U,V) are 11d uniform [-1,1] random varlates, then
h.
(11) Show that

2

14 has density
4aU

z

r 32a
e 2 < max(—l—,———)h (z)
a e
[
and deduce that the best constant ¢ Is 5

(111) Prove that the following algorithm Is valid:
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Normal generator via the series method

REPEAT

Generate two iid uniform [~1,1] random variates V,,V, and a uni-
form [0,1) random variate U .

2V1
X*'\/;VZ
2
IF |X|.<_\/;

REPEAT

nen-<+1

PY

P
n

We—W+P
rw <0 THEN RETURN X
n +—n -1

PY

P
n

WeW+P
UNTIL W >0
UNTIL False

(1v) Show that In this algorithm, the expected number of lterations Is

4
Ve
(An iteration Is deflned as a check of the UNTIL False statement or a
permanent return.)

Erdos and Kac (1948) encountered the following distribution function on
[0,00):

4 X ; 1 ; 2,2 2 '
F(z)= = —1)) ———— 2T+ /(82%) (1 S 0) .
() ngo( ) 5741 ( )

Thls shows some resemblance to the Kolmogorov-Smirnov distribution func-
tlon. Apply the series method to obtaln an efficlent algorithm for generating

random variates with thls distribution function. Furthermore, show the iden-
tity

Flz)= 33 (1) (8((25+1)z -8((27-1)2)) ,

Jj=-00
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where @ 1s the normal distributlon functlon (Grenander and Rosenblatt,
1953), which can.be of some help In the development of your algorithm.

6. REPRESENTATIONS OF DENSITIES AS INTEGRALS.

8.1. Introduction.

For most densltles, one usually first tries the lnverslon, rejection and mixture
methods. When elther an ultra fast generator or an ultra universal algorithm is
needed, we mlght conslder looking at some other methods. But before we go
through thls trouble, we should verify whether we do not already have a genera-
tor for the denslty without knowing 1t. Thls occurs when there exists a speclal
distributional property that we do not know about, which would provide a vital
link to other better known dlstributions. Thus, It 1s lmportant to be able to
declde whilch distributlonal propertles we can or should look for. Lucklly, there
are some general rules that just require knowledge of the shape of the density.
For example, by Khinchine’'s theorem (given In thls sectlon), we know that a ran-
dom varlable with a unlmodal density can be wrltten as the product of a uniform
random varlable and another random variable, which turns out to be quite simple
In some cases. Khinchlne’s theorem follows from the representation of the unlmo-
dal density as an lIntegral. Other representatlons as Integrals wlll be dlscussed
too. These Include a representation that will be useful for generating stable ran-
dom variates, and a representatlon for random varlables possessing a Polya type
characteristlic functlon. There are some general theorems about such representa-
tlons which wlll also be dlscussed. It should be mentioned though that this sec-
tlon has no direct llnk with random varlate generatlon, since only probabllistlc
properties are exploited to obtaln a convenlent reduction to simpler problems. We
also need quite a lot of Informatlon about the density In question. Thus, were 1t
not for the fact that several key reductlons will follow for important densltles, we
would not have included thils section In the book. Also, representing a density -as
an Integral really bolls down to definlng a continuous mlxture. The only novelty
here Is that we will actually show how to track down and invent useful mlxtures
for random varlate generation.

8.2. Khinchine’s and related theorems.

By far the most Important class of denslties 1s the class of unimodal densl-
tles. Thus, 1t Is useful to have some Integral representations for such densitles.
Formally, a distribution 1s called convex on a set A of the real line If for all
z,yEA,

F(Az+(1-Ny) < AN (z)+0-NF (y) (0SX<1).
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It 1s concave If the Inequality Is reversed. It Is unimodal If 1t 1s convex on (-00,0]
and concave on [0,00), and In that case the point O Is called 2 mode of the distri-
butlon. The ratlonale for this definitlon becomes obvious when translated to the
density (if 1t exists). We will not consider other possible locations for the mode
to keep the notation simple.

Theorem 6.1. Khinchine’s theorem.

A random varlable X 1s unimodal If and only If X 1s distributed as UY
where U,Y are Independent random variables: U Is unlformly distributed on
[0,1] and Y 1s another random varlable not necessarlly possessing a denslity. If Y
has distribution functlon G on [0,00), then UY has distributlon function

F(m)=fG(-—.z—)du.
0

Proof of Theorem 6.1. »

We refer to Feller (1971, p. 158) for the only If part. For the If part we
observe that P(UY <z | U=u)=M, and thus, Integrating over [0,1]
with respect to du glves us the result. .u

To handle the corollaries of Khinchine’s theorem correctly, we need to recall
the deflnitlon of an absolutely continuous function f on an interval [a,b]: for all
€>0, there exists a 6>0 such that for all nonoverlapping Intervals
(z;,9;),1<7: <n, and all Integers n,

Y oy | <6
=1
implies
S (@] )] <.

f=1

When f Is absolutely continuous on [a,b], its derivative [’ 1s deflned almost
everywhere on [a,b]. Also, 1t Is the Indefinite integral of its derivative:

f@rf(a)=[f'(u)du (a<z<b).

See for example Royden (1968). Thus, Lipschitz functions are absolutely continu-
ous. And If f 1s a denslty on [0,00) with distribution function F', then F s abso-
lutely continuous,

Fz)=[f(u)du,
o -
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and

F'(z) = f (z) almost everywhere .

A density f 1s called monotone on [0,00) (or, In short, monotone) when f Is

nonincreasing on [0,00) and f vanlshes on (-00,0). However, It Is possible that
m f (z )==co0.
z |0

Theorem 6.2.
Let X be a random varlable with a monotone density f . Then

m zf (x)=llrl% zf (z)=0.

If f 1s absolutely continuous on all closed Intervals of (0,00), then f’ exlsts
almost everywhere,

f@)=-ff'"u)du,

and X Is distributed as UY where U 1s a uniform [0,1] random varlable, and Y
Is Independent of U and has density

g(z)=-zf'(z) (z>0).

Proof of Theorem 6.2.
Assume that lm sup zf (z)>2a¢ >0. Then there exlsts a subsequence
z,<z,< - such t;;;;oc:;:;+122xi and z; f (z;)2a >0 for all 7. But
o [o.0] o0} 1
1= {f (z) dz > igl(‘”iﬂ_“’i)f (% 41) 2 igl'é'ziﬂf (% 4,) = o0,

which Is a contradiction. Thus, Ilm zf (z)=0.
T =0

Assume next that llmfsup zf (z)>2a >0. Then we can find z,>z,> - - -
z |0

such that x,~+15—é—- and z; f (z;)2a >0 for all 7. Agaln, a contradiction Is
obtalned:

i =1

1= [/ @) de 2 N @] @) 2 Biaf @) =oco.
0 =1

Thus, llrln zf (z)=0. This brings us to the last part of the Theorem. The first
z 10

two statements are trivially true by the properties of absolutely contlnuous func-
tlons. Next we show that ¢ Is a density. Clearly, f’<0 almost everywhere. Also,
z/ 1s absolutely contlnuous on all closed Intervals of (0,00). Thus, for
0<a <b <o, we have




174 IV.6.REPRESENTATIONS OF DENSITIES

b b
bf (b)-af (a)= [f(z)dz+[zf'(z) dz .
a a
* By the first part of thls Theorem, the left-hand-side of this equatlon tends to O as
a 10,b.-+oo. By the monotone convergence theorem, the right-hand slde tends to
00
1+f:vf’(a: )dz , which proves that ¢ 1s indeed a denslty. Finally, if Y has denslty

0o

g, then UY has denslty
[e ] o0
f—‘q—&—)- du =~[f'(v)du = f (z).
z u z

This proves the last part of the Theorem. [Ji

The extra condition on f In Theorem 6.2 Is needed because some monotone
densities have f/==0 almost everywhere (think of staircase functions). The extra
condition In Theorem 6.2 not present In Khinchine's theorem essentially guaran-
tees that the mixing Y varlable has a denslty too. In general, Y needs to have
distrlbution function

1-zf (z)-[f (v) du (z>0).

(exerclse 6.9). We also note that Theorem 6.2 has an obvious extension to unlmo-
dal densitles.

For monotone f that are absolutely continuous on all closed Intervals of
(0,00), the following generator Is thus valld:

Generator for monotone densities based on Khinchine’s theorem

Generate a uniform {0,1) random variate U.
Generate a random variate Y with density ¢ (z )=-zf'(z) ,z >0.
RETURN X «UY .

Example 6.1. The exponential power distribution (EPD).
Subbotin (1923) introduced the following symmetric unimodal denslities:

f (@)= (2F(1+%))~16-| z]"
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where 7>0 Is a parameter. This class contalns the normal (7==2) and Laplace
(==1) densltles, and has the unlform denslty as a limit (7—oc0). By Theorem 6.2,
and the symmetry In f , 1t 1s easlly seen that
1
X« VY”T
has the glven denslty where V 1Is uniformly distributed on [-1,1] and Y 1Is
1
gamma(1+— 1) distributed. In partlcular, a normal random varlate can be

obtalned as Vv2Y where Y is gamma ( ) distributed, and a Laplace random
varlate can be obtalned as V(E'1+E2) where E |,E, are 11d exponentlal random
varlates. Note also that X can be generated as SY!/” where Y 1s gamma ( )

distributed. For direct generation from the EPD distribution by relection, we
refer to Johnson (1979). [}

Example 6.2. The Johnson-Tietjen-Beckman family of densities.

Another stlll more flexlble famlly of symmetric unimodal densltles was pro-
posed by Johnson, Tler,_len and Beckman (1980):

f(m)__ j‘ a—-r—l =% du ,

1
z 7

2I‘( )

where a>0 and 7>0 are shape parameters. An inflnlte peak at O 1s obtalned
whenever a<7. The EPD distribution 1s obtalned for a=7+1, and another distril-

1
butlon derived by Johnson and Johnson (1978) is obtalned for T=—2-. By Theorem
6.2 and the symmetry In f , we observe that the random varlable
X«VY”
has density f whenever V Is unlformly distributed on [-1,1] and Y Is gamma

() distributed. For the speclal case r=1, the gamma-integral distribution Is
obtained which 1s discussed 1n exercise 6.1. [Jj
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Example 6.3. Simple relations between densities.

In the table below, a varlety of distributional results are given that can help
for the generatlon of some of them.

| Density of Y Density of UY (U is uniform on [0,1])
[~ -
_Exponential Exponential-integral ( f S du)
z
Gamma (2} Exponential
Beta(2,b) Beta(l,b +1)
o0
Rayleigh (ze = /2) [ e~*°/2 dy
z
Uniform [0,1] —log{z )
(1+a)z® (z€o.1]) (e >0) | 2FLa-z¢)
32 ¢
g? =
Maxwell e 2 Normal
VAR

There are a few other representation theorems In the spirlt of Khinchine’s
theorem. For particular forms, one could consult Lux (1978) and Mikhallov
(1965). For the stable distribution dlscussed in thls section, we will need:

Theorem 6.3.
Let U be a uniform [0,1) random varlable, let E be an exponentlal random
varlable, and let ¢ :[0,1]—[0,00) be a glven function. Then has distributlon

E
g(U)
function

1
F(z)=1-[e™() du
’ 0
and density

1
f ()= fg(u)e'”‘g(“) du .
0
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Proof of Theorem 6.3.
For z >0,

E
P-(g(U)

The derlvatlve with respect to  1s —f (z) where f 1s deflned above. |

. 1
>z)=PE>zg(U))=E (e V)= [e-29(¥) gy
0

Finally, we mention a useful theorem of Mlkhallov’s about. convolutions with
exponential random varlables:

Theprem 6.4. (Mikhailov, 1965)

If Y has denslty f and F s an exponential random varlable Independent of
Y, then F+7Y has density

h(z)= [e ™ f(z+u)du = [ f(u)e*® du .
0 ~00

Furthermore, If ¢ 1s an absolutely continuous density on [0,00) with ¢ (0)==0 and
g +¢'>0, then X +—FE +Y has density ¢ where now Y has density ¢ +¢’, and E
is still exponentially distributed. '

Proof of Théeorem 6.4.
The first statement Is trivial. For part two, we note that g +¢’ 1s Indeed a
o0

denslty slnce g +¢'>0 and f (9 +¢')=1. (This follows from the fact that ¢ Is

0
absolutely continuous and has ¢ (0)==0.) But then, by partial Integratlon, X has
density . :

J(h(u)+h (u))e®* du = h(z) .1
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6.3. The inverse-of-f method for monotone densities.

Assume that f 1s monotone on [0,00) and continuous, and that 1ts Inverse
f -1 can be computed relatlvely easlly. Since f ~! itself Is a monotone denslty, we
can use the following method for generating a random varlate with denslty f :

The inverse-of-f method for monotone densities

Generate a random variate Y with density f .
Generate a uniform [0,1] random variate U.
RETURN X «Uf (Y

The correctness of the algorithm follows from the fact that (Y ,X ) s uniformly
distributed under the curve of f ~}, and thus that (X ,Y ) Is uniformly distributed
under the curve of f .

Example 6.4.

If Y 1s exponentlally distributed, then Ue~Y has denslty -log(z) (0<z <1)
where U 1Is uniformly distributed on [0,1]. But by the well-known connectlon
between exponential and uniform distributlons, we see that the product of two 11d
uniform [0,1] random varlables has denslty -log(z) (0<z <1). ||}

Example 8.5.
If Y has density

1
™M) = (log(==))"  (0<y s\/z) :
Ty 2

and U 1s unlformly distributed on [0,1], then X < Uf “}(Y ) has the halfnormal
distribution. i
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6.4. Convex densities.

The more we know about a denslty, the easler 1t Is to generate random varl-
ates with thls denslty. There are for example a multitude of tools avallable for
monotone densltles, ranglng from very specific methods based upon Khinchline’s
theorem to black box or universal methods. In thls sectlon we look at an even
smaller class of densltles, the convex densitles. We will consider the class C + of
convex densitles on [0,00), and the class C' of densitles that are convex on [0,00)
and on (-00,0). Thus, C . Is a subclass of the monotone densltles dealt with In
the previous sectlon.

Convex densitles are absolutely contlnuous on all closed subintervals of
(0,00), and possess monotone right and left derlvatives everywhere that are equal
except possibly on a countable set. If the second derlvatlve f’' exists, then f 1s
convex If /' >0. We wlill glve one useful representation for convex densities.

Theorem 8.5. (Mixture of triangles)

For every f €C,, we have
(o)

2 z
[ (@)= {Z(I*IM dF (u),

where F 1s a distributlon functlon with F (0)==0 deflned by:
u? ' "
F(u)=1+"=f"(u)uf @}+[f) (u>0),
u

where f’ Is the right-hand derivatlve of f (which exlsts on [0,00)). If F 1s abso-
lutely continuous, then 1t has density

g(u)=Ju/"() (x>0).

Proof of Theorem 8.5.

We have to show first that iIf V,Y are Independent random variables, where
V has a trlangular denslty 2(1-z), and Y has distribution function F', then
X «~VY has density f . But for z >0,

0 oo 2
[1 =[0-2) dF()

= dF (u) 57 dF (u)
[dF (u)2e] = =2ta?[ =52
= [£n-2L aF dF
[ (z) fz(l—Z)dF(u)_z.:{.__flE_u)__2z£ u(gu) ,

z
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and

Sy =2 dF(“’

In our case, It can be verlfled that the Interchange of Integrals and derlvatives Is

allowed. Substitute the value of f' in the right-hand sides of the equalitles for f
oo

and [f . Then check that

zf (2)+[ [ (u) du =de(U)+£2-2-f'(w)

. and thls glves us the first result It F 1s absolutely continuous, then taking the
derivative gives its density, —— f "(z) I}

This theorem states that for f €C +» We can use the following algorithm:

Generator for convex densities

- Generate a triangular random variate V (this can be done as min(U,,U,) where the U;’s
are iid uniform {0,1] random variates).

Generate a random variate Y with distribution - function
o0

2
Fu)= 1+—uz—f'(u (uf (u )+ff } (v >0). (It F is absolutely continuous, then Y has

z?
density Tf”(:: ).)

RETURN X « VY

68.5. Recursive methods based upon fepresentations.

Representations of denslties as Integrals lead sometimes to properties of the
following kind: assume that three random variables X ,Y,Z have densltles
f .g.,h which are related by the decomposlition

g(z)=rph(z)+01-p)f (z).

Assume that X s distributed as ¥(Y,U) for some functlon % and a uniform [0,1]
random varlable U Independent of Y (this Is always the case). Then, we have
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with probabllity p, X=(Z,U) and with probabllity 1-p, X ~=¢((Y",U"),U)
where (Y’,U’) 1s another palr distributed as (Y ,U). (The notatlon = Is ued for
"1s distributed as”.) This process can be repeated until we reach a substitution by
Z . We assume that Z has an easy denslty A. Notlce that we never need to actu-
ally generate from ¢! Formally, we have , starting with Z:

Recursive generator

Generate a random variate Z with density &, and a uniform {0,1] random variate U,
X—y(z,U)
REPEAT
Generate a uniform [0,1]random variate V.
IFV<p
THEN RETURN X
ELSE '
Generate a uniform [0,1] random variate U.
XX ,U)
UNTIL False

The expected number of lteratlons in the REPEAT loop Is L because the

p
number of V-varlates needed 1s geometrically distributed with parameter p . This
algorithm can be flne-tuned In most applications by discovering how uniform
variates can be re-used.

Let us illustrate how this can help us. We know that for the gamma derislty
with parameter a €(0,1),

a—1e—:c

f(l”):“—ii;-(a—)-— (z >0):

g(z)=-zf'(z) = ah(z)+(1-a)f (2),

where h 1s the gamma (a +1) density. This Is a convenlent decomposition since
the parameter of A 1s greater than one. Also, we know that a gamma (¢ ) random
varlate 1s distributed as UY where U is a uniform [0,1] random varlate and Y
has density —zf'(z) (apply Theorem 8.2). Recall that we have seen several fast
gamma generators for ¢ >1 but none that was uniformly fast over all a. The
previous recursive algorithm would boll down to generating X as

L
ZTI U,
=1

where Z 1s gamma (¢ +1) distributed, L s geometrlc with parameter a, and the
U;'s are 11d uniform [0,1] random variates. Note that this In turn Is distributed as

Ze %t where Gy s a gamma (L ) random varlate. But the denslty of G Is
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o0 . i—le—:c
Sa(l-a) T —"— =¢"%* (z>0).

iz (v-1)!

Thus, we have shown that the followlng generator is valid:

A gamma generator for a < 1

Generate a gamma (¢ +1) random variate Z .

Generate an exponential random variate F .
E

RETURN X «—Z¢ ¢

The recurslve algorithm does not require exponentiation, but the expected

number of iterations before halting is i, and this is not uniformly bounded over
a
E

(0,1). The algorithm based upon the decomposition as Ze ? on the other hand s
unlformly fast.

Example 6.6. Stuart’s theorem.

Without knowing 1it, we have proved a speclal case of a theorem of Stuart’s
(Stuart, 1962): If Z 1s gamma (a ) distributed, and Y is beta (b ,a —b ) distributed
and Independent of Z, then ZY ,Z(1-Y) are independent gamma (b) and
gamma(a —b ) random varlables. If we put b =1, and formally replace ¢ by a +1

1

then 1t Is clear that ZU ® 1s gamma (a ) distributed, where U s a uniform [0,1]
random vartable. JJj

There are other simple examples. The von Neumann exponentlal generator 1s
also based upon a recurslve relationship. It Is true that an exponential random

' variate F 1s with probabllity 1—l distributed as a truncated exponentlal random
e

varlate (on [0,1]) , and that E 1s with probabllity L distributed as 1+E . This
€

recursive rule leads preclsely to the exponentlal generator of sectlon IV.2.
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6.6. A representation for the stable distribution.

The standardlzed stable distributlon Is best defilned In terms of ts charac-
teristic function ¢:

i Xzs sgn(t)

~[t]% 2 (o7%1)

logg(t) = 2 ,
=1t |+ 6=sen(thog(] £ ) (a=1)

Here §€[-1,1] and a€(0,2] are the shape parameters of the stable distribution, and
G Is deflned by min(a,2-0). We omlit the locatlon and scale parameters In this
standard form. To save space, we will say that X s stable(e,6) when It has the
above mentloned characteristic function. This form of the characteristic functlon .
1s due to Zolotarev (1959). By far the most Important subclass Is the class of sym-
metric stable distrlbutlions which have §6=0: thelr characteristic functlon 1s simply

p(t) = e 1417,

Desplte the simpllcity of this characteristic functlon, 1t Is quite difflcult to obtaln
useful expressions for the corresponding density except perhaps In the speclal
cases @=2 (the normal density) and a=1 (the Cauchy denslity). Thus, It would
be convenlent If we could generate stable random varlates without having to
compute the density or distribution functlon at any point. There are two useful
representations that will enable us to apply Theorem 6.4 with 4a slight
modlification. These wlll be glven below.

Theorem 6.6. (Ibragimov and Chernin, 1959; Kanter, 1975)

For a<1, the density of a stable(e,1) random varlable can be written as
1

f(@)= = (1 - fg(u)e—ammd
where
1
_ (Sin(au ) 1< sin((1-o)u)
9= Chmy sin(u ) ) sin(au )

When U s uniformly distributed on [0,1] and E s Independent of U and
exponentlally distributed, then

1-&¢

Is stable(a,1) distributed.
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Proof of Theorem 6.8.

For the flrst statement, we refer to Ibragimov and Chernin (1959). The latter
statement Is an observation of Kanter's (1975) which Is quite easlly verified by

1-a
. U). a
computing the distribution function of (L(LE——)-) * , and noting that it 1s equal
to
s -
Lfemat™ gy
To

Takling the derlvatlve glves us the density f . |

The second part of the proof uses a slight extenslon of Theorem 6.4. This
representation allows us to generate stable(a,1) random variates quite easily - In
most computer languages, one line of computer code wlll suffice! There are two
problems however. First, we are stuck with the evaluation of several tri-
gonometric functions and of two powers. We will see some methods of generating
stable random varlates that do not require such costly operations, but they are
much more complicated. Our second problem 1s that Theorem 6.8 does not cover
the case 65£1. But this Is easlly taken care of by the following Lemma for which
we refer to Feller (1971):

Lemma 6.1.

A. If X and Y are id stable(a,1), then Z «pX —qY Is stable(e,8) where

pe = sln(l@%ﬂ)-)/sln(ﬂa) ,
g% = sln(lbz%ﬁ)/sln(ﬂa) .

B. If X s stable(—:-,l) and N 1Is Independent of X and normally distributed,
then N v2X s stable(a,0), all a€(0,2].

Using this Lemma and Theorem 6.8, we see that we can generate all stable
random varlates with elther a<1 or 6=0. To flll the vold, Chambers, Mallows
and Stuck (1976) proposed to use a representation of Zolotarev’s (1966):
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Theorem 6.7. (Zolotarev, 1966; Chambers, Mallows and Stuck,1976)

Let E be an exponentlal random varlable, and let U be a uniform [——;I-,-g-]

random varlable Independent of E . Let further v = ——?ai. Then, for as£1,
_ 1
X e sin(a(U -4)) ( cos(U -a(U —v)) ) a
' L E
(cosU )«
1s stable(a,6) distributed. Also,
2,7 ' wE cos(U)
—((— b dlog(—————=
X =—((5+8U )tan(U )-dlog( ey Ty

Is stable(1,6) distributed.

We leave the determlnatlon of the Integral representation of f' to the
reader. It Is noteworthy that Theorem 6.7 Is a true extension of Theorem 6.6

(Just note that for a<1,6=1, we obtaln 'y=-——72-r-. There are three speclal cases

worth noting:

M A stable(2,0) random variate can be generated as
vE §_1£1(_(2_g_5)_ = 2V E sin(U). This Is the well-known Box-Muller representa-
coS ,

tlon of V2 tlmes a normal random varlate (see section V.4),

(1) A stable(1,0) random variate can be obtalned as tan(U), which ylelds the
Inversion method for generating Cauchy random variates.

) A stable(—;-,l) random varlate can be obtalned as
1

4Esin(Z-T)
2 4

?

which is distributed In turn as
. r
4E cos®(U) '

which Is In turn distributed as -——11\7-2- where /N Is normally distributed.
2
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6.7. Densities with Polya type characteristic functions.

This section 1s added because 1t lllustrates that representations offer unex-
pected help In many ways. It Is frustrating to come across a distribution with a
very simple characteristic functlon In one’s research, and not be able to generate
random varlates with this characterlstic function, at least not without a lot of
work. But we do know of course how to generate random varlates with some
characterlstic functlons such as normal, uniform and exponentlal random varil-
ates. Thus, If we can find a representation of the characteristic function ¢ In
terms of one of these simpler characterlstlc functions, then there is hope of gen-
erating random varlates with characterlstic function ¢. By thls process, we can
take care of qulte a few characteristlc functions, even some for which the denslty
Is not known In a simple analytic form. Thls wlll be illustrated now for the class
of Polya characterlstic functions, l.e. real even contlnuous functions ¢ with
¢(0)=1,tllm é(t )=0, convex on (0,00). This class Is Important both from a practl-

—00

cal point of view (1t contalns many important distributions) and from a didactlcal

polnt of view. The examples that we willl conslder In this subsection are listed in
the table below.

Characteristic function ¢{t) | Name

e-ltl® O<a<i Symmetric stable distribution |
1
1+t ]
a-Jle gy, jef<iaz>1
1-1t |, ]t ]| <10<a<1

O0<a<1 Linnik’s distribution

The second entry in thls table Is the characteristic function of a unimodal
density for a€(0,2] (Linnlk (1962), Lukacs (1970, pp. 96-97)), yet no simple form
for the density Is known. We are now ready for the representation.

Theorem 6.8. (Girault, 1954; Dugue and Girault, 1955)
Every Polya characteristic functlon ¢ can be decomposed as follows:

#t) = [a-1< ), dF(s) (t>0),
0

o(t)=-¢(-t) (t<0),
where F' 1s a distribution function with F (0)=0 and defined by
F(s)=1-¢(s)+sd'(s) (s>0).

Here ¢' 1s the right-hand derlvative of ¢ (which exlists everywhere) It F 1s abso-
lutely contlnuous, then 1t has density

g(s)=s¢"(s) (s>0).
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From this, 1t 1s a minor step to conclude:

Theorem 6.9. (Devroye, 1984)

If ¢ 1s a Polya characteristic function, then X<——§-‘ has thls characteristic

function when Y,Z are Independent random varlables: Z has the distribution
function F of Theorem 6.8, and Y has the Feler-de la Vallee Poussin (or: FVP)
denslty

2

x

sin(—

I Bary
2m T
2

Theorem 6.9 uses Theorem 8.8 and the fact that the FVP density has
characteristic function (1- | ¢ |) +- There are but two things left to do now: first,
we need to obtaln a fast FVP generator because it is used for all Polya type dlis-
tributions. Second, 1t Is Important to demonstrate that the distribution function
F 1n the varlous examples Is often qulte simple and easy to handle.

Remark 6.1. A generator for the Fejer-de la Vallee Poussin density.
Notlce that If X has density
1,sin(z) 2
Lsn=) )"
s T
then 2X has the FVP denslty. In vlew of the osclllating behavlor of this denslty,
It Is best to proceed by the rejectlon method or the serles method We note first

that sin(z ) 1s bounded from above and below by consecutlve terms In the serles
expansion

N SN SNE SO S
sin(z) = 2 3!:1: +5!z ,

and that 1t s bounded In absolute value by 1. Thus, the denslty f of X Is
bounded as follows:

[ (@) < Zh(z),
ks

where h (z )=m1n(-1—,-L2-), which 1s the density of V2, where V is a unlform
4 4z

[~1,1] random variable, and B is £1 with equal probabllity. The rejection
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4
constant of — In thls Inequallty 1s usually quite acceptable. Thus, we have:
T

FVP generator based upon rejection

REPEAT '
Generate iid uniform [-1,1) random variates U ,X .
IF U <o
THEN

1
Yox
Accept —[ | U | <sin®(X))
ELSE Accept «{ | U | X2<sin?(X)]
UNTIL Accept
RETURN 2X

The expected tlme can be reduced by the judiclous use of squeeze steps. First, If

| X | 1s outside the range [0,-2—], 1t can always be reduced to a value within that
range (as far as the value of sin®( X ) Is concerned). Then there are two cases:

M) It | X | S-}, Wwe can use
3
X-XT <sin(X)< X .

() Ir | X | G(—},—;L], then we can use the fact that sln(X)=cos(—72£-—X )=cos(Y),
where Y now Is In the range of (1). The following Inequalities wlll be helpful:

2 2 4
1——Y— <sin(X) < 1—L+-Z-— .
2 2 24

Example 6.7. The symmetric stable distribution.
In Theorem 6.9, Z has denslty g glven by

g(s) = (%% 4a(1-0)s* e~ (s >0).
But we note that Z< has denslty
a(se™® )+(1-a)e™®) (s >0),
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which Is a mixture of a gamma (2) and an exponentlal density. Thus, Z s dlstrl-
buted as ‘

1

(B +E ol (y <o) ®

where E,,E, and U are Independent random varlables: E, and E, have an
exponentlal density, and U Is unlformly distributed on [0,1]. It s also worth
observing that If we use U,,... for 11ld unlform [0,1] random variables, then Z Is
distributed as

L
- (E ;+max(E ,+log(a),0))

and as
1

log * (max( 1

o
7,0, 7, W

Example 6.8. Linnik’s distribution
We verlfy that Z In Theorem 6.9 has density g glven by

g(s) = ((@®+a)s 22 (a-a?)s * (1 +s%)2 (s >0).
It Is perhaps easler to work with the density of Z¢:
s (a+1)+(1-a)
(1+s )3

(s >0).

1
The latter density has distribution functlon 1-— to -+ & , and thils Is easy

: 1+s  (14s5)?
to Invert. Thus, a random varlate Z can be generated as

1
a+1-V(a+1)~4alU o

oU b

where U 1s a uniform [0,1] random varlate. If speed Is extremely lmportant, the
square root can be avolded If we use the rejectlon method for the density of Z¢,

1
with domlnating density (1+s )2, which Is the denslty of —U-—l. A little work

(

shows that Z can be generated as follows:
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REPEAT

Generate iid uniform {[0,1] random variates U,V .

1
Xe——-1
U

UNTIL 20U <V (Now, X is distributed as Z.)
1

RETURN X *

The expected number of 1terations Is 1+a. |

Example 6.9. Other examples.

Assume that ¢(t) = (1-|¢ |),* for a>1. Then @(s)~s ¢'(s) Is absolutely
continuous. Thus, the random varlable Z of Theorem 6.9 has beta (2,a-1) den-
sity ¢ (s )=a(a~1)s (1-s )*2 (0<s <1).

There are situations In which the distribution function F of Theorems 6.8
and 8.9 Is not absolutely continuous. To lllustrate this, take @(¢)=(1-|t | %),
and note that F (s) = (1-~a)s* (0<s <1). Also, F (1)=1. Thus, F has an atom
of welght o at 1, and 1t has an absolutely continuous part of welght 1-a with
support on (0,1). The absolutely continuous part has denslty as®! (0<s <1),

1

which is the density of U ¢ where U 1s uniform on [0,1]. Thus,

7 1 with probability «

1
a

U with probability 1-o

Here we can use the standard trick of recuperating part of the uniform [0,1] ran-
dom varlate used to make the "wlith probability a” cholce. .
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A. [ s convex If and only If ¢ ,b >1. It Is concave If and only If a,b <1.
B. Y! has density f , where Y is beta (b,a +1) distributed.

b .
C. ( Y+Z) has density f where Y Is gamma (b) distributed, and Z 1s
gamma (a +1) distributed and Independent of Y.

This Is a contlnuation of exerclse 5 for the speclal case b =1. The density s

J (z)=(a +1)(1-2)* (0<z <1). From the previous exercise we recall that a
1

——

random varlate with this distrlbutlon can be obtained as 1-U ¢*+! and as

o where U Is a uniform [0,1) random varlate, E s an exponential
E+G, ‘

random varlate, and G, ., Is a gamma (a +1) random varlate independent of

E . Both these methods require costly operations. The following relectlon
algorithms are usually faster:

Rejection method #1, recommended for a > 1

REPEAT
" REPEAT
Generate two iid exponential random variates, E,,E,.

E,
X ——
a

UNTIL X <1

Accept «—[E  (1-X )-eX?>0]

IF NOT Accept THEN Accept «[aX +FE ,+a log(1-X ) >0)
UNTIL Accept
RETURN X

Rejection method #2, recommended for a < 1

REPEAT

Generate two iid uniform [0,1) random variates, U,X .
UNTIL U <£(1-X)*
RETURN X

Show that the reJection algorithms are valld. Show furthermore that the
expected number of 1teratlons Is

and a +1 respectively. (Thus, a unl-
formly fast algorithm can be obtalned by using the first method for ¢ >1
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6.8. Exercises.

1.

The gamma-integral distribution. We say that X 1s GI(a) (has the
gamma-integral distributlon with parameter ¢ >0) when 1ts density is
o 0]
U a —2e -4

/(x)=f————-———- du (z >0).

| : L(a)
Thls distributlon has a few remarkable properties: it decreases monotonlcally
on [0,00). It has an Infinite peak at 0 when a¢ <1. At a =1, we obtaln the

exponential-integral denslty. When a >1, we have [ (0)=

1 . 'For a =2,
1

the exponentlal density Is obtalned. When a >2, there Is a polnt of inflection
at ¢ -2, and f/(0)==0. For ¢ =3, the distributlon Is very close to the normal
distribution. In this exerclse we are malnly Interested In random varlate gen-
eratlon. Show the following:

A. X can be generated as UY where U Is uniformly distributed on [0,1]
and Y is gamma (a ) distributed.

B. When ¢ Is Integer, X Is distributed as Gz where Z Is uniformly distri-
buted on 1, ..., a-1, and Gz 1s a gamma (Z ) random variate. Note
that X 1s distributed as -log(U, - - -+ Uz ) where the -U;’s are 1id uni-
form [0,1] random varlates. Hint: use Induction on a.

C. As a—00, X tends In distributlon to the uniform [0,1] denstty.
a

Compute all moments of the GI(a ) distribution. (Hint: use Khinchine's
theorem.)

The density of the energy spectrum of flsslon neutrons Is

f(z)= ';/';rl;'—b—'?*”“b slnn(-?-‘/bﬁ) (z>0),

where a,b >0 are parameters. Recall that sinh(z )=%(e"—e‘z ). Apply

Theorem 6.4 for deslgning a generator for this distribution(Mikhallov, 1985).

How would you compute f (z) with seven dlglts of accuracy for the
exponentlal-integral denslty of Example 6.3? Prove also that for the same
distribution, F (z )=(1-e % )+zf (¢ ) where F 1s the distribution functlon.

) ' 1
It U,V are 1id unlform [0,1] random variables, then for 0<a <1, UV '™
has denslty z7%-1 (0<z <1).

In the next three exercises, we consider the following class of monotone den-
sitles on [0,1]:
[/

1
- b) (O_<_III_<_1),

(1-z

v T(a+b+1)
I@) = T sore +0)

where @ ,b >0 are parameters. The coefficient will be called B . The mode of
the density occurs at z =0, and f (0)==B. Show the following:
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and the second method for a <1.)

7. Contlnuatlon of exerclse 5 for b=%. The density we are consldering here

can be written as follows:

f(z)=B(@1-z%)* (0<z<1).

3
['(a +'2—)
(Here B=-—=———>——\) From exercise 5 we recall that a random varlate
Vr T(a+1) N
with thls denslty can be generated as where N 1s a normal

vV N*+2G, , .

random varlate, and G|, +1 1s a gamma (e +1) random variate independent of
N.

A. Show that we can also use |2Y-1| where Y Is beta (a +1,a +1) distrl-
buted. '

B. Show that If we keep generating 11d uniform [0,1] random variates U,X
untll U <(1-X?%)*, then X has denslty f, the expected number of
lterations 1s B, and B Increases monotonically from 1 (a=0) to

oo (a —00).
C. Show that the followlng rejectlon algorithm 1s valld and has rejection
3
T'(a +—)
constant —=—=————— (which tends monotonically to 1 as a —c0):
va T'(a+1)

Rejection from a normal density

REPEAT

Generate independent normal and exponential random variates
N.,E.
N | .
X — l , YX?
;2a .
Accept (Y 51]AND[1—Y(1+—“E—}:)201
IF NOT Accept . THEN Accept —[Y <1} AND
[aY +E +alog(1-Y )>0]
UNTIL Accept
RETURN X

T
Hint: use the lnequallties ——1——§log(1—z -z (0<z <1).
-z
8. The exponential power distribution. Show that If S Is a random slgn,
1
and G, Is a gamma (—L) random varlate, then S(G,)” has the exponential
— T ——
T T
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power c}lstrlbu’clon with parameter 7, that is, 1ts density Is of the form
ce’I z | where ¢ 1s a normallzation constant.

9. Extend Theorem 6.2 by showlng that for all monotone densities, It suffices to
take Y with distribution function

F(a:)==1—ff (u) du—=xf (z) | (z€R) .

10. Extend Theorem 6.5 to all convex densitles In C.

11. The Pareto distribution. Let E,Y be Independent random varlables,
where E s exponentially distributed, and Y has density ¢ on [0,00). Glve
an Integral form for the denslty and distribution function of X =F /Y. Ran-
dom varlables of this type are called exponentlal scale mlxtures. Show that
when Y is gamma (a), then 1+E /Y s Pareto with parameter a, l.e.
1+E /Y has density a /2%*! (z >1) (see e.g. Harrls, 1968).

12. Develop a unlformly fast generator for the family of denslties

sin(z ) \*
[(z)= Cp(—) ,
T
where n 21 Is an Integer parameter, and C, Is a constant depending upon

n only.

7. THE RATIO-OF-UNIFORMS METHOD.

7.1. Introduction.

The rejectlon method has one blg drawback: densltles with Infinite talls have
to be handled with care; often, talls have to be cut off and treated separately. In
many cases, this can be avolded If the ratio-of-uniforms method Is used. This
method s particularly well sulted for bell-shaped densitlies with talls that
decrease at least as fast as z~2. The ratlo-of-unlforms method was first proposed
by Kinderman and Monahan (1977), and later applled to a varlety of distribu-
tlons such as the t distribution (Kinderman and Monahan,19798) and the gamma
distribution (Cheng and Feast, 1979).

Because the resulting algorithms are short and often fast, and because we
have yet another beautiful lllustration of the relection and squeeze princlples, we
wlll devote quite a bit of space to thls method. The treatment wlll be systematlc
and slmple: we are not looking for the most general form of algorithm but fqr one
that Is easy to understand.

We begin with
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Theorem 7.1. (Kinderman and Monahan, 1977)
Let A ={(uv,v)0<y <a// (—Z—)} where f >0 Is an Integrable function. If

(U,V) 1s a random vector uniformly distributed over A, then -—g— has denslty

-t-f where ¢ =[ f =2 area (4).

Proof of Theorem 7.1.

Define (X,Y) by X=U,Y=—g—. The Jacoblan of the transformation
v =g ,v=cy Is z. The denslty of (U,V)1s I, (u,v)/(c /2). Thus, the denslty of
(X,Y) 1s ¢ times Iy (z,yz)/(c /2) = a5 ; (yy(2)/(c /2). The density of Y_—_.X

U
is the marginal density computed as
vy
T [ (y)
dz = N |
{ (c/2) ¢

But we already know how to generate unlformly dlstributed random vectors:
1t suffices to enclose the area A by a slmple set such as a rectangle, In which we
know how to generate uniform random vectors, and to apply the rejection princl-
ple. Thus, 1t 1s Important to verify what A looks llke In general. First, A s a
subset of [0,00)X R . It Is symmetric about the u -axls if f Is symmetric about O.
It vanishes in the negatlve v-quadrant when f 1is the density of a nonnegatlve
random variable. But what Interests us more than anything else are condltions
insuring that A C[0,b)X[a_,a ] for some finite constants b >0,a_<0,¢,>0. It
helps to note that the boundary of A can be found parametrically by
{(u(z),v(z)):z ER } where ' ‘

u(z)=v/(z),
v(iz)=zVv/[ (z).

Thus, A can be enclosed In a rectangle if and only If

(1) f (z) 1s bounded;
(1) z2f (z) 1s bounded.

Basleally, this lncludes all bounded densitles with subquadratic talls, such as the
normal, gamma, beta, t and exponential densities. From now on, the enclosing
rectangle will be called B =[0,b)X[a_,a ]. For the sake of slmpllclty, we will
only treat densltles satlsfylng (1) and (1) In this sectlon.
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The ratio-of-uniforms method

[SET-UP])
Compute b.a_.a, for an enclosing rectangle. Note that
b >supVf (z),6_<inf 2 VT (z),a,>sup 2 V] (z).
[GENERATOR]
REPEAT

Generate U uniformly on [0,b), and V uniformly on [a_a ).

\4
X -

UNTIL U< [ (X)
RETURN X

By Theorem I1.3.2, (U,V) I1s un!formly distributed In A . Thus, the algorlthm s
valld, l.e. X has denslty proportional to the function f . We can also replace [
by ¢f for any constant ¢ . This allows us to ellminate all annoylng normallzation
constants. In any case, the expected number of iterations is
b(a,-a.) 2b(a -a)
area A ’

[ (z)dz

This will be called the rejection constant. Good densltles are densitles In which A
fills up most of 1ts enclosing rectangle. As we will see from the examples, this is
usually the case when f puts most of its mass near zero and has monotonically

decreasing talls. Roughly speaking, most bell-shaped f are acceptable candl-
dates.

The acceptance condition U2<f (X) cannot be simplified by uslng loga-
‘rithmlc transformatlons as we sometimes did In the rejection method - thils Is
because U 1s explicltly needed In the deflnition of X . The next best thing 1s to
make sure that we can avold computing / most of the time. This can be done
by Introduclng one or more qulck acceptance and qulck rejection steps. Typlecally,
the algorlthm takes the followlng form.
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The ratio-of-uniforms method with two-sided squeezing
[SET-UP]
Compute b,a_a, for an enclosing rectangle. Note that
b >supvf (z),a_<infzVf (z)a,ZsupzVf ().
[GENERATOR]
REPEAT
Generate U uniformly on [0,b], and V uniformly on {a_,a ].
v
X~
U

IF [Quick acceptance condition]
THEN Accept « True
ELSE IF [Quick rejection condition]
THEN Accept < False
ELSE Accept «— [Acceptance condition ( U< f (X))
UNTIL Accept
RETURN X

In the next sub-section, we will give varlous qulck acceptance and quick rejectlon

conditions for the distributions listed In this Introductlon, and analyze the perfor-
mance for these examples.

7.2. Several examples.

‘We wlll need various Inequalities in the deslgn of squeeze steps. The follow-
Ing Lemma can be useful In this respect.
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Lemma 7.1.

(1) -z > log(l-z) > —-l—fz (0<z <1).
1) -z —32—2— > log(1-z)
2
> Ry 0<z <1).

(1) log(xz) <z-1 (z>0)

(1v) x-ﬁz— < log(1+7)
z? 28
< 1‘——2—+—é— <z (0<z<1)

2z +3z2

2(142 )? . s
< 22 +3z1“+2
2(1+2 )2
.'122

= -—_——"—2(1+x ) (IL’ 20)-

(v1) Reverse the Inequallties In (v) when -1 <z <0.

) < log(1+z)

Proof of Lemma 7.1.

Parts (1) through (1v) were obtalned In Lemma IV.3.2. By the Taylor serles
for g (z )=(1+z log(1+2z ), we see that

2
g@)=g¢g (o>+zg'(0)+—“§?—g"(e)

for some £ between 0 and T. But
g (0)=0,¢'(z )=log(1+z }-1,¢' (0)=1,¢" (z )=-1—:—T_—. Thus, for ¢ >0,
z

z? < < z*
x ——— —
+2(1+x) SeE)s e+t 2

This proves (v) and (v1). I

For varlous denslties, we list quick acceptance and rejectlon conditlons In
terms of u,v,r. When used in the algorithm, these runnlng variables should be
replaced by the random varlates U,V ,X of course. Other useful quantities such
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as the rejectlon constant and values for b,a_,a . are listed too.

Example 7.1. The normal density.
All of the above Is summarized in the table glven below:

f(z) e
.bzsup\/f(x) 1

a,=sup z vV f (z),ea_=infz V[ (z) %—-\/g

area (A) \/_;r:
4

Rejection constant

Acceptance condition —4logu

<
< 4(-cu +1+logec) (c >0)
<

4—4u

Quick acceptance condition
6—8u +2u’

<
2?2 < -461—1214 +6u’—-:-u3

4(—3——1—logc) (¢ >0)

>
Quick rejection condition 2> %—4

]

2 2
b3

H»
v

The table Is nearly self-explanatory. The qulck acceptance and rejection condl-
tlons were obtalned from the acceptance condition and Lemma 7.1. Most of these
are rather stralghtforward. The fastest experimental results were obtalned with
the third entrles In both lists. It 1s worth polnting out that the first quick accep-
tance and relectlon condltions are valid for all constants ¢ >0 Introduced In the
condltlons, by using Inequalities for log(uc ) given In Lemma 7.1. The parameter
¢ should be chosen so that the area under the qulck acceptance curve 1s maxl-
mal, and the area under the quick rejection curve is minlmal. .
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Example 7.2. The exponential density.
In analogy with the normal density, we present the followlng table.

f(z) e (2€R)
b =supv [ (z) 1
la,=supzv/f(z)a =infzVvf (z) E—,O
¢
area (A ) 2
e
Rejection constant 4
e
Acceptance condition z < —2logu
Quick acceptance condition z < 2(1-u)
r > 2.
u
Quick rejection condition
1 2
2 (u —:)
T > ——
T oeu '

It 1s Insightful to draw A and to construct simple quick acceptance and rejection
conditions by examining the shape of A. Since A 1s convex, several linear func-
tlons could be useful. Jj

Example 7.3. The t distribution.

The rat_lo—of-unlforms method has led to some of the fastest known algo-
rithms for the ¢ distributlon. In thls section, we omlit, as we can, the normaliza-
tlon constant of the { denslty with parameter a, which is

r(“'z”)

\/Er(g) |

Since for large values of a, the { density s close to the normal density, we would
expect that the performance of the algorithm would be slmllar too. This 1s Indeed

. : 4
the case. For example, as a —00o, the relection constant tends to 7_—, which 1s
: Te
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the value for the normal density.

f (2) | ——— (€R)
g &1L
(1+=) *
b=supvf (z) 1
=Y =y

a,==sup gV f (2),e_=infzV [ () 2a (a—:z_: s 2a (a—:z_l

(a+1) * (e+1) *_

a-1

/ 4
area (A) 2-——2-0—(—(5-;—&-——

(g+1)~‘—

8-l a1
4\/5}7((;—1)* I( 2 )

a+1

(a1 +  VmaDlo-

Rejection constant

4

Acceptance condition 22 < a(u—_"—’:’——l)
ﬂ-_l
Quick acceptance condition z? < 5-4u (1+-E—) *
_a+1
Quick rejection condition z2 > —3+%(1+%) * (only valid for a¢ =>3)

We observe that the ratlo-of-uniforms method can only be useful when a >1 for
otherwise A would be unbounded. The qulck acceptance and rejection steps fol-
low from Inequalitlies obtalned by Kinderman and Monahan (1979). The
corresponding algorithm is known In the literature as algorithm TROU: one can
show that the expected number of lterations Is uniformly bounded over a >1,

4
as ¢ —o0.
Ve

There are two lmportant speclal cases. For the Cauchy density {a =1), the

and that it varles from i at ¢ =1 to
™

acceptance condition Is u?%< 1 =, or, put differently, u?+v2<1. Thus, we

1+
obtaln the result that If (U,V) Is uniformly distributed In the unit circle, then

14
—U- Is Cauchy distributed. Without squeeze steps, we have:

A Cauchy generator based upon the ratio-of-uniforms method

REPEAT
Generate iid uniform [~1,1] random variates U,V .
UNTIL U%+V?<1

RETURN X @%
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For the ¢ denslty with 3 degrees of freedom (a =3),
2 1

2 ’
™3 (1+_:_z:§2_)

2 .
the acceptance condition Is %—-S-l——l, or v2<3u (1~u ). Thus, once agaln, the
u

acceptance region A 1Is ellipsoldal. The unadorned ratio-of-uniforms algorithm lIs:

t3 generator based upon ratio-of-uniforms method

REPEAT ;
Generate U uniformly on [0,1].

Generate V uniformly on [»l/z-_?-.izg-].
UNTIL V2<3U@(1-U)

RETURN X 4-—%

This is equlvalent to

t8 generator based upon ratio-of-uniforms method

REPEAT
Generate iid uniform [-1,1] random variates U,V .
UNTIL U?+V?<1

RETURN X «—V3—"
1+U

- 4
Both the Cauchy and ¢ 3 generators have obviously rejection constants of -7—'_-, and

should be accelerated by the judiclous use of quick acceptance and rejection con-
ditlons that are llnear In thelr arguments. JJj
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Example 7.4. The gamma density.

In thls example, we conslder the centered gamma (a ) denslty with mode at
the origln,

e 0-1
[ (@)= c————(z+a-1)*"eE+e-D) (3 44-1>0).
(a_l)a‘l -_
(a_l)a“l
Here ¢ 1s a normallzation constant equal to ————— which will be
e® 1 (a)

dropped.The table with facts 1s given below. Notlce that the expected number of

4
1teratlons 1s — at ¢ =1, and 4 as a —oo, Just as for the { denslity.
e ;;m:

Y —

f () ¢ (z+a-1)"e ) (g 4q-120)

(g-1)%"1

b ==supv [ (z) 1
a,=supz Vf (z),e_=infe v f (z) | 2./ f (2,) where 2z ,=1+v2a -1 ,z_/f (z_) where z_=1-v2a -1

area (A ) a.—a._

Rejection constant 2¢(6.-a_)
2L z+a-l
v < (c(z+a—1)) 2, re—
a-1
Acceptance condition
2logu +z < (e -1)log(1+ P )

(2 +a-12(-2u%+8u —8) < —2%(2z +a-1) (z >0)

Quick acceptance condition
(z +a-1)(-2u?+8u-6) < -z? (z <0)
- (z+a-1)(2u%-2) > —uz?® (z>0)

Quick rejection condition

(a -1)(2u?-2) > -uz? (z <0)

We leave the verification of the inequalities implicit In the qulck acceptance and
rejection steps 10 the readers. All one needs here 1s Lemma 7.1. Timlings with this
algorithm have shown that good speeds are obtalned for a greater than 5. The
algorithm 1s uniformly fast for a €[1,00). The ratlo-of-uniforms algorithms of
Cheng and Feast (1979), Robertson and Walls (1980) and Klnderman and
Monahan (1979) are different in conceptlon. |

7.3. Exercises.

1. For the quick acceptance and relectlon condltions for Student’'s ¢{ distribu-
tlon, the followlng inequallty due to Kinderman and Monahan (1979) was
used:

a-+1
4

a+1 4 4(1+—:-) |
5—4(1+=) * w < a(u °Fl-1) < -3+ - (u>0).
- |
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The upper bound Is only valid for ¢ >3. Show thils. Hint: first show that the
mlddle expression g (u ) Is convex In u . Thus,

g(u) = g(z)+(u-2)g'(z) .

Here z 1s to be plcked later. Show that the area under the qulck acceptance
a+1

1 4
curve i1s maximal when z=(1+-&-) , and substitute this value. For the

lower bound, show that g (¢ ) as a function of L Is concave, and argue simi-
U

larly.

2. Barbu (1982) has polnted out that when (U,V) Is uniformly distributed in
A={(v,v)0<u<f (v+v)}, then U+V has a density which Is propor-
tlonal to f . Simllarly, If In the definlitlon of A, we replace f (u+4v) by

2

v .3 V
(f (=—==)) , then —== has a denslty which is proportional to f . Show this.
Vu VU !

3. Prove the following property. Let X have density f and deflne
=V f (X )max(U,,U,) where U, U, are 1id uniform [0,1] random vari-
ables Deflne also U=Y_,V =XY. Then (U,V) Is uniformly distributed in

A={(u,v)0<u < f (—Z—)}. Note that this can be useful for rejectlon In

the (v ,v ) plane when rectangular rejection is not feasible.

4. In thls exerclse, we study sufficlent condlitions for convergence of perfor-
mances. Assume that f, Is a sequence of densltles converging In some sense
to a denslity f as n —oo. Let b, ,a_,,a_, be the defining constants for the
enclosing rectangles in the ratlo-of-uniforms method. Let b,a +:@_ be the
constants for f . Show that the relection constants converge,l.e.

lm bn (a—}-n-a-—n )=1b(a +'"a-)

when }
or when
sup z?| fa(z)-f ()| = o(1).

5. Glve an example of a bounded density on [0,00) for which the leglon A s
unbounded In the v-directlon, l.e. b ==o0.

8. Let f be a mixture of nonoverlapping uniform densitles of varylng widths
and helghts. Draw the reglon A .

7. From general principles (such as exercise 4), prove that the relection con-
stant for the ¢ distribution tends to the relectlon constant for the normal
denslty as a —oo0.
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8. Prove that all the qulck acceptance and rejJection Inequalities used for the
gamma denslty are valld.




