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Chapter Four 
SPECIALIZED ALGORITHMS 

1. INTRODUCTION. 

1.1. Motivation for the chapter. 
The maln technlques for random varlate generatlon were developed In 

chapters I1 and 111. These wlll be supplemented In thls chapter wlth a host of 
other technlques: these lnclude hlstorlcally lmportant methods (such as the 
Forsythe-von Neumann method), methods based upon speclflc propertles of the 
unlform dlstrlbutlon (such as the polar method for the normal denslty), methods 
for densltles that are glven as convergent serles (the serles method) and methods 
that have proven partlcularly successful for many dlstrlbutlons (such as the 
ratlo-of-unlforms method). 

T o  start off, we lnsert a sectlon of exerclses requlrlng technlques of chapters 
I1 and 111. 

1.2. Exercises. 
1. Give one or more reasonably emclent methods for the generatlon of random 

varlates from the followlng densltles (whlch should be plotted too to  galn 
some lnslght): 
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4. Show how one can generate a random varlate of one's cholce havlng a den- 
slty f on [O,oo) wlth the property that llmf (a: )=oo , f (. )>0 for all a : .  

Glve random varlate generators for the followlng slmple densltles: 
x 10 

5. 

Here G is Cat lan's constant (0.9 15965594 1772190.. . ). 
6. Flnd a dlrect method (l.e., one not lnvolving reJectlon of any klnd) for fen- 

eratlng random varlates wlth dlstrlbutlon functlon F (a: )=1-e - a x - b x  -'" 

Someone shows you the rejectlon algorlthm glven below. Flnd the denslty of 
the generated random varlate. Flnd the domlnatlng denslty used In the 
reJectlon method, and determlne the reJectlon constant. 

(a: >O), where a ,b ,c > O  are parameters. - 
7. 

REPEAT 
Generate iid uniform [0,1] random variates U,,  U,, Us. 

UNTIL us(l+ u, U2)5 1 
RETURN X+-lOg( U, U,) 

8. Flnd a slmple functlon of two lld unlform [0,1] random varlates whlch has 
(a: >O). Thls dlstrlbutlon func- dlstrlbutlon functlon F (a: )=l- 

n. 
.Ir 

tlon 1s lmportant In the theory of records (see e.g. Shorrock, 1972). 

Glve slmple rejectlon algorlthms wlth good reJectlon constants for generatlng 
dlscrete random varlates wlth dlstrlbutlons determlned as follows: 

9. 
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10. The hypoexponential distribution. Glve a unlformly fa s t  generator for 
the family of hypoexponentlal densltles glven by 

where p>h>O are the parameters of the dlstrlbutlon. 
! 

2. THE FORSYTHEVON NEUMANN METHOD. 

2.1. Description of the method. 
In 1951, von Neumann presented an lngenlous method for generatlng 

exponentlal random varlates whlch requlres only comparlsons and a perfect unl- 
form [0,1] random varlate generator. The exponentlal dlstrlbutlon 1s entlrely 
obtalned by manlpulatlng the outcomes of the comparlsons. Forsythe (1972) later 
generallzed the technlque to  other dlstrlbutlons, albelt at the expense of slmpll- 
clty slnce the method requlres more than Just comparlsons. The method was then 
applled wlth a great deal of success In normal random varlate generatlon (Ahrens 
and Dleter, 1973; Brent, 1974) and even In beta and gamma generators (Atklnson 
and Pearce, 1976). Unfortunately, in the last decade, most of the algorlthms 
based on the Forsythe-von Neumann method have been surpassed by other algo- 
rlthms partlally due to  the dlscovery of the allas and acceptance-complement 
methods. The method 1s expenslve In terms of unlform [0,1] random varlates 
unless speclal ”trlcks” are used t o  reduce the number. In addltlon, for general dls- 
tributlons, there 1s a tedlous set-up step whlch makes the algorlthm vlrtually 
lnaccesslble to the average user. 

Just how comparlsons can be manlpulated to create exponentlally dlstrl- 
buted random varlables 1s clear from the followlng Theorem. 

I 
._ 
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Theorem 2.1. 
Let X 1 , X 2 ,  ... be lld random varlables wlth dlstrlbutlon functlon F . Then: 

(1) P ( s  L X , ?  . * . zxk-l<xk) = F ( ~ ) ~ - l  - F ( z ) ~  (all x ). ( k  -I)! I C !  
(11) If the random varlable I< 1s determlned by the condltlon 
2 Z X  1 -  > . 
(111) If Y has dlstrlbutlon functlon G and 1s lndependent of the X j  ' s ,  and If 
K 1s deflned by the condltlon Y z x l L  * . * > X K - ~ < X K ,  then 

. > X K - , < X ~ ,  then P ( K  odd) = ,all x. 

z 

e - F ( y )  dG (y ) 
-03 

(all x )  . 
+W 

P ( Y 5 x  ( K  o d d ) =  

I e - F ( y )  dG (y ) 
-03 

Proof of Theorem 2.1. 
For Axed x , 

Thus, 

- F (x),-l - F - 
( I C  -l)! I C !  

Also, 

Part (111) of the theorem flnally follows from the followlng equalltles: 
2 2 

P(YLx,K odd) = J P ( K  odd I Y = y )  d G ( y )  = J d G ( y ) ,  
-00 -W 

+03 

P(IC odd) = e - F ( y )  d G ( y )  .I 
-03 
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We can now descrlbe Forsythe’s method (Forsythe, 1972) for densltles f 
which can be wrltten as follows: 

f ( I I : )  = cg (a: ) e - F ( z )  , 

where g 1s a denslty, O s F  (5 )s1 is some functlon (not necessarily a dlstrlbutlon 
function), and c 1s a normallzatlon constant. 

Forsythe’s method 

REPEAT 
Generate a random variate x with density g . 
W’F(X) 
K +-I 

Stop 4- False (Stop is an auxiliary variable for getting out of the next loop.) 
REPEtiT 

Generate a uniform [0,1] random variate u . 
IF u > w  

THEN Stop + True 

ELSE W + U ,K +K +1 
UNTIL Stop’ 

UNTIL K odd 
RETURN x 

We wlll flrst verlfy wlth the help of Theorem 2.1 that thls algorlthm 1s valld. 
Flrst, for Axed X=x  , we have for the first lteratlon of the outer loop, 

P ( K  odd) = 

Thus, at the end of the flrst lteratlon, 

P ( X  iz ,I< odd) = 
2 

e - F ( y ) g  (y ) dy 
4 0  

Arguing as In the proof of the propertles of the rejectlon method, we deduce that: 

(1) The returned random varlate X satlsfles 
2 

P ( X  5x1 = J c e - F ( y ) g  (y  dy . 

Thus, I t  has denslty ce - F ( z  ) g  (x ). 

(11) The expected number of outer loops executed before haltlng 1s - where p is 

the probabillty of exlt, Le. p =P (I( odd)= 

-03 

1 

P +oo 
e - F ( y ) g  (y ) dy  . 

-00 



(111) In any slngle iteration, 

= J e F ( z )  g ( a : )  da: . 
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3N (iv) If N Is the total number of uniform [O,l] random v 
Wald’s equation) 

ria then 

In addltlon to the N unlform random varlates, we also need on the average - 1 

P random varlates with density 9 .  It should be mentioned though that g 1s often 
unlform on [0,1] so that thls causes no major drawbacks. In that case, the total 
expected number of unlform random variates needed is at least equal to  
I I f I I oo (thls follows from Letac’s lower bound). From (iv) above, we deduce 

that 

2 5 E ( N )  5 - l + e  = e + e 2 .  
1 
e 
- 

Observe that Forsythe’s method does not requlre any exponentlatlon. There 
are of course about - evaluatlons of F .  If we were to use the rejection method 

with as domlnatlng density g ,  then p would be exactly the same as here. Per 
Iteration, we would also need a g-dlstrlbuted random variate, one uniform ran- 
dom varlate, and one computation of e-F.  In a nutshell, we have replaced the 
latter evaluation by a (usually) cheaper evaluation of F and some additional unl- 
form random variates. If exponentlal random varlates are cheap, then we can in 
the reJectlon method replace the eWF evaluatlon by an evaluation of F If we 
replace also the unlform random varlate by the exponentlal random varlate. In 
such situatlons, i t  seems very unllkely that Forsythe’s method wlll be faster. 

One of the dlsadvantages of the algorlthm shown above is that F must take 
values In [0,1], yet many common denslties such as the exponential and normal 
densities when put In a form useful for Forsythe’s method, have unbounded F 

such as F (x )=a: or F (x )=- . To get around thls, the real line must be broken 
up into pieces, and each plece treated separately. This wlll be documented 
further on. It should be pointed out however that the reJection method for 
f =ce-F g puts no restrictions on the size of F .  

1 

P 

X 2  

2 
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2.2. Von Neumann’s exponential random variate generator. 
A basic property of the exponentlal dlstribution is glven in Lemma 2.1: 

I Lemma 2.1. 
An exponentlal random variable E 1s dlstributed as (2-l)p+Y where Z,Y 

are independent random varlables and p>O is an arbltrary posltlve number: Z Is 
geometrically dlstrlbuted wlth 

i P  

( i - -1)P 
(i 21) 9 

P ( z = ~ ) =  J e-* dz = e - ( i - I ) ~ - e  - i ~  

I and Y Is a truncated exponentlal random varlable wlth denslty 

Proof of Lemma 2.1. 
S t ralg h t forw ar d . 

If we choose p = l ,  then Forsythe’s method can be used dlrectly for the gen- 
eratlon of Y .  Slnce in thls case J’ (z )=z , nothlng but unlform random varlates 
are requlred: 



126 N.2.FORSYTHEVON NEUMANN METHOD 

van Neumann’s exponential random variate generator 

REPEAT 
Generate a uniform [0,1] random variate Y. Set W t Y . 
K+l 
Stop + False 
REPEAT 

Generate a uniform [0,1] random variate u . 
IF u > w  

THEN Stop t- True 
ELSE w+- U ,K +K +-I 

UNTIL Stop 
UNTIL K odd 

i -1  

Generate a geometric random variate Z with P (2 = i  )=(i--)(-) ( i  2 1). e e  
RETURN X +( Z -I)+ Y 

The remarkable fact 1s that thls method requlres only comparlsons, unlform ran- 
dom varlates and a counter. A qulck analysls shows that 

1 

p =P (I(odd)=Se-’ dx = 1-’. Thus, the expected number of unlform ran- 
e 0 

dom varlates needed 1s 

Thls 1s a hlgh bottom Ilne. Von Neumann has noted that t o  generate 2 ,  we need 
not carry out a new experlment. It sufflces to  count the number of executlons of 
the outer loop: thls 1s geometrlcally dlstrlbuted wlth the correct parameter, and 
turns out to be lndependent of Y .  
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2.3. Monahan’s generalization. 

lng random varlates X wlth dlstrlbutlon functlon 
Monahan (1979) generallzed the Forsythe-von Neumann method for generat- 

where 

n =I 

l=a  I l a , > ,  * . 
tlon function. 

20 1s a glven sequence of constants, and G 1s a glven dlstrlbu- 

Theorem 2.2. (Monahan, 1979) 

function F : 
The followlng algorlthm generates a random varlate X wlth dlstrlbutlon 

Monahan’s algorithm 

REPEAT 
Generate a random variate X with distribution function G . 
K t i  
Stop t False 
REPEAT 

Generate a random variate u with distribution function G . 
Generate a uniform [0,1] random variate v. 

aK + i  IF u<x AND v<- 
QK 

THEN K +K +1 
ELSE Stop + True 

UNTIL Stop 
UNTIL K odd 
=TURN X 

The expected number of random varlates wlth dlstrlbutlon Punctlon G Is 

i+H (1) 
-H (-1) * 
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Proof of Theorem 2.2. 

where the vi's refer to the random varlates 
the Zi 's are Bernoulll random variables equal to consecutlve values of I 

We deflne the event A, by [X'=max(X,U,, . . . , U,),Z,= . . . =z, =1], 
generated In the inner loop, and 

a,+, . 
IV_<--I 

a, 
Thus, 

We will 

P ( X s x , A , )  = a, G ( s ) ,  , 
P ( X S x , A , , A n + l C )  = an G ( X ) ~ - U , + , G ( Z ) ~ + ~  . 

call the probability that x Is accepted p o .  Then 
00 

P O  = P ( K  Odd) = an (-I),+' = H(-1) . 
n =I 

Thus, the returned X has dlstrlbution function 

The expected number of G -distributed random varlates needed 1s E ( N )  where 

an -an +I 03 

= (n+1)  
n =I P o  

Example 2.1. 
Consider the dlstrlbutlon functlon 

F ( x )  = 1-cos(-) 7i-X (053 51) . 2 

To put thls In the form of Theorem 2.2, we choose another dlstrlbutlon functlon, 
G ( a ) = x 2  ( O s x  sl), and note that 
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where 
7r2i-2 . 

H ( z )  = x + - x 2 + -  .T2 7r4 x 3 + .  . . f .  z t + .  . . 
48 5760 22t-3(2i )! 

8 One can easlly show that po=H(-l)=-, whlle E ( N )  1s approxlmately 2.74. 

Also, all the condltlons of Theorem 2.2 are satlsfled. Random varlates wlth this 
dlstrlbutlon functlon can of course be obtalned by the lnversion method too, as 
2 -arccos(U) where U 1s a unlform [0,1) random varlate. Monahan's algorlthm 

avoids of course any evaluatlon of a transcendental functlon. The complete algo- 
rithm can be summarlzed as  follows, after we have noted that 

7r2 

7r 

an + I  7 r 2  1 -- - (-I an 2 (2n+2)(2n+1) * 

REPEAT 
Generate X+max( U , ,  v,) where u,, Uz are iid uniform [0,1] random variates. 
K-1 
Stop - h s e  
REPEAT 

Generate U , distributed as X. 
Generate a uniform [0,1] random variate v. 

l r 2  

IFusxANDv< 
4K2+6K +2 

THEN K -K +1 

ELSE Stop + True 
UNTIL Stop 

UNTIL K odd 
RETURN x 

I 
1 

! 
- 
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2.4. An example: Vaduva's gamma generator. 
We wlll apply the Forsythe-von Neumann method to develop a gamma gen- 

erator when the parameter u 1s In (0,1]. Vaduva (1977) suggests handllng the 
part of the gamma denslty on [0,1] separately. Thls part 1s 

( x )  = c ( ~ z ' - ~ ) e - '  (O<S 51) , 
where c is a normallzatlon constant. Thls 1s in the form cg ( ~ ) e - ~ ( ~ )  for a den- 
slty g and a [O,l]-valued functlon F . Random varlates wlth denslty g (z )=uz '-' 
can be generated as U ' where u 1s a unlform [0,1] random varlate. Thus, we 
can proceed as follows: 

1 - 

Vaduva's generator for the left part of the g a m m a  density 

REPEAT 
1 - 

Generate a uniform [0,1] random variate u.  Set X t U  a 

w + x  
K -1 
Stop t False 
REPEAT 

Generate a uniform [0,1] random variate U . 
IF u > w  

THEN Stop +- True 
ELSE W i- U ,K +-K +I 

UNTIL Stop 
UNTIL K odd 
RETURN X 

Let N be the number of unlform [0,1] random varlates requlred by thls method. 
Then, as we have seen, 

1 

1+Sux '-'e dz 

S u x  '-le-' dx 

0 
E ( W =  1 

0 



IV.2.FORSYTHE-VON NEUMANN METHOD 

Lemma 2.2. 
For Vaduva's partlal gamma generator shown above, we have 

n 

Proof of Lemma 2.2. 
Flrst, we have 

1 1 

1 = SUX"-' dx 2 Saxa-le-z  dx 
0 0 

Also, 

= &(e-') 

2 e (by Jensen's lnequallty) 

( where Y 1s a random varlable wlth denslty ax'-') 

1 

1 5 Juxa - l ez  ds 

a a 
0 

+ = 1+- + . . . (by expanslon of e ' ) 
a+1 2 ! ( a + 2 )  

< l + a ( l + ~ + ~ +  1 1  * . ) - 

= l + a ( e - i ) .  

131 

Puttlng all of thls together glves us the flrst lnequallty. Note that the supremum 
of the upper bound for E ( N )  1s obtalned for a =l. Also, the llmlt as a 10 fol- 
lows from the Inequallty. 

What 1s lmportant here 1s that the expected tlme taken by the algorlthm 
remalns unlformiy bounded In a .  We have also establlshed that the algorlthm 
seems most emclent when a 1s near 0. Nevertheless, the algorlthm seems less 
efflclent than the rejectlon method wlth domlnatlng denslty g developed In 
Example 11.3.3. There the rejectlon constant was 

1 

s a x a - l e - z  dx 

c =  
1 

0 
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a - 
whlcli 1s lcnown to Ile between 1 and e '+' . Purely on the bask of expected 
number of unlform random varlates required, we see that the rejectlon method 

has 2 < E  ( N ) 5 2 e  '+' 5 2 & .  Thls 1s better than for Forsythe's method for all 
values of a .  See also exercise 2.2. 

a - 

2.5. Exercises. 
1. Apply Monahan's theorem t o  the exponentlal dlstrlbutlon where 

H ( x ) = e Z - l ,  G ( s ) = x , O < x < l ,  and F ( x ) =  . Prove that 
( l - e -x )  

1 
1-- 

e 
1 e 
e e -1 

po=l-- and that E(N)=-  (Monahan, 1979). 

We can use decomposition to generate gamma random varlates wlth parame- 
ter a 51. The restrlctlon of the gamma density to  [0,1] 1s dealt wlth In the 
text. For the gamma denslty restricted to [l,co) rejectlon can be used based 
upon the domlnatlng denslty g (x)=e '-' (x 21). Show that thls leads to 
the followlng algorlthm: 

2. 

REPEAT 
Generate an exponential random variate E .  Set X t i t - E .  

Generate a uniform [0,1] random variate u .  Set Y.-u '-'. 
1 -- 

UNTIL X 5 Y 
RETURN x 

1 
Show that the expected number of lteratlons 1s o3 , and that thls 

S e  l-x X a - '  dx 
1 

1 
varles inoiiotoiilcally from 1 (for a =I) to oo a Lo). 

dx 5 
3. Complicated densltles are often cut up into pleces, and each plece 1s treated 

separately. Thls usually ylelds problems of the followlng type: 
f (x )=ce-F(2) ( a  sx Sb) ,  where O < F ( x ) < F * < l ;  - - - and F* 1s usually 
much smaller than 1. Thls 1s another way of putting that f varles very llt- 
tle on [ a  ,b 1. Show that the expected number of unlform randoin varlates 
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needed In Forsythe's algorlthm does not exceed e F* +e 2F*. In other words, 
thls approaches 2 very qulckly as F* lo. 

3. ALMOST-EXACT INVERSION. 

3.1. Definition. 
A random variate wlth absolutely continuous distribution functlon F can be 

generated as F-'(U) where U Is a uniform [O,i] random variate. Often, F-' Is 
not feaslble to compute, but can be well approxlmated by an easy-to-compute 
strictly lncreaslng absolutely contlnuous functlon $. Of course, $( U) does not 
have the deslred dlstrlbutlon unless 7/l=F-l. But I t  is true that $ ( Y )  has dlstrl- 
butlon functlon F where Y Is a random variate wlth a nearly uniform denslty. 
The denslty h of Y Is glven by 

where f Is the denslty corresponding to F .  The almost-exact Inversion method 
can be summarlzed as follows: 

Almost-exact inversion 

Generate a random variate Y with density h . 
RETURN $( Y) 

The polnt 1s that we galn If two condltlons are satlsfled: (1) $ Is easy to compute; 
(11) random variates wlth denslty h are easy to generate. But because we can 
choose $ from among wide classes of transformatlons, lt should be obvlous that 
thls freedom can be explolted to make generation wlth density h easler. Mar- 
saglla (1977, 1980, 1984) has made the almost-exact lnverslon method Into an art. 
Hls contrlbutlons are best explalned In a serles of examples and exercises, Includ- 
Ing generators for the gamma and t dlstrlbutlons. 

Just how one measures the goodness of a certaln transformatlon 1c, depends 
upon how one wants to generate Y .  For example, If straightforward rejection 
from a uniform denslty Is used, then the smallness of the reJectlon constant 

c = sup h (y) 
Y 

would be a good measure. On the other hand, If h Is treated via the mlxture 
method and h 1s decomposed a s  
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then the probablllty p 1s a good measure, slnce the resldual denslty T Is normally 
dlfIlcult. A value close to 1 1s hlghly deslrable here. Note that In any case, 

Thus, 2L, wlll often be chosen so as to mlnlmlze c or to  maxlmlze p ,  dependlng 
upon the generator for h . 

All of the above can be repeated If we take a convenlent non-uniform dlstri- 
butlon as our startlng polnt. In partlcular, the normal density seems a useful 
cholce when the target densities are the gamma or t densltles. Thls generallzatlon 
too wlll be discussed In thls section. 

3.2. Monotone densities on [O,.oo). 

Nonlncreaslng densltles f on the posltlve real llne have sometimes a shape 
A U 

that 1s slmllar t o  that of where B>O 1s a parameter. Slnce thls 1s the 
(1+9x l2 

OX 
denslty of the dlstrlbutlon functlon - , we could look at transformations $ l+ex 
deflned by 

In thls case, h becomes: 

For example, for the exponentlal denslty, we obtaln 
U 

Assume that we use reJectlon from the unlform density for generatlon of random 
varlates wlth denslty h . Thls suggests that we should try t o  mlnlmize sup h . By 
elementary computatlons, one can see that h 1s maxlmal for 1-y=-, and that 

the maxlmal value 1s 

1 
29 

1 
--2 

40e e , 
4 

e 
whlch is mlnlmal for 8=1. The mlnlmal value 1s -= 1.4715177 .... The rejectlon 

algorlthm for h requlres the evaluation of an exponent In every Iteratlon, and Is 
therefore not competltlve. For thls reason, the composltlon approach is much 
more llkely to  produce good results. 
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3.3. Polya's approximation for the normal distribution. 
In thls sectlon, we wlll Illustrate the composltlon approach. The example 1s 

due to Marsaglla (1984). For the lnverse F-' of the absolute normal dlstrlbutlon 
functlon F , Polya (1949) suggested the approxlmatlon 

$(?I 1 = d-8log(l-y 2, (059 51) 9 

7r 

2 
where he took d=-. Let us keep 8 free for the tlme belng. For thls transforma- 

tlon, the denslty h (y ) of Y 1s 
e 

--1 

Let us now choose 8 so that lnf h ( y )  Is maxlmal. Thls occurs for 6-1.553 
l0,11 

(whlch 1s close to but not equal to Polya's constant, because our crlterlon for 
closeness 1s dlfferent). The correspondlng value p of the lnflmum 1s about 0.985. 
Thus, random varlates with denslty h can be generated as shown In the next 
algorithm: 

Normal generator based on Polya's approximation 

Generate a uniform [0,1] random variate u . 
IF U < p  ( p  is about 0.985 for the optimal choice of 6) 

U 
P 

THEN RETURN $(-) (where $ ( y ) = d - B l o g ( l - y ' )  ) 

ELSE 

Generate a random variate Y with residual density ( h  (y 1-p (Oiy 51). 
(1-P 1 

RETURN $( Y )  

The detalls, such as a generator for the resldual denslty, are delegated to exerclse 
3.5. It Is worth polntlng out however that the unlform random varlate U 1s used 

U In the selectlon of a mlxture denslty and In the returned varlate $(-). For thls 
P 

reason, I t  1s "almost" true that we have one normal random varlate per unlform 
random varlate. 
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Method 

Freeman-Tukey 

3.4. Approximations by simple functions of normal random variates. 
In .analogy wlth the development for the unlform dlstrlbution, we can look 

at other common distrlbutions such as the normal distribution. The question 
now 1s to And an easy to  compute functlon ?+!I such that ?+!I( ?‘> has the deslred den- 
sity, where now y is nearly normally distrlbuted. In fact, y should have denslty 
h given in the introduction: 

h (Y 1 = f (?&Y > > l y ( Y  1 (Y 1 . 
Usually, the purpose is to  maximlze p in the decomposltlon 

+(Y 1 Reference 

U f Y 6  Central limit theorem 

Freeman and Tukey (1950) (y +G )2 
A 

where r is a residual density. Then, the followlng algorithm suggested by Mar- 
saglia (1984) can be used: 

Wilson-Hilferty 

Marsaglia 

Marsaglia’s almost-exact inversion algorithm 

Wilson and Hilferty (1931) 

Marsaglia (1984) 

a (++I--) l J  
9 a  ga 

0.16 
a --+py 6 +- Y2 , p =1-- 

a 
1 

Generate a uniform [O,l] random variate U .  
IF USP 

THEN Generate a normal random variate Y . 
ELSE Generate a random variate Y with residual density T 

RETURN $J( Y) 

For the selectlon of $J, one can elther look at large classes of slmple functlons or 
scan the llterature for transformations. For popular distrlbutions, the latter route 
is often surprlsingly emclent. Let us lllustrate thls for the gamma ( a  ) density. In 
the table shown below, several choices for @ are glven that transform normal ran- 
dom variates In nearly gamma random varlates (and hopefully nearly normal ran- 
dom varlates into exact gamma random varlates). 

j ( Y + k i ) 2  

I 

Fisher 

In this table we omitted on purpose more complicated and often better approxi- 
matlons such as those of Cornish-Fisher, Severo-Zelen and Peizer-Pratt. For a 
comparatlve study and a blbllography of such approxlmatlons, the reader should 
consult Narula and Li (1977). Bolshev (1959, 1963) glves a good account of how 
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one can obtain normalizing transformations In general. Note that our table con- 
talns only simple polynomial transformations. For example, Marsaglla's quadratlc 
transformation is such that 

Y 2  
1 -- 

, h ( ? d = p ( -  e )+(l-p I T  (Y I 7 6 
0.16 

a 
where p=l-- . For example, when a =16, we .,ave p =O.,,. See exerclse 3.1 

for more lnformation. 
The Wilson-Hilferty transformatlon was flrst used by Greenwood (1974) and 

later by Marsaglla (1977). We flrst verify that h now 1s 

h ( y )  = Cz3~-i -az3 Y 1 
e (2 =-+1-- >O) , Jsa 9 a -  

where c Is a normallzatlon constant. The algorithm now becomes: 

Gamma generator based upon the Wilson-Hilferty approximation 

Generate a random variate Y with density h , 
RETURN x+$(Y)=a ( r + i - - )  Y l 3  

9 a  QU 

Generation from h 1s done now by rejection from a normal density. The detalls 
require careful analysis, and i t  is worthwhlle to do this once. The normal density 
used for the rejectlon differs slightly from that used by Marsaglla (1977). The 
story is told In terms of lnequalitles. We have 

Lemma 3.1. 
I 1 

3a-1 3 
) . Deflne 

,z 20 (note: this 1s a density in y , not In z )  , 

1 Y +1-- 1 , and zo=(- Assume that a >-. Deflne z =- 
3 6 ga 3a 

the density h (y ) = cz3'-l e 
where c is a normallzatlon constant. Then, the following lnequality 1s valld for 
z 2 0 :  

1 where 02= 
1 
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Proof of Lemma 3.1. 

lnstead of h (y ) for notational convenience. Thus, 
The proof 1s based upon the Taylor serles expanslon. We wlll wrlte e g ( ' )  

g ( 2 )  = -az3+(3a -1)lOgZ +lOgC . 

Thls functlon 1s majorlzed by a quadratic polynomial In z for thls wlll glve us a 
normal domlnatlng denslty. In such sltuatlons, l t  helps to expand the functlon 
about a polnt zo. Thls polnt should be picked In such a way that I t  corresponds 
to the peak of g because dolng so wlll ellmlnate the llnear term In Taylor's serles 
expanslon. Note that 

3U -1 
g ' ( Z )  = -3UZ2+- , 

Z 
3 a  -1 

g " ( z )  =.-6az-- , 
Z 2  

6 a  -2 
g"'(Z ) = -6a +- 

- 3  * 

We see that g'(z )=0 for z =zo. Thus, by Taylor's serles expanslon, 

where 
that 

1s In the lnterval [ z , zo ]  (or [ zo ,z ] ) .  We obtain our result If we can show 

sup g"(Q 5 -- 1 . 
€20 a2 

1 

3a-1 3 
But when we look at g'", we notlce that i t  1s zero for z=(- ) . It 1s not r-lU 

dlfflcult to verlfy that for thls value, g" attalns a maximum on the posltlve half 
of the real Ilne. Thus, 

1 

sup g"(C) 5 -9a (1-- 1 )" 
€20 3 a  

Thls concludes the proof of Lemma 3.1. 

The flrst verslon of the reJectlon algorlthm 1s glven below. 

I 
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First version of the Wilson-Hilferty based gamma generator 

[SET-UP] 

[GENERATOR] 
REPEAT 

Generate a normal random variate N and a uniform (0,1] random variate U ,  
Set Z+-z,+aN 

-a ( ~ 3 - ~ ~ 3 )  
3a-1 

(Z-td2 -- 
UNTIL z 20 AND Ue 2a2 Lc-) e 

RETURN x+43 
ZO 

139 

Y 1 Note that we have used here the fact that  z=-+1--. There are two 

thlngs left to the deslgner. Flrst, we need to check how emclent the algorlthm is. 
Thls In effect bolls down to verlfylng what the rejectlon constant 1s. Then, we 
need to streamllne the algorlthrn. Thls can be done In several ways. For example, 
the acceptance condltlon can be replaced by 

6 9a  

z 
<(3~ --1)iog(-)-a (Z3--2O3) (2 -2 Ol2 

UNTIL z 20 AND -E- 
2a2 - Z O  

where 8 1s an exponentlal random variate. Also, (2 -2 0>2 1s nothlng but -. N 2  
2a2 2 

Addltlonally, we could add a squeeze step by uslng sharp lnequalltles for the loga- 
rlthm. Note that -=1+=, so that for large values of a ,  1s close to  z o  

whlch In turn Is close to 1. Thus, lnequalltles for the logarlthm should be sharp 
near 1. Such lnequalltles are glven for example In the next Lemma. 

2 
Z O  20 
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~ ~~ 1 Lemma 3.2. 

I Let x E[O,l). Then the followlng serles expanslon Is valld: 

I Thus, for k 21, 
k l '  1 .  l X k  -2' > log(1-x) 2 - E -2' --- - 

k 1-x - 
i=1 2 i < k  

Furthermore, for z SO, and kodd, 
k + l 1  . k l ;  -c -xl  5 log(1-x) 5 -E -3 . 

. a  i=1 2 1 =1 

Proof of Lemma 3.2. 
We note that In all cases, 

k l .  X k  

1 . i  =1 k (Wk 
-log(l-x) = -xl  + 

where c 1s between 0 and x . The bounds are obtalned by looklng at the k-th 
term In the sums. Conslder Arst O_<cLx <l. Then, the k-th term 1s at least 

. If x LcSO and k 1s odd, then the same 1s true. If however k 1s equal to - 
even, then the k - t h  term 1s majorlzed by -. 

X k  

k 
X k  

k 
We also note that  for OSx  <1, 

1 
2 

. . . < x + . * . +-xk 1 ( l+x+x2+x3+ . . ) 
k - -log(l-x ) = x +-x2+ 

Let us return now to the algorlthm, and use these lnequalltfes t o  avold com- 
putlng the logarlthm most of the tlme by lntroduclng a qulck acceptance step. 
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Second version of 'the Wilson-Hilferty based gamma generator 

[SET-UP] 

141 

[GENERATOR] 
REPEAT 

Generate a normal random variate N and an exponential random variate E .  
Set 2 +to+aN (auxiliary variate) 
Set X+aZ3 (variate to be returned) 

w+- aN (note that W=i--) Z O  

2 z 
N2 

Set S +-E -- +(X- t  1) 

.Accept + ( s S ( a a - l ) ( W + ~ W a + l W 3 ) 1  AND [ Z ~ O ]  

IF NOT Accept 

2 

3 

THEN Accept +[S <-(sa -l)log(l-W)] AND [Z 201 
UNTIL Accept 
RETURN x 

In thls second verslon, we have Implemented most of the suggested lmprove- 

algorlthms proposed In Greenwood (1974) and Marsaglla (1977). Obvlous things 

rule, are not usually shown In our algorlthms. There are two quantities that 
should be analyzed: 
(1) The expected number of lteratlons before halting. 
(11) The expected number of computations of the logarithm In the acceptance 

step (a comparlson wlth (1) wlll show us how efflclent the squeeze step Is). 

ments. The algorlthm 1s only appllcable for a >- 1 and dlffers sllghtly from the 

such as the observation that ( W+- 1 W2+- 1 W 3 )  should be evaluated by Horner's 

3 

2 3 
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The expected number of lteratlons of the algorlthm glven above (or Its reJec- -1 Lemma 3.3. 

tlon constant) is 

1 - 
For a 2 -, 1 thls 1s less than e ". It tends to 1 as a +oo and to 00 as a 1-. 1 

2 3 

Proof of Lemma 3.3. 
The area under the domlnatlng curve for h 1s 

M ( z -2 Ol2 

1 

. Slnce dy=& d z ,  we 1 3 a - 1 ) 3  where we recall that z=- Y +1--, zo=(- Jsa 9a  3a 
see that this equals 

3 4  -1 e - 4 z t c  1 = c z o  2n 
1 

1 1 - 1 
4 -- 3 - a + -  

)(=) e , 
&a 4 - 1  

r(a 1 3a 3a -1 
= (  

Here we used the fact that the normallzatlon constant c In the deflnltlon of h 1s 
G a  4 - 1  

r(a 1 
, whlch is verlfied by notlng that 

The remainder of the proof 1s based upon simple facts about the I? functlon: for 
example, the functlon stays bounded away from 0 on [0,00). Also, for a >0, 

where Osds1. We wlll also need the elementary exponentlal lnequalltles 
PZ -- 

e-P2 > - (1-z)P 2 e 1-2 ( p  >o,oLs 51) . 
Using thls In our expresslon for the reJectlon constant glves an upper bound 
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1 1 -a +- a -- & a a - l e a G e  3 (3a-I) 2 
c 

a a  d2n ’ 3a 
1 a -- I - 

- 3  1 2  - e (I--) 
3a  

1 1 --(a --)(3a )-I < e 3  2 - 

L whlch Is 1+-+0(&)  as a - m .  
6 a  a 2  

From Lemma 3.3, we conclude that the algorlthrn Is not unlformly fast  for 
a E(-,m). 1 On the other hand, slnce the reJectlon constant Is 1+-+0 1 (-) 1 as 

6 a  a 2  3 
a +m, I t  should be very emclent for large values of a .  Because of thls good At, I t  
does not pay to lntroduce a qulck reJectlon step. The qulck acceptance step on 
the other hand Is very effectlve, slnce asymptotlcally, the expected number of 
computatlons of a logarlthm 1s 0 (1) (exerclse 3.1). In fact, thls example Is one of 
the most beautlful appllcatlons of the effectlve use of the squeeze prlnclple. 

3.5. Exercises. 
1. 

2. 

Conslder the Wllson-Hllferty based gamma generator developed In the text. 
Prove that the expected number of logarlthm calls 1s o (1) as a --too. 
For the same generator, give all the detalls of the proof that the expected 
number of lteratlons Oends to 00 as a J-. 

For Marsaglla’s quadratlc gamma-normal transformatlon, develop the entlre 
comparlson-based algorlthm. Prove the valldlty of hls clalms about the value 
of p as a function of a .  Develop a Axed residual denslty generator based 
upon rejectlon for 

1 
3 

3. 

r * ( z )  = sup r ( 5 ) .  
a 2 a o  

Here a. 1s a real number. Thls helps because I t  avolds settlng up constants 
each tlme. See Marsaglla (1984) for graphs of the resldual densltles T . 

4. Student’s t -distribution. Conslder the t -denslty 
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Find the best constant p If f 1s to  be decomposed lnto a mlxture of a nor- 
mal and a resldual denslty ( p  1s the welght of the normal denslty). Repeat 
the same thlng for h (y  ) If we use almost-exact lnverslon wlth transforma- 
tlon 

?NY 1 = Y +? Y +Y3 

Compare both values of p as a functlon of a .  (This transformation was sug- 
gested by Marsaglla (1984).) 

Work out all the detalls of the normal generator based on Polya's approxl- 
matlon. 
Bolshev (1959, 1963) suggests the followlng transformations whlch are sup- 
posed to produce nearly normally dlstrlbuted random varlables based upon 

sums of lld unlform [0,1] random varlates. If X, 1s && Vi where the 

Vi's are lid unlform [0,1] random varlates, then 

5. 

6. 

: = 1  

and 
41 2, = x,- (Xn 5-10X, 3+15X, ) 

13440n 

are nearly normally dlstrlbuted. Use thls to generate normal random varl- 
ates. Take n =1,2,3. 

1 - 
e *  6 

Show that the rejectlon constant of Lemma 3.3 1s at most (- ) 
1 1 

- < a  <-. 
3 - 2  

7. when 
3a -1 

8. For the gamma'denslty, the quadratlc transformations lead to very slmple 

rejectlon algorlthms. As an example, take s = a  --,t 1 = A. Prove the 
following: 

A. 

2 

The denslty of X=s  ( --1) (where 2 1s gamma ( a  ) dlstrlbuted) 1s 

2 2  -- 
fi 

2 a - 1  

f (z)  = c (I+-) e-22 e ' (5 2 - s  1 S 

where c =2s a - 1 c - ' 2 / r ( a  ). 
B. We have 

2 2  -- f ( z )  L ce s . 

C. If thls lnequallty 1s used to generate random varlates wlth denslty f , 

then the rejectlon constant, c 6, 1s e at a=1 ,  and tends to 

.- i 
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1 
2 

6 as a loo. Prove also that for all values a >-, the reJectlon constant 

1s bounded from above by f i e  4 a .  

The raw almost-exact lnverslon algorlthm 1s: 

1 - 
D. 

Almost-exact inversion algorithm for gamma variates 

REPEAT 
Generate a normal random variate N and an exponential random 
variate E .  
X t t N  

X UNTIL X 2 8  AND E-2X+29 log(l+-)>O 
8 

RETURN s (1+-)2 X 
S 

E. Introduce qulck acceptance and rejection steps In the algorlthm that are 
so accurate that the expected number of evaluatlons of the logarlthm 1s 
o (1) as a too. Prove the clalm. 

Remark: for a very efflclent 4mplementatlon based upon another quadratlc 
transformatlon, see Ahrens and Dleter (1982). 

4. MANY-TO-ONE TRANSFORMATIONS. 

4.1. The principle. 
Sometlmes I t  1s posslble to  explolt some dlstrlbutlonal propertles of random 

varlables. Assume for example that $(x) has an easy denslty h ,where X has 
denslty f . When -1c, 1s a one-to-one transformatlon, x can then be generated as 
+-'( Y )  where Y 1s a random varlate wlth the easy denslty h . A polnt In case 1s 
the lnverslon method of course where the easy denslty 1s the unlform denslty. 
There are lmportant examples In whlch the transformatlon 9 1s many-to-one, so 
that the lnverse lg not unlquely deflned. In that case, If there are k solutlons 
X , ,  . . . , Xk of the equatlon $ ( X ) = Y ,  I t  sufflces to choose among the xi' s. 
The probabllltles however depend upon Y .  The usefulness of thls approach was 
flrst reallzed by Mlchael, Schucany and Haas (1976), who gave a comprehenslve 
descrlptlon and dlscusslon of the method. They were motlvated by a slmple f a s t  
algorlthm for the lnverse gausslan famlly based upon thls approach. 

By far the most lmportant case 1s k=2 ,  whlch 1s the one that we shall deal 
wlth here. Several lmportant examples are developed In subsectlons. 
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Assume that there exlsts a polnt t such that @‘ 1s of one slgn on (-oo,t ) and 
on (t ,m). For example, If @(z)=z2, then $‘(z)=2z 1s nonposltlve on (-oo,o) 
and nonnegatlve on (O,co), so that we can take t =O. We wlll pse the notatlon 

5 = I ( y ) , s  = r ( y )  

for the two solutlons of y =@(a: ): here, I 1s the solutlon In (-oo,t ), and r 1s the 
solutlon In ( t  ,GO). If ?) satlsAes the condltlons of Theorem 1.4.1 on each lnterval, 
and X has denslty f , then $(x) has denslty 

h (3  1 = I U Y  1 I f (I (Y 1) + I r’(y  1 I f ( r  (Y 1) . 
Thls 1s qulckly verlfled by computlng the dlstrlbutlon functlon of @ ( X )  and then 
taklng the derlvatlve. Vlce versa, glven a random varlate Y wlth denslty h ,  we 
can obtaln a random varlate X wlth denslty f by chooslng X=1 (Y) wlth pro- 
bablllty 

I I’(Y) I f (U)) 
h(Y) 

and chooslng x = r ( Y )  otherwlse. Note that I l ‘ (y)  I = 1/ 1 .Jr‘(l (y)) I . Thls, 
the method of Mlchael, Schucany and Haas (1976), can be summarlzed as follows: 

Inversion of a many-to-one transformation 

Generate a random variate Y with density h 
Generate a uniform [0,1] random variate U . 
Set X , t / ( Y ) ,  XZ+r ( Y )  

THEN RETURN X t x ,  
ELSE RETURN X+X2 

It wlll be clear from the examples that In many cases the expresslon In the selec- 
tlon step takes a slmple form. 
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4.2. The absolute value transformation. 
The transformatlon y = I x - t  I for Axed t satlsfles the condltlons of the 

prevlous sectlon. Here we have l ( y ) = t - y  , r ( y ) = t + y .  Slnce I +' I remalns 
constant, the declslon 1s extremely slmple. Thus, we have 

Generate a random variate Y with density h ( y )=f ( t  -y )+ f ( t  + y ). 
Generate a uniform [0,1] random variate u.  

THEN RETURN X t t - Y  
ELSE RETURN X t t  + Y 

If f Is symmetrlc about t , then the declslons t -Y and t + Y 
Another lnterestlng case occurs when h 1s the unlform denslty. 
slder the denslty 

(05% +) . l+cosz 
7r 

f ( X I =  

7r 

2 
Then, taklng t =-, we see that 

are equally Ilkely. 
For example, con- 

Thus, we can generate random varlates wlth thls denslty as follows: 

Generate two iid uniform [0,1] random variates u , v . 
TV Set Y t - .  
2 

THEN RETURN X+Y 
ELSE RETURN X-T-Y 

Here we have made use of addltlonal symmetry In the problem. It should be 
noted that the evaluatlon of the cos can be avolded altogether by appllcatlon of 
the serles method (see sectlon 5.4). 
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4.3. The inverse gaussian distribution. 
Mlchael, Schucany and Haas (1976) have successfully applled the many-to- 

one transformation method to the inverse gaussian distribution. Before we 
proceed with the detalls of their algorithm, I t  1s necessary to give a short intro- 
ductory tour of the dlstrlbutlon (see Folks and Chhlkara (1978) for a survey). 

A random varlable x 2 0  wlth denslty 

Is sald to have the inverse gausslan dlstributlon with parameters p>O and X>o. 
We wlll say that a random varlate x 1s I ( p , A ) .  Sometlmes, the dlstrlbution 1s 
also called Wald's distribution, or the Arst passage tlme distributlon of Brownlan 
motlon wlth posltive drlft. 

The densltles are unimodal and have the appearance of gamma denslties. 
The mode is at 

The densltles are very flat near the orlgln and have exponentlal talls. For thls 
reason, all positlve and negative moments exlst. For example, 

(X-" )=E ( X a + 1 ) / p 2 a + 1 ,  all a ER . The mean 1s ,u and the varlance 1s -. P3 
x 

The main distrlbutfonal property 1s captured In the followlng Lemma: 

Lemma 4.1. (Shuster, 1968) 
When X is I ( p , X ) ,  then 

vx -PI2 
P2X 

is distrlbuted as the square of a normal random variable , 1.e. I t  Is chl-square wlth 
one degree of freedom. 

Proof of Lemma 4.1. 
Straightforward. 

Based upon Lemma 4.1, we can apply a many-to-one transformatlon 

i 
._. 
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Here, the lnverse has two solutions, one on each slde of p.  The solutlons of 
$(X)= Y are 

x ,  = p+--- p 2 y  J4pXY+p2Y2 
2x 2x 

One can verlfy that 

Thus, X ,  should be selected wlth probabillty - ' . Thls leads to the following 
P+X,  

algorlthm: 

Inverse gaussian distribution generator of Michael, Schucany and Haas 

Generate a normal random variate N . 
Set Y + N 2  

Set Xl+p+--- p2y J4pXY+/.PY2 

Generate a uniform [0,1] random variate u ,  
2x 2x 

THEN RETURN X-X, 
ELSE RETURN X + E  

2 

x, 

Thls algorlthm was later rediscovered by Padgett (1978). The tlme-consuming 
components of the algorlthm are the square root and the normal random varlate 
generation. There are a few shortcuts: a few multipllcatlons can be saved If we 
replace Y by p Y  at the outset, for example. There are several exerclses about 
the Inverse gausslan distrlbutlon following thls sub-section. 
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4.4. Exercises. 
1. First passage time distribution of drift-free Brownian motion. Show 

that as p+co  while remalns Axed, the I ( p , x )  denslty tends to  the denslty 

1 
2 

whlch 1s the one-slded stable denslty wlth exponent -, or the denslty for the 

flrst passage tlme of drlft-free Brownlan motlon. Show that thls 1s the den- 
1 0  
L Y  slty of the lnverse of a gamma (- -) random varlable (Wasan and Roy, 
2 ’ X  

A 1967). Thls 1s equlvalent to  showlng that I t  1s the denslty of - where N 1s 

a normal random varlable. 
Thls 1s a further exerclse about the propertles of the lnverse gausslan dlstrl- 
butlon. Show the followlng: 
(1) If X 1s r ( p , x ) ,  then cx 1s I ( c  p , c  A). 

(11) The characterlstlc functlon of X 1s e 
(111) If xi , 15; < n  , are lndependent I ( p i  ,c  pj 2, random varlables, then 

Xi 1s r ( C p i  ,c ( C p i  )2). Thus, If the Xi ’ s are lld 1 (p ,X) ,  then E X ;  

N 2  

2. 

4 1- d q )  2 i p  t 

n 

i=1 
IS I(n p,n ,A). 

(lv) Show that when N, , N, are lndependent normal random varlables 

1s normal wlth varlance NIN2 wlth variances o12 and o,,, then Jrn 
1 1 1  as2 determlned by the relatlon -=- +-. 
03 0 1  *2 

(v) The dlstrlbutlon functlon of X 1s 

where <I> is the standard normal dlstrlbutlon functlon (Zlganglrov, 1962). 

I 
._ 



IV.5.SERIES METHOD 151 

5. THE SERIES METHOD. 

5.1. Description. 
In thls sectlon, we conslder the problem of the computer generatlon of a ran- 

dom varlable X wlth denslty f where f can be approxlmated from above and 
below by sequences of functlons f and gn . In partlcular, we assume that: 

(1) llm f n  f ; 
n --roo 

n --too 
llm g n  = f . 

(11) f n  5 f L g n  - 
(111) f 5 ch for some constant c > 1  and some easy 

denslty h . 
The sequences f, and gn should be easy to  evaluate, whlle the domlnatlng den- 
slty h should be easy to sample from. Note that f ,  need not be positive, and 
that gn need not be Integrable. Thls settlng 1s common: often f 1s only known 
as a serles, as in the case of the Kolmogorov-Smlrnov dlstrlbutlon or the stable 
dlstrlbutlons, so that random varlate generatlon has to be based upon thls serles. 
But even If f 1s expllcltly known, I t  can often be expanded In a fast converglng 
serles such as In the case of a normal or exponentlal denslty. The serles method 
descrlbed below actually avolds the exact evaluatlon of f all the tlme. It can be 
thought of as a rejectlon method wlth an lnflnlte number of acceptance and reJec- 
tlon condltlons for squeezlng. Nearly everythlng ln thls sectlon’ was flrst 
developed In Devroye (1980). 

The series method 

REPEAT 
Generate a random variate X with density h . 
Generate a uniform [0,1] random variate u. 
W +- Uch (X) 
n t o  
REPEAT 

1) +-n fl 
IF w<f,,(X) THENRETURNX 

UNTIL W >gn (X) 
UNTIL False 

The fact that the outer loop In thls algorlthm 1s an lnflnlte loop does not matter, 
because wlth probablllty one we wlll exlt In the lnner loop (In vlew of 
f, -+f ,gn -.f ). We have here a true reJectlon algorlthm because we exlt when 
w 5 Uch (x). Thus, the expected number of outer loops 1s c , and the cholce of 
the domlnatlng denslty h 1s lmportant. Notlce however that the tlme should be 
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measured In terms of the number of f n and gn evaluatlons. Such analysls wlll be 
glven further on. Whlle In many cases, the convergence to  f 1s so fast that the 
expected number of f ,  evaluatlons 1s barely larger than c , I t  1s true that there 
are examples In whlch thls expected number 1s 03. It 1s also worth observlng that 
the squeeze steps are essentlal here for the correctness of the algorlthm. They 
actually form the algorlthm. 

In the remalnder of thls sectlon, we wlll glve three lmportant speclal cases of 
approxlmatlng serles. The serles method and Its varlants wlll be lllustrated wlth 
the ald of the exponentlal, Raab-Green and Kolmogorov-Smlrnov dlstrlbutlons 
further on. 

Assume flrst that f can be wrltten as a convergent serles 
03 

f (5)- s n ( 5 )  L c h ( 5 )  
n =I 

where 

1s a known estlmate of the remalnder, and h 1s a glven denslty. In thls speclal 
instance, we can rewrlte the serles method In the followlng form: 

The convergent series method 

REPEAT 
Generate a random variate X with density h . 
Generate a uniform [ O , l ]  random variate U. 
W t Uch (X) 
s t o  
n c 0  

REPEAT 
n +n $1 
s t s  +Sa (x) 

UNTIL I S - W  I >R,+,(X) 
UNTIL s l w  
RETURN X 

Assume next that f can be wrltten as an alternatlng serles 

f (5 ) = ch (5 )(1-a >+a 2(5 )-a 3(5 >+ * * . ) 

where a, 1s a sequence of functlons satlsfylng the condltlon that a, ( 3 ) J . O  as 
n - t w ,  for all 2 ,  c Is a constant, and h 1s an easy denslty. Then, the serles 
method can be wrltten as follows: 

I 
.-. 
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The alternating series method 

REPEAT 
Generate a random variate X with density h . 
Generate a uniform [O,e ] random variate U . 
f l  t o ,  W e 0  
REPEAT 

f l  +fl+1 

w + w+a, (X) 
IF U > w  T H E N R E T U R N X  

n +fl+1 

W+W-a, ( X )  
UNTIL u < w 

UNTIL False 

Thls algorlthm 1s valld because f 1s bounded from above and below by two con- 
verglng sequences: 

k k +i 

j=i ch(a: )  j=i 
1+ (-1)’ aj  (a: ) 5 < 1+ (-1)j a j  (a: ) , k odd . 

That thls 1s lndeed a valld lnequallty follows from the monotonicity of the terms 
[conslder the terms pairwlse). As In the ordinary series method, f 1s never fully 
computed. In addltlon, h 1s never evaluated either. 

f = ch e - a 1 ( ~ ) + 4 2 ( ~ ) - .  . . 
A second lmportant speclal case occurs when 

where c ,h ,a, are as for the alternatlng serles method. Then, the alternating 
serles method is equlvalent to: 



154 

Th lternatin 

REPEAT 

r ie meth d; exponential version 

Generate a random variate X with density h . 
Generate an exponential random variate E .  
n t o ,  W t o  
REPEAT 

n t n + 1  
w + w +a, (X) 
IFEZWTHEP 
fl  e n  +1 
w t  W-a, (X) 

UNTIL E < W 
UNTIL False 

IV.5.SERIES METHOD 

RETURI’ 

5.2. Analysis of the alternating series algorithm. 
For the four verslons of the serles method denned above, we know that the 

expected number of lteratlons 1s equal to the reJectlon constant, c . In addltlon, 
there 1s a hldden contrlbutlon t o  the tlme complexlty due t o  the fact that the 
lnner loop, needed to declde whether Uch ( X ) s  f (x), requlres a random number 
of computatlons of a,. The computatlons of a, are assumed t o  take a constant 
tlme lndependent of n - If they do not, Just modll’y the analysls given In thls sec- 
tlon sllghtly. In all the examples that wlll follow, the an computatlons take a 
const ant tlme. 

In Theorem 5.1, we wlll glve a preclse answer for the alternatlng serles 
method. 
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Theorem 5.1. 

lows: 
Conslder the alternatlng serles method for a denslty f decomposed as fol- 

f (z ) = ch (a: )(1-a 1(z )+a& )- * * . ) , 

where c 21 1s a normallzatlon constant, h 1s a denslty, and 
a o ~ 1 ~ a l > a 2 ~  . . - BO. Let N be the total number of computatlons of a fac- 
tor  a, before the algorlthm halts. Then, 

c o c o  
E ( N )  = c j - [  U i ( 5 ) ]  h ( s )  da: . 

0 i=o 0 i=o 

c o c o  
E ( N )  = c j - [  U i ( 5 ) ]  h ( s )  da: . 

Proof of Theorem 5.1. 
By Wald’s equatlon, E ( N )  1s equal to c tlmes the expected number of a, 

computatlons In the flrst lteratlon. In the flrst lteratlon, we flx X = z  wlth den- 
slty h . Then, dropplng the dependence on a : ,  we see that for the odd terms a, ,  
we require 

1 wlth probablllty 1-a 
2 wlth probablllty a l-a 
3 wlth probablllty a 2-a 
4 wlth probablllty a 3-a 

I 

... 
computatlons of a, .  The expected value of thls 1s 

Collectlng these results glves us Theorem 5.1. 

Theorem 5.1 shows that the expected tlme complexlty 1s equal to the oscllla- 
tlon In the serles. Fast converglng serles lead to  fast  algorlthms. 

I 
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5.3. Analysis of the convergent series algorithm. 

terins s, before the algorithm halts. We have: 
As In the previous sectlon, we wlll let N be the number of computatlons of 

Theorem 5.2. 
For the convergent serles algorithm of sectlon 5.1, 

E ( N )  5 2 J (  5 Rn (x >I dx 
fl=1 

Proof of Theorem 5.2. 
By Wald’s equatlon, E ( N )  Is equal to c tlmes the expected number of s, 

computatlons In the flrst global iteration. If we flx X with denslty h ,  then if N 
Is the number of s, computations In the flrst lteratlon alone, 

Thus, 
00 

E ( N  IX)= C P ( N > n  I X )  
n =O 

Hence, turnlng to the overall number of sn computatlons, 

1 
n It 1s lmportant to note that a serles converglng at the rate - or slower can- 

not yleld flnlte expected tlme. Lucklly, many important serles, such as those of 
all the remalnlng subsectlons on the series method converge at an exponentlal 
rather than a polynomlal rate. In view of Theorem 5.2, thls virtually insures the 
flnlteness of thelr expected tlme. It 1s stlll necessary however to verlf’y whether 
the expected tlme statements are not upset in an lndlrect way through the depen- 
dence of R,  (x ) upon x : for example, the bound of Theorem 5.2 1s liiflnlte when 
SR,  (z ) dx =oo for some n . 
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5.4. The exponential distribution. 
It 1s known that for all odd k and all 2 >0, 

We wlll 

157 

apply the alternatlng serles method to the truncated exponentlal denslty 

e -z 
1-e -fi 

! ( a : ) = -  ( 0 9  <PI  9 

where lLpu>O 1s the truncatlon polnt. As domlnatlng curve, we can use the unl- 
form denslty (called h ) on [O,p]. Thus, In the decomposltlon needed for the alter- 
natlng serles method, we use 

c =-, c1 
1-e -IJ 

2, 

n !  
a , ( x )  = - . 

The monotonlclty of the an’s 1s insured when I x I 5 1 .  Thls forces us to choose 
p 5 1. The expected number of a, cornputatlons 1s 

For example, for p=l,  the value e 1s obtalned. But lnterestlngly, E(N)Ji  as 
pJ0.  The truncated exponentlal denslty 1s Important, because standard exponen- 
tlal random varlates can be obtalned by addlng an lndependent properly scaled 
geometrlc random varlate (see for example sectlon N . 2 . 2  on the Forsythe-von 
Neumann method or sectlon IX.2 about exponentlal random varlates). The algo- 
rlthm for the truncated exponentlal denslty 1s glven below: 
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A truncated exponential generator via the alternating series method 

REPEAT 
Generate a uniform [O,p] random variate X. 
Generate a uniform [OJ] random variate U. 
n to, W+O,V+l (V is used to facilitate evaluation of consecutive terms in the al- 
ternating series.) 

REPEAT 
n +n +I 
V-- 1/x 

n 
w + w + v  
IF u 2 w THEN RETURN x 
fl  t f l 1 - 1  
V+- vx 

f l  

w t w - v  
UNTIL u < w  

UNTIL False 

The alternatlng serles method based upon Taylor’s serles 1s not appllcabie to  
the exponential dlstrlbutlon on ( 0 , ~ )  because of the lmposslblllty of flndlng a 
domlnatlng density h based upon thls serles. In the exerclse sectlon, the ordlnary 
serles method 1s apglled wlth a famlly of domlnatlng densities, but the squeezing 
1s stlll based upon the Taylor serles for the exponential denslty. 

5.5. The Raab-Green distribution. 
The density 

l+cos(x ) 
j ( x ) =  ( 1 .  Im 
- - -(1---++-- 1 1 x 2  1 x 4  * 

2n 

1 
7r 2 2! 2 4! 

was suggested by Raab and Green (1961) as an approxlmatlon for the normal 
densltY. The serles expansion 1s very slmllar to that of the exponentlal function. 
A g a h  we are In a position to  apply the alternatlng serles method, but now wlth 

. It 1s easy, to verlfy that a, 10 
as n --+m for  all x In the range: 

h (x I=- 1 ( 15 I sn), c =2 and a, (x)=-- 1 x2, 
2n 2 2n! 
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Note however that a ,  Is not smaller than 1, which was a condition necessary for 
the application of Theorem 5.1. Nevertheless, the alternating series method 
remains formally valid, and we have: 

A Raab-Green density generator via the alternating series method 

REPEAT 
Generate a uniform [-7r,7r] random variate X. 
Generate a uniform (0,1] random variate u . 
n t o ,  wtO,v+l (V is used to facilitate evaluation of consecutive terms in the al- 
ternating series.) 
REPEAT 

12 e n  +1 

m2 

(2n )(2n -1) 
V c  

w t w c v  
IF u> w THEN RETURN x 
f l  t n  +1 

V t  

w t w - v  

ma 
(2n )(2n -1) 

UNTIL U < W  
UNTIL False 

The drawback with thls algorlthm Is that c , the rejection constant, Is 2. But thls 
can be avoided by the use of a many-to-one transformation descrlbed In section 

W.4. The principle Is thls: If ( X , U )  Is uniformly distributed In [--,-]X[O,2], 

then we can exlt with X when U ~ l + c o s ( X )  and with 7r slgnX-X otherwise, 
thereby avoiding reJections altogether. Wlth thls Improvement, we obtain: 

7 t . K  

2 2  
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An improved Raab-Green density generator based on the alternating series 
method 

A T  Generate a uniform [-- --] random variate X .  

Generate a uniform [0,1] random variate U .  
n t o ,  W t O ,  V+-l (V is used to facilitate evaluation of consecutive terms in the alternating 
series.) 
REPEAT 

2 ’ 2  

n t n  +1 

V t  m2 
(2n )(2n -1) 

w + w + v  
IF V > W  THENRETURNX 
n t n  +1 

v t  
w+- w-v 
IF U < W  THEN 

mz 
(2n )(2n -1) 

UNTIL False 

RETURN A signX-X 

Thls algorithm improves over the algorithm of section rV.4 for the same dlstrlbu- 
tlon In whlch the cos was evaluated once per random varlate. We won’t glve a 
detalled time analysis here. It 1s perhaps worth notlng that  the probability that 
the UNTIL, step 1s reached, 1.e. the probability that one iteration is completed, 1s 
about 2.54%. Thls can be seen as follows: If N* 1s the number of completed 
Iterations, then 

A 4i+1 
2 (-1 2 1 x4i 1 2  dx = - P (N* > i )  = 

- 

xi2- 7r (4i+1)! * 

and thus 
4 i + l  

(-1 m 1  2 E ( N * ) =  E -  
i = g T  (4 i+ l ) !  * 

In partlcuiar, P (N* >I)=-- T4 -0.0254. Also, E ( N * )  is about equal to 
3840 

1+2P(N*  >1)-1.0254 because P (N* >2) 1s extremely small. 
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5.6. The Kolmogo r ov- Smir nov distribution. 
The Kolmogorov-Smirnov distribution function 

00 

F (a:) = (-iln e-2n2z2 (a: 20) 
n =-00 

appears as the llmlt dlstrlbutlon of the Kolmogorov-Smlrnov test statlstlc (Kol- 
mogorov (1933); Smlrnov (1939); Feller (1948)). No slmple procedure for lnvertlng 
F 1s known, hence the lnverslon method 1s llkely to be slow. Also, both the dls- 
trlbutlon functlon and the correspondlng denslty are only known as lnflnlte serles. 
Thus, exact evaluatlon of these functlons 1s not posslble In flnlte tlme. Yet, by 
uslng the serles method, we can generate random varlates wlth thls dlstrlbutlon 
extremely efflclently. Thls lllustrates once more that generatlng random varlates 
1s slmpler than computlng a dlstrlbutlon functlon. 

Flrst, I t  1s necessary to  obtaln convenlent serles expanslons for the denslty. 
Taklng the derlvatlve of F , we obtaln the denslty 

co 
f (2) = 8 (-l)n+1n2xe-2n222 (5 20) 9 

n =I 

whlch Is In the format of the aiternatlng serles method lf we take 
2 ch (x) = 8xe-22 , 

(n 2 0 )  . an (5 ) = (n +lye -2z2((n +112-1) 

There 1s another serles for F and f whlch can be obtalned from the flrst serles 
by the theory of theta functlons (see e.g. Whlttaker and Watson , 1927): 

*(2n -I)*$ 

(x >o> ; 6.. - 82 F ( z )  = - C e 
n. 

Agaln, we have the format needed for the alternatlng serles method, but now 
wlth 

We wlll refer to thls serles expanslon as the second serles expanslon. In order for 
the zllternatlng serles method to be appllcable, we must verlfjr that the a n ' s  
satisfy the monotonlclty condltlon. Thls 1s done In Lemma 5.1: 
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Lemma 5.1. 

The terms a, In the first serles expanslon are monotone -1 for x > 
7r For the second serles expanslon, they are monotone 1 when x <-. 
2 

Proof of Lemma 5.1. 
In the flrst serles expanslon, we have 

2 
n 

2 --+2(2n + l ) x 2  2 -2+6x2 > O  . 

For the second serles expanslon, when n Is even, 

7r2 - (n  +1l2lr2 an (X 1 
an +1(x 1 4x 42 

> -  > l .  - - 

Also, 

. The last expresslon 1s lncreaslng In y for y 2 2  and all n 2 2 .  where y=- 

Thus, I t  1s not smaller than 2n-2log(n +1)>0. 

7r2 

23 

We now glve the algorlthm of Devroye (1980). It uses the mlxture method 
because one serles by ltself does not yleld easlly ldentlflable upper and lower 
bounds for f on the entlre real llne. We are fortunate that the monotonlclty 

condltlons are satlsfled on ( -,m) and on (O,--) for the two serles respec- 

tlvely. Had these lntervals been dlsJolnt, then we would have been forced to look 
for yet another approxlmatlon. We deflne the breakpolnt for the mlxture method 

by t E( $,z). The value 0.75 1s suggested. Deflne also p =F ( t  ). 

lr 8 2 

3 2  
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Generate a uniform [0,1] random variate u . 
IF u<p 

f THEN RETURN a random variate x with density - ,O<z < t . 
ELSE RETURN a random variate X with density - , t  cz . 7 

1-P 

For generatlon In the two Intervals, the two serles expanslons are used. Another 

. We have: constant needed In the algorlthm 1s t’=- 
8 t 2  

7r2 
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Generator for -he lef'tmost intern 

REPEAT 
REPEAT 

Generate two iid exponential random variates, E,,E l .  

Eo&--- EO 
1 1-- 

2t' 
E l + 2 E l  
G +-t'+Eo 
Accept +l(Eo)*l t 'E,(G +t')] 
IF NOT Accept 

THEN Accept +-[7-i-log(--)<El] G G 

UNTIL Accept 

x+7% 
w+o 

1 z+-- 
2G 

P 

Q + 1  

n -1 

Generate a uniform [O,l] random variate U. 
REPEAT 

W + W + Z Q  
IF u 2 w THEN RETURN X 
n +-n +2 
Q <pn2-l 
W+ W-naQ 

UNTIL u < W 
UNTIL False 

I 
I 

I 
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Generator for the rightmost interval 

REPEAT 
Generate an exponential random variate E .  
Generate a uniform I0,lI random variate U .  

The algorlthms are both stralghtfonvard appllcatlons of the alternatlng serles 
method, but perhaps a few words of explanatlon are In order regardlng the algo- 
rlthms used for the domlnatlng densltles. Thls 1s done In two lemmas. 

Lemma 5.2. 

The random varlable (where E 1s an exponentlal random varl- 

able and t >0) has denslty 

I I where c >O 1s a normallzatlon constant. 

Proof of Lemma 5.2. 
that the dlstrlbutlon functlon of the random varlable 1s 

-2(22-t Verlq (5 2 t ). Taklng the derlvatlve of thls dlstrlbutlon functlon ylelds the 
deslred result. H 
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Lemma 5.3. 
3 
2 

If G 1s a random varlable wlth truncated gamma (-) denslty 
TIr2 7T 

c &eMY (y  2 t'=,), then - 
8 t  rn has density 

where the c 's stand for (possibly dlfferent) normallzatlon constants, and t > O  1s a 
constant. A truncated gamma (-) random varlate can be generated by the algo- 

rlthm: 

3 
2 

Truncated gamma generator 

REPEAT 
Generate two iid exponential random variates, Eo& 

EO Eo*- 
1 

1-- 
2 t' 

El+2EI 
G +t'+Eo 
Accept - [ ( E o ) 2 ~ t ' E I ( G  + t o ]  
IF NOT Accept 

G G THEN Accept + [ - - l - l o g ( ~ ) ~ E l ]  t' 

UNTIL Accept 
RETURN G 

Proof of Lemma 5.3. 
7r2 4n 

82 Ir2 
'J'he Jacoblan of the transformation y=- 1s - . Thls glves the dls- 

trlbutlonal result wlthout further work If we argue backwards. The valldlty of 
the reJectlon algorlthm wlth squeezlng requlres a llttle work. Flrst, we start from 
the lncquallty 

3 

(8Y 

Y - t' 
y . <  - e (Y  3') 9 

-Y - 
which can be obtalned by maxlmlzlng ye " In the sald lnterval. Thus, 
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where E 1s an E The upper bound 1s proportlonal to the denslty of t'+ 
1 1-- 

2 t' 
exponentlal random varlate. Thls random varlate 1s called G In the algorlthm. 
Thus, If U 1s a unlform random varlate, we can proceed by generatlng couples 
G ,U until 

Thls condltlon 1s equlvalent to 

--l-lOg(F) G 5 2E , G 
t' 

where E ,  1s another exponentlal random varlable. A squeeze step can be added 
( u  20) (exerclse 5.1). 2u 

by notlng that log(l+u )2- 
2+u 

All the prevlous algorlthms can now be collected lnto one long (but fas t )  
algorlthm. For generalltles on good generators for the tall of the gamma denslty, 
we refer to the sectlon on gamma varlate generatlon. In the lmplementatlon of 
Devroye (1980), two further squeeze steps were added. For the rlghtmost lnterval, 
we can return X when U 1 4 e " t a  (whlch 1s a constant). For the leftmost lnter- 

4 t  Val, the same can be done when U 2-. For t =0.75, we have p =0.373, and 

the qulck acceptance probabllltles are respectlvely a0.86 and X0.77 for the 
latter squeeze steps. 

n2 

Related distributions. 
The empirical distribution function F, (a: ) for a sample X , ,  . . . , X ,  of 

lld random varlables 1s deflned by 

" 1  F, (a: 1 = c Y I [ X '  <z] 
i = l  

where I Is the lndlcator functlon. If Xi has dlstrlbutlon functlon F (a: ), then the 
followlng goodness-of-flt statlstlcs have been proposed by varlous authors: 
(1) The asymmet rlcal Kol mogorov-S ml rnov statlstlcs 

I(, SUP (F, -F ) , K, -=dF SUP ( F  -F, ). 
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(11) The Kolmogorov-Smlrnov statlstlc K,  =max(K, +,Kn -). 
(111) Kulper's statlstlc V, =IC, ++Kn -. 
(lv) von Mlses' statlstlc W, 2=n s ( F ,  -F ) 2 d F .  
(v) Watson's statlstlc U, =n J ( F ,  -F - ( J (F ,  -F ) d ~  ) ) ? d ~ .  

(vl) The Anderson-Darllng statlstlc A ,  2=n s 
For surveys of the propertles and appllcatlons of these and other statlstlcs, see 
Darllng (1955), Barton and Mallows (1965), and Sahler (1968). The llmlt random 
varlables (as n+m)  are denoted wlth the subscrlpts 00. The llmlt dlstrlbutlons 
have characterlstlc functlons that are lnflnlte products of characterlstlc functlons 
of gamma dlstrlbuted random varlables except In the case of A, .  From thls, we 
note several relatlons between the llmlt dlstrlbutlons. Flrst, 2K,+2 and 2K,-2 
are exponentlally dlstrlbuted (Smlrnov, 1939; Feller, 1948). K ,  has the 
Kolmogorov-Smlrnov dlstrlbutlon functlon dlscussed In thls sectlon (Kolmogorov, 
1933; Smlrnov, 1939; Feller, 1948). Interestlngly, V, 1s dlstrlbuted as the sum of 
two lndependent random varlables dlstrlbuted as K ,  (Kulper, 1960). Also, as 
shown by Watson (1961, 1962), U, 1s dlstrlbuted as -6. Thus, generatlon 

for all these llmlt dlstrlbutlons poses no problems. Unfortunately, the same can- 
not be sald for A ,  (Anderson and Darllng, 1952) and W ,  (Smlrnov, 1937; 
Anderson and Darllng, 1952). 

( F n - F 1 2  d F .  
F (1-F) 

1 
7r 

5.7. Exercises. 
1. Prove the followlng lnequallty needed In Lemma 5.3: 

(u >o). log(l+u )>- 2u 
2+u 

2. The exponential distribution. For the exponentlal denslty, choose a 
domlnatlng denslty h from the famlly of densltles 

nu " 
(x +a )" +l 

(5 >o) 9 

where n 2 1  and a >O are deslgn parameters. Show the followlng: 
1 -- 

h Is the denslty of a (U "-1) where u Is a unlform [0,1] random varl- 
able. It 1s also the denslty of a (max-'( U,, . . . , U, )-1) where the Vi 's 
are lld unlform [0,1) random varlables. 

, and show n + 1  "+l  e a  a-" 
e n 

Show that the rejection constant 1s c=(-) 

that thls 1s mlnlmal when a - n .  - 
Show that wlth a = n ,  we have c =-(1+-) 

1 n+1 1 
e n 

-+1 as n +00. 
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(v) Glve the serles method based upon reJectlon from h (where a -  -n and 
n 21 1s an Integer). Use qulck acceptance and rejectlon steps based 
upon the Taylor serles expanslon. 

(vl) Show that the expected tlme of the algorlthm 1s 00 when n = 1  (thls 
shows the danger lnherent In the use of the serles method). Show also 
that the expected tlme 1s flnlte when n 22. 

(Devroye, 1980) 

Apply the serles method for the normal denslty truncated to  [-a , a ]  wlth 
rejectlon from a qnlform denslty. Slnce the expected number of lteratlons 1s 

3. 

2a 

&(F ( a  )-F (-a )) 

where F 1s the normal dlstrlbutlon functlon, we see that I t  1s lmportant that 
a be small. How would you handle the talls of the dlstrlbutlon ? How would 
you choose a for the cornblned algorlthm ? 

In the study of spectral phenomena, the followlng densltles are lmportant: 

(1) f l ( X >  = -(- sin(x ) (the FeJer-de la Vallee Poussln denslty); 

(11) f 2(5 1 = -(- ) (the Jackson-de la Vallee Poussln denslty) . 
These densltles have osclllatlng talls. Uslng the fact that 

4. 
2 

7 r x  
3 sIn(x) 
7 r x  

x 2  x 4  -- -I--+--. . . sln( x ) 
X 3! 5! 

falls between consecutive partlal sums In thls serles, derlve sfn( x ) and that - 
a good serles algorlthm for random varlate generatlon for f and f 2 .  Com- 
pare the expected tlme complexlty wlth that  of the obvlous reJectlon algo- 
rlthms. 
The normal distribution. Conslder the serles method for the normal den- 

X 

5 .  

slty based upon the domlnatlng denslty h (x )=mln(a ,- ' ) where a >O 1s 
16ax2 

a parameter. Show the followlng: 

(1) has denslty V 
If ( U , V )  are lld unlform [-1,1] random varlates, then - 

4aU 
h .  

(11) Show that 
X* - 

1 32a 
a e  

-- 
e < - max(-,-)h(x) 

and deduce that the best constant a 1s 

(111) Prove that the followlng algorlthm 1s valld: 
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Normal generator via the series method 

REPEAT 
Generate two iid uniform [-l,l] random variates vl,v2 and a uni- 
form [0,1] random variate u .  

ELSE We-- * 1  
G X 2  

X2 n -0, Y c-,P +-1 
2 

REPEAT 
n t n  fl 

PY p c-- 
n 

w-W+P 
IF w <O THEN RETURN x 
n e n  +1 

PY P-- 
n 

w-W+P 
UNTIL W>O 

UNTIL False 

4 (lv) Show that In thls algorlthm, the expected number of lteratlons 1s - 
(An lteratlon 1s deflned as a check of the UNTIL False statement or a 
permanent return.) 

Erdos and Kac (1946) encountered the followlng dlstrlbutlon functlon on 

6. 

6. 
[ O m ) :  

Thls shows some resemblance to  the Kolmogorov-Smlrnov dlstrlbutlon func- 
tlon. Apply the serles method t o  obtaln an emclent algorlthm for generatlng 
random varlates wlth thls dlstrlbutlon functlon. Furthermore, show the lden- 
tlty 

00 

F (z ) = (-1)’ ( @ ( ( 2 j  +l)z ) - @ ( ( 2 j - 1 ) ~  )) , 
j =-m 
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where 1s the normal dlstrlbutlon functlon (Grenander and Rosenblatt, 
1953), whlch can be of some help In the development of your algorlthm. 

6. REPRESENTATIONS OF DENSITIES AS INTEGRALS. 

6.1. Introduction. 
For most densltles, one usually flrst trles the lnverslon, rejectlon and mlxture 

methods. When elther an ultra fast  generator or an ultra unlversal algorlthm is 
needed, we mlght conslder looklng at some other methods. But before we go 
through thls trouble, we should verlf’y whether we do not already have a genera- 
tor for the denslty wlthout knowlng I t .  Thls occurs when there exlsts a speclal 
dlstrlbutlonal property that we do not know about, whlch would provlde a vltal 
llnk to other better known dlstrlbutlons. Thus, I t  1s lmportant t o  be able to 
declde whlch dlstrlbutlonal propertles we can or should look for. Lucklly, there 
are some general rules that Just require knowledge of the shape of the denslty. 
For example, by Khlnchlne’s theorem (given In thls sectlon), we know that a ran- 
dom varlable wlth a unlmodal denslty can be wrltten as the product of a unlform 
random varlable and another random varlable, whlch turns out to  be qulte slmple 
In some cases. Khlnchlne’s theorem follows from the representatlon of the unlmo- 
dal denslty as an lntegral. Other representatlons as integrals wlll be dlscussed 
too. These lnclude a representatlon that wlll be useful for generatlng stable ran- 
dom varlates, and a representatlon for random varlables possesslng a Polya type 
characterlstlc functlon. There are some general theorems about such representa- 
tlons whlch wlll also be dlscussed. It should be mentloned though that thls sec- 
tlon has no dlrect llnk wlth random varlate generatlon, slnce only probablllstlc 
propertles are explolted to obtaln a convenlent reductlon to slmpler problems. We 
also need qulte a lot of lnformatlon about the denslty In questlon. Thus, were i t  
not for the fact that several key reductlons wlll follow for lmportant densltles, we 
would not have lncluded thls sectlon In the book. Also, representlng a denslty as 
an lntegral really bolls down to deflnlng a contlnuous mlxture. The only novelty 
here 1s that we wlll actually show how to  track down and lnvent useful mlxtures 
for random varlate generatlon. 

6.2. Khinchine’s and related theorems. 
By far the most lmportant class of densltles .J the class of unlmoda densl- 

tles. Thus, I t  1s useful to have some lntegral representatlons for such densltles. 
Formally, a dlstrlbutlon 1s called convex on a set A of the real llne If for all 
x , y E A ,  

F ( h + ( l - X ) y )  5 XF(x)+(l-X)F(y)  (oLX51)  . 
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It Is concave If the lnequallty 1s reversed. It 1s unimodal If I t  1s convex on (-m,O] 
and concave on [O,w), and In that case the polnt 0 1s called a mode of the dlstrl- 
butlon. The ratlonale for thls deflnltlon becomes obvlous when translated to the 
denslty (If I t  exlsts). We wlll not conslder other posslble locatlons for the mode 
to keep the notatlon slmple. 

Theorem 6.1. Khinchine’s theorem. 
A random varlable x 1s unlmodal If and only If x 1s dlstrlbuted as UY 

where U,Y are lndependent random varlables: U 1s unlformly dlstrlbuted on 
[O, l )  and Y 1s another random varlable not necessarlly possesslng a denslty. If Y 
has dlstrlbutlon functlon G on [O,w), then UY has dlstrlbutlon functlon 

1 

F ( z )  = JG(&) du . 
o ‘  

Proof of Theorem 6.1. 
We refer to Feller (1971, p. 158) for the only If part. For the If part we 

observe that P (UY s x  I U =u )= G ( a : ’ u ) ,  and thus, lntegratlng over [0,1] 

wlth respect to  du glves us the result. 
U 

To handle the corollarles of Khlnchlne’s theorem correctly, we need to recall 
the deflnltlon of an absolutely contlnuous functlon f on an lnterval [ a  ,b 1: for all 
c>O, there exlsts a 6>0 such that for all nonoverlapplng lntervals 
(zi ,yi ),ls 2’ 5 n , and all lntegers n , 

n 

i = 1  

lmplles 

.e I f ( Z i  ~f ( Y i )  I < 
t =1 

When f 1s absolutely contlnuous on [ a  , b ] ,  Its derlvatlve f ’  Is defined almost 
everywhere on [a  ,b 1. Also, I t  1s the lndeflnlte lntegral of Its derlvatlve: 

X 

f ( z ) - f ( a ) = J f ’ ( W u  ( a 9 5 b ) .  
a 

See for example Royden (1968). Thus, Llpschltz functlons are absolutely contlnu- 
ous. And If f 1s a denslty on [O,w) wlth dlstrlbutlon functlon F ,  then F 1s abso- 
lut ely contlnuous , 

X 

F ( z )  = J f  ( u )  du 9 

0 
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and 

F’(z) = f (5.) almost everywhere . 
A denslty f 1s called monotone on [O,co) (or, In short, monotone) when f 1s 
nonlncreaslng on [O,co) and f vanlshes on (-00,0). However, l t  1s posslble that 
llm f (z)=00. 
2 10 

Theorem 6.2. 
Let X be a random varlable wlth a monotone denslty f . Then 

Ilm zf ( a : )  = lim zf (5) = 0 . 
2 -+a3 2 10 

If f 1s absolutely contlnuous on all closed lntervals of (O,co), then f’ exlsts 
almost everywhere, 

00 

f ( . ) = - j f ‘ ( u ) d u  9 

2 

and X 1s dlstrlbuted as UY where U 1s a unlform [0,1] random varlable, and Y 
1s lndependent of U and has denslty 

9 (z)  = -zf‘(z) (z >o) . 

I 

Proof of Theorem 6.2, 
Assume that Ilm sup zf ( z ) L 2 a  >O. Then there exlsts a subsequence 

- * such that zi+1L2zi and xi f ( z i ) > a  > O  for all i. But 
2 +m 

z,<z,< 

O 0 1  00 
00 

1 = jf ( z>  dz L (zi+1-zi)f (zi+1) L c ~ z i + l f  (z i+i)  03 9 

0 I =1 1 = I  

whlch 1s a contradlctlon. Thus, Ilm zf (z)=O. 
2 4 0 3  

Assume next that Ilm sup zf ( z ) z 2 a  >O. Then we can And z l > z 2 >  

such that ~ i + ~ s -  and zi f ( z i ) L a  > O  for all i. Agaln, a contradlctlon 1s 

ob t a1 ned : 

2 10 
xi 
2 

O 0 1  00 
00 

1 = J f (a: 1 dz 2 (Z i  - X i  +1) f (Si 1 2 c 2”’ f (Si ) = co . 
0 i = 1  t =1 

Thus, Ilm zf (z)=O. Thls brlngs us to the last part of the Theorem. The first 

two statements are trlvlally true by the properties of absolutely contlnuous func- 
tlons. Next we show that g 1s a denslty. Clearly, 1’50 almost everywhere. Also, 

1s absolutely contlnuous on all closed lntervals of (0,~). Thus, for 
O<a < b  <co, we have 

2 10 
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b b 

bf ( b ) - a f  ( a )  = I f  ( a : )  dz+Jzf‘(z) dz . 
a a 

By the flrst part of thls Theorem, the left-hand-slde of thls equatlon tends to  0 as 
a Jo,6 +oo. By the monotone convergence theorem, the rlght-hand slde tends to  

l+Jsf’(z )dz , whlch proves that g 1s lndeed a denslty. Flnally, If Y has denslty 

g , then UY has denslty 

00 

0 

00 03 Jm du = - J f ’ ( u )  du = f ( a ) .  
z u  Z 

This proves the last part of the Theorem. 

The extra condltlon on f In Theorem 6.2 1s needed because some monotone 
densltles have f ‘=O almost everywhere (thlnk of stalrcase functlons). The extra 
condltlon ln Theorem 6.2 not present In Khlnchlne’s theorem essentlally guaran- 
tees that the mlxlng Y varlable has a denslty too. In general, Y needs to  have 
dlstrlbutlon functlon 

m 

1-xf (z)-Jf ( u )  du (z >o) . 
2 .  

(exerclse 6.9). We also note that Theorem 6.2 has an obvious extenslon to  unlmo- 
dal densltles. 

For monotone f that are absolutely continuous on all closed lntervals of 
(O,oo), the followlng generator 1s thus valld: 

Generator for monotone densities based on Khinchine’s theorem 

Generate a uniform (0,1] random variate U . 
Generate a random variate Y with density g (z )=-zf ‘(z ) ,z BO. 
RETURN X t U Y  

Example 6.1. The exponential power distribution (EPD). 
Subbotln (1923) lntroduced the followlng symrnetrlc unlmodal densltles: 
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where r>O 1s a parameter. Thls class contalns the normal (-2) and Laplace 
(-1) densltles, and has the unlform denslty as a llmlt (r+oo). By Theorem 6.2, 
and the symmetry ln f , I t  1s easlly seen that 

1 - x + V Y T  

has the glven denslty where V 1s unlformly dlstrlbuted on [-1,1] and Y 1s 

gamma(1-t-,1) dlstrlbuted. In partlcular, a normal random varlate can be 

obtalned as v m  where Y 1s gamma (-) dlstrlbuted, and a Laplace random 

varlate can be obtalned as V(,!?,+,!?,) where E,,,!?, are lld exponentlal random 
varlates. Note also that X can be generated as  SY”‘ where Y 1s gamma (-) 

dlstrlbuted. For dlrect generatlon from the EPD dlstrlbutlon by reJectlon, we 
refer to  Johnson (1979). 

1 
7 

3 
2 

1 
7 

Example 6.2. The Johnson-Tietjen-Beckman family of densities. 

posed by Johnson, TletJen and Beckman (1980): 
Another stlll more flexlble famlly of symmetrlc unlmodal densltles was pro- 

00 

where a>O and r>O are shape parameters. An lnflnlte peak at 0 1s obtalned 
whenever a s r .  The EPD dlstrlbutlon 1s obtalned for a=r+ l ,  and another dlstrl- 

1 butlon derlved by Johnson and Johnson (1978) 1s obtalned for T=-. By Theorem 

6.2 and the symmetry In f , we observe that the random varlable 
2 

X + V Y T  

has denslty f whenever V 1s unlformly dlstrlbuted on [-1,1] and Y 1s gamma 
( a )  dlstrlbuted. For the speclal case r=l ,  the gamma-lntegral dlstrlbutlon 1s 
obtalned whlch 1s dlscussed in exerclse 6.1. 
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Example 6.3. Simple relations between densities. 

for the generatlon of some of them. 
In the table below, a varlety of dlstrlbutlonal results are glven that can help 

There are a few other representation theorems In the splrit of Khlnchlne’s 
theorem. For particular forms, one could consult Lux (1978) and Mlkhallov 
(1965). For the stable dlstrlbutlon dlscussed in thls sectlon, we wlll need: 

Theorem 6.3. 
Let U be a unlform [0,1] random varlable, let E be an exponentlal random 

has dlstributlon varlable, and let g :[O,l]-+[O,oo) be a glven functlon. Then - 
functlon 

E 
9 ( W  

1 

F ( z )  = l - Je -zg(U)  du 
0 

and denslty 
1 

f ( z )  = s g  ( u ) e - ’ g ( ’ )  du . 
0 
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Proof of Theorem 6.3. 
For z >0, 

1 

> z )  = P ( E  >zg ( V ) )  = E ( e - x Y ( U ) )  = Je-xY(U) du . p (- 
E 

g ( W  0 

The derlvatlve wlth respect to z 1s -f ( z )  where f 1s deflned above. 

177 

Flnally, we mentlon a useful theorem of Mlkhallov's about convolutlons wlth 
exponentlal random variables: 

Theprem 6.4. (Mikhailov, 1965) 

Y ,  then E + Y has denslty 
If Y has denslty f and E 1s an exponentlal random varlable lndependent bf 

00 X 

h ( z )  = J e - ' f  ( z + u )  du = J f (u)e"- '  du . 
0 -00 

Furthermore, If g 1s an absolutely contlnuous denslty on [O,co) wlth g (O)=O and 
g +g'>O, - then X t E  +Y has denslty g where now Y has denslty g +g', and E 
1s stlll exponentlally dlstrlbuted. 

Proof of Theorem 6.4. 
The flrst statement 1s trlvlal. For part two, we note that g +g' 1s lndeed a 

denslty slnce g +g'>O and J(g +g')=l. (Thls follows from the fact that g 1s 

absolutely contlnuous and has g (O)=O.) But then, by partlal lntegratlon, X has 
denslty 

00 

0 

X 

J ( h ( u  )+h'(u ))e u - x  du = h (5)  .I 
-m 
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6.3. The inverse-of-f method for monotone densities. 
Assume that f 1s monotone on [O,m) and contlnuous, and tha t  Its lnverse 

f -' can be computed relatlvely easlly. Slnce f -' ltself 1s a monotone denslty, we 
can use the followlng method for generatlng a random varlate wlth denslty f : 

The inverse-of-f method for monotone densities 

Generate a random variate Y with density f 
Generate a uniform [0,1] random variate U. 
RETURN x t uf -I(  Y )  

The correctness of the algorlthm follows from the fact that ( Y  ,x) 1s unlformly 
dlstrlbuted under the curve of f -l, and thus that ( X ,  Y )  1s unlformly dlstrlbuted 
under the curve of f . 

Example 6.4. 
If Y Is exponentially dlstrlbuted, then Ue-' has denslty -log(%) (O<z 5 1 )  

where U Is unlformly dlstrlbuted on [0,1]. But by the well-known connectlon 
between exponentlal and unlform dlstrlbutlons, we see that the product of two lld 
unlform [O,l] random variables has denslty -log(x) (Oca 51). 

Example 6.5. 
If Y has denslty 

2 2  f -YP 1 = (log(-)) ( O L y  5 p) , 
TY 2 

and u 1s uniformly dlstrlbuted on (0,1], then X + u f  - l (Y )  has the halfnormal 
dlstrlbutlon. 
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6.4. Convex densities. 
The more we know about a denslty, the easler I t  1s to generate random varl- 

ates wlth thls denslty. There are for example a multltude of tools avallable for 
monotone densltles, ranglng from very speclflc methods based upon Khlnchlne's 
theorem to black box or unlversal methods. In thls sectlon we look at an even 
smaller class of densltles, the convex densltles. We wlll conslder the class C, of 
convex densltles on [O,oo), and the class C of densltles that are convex on [O,co) 
and on (-oo,O). Thus, c, 1s a subclass of the monotone densltles dealt wlth In 
the prevlous sectlon. 

Convex densltles are absolutely contlnuous on all closed sublntervals of 
(O,co), and possess monotone rlght and left derlvatlves everywhere that are equal 
except possibly on a countable set. If the second derlvatlve f" exlsts, then f 1s 
convex If f "Z0 .  We wlll glve one useful representatlon for convex densltles. 

Theorem 6.5. (Mixture of triangles) 
For every EC,, we have 

where F 1s a dlstrlbutlon functlon wlth F (O)=O deflned by: 
co 

F ( u )  = 1+9'(Zd)-(Uj ( u ) + J f  ) ( u  >O) , 
U 

2 

where f' 1s the rlght-hand derlvatlve of f (whlch exlsts on [O,co)), If F 1s abso- 
lutely contlnuous, then I t  has denslty 

1 
g ( u )  = 2 q y u  ( u  BO) . 

Proof of Theorem 6.5. 
We have, to show flrst that If V ,  Y are independent random varlables, where 

V has a trlangular denslty 2(1-2)+ and Y has dlstrlbutlon functlon F ,  then 
X +- V Y  has denslty f . But for z >0, 

00 03 co 
= J dF, ( u  )-2zJ dF ( u  1 + z 2 J  dF ( u  1 

f (x) = J-(l--)dF(U) 2 s  = 2J dF(u)-2rJ 

Z z u  z u 2  

O3 dF ( u )  00 co 

x u 2  
9 

x u  z u  

I 
I 
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and 

In our case, I t  can be verlfled that the interchange of lntegrals and derlvatlves 1s 
allowed. Substitute the value of f’ In the rlght-hand sldes of the equalltles for f 

and J f  . Then check that 
03 

z 

and thls glves us the Arst result. If F 1s absolutely contlnuous, then taklng the 

derlvatlve glves Its denslty, - f “(2 ). X 2  
2 

Thls theorem states that for f EC,, we can use the followlng algorlthm: 

Generator for convex densities 

Generate a triangular random variate v (this can be done as min(U,,U,) where the Ui’s 
are iid uniform [O,l) random variates). 
Generate a random variate Y with distribution function 

03 
U Y  F ( u  ) = i+--f‘(u )-(uf (u  )+ff  ) ( u  >O) . (If F is absolutely continuous, then Y has 
2 s 

5 2  density -1 I f  ( x  ).) 
2 

RETURN Xt w 

6.5. Recursive methods based upon representations. 
Representatlons of densltles as lntegrals lead sometlmes to propertles of the 

followlng klnd: assume that three random varlables X ,  Y ,Z have densltles 
f ,g ,h whlch are related by the decomposltlon 

9 (3 1 = Ph (a: )+(l--P If (z 1 . 
Assume that X 1s dlstrlbuted as @ ( Y , u )  for some functlon ?,b and a unlform [0,1] 
random varlable U lndependent of Y (thls 1s always the case). Then, we have 
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wlth probablllty p , X X ? ) ( Z ,  U )  and wlth probablllty 1-p , XX?)(?)( Y’,U’), U )  
where (Y’,u’) 1s another palr dlstrlbuted as ( Y , U ) .  (The notatlon 1s ued for 
“1s dlstrlbuted as”.) Thls process can be repeated untll we reach a substltutlon by 
2 .  We assume that Z has an easy denslty h . Notlce that we never need to actu- 
ally generate from g ! Formally, we have , startlng wlth 2 :  

Recursive generator 

Generate a random variate z with density h , and a uniform [0,1] random variate U 
X+$(Z ,U)  
REPEAT 

Generate a uniform [O,l]random variate V ,  

IF V l P  
THEN RETURN X 
ELSE 

Generate a uniform [0,1] random variate U. 
X - $ ( X ,  u 1 

UNTIL False 

The expected number of 1 teratlons In the REPEAT loop 1s - because the 
V 

number of V-varlates needed 1s geometrically dlstrlbuted wlth paAmeter p . Thls 
algorlthm can be flne-tuned In most appllcatlons by dlscoverlng how unlform 
varlates can be reiused. 

Let us lllustrate how thls can help us. We know that for the gamma denslty 
wlth parameter a E(O,l), 

S ( X )  = - a : f ’ ( a : )  = a h ( x ) + ( l - a ) f  ( a : ) ,  

where h 1s the gamma ( a + 1 )  denslty. Thls 1s a convenlent decomposltlon slnce 
the parameter of h 1s greater than one. Also, we know that a gamma ( a  ) random 
varlate 1s dlstrlbuted as U Y  where U 1s a unlform [0,1] random varlate and Y 
has denslty - s f ‘ ( s )  (apply Theorem 6.2). Recall that we have seen several f a s t  
gamma generators for a 21 but none that was unlformly fas t  over all a .  The 
prevlous recurslve algorlthm would boll down to generating x as 

z h  vi 
i = 1  

where Z 1s gamma ( a  +1) dlstrlbuted, L 1s geometrlc wlth parameter a ,  and the 
Vi’s are lld unlform [0,1] random varlates. Note that thls In turn 1s dlstrlbuted as 
Ze-GL where GL 1s a gamma ( L  ) random varlate. But the denslty of GL 1s 
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03 a -1 e -z 
(x >o) . a ( 1 4  )i-1 - e  - -a2 

i =1 ( a  -l)! 

Thus, we have shown that the followlng generator Is valld: 

A gamma generator for a < 1 

Generate a gamma ( a  +1) random variate 2 .  
Generate an exponential random variate E .  

E 
RETURN X-ze  a 

_- 

The recurslve algorlthin does not require exponentlatlon, but the expected 
number of iterations before halting 1s -, and thls 1s not unlformly bounded over 

E 
(0,l). The algorlthm based upon the decomposltlon as Ze a on the other hand 1s 
unlformly fast. 

1 
U 

-- 

Example 6.6. Stuart’s theorem. 
Without knowlng it, we have proved a speclal case of a theorein of Stuart’s 

(Stuart, 1902): if Is gamma ( a  ) dlstrlbuted, and Y is beta (6 ,a -6 ) distributed 
and lndependent of 2 ,  then z Y , Z ( l - Y )  are lndependent gamma ( 6 )  and 
gamma(a -b ) random varlables. If we put b =1, and formally replace a by a +1 

then I t  Is clear that ZU a 1s gamma ( a )  dlstrlbuted, where U 1s a unlform [0,1] 
random varlable. 

1 - 

There are other slmple examples. The von Neumann exponentlal generator Is 
also based upon a recurslve relationship. It Is true that an exponentlal random 

1 varlate E 1s wlth probablllty 1-- dlstrlbuted as a truncated exponentlal random 
e 

varlate (on [O, l ] )  , and that E is wlth probabillty - dlstrlbuted a s  1+E. Thls 

recurslve rule leads preclsely to the exponentlal generator of sectlon N.2. 

1 
e 



IV.6.REPRESENTATIONS OF DENSITIES 183 

6.6. A representation for the stable distribution. 
The standardlzed stable dlstrlbutlon 1s best deflned In terms of Its charac- 

terlstlc functlon 4: 
-i 2 ij; 6 sgn(t ) 

(a#l) 2 

loggl(t) = I-' - I t ' I Q e  (i+i 6-sgn(t)log( 2 I t I )) (a=i) n. 

Here &[-1,1] and aE(0 ,2]  are the shape parameters of the stable dlstrlbutlon, and 
5 1s deflned by mln(a,2-a). We omlt the locatlon and scale parameters in thls 
standard form. To save space, we wlll say that X 1s stable(a,S) when I t  has the 
above mentioned characterlstlc functlon. Thls form of the characterlstlc functlon 
1s due to Zolotarev (1959). By far the most lmportant subclass 1s the class of sym- 
metric stable dlstrlbutlons whlch have 6=0: thelr characterlstlc functlon 1s slmply 

4( t>  = e - l t  I ( * .  

Desplte the slmpllclty of thls characterlstlc functlon, I t  1s qulte dlfflcult to obtaln 
useful expressions for the correspondlng denslty except perhaps In the speclal 
cases a=2 (the normal denslty) and a=l (the Cauchy denslty). Thus, I t  would 
be convenlent If we could generate stable random varlates wlthout havlng to 
compute the denslty or dlstrlbutlon functlon at any polnt. There are two useful 
representatlons that wlll enable us to apply Theorem 6.4 wlth a sllght 
modlflcatlon. These wlll be glven below. 

Theorem 6.6. (Ibragimov and Chernin, 1959; Kanter, 1975) 
For a<l,  the denslty of a stable(a,l) random varlable can be wrltten as 

where 
1 

sln(au ) I-a sln((l-a)u ) 
sin( u ) sln(au ) 1 s ( u ) = (  

When U 1s unlformly dlstrlbuted on [0,1] and E 1s lndependent of U and 
exponentlally dlstrlbuted, then 

1s stable(a,l) dlstrlbuted. 
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Proof of Theorem 6.6. 
For the flrst statement, we refer to Ibraglmov and Chernln (1959). The latter 

statement 1s an observation of Kanter's (1975) whlch 1s qulte easlly verlfled by 
l-a 

I --. - ' (Tu ) a , and notlng that i t  1s equal computlng the dlstrlbutlon functlon of ( 

to 
E 

Taklng the derlvatlve glves us the denslty f . 

The second part of the proof uses a sllght extenslon of Theorem 6.4. Thls 
representatlon allows us to generate stable(a,l) random varlates qulte easlly - In 
most computer languages, one llne of computer code wlll sufflce! There are two 
problems however. Flrst, we are stuck wlth the evaluatlon of several trl- 
gonometrlc functlons and of two powers. We wlll see some methods of generatlng 
stable random varlates that do not require such costly operatlons, but they are 
much more compllcated. Our second problem 1s that Theorem 6.6 does not cover 
the case 6#l. But thls 1s easlly taken care of by the followlng Lemma for whlch 
we refer to Feller (1971): 

Lemma 6.1. 

A. If X and Y are lld'stable(a,l), then Z t p X - q Y  1s stable(a,6) where 
TE(1+6) 

p a  = sin( )/sln(rE) , 
2 

rE( 1-6) 
q a  = sln( )/sln(nE) . 

2 

B. If X 1s s t ab le (2 , i )  and N 1s lndependent of X and normally dlstrlbuted, 
then N m  1s stable(cu,O), all aE(O,2]. 

2 

Uslng thls Lemma and Theorem 6.6, we see that we can generate all stable 
random varlates wlth elther c u < l  or 6=0. To All the vold, Chambers, Mallows 
and Stuck (1976) proposed to  use a representatlon of Zolotarev's (1966): 
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Theorem 6.7. (Zolotarev, 1966; Chambers, Mallows and Stuck,1976) 
7 r 7 r  

2 2  
Let E be an exponentlal random variable, and let U be a unlform [--,-I 

random variable lndependent of E .  Let further 7 = -- 7 r f i .  Then, for af.1, 
2 a  

1-0 - 
sin( a( U -7)) cos( U -a( U -7)) a 1 E ( 1 

X t  - 
(cos u ) a 

1s stable(a,S) dlstrlbuted. Also, 

1) X+--((T+6U)tan( 2 7 r  U )-6log( 7rE cos( U ) 
7r 7r+26U 

1s stable(1,S) dlstrlbuted. 

We leave the determlnatlon of the lntegral representatlon of f to the 
reader. It 1s noteworthy that Theorem 6.7 1s a true extension of Theorem 6.6 

(Just note that for a < l , 6 = l ,  we obtaln 7=--. There are three speclal cases 

worth notlng: 
(1) A stable(2,O) random variate can be generated as a sln(2 U )  ’ = 2 a  sln( U). Thls 1s the well-known Box-Muller representa- 

tlon of 
(11) A stable(1,O) random varlate can be obtalned a s  tan(U),  whlch ylelds the 

lnverslon method for generatlng Cauchy random varlates. 

(111) A stable(-,1) random varlate can be obtalned as 

7r 

2 

c o s y  1 
2 tlmes a normal random varlate (see sectlon V.4). 

1 
2 

1 

1 U T ’  
4E s h 2 (  --- 

2 4  

whlch 1s dlstrlbuted In turn as 
1 

4E cos2( U )  ’ 

where N 1s normally dlstrlbuted. whlch 1s In turn dlstrlbuted as - 1 

2 N 2  
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Characteristic function #( t ) 
e-l'lO,O<a~l 

, O < f f U < _ l  
1 

l + l t  I "  
(1- I t I )", I t I <l,rr>l 
1- I t 1 O ,  I t I < l , O < c y < l  

6.7. Densities with Polya type characteristic functions. 
Thls sectlon 1s added because I t  lllustrates that representatlons offer unex- 

pected help In many ways. It 1s frustratlng to come across a dlstrlbutlon wlth a 
very slmple characterlstlc functlon In one's research, and not be able to generate 
random varlates wlth thls characterlstlc functlon, at least not wlthout a lot of 
work. But we do know of course how to generate random varlates wlth some 
characterlstlc functlons such as normal, unlform and exponentlal random varl- 
ates. Thus, If we can And a representatlon of the characterlstlc functlon (b in 
terms of one of these slmpler characterlstlc functlons, then there 1s hope of gen- 
eratlng random varlates wlth characterlstlc functlon (b. By thls process, we can 
take care of qulte a few characterlstlc functlons, even some for whlch the denslty 
1s not known In a slmple analytlc form. Thls wlll be lllustrated now for the class 
of Polya characterlstlc functlons, 1.e. real even contlnuous functlons (b wlth 
+(0)=1, llm +( t )=O, convex on (0,~). Thls class 1s lmportant both from a practl- 

cal polnt of vlew (it contalns many lmportant dlstrlbutlons) and from a dldactlcal 
polnt of vlew. The examples that we wlll conslder In thls subsectlon are llsted In 
the table below. 

t+m 

Name 
Symmetric stable distribution 

Linnik's distribution 

The second entry In thls table is the characterlstlc functlon of a unlmodal 
denslty for aE(0,2] (Llnnlk (1962), Lukacs (1970, pp. 96-97)), yet no slmple form 
for the denslty 1s known. We are now ready for the representatlon. 

~ ~~ ~ 

Theorem 6.8. (Girault, 1954; Dugue and Girault, 1955) 
Every Polya characterlstlc functlon (b can be decomposed a s  follows: 

03 t 
(bu 1 = so- I - I I+ dF (8 1 ( t  9 

S 0 

(b(t ) = 4 - t  ) ( t  <o) f 

F (s ) = l-$(S )+s d'(s ) 

where F 1s a dlstrlbutlon functlon wlth F (O)=O and deflned by 

(s >O) . 

Here (b' 1s the rlght-hand derlvatlve of (b (whlch exlsts everywhere). If F 1s abso- 
lubely contlnuous, then I t  has denslty 

g (s ) = s $"(s ) (s >o) . 
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From thls, l t  1s a mlnor step to conclude: 

187 

I Theorem 6.9. (Devroye, 1984) 
Y I If 4 1s a Polya characterlstlc functlon, then X + ,  has thls characterlstlc 
L 

functlon when Y ,Z are Independent random varlables: Z has the dlstrlbutlon 
functlon F of Theorem 6.8, and Y has the FeJer-de la Vallee Poussln (or: FVP) 
denslty 

Theorem 6.9 uses Theorem 6.8 and the fact that the FVP denslty has 
characterlstlc functlon (1- I t I )+. There are but two thlngs left to  do now: flrst, 
we need to obtaln a fast  FVP generator because i t  1s used for all Polya type dls- 
trlbutlons. Second, I t  1s lmportant to demonstrate that the dlstrlbutlon functlon 
F In the varlous examples 1s often quite slmple and easy to  handle. 

Remark 6.1. A generator for the Fejer-de la Vallee Poussin density. 
Notlce that If X has denslty 

1 sln(z) 4- 1 ,  7 r x  

then 2X has the F W  denslty. In vlew of the osclllatlng behavlor of thls denslty, 
I t  1s best to  proceed by the rejection method or the serles method We note first 
that sln(x) 1s bounded from above and below by consecutlve terms In the serles 
expanslon 

1 1 
3! 5! 

sln(x) = x---z3+-~5- . . , 

and that I t  s bounded In absolute value by 1. Thus, the denslty f of X 1s 
bounded as follows: 

1 1  

4 42 
where h (x )=mln(-,7), whlch 1s the denslty of V B ,  where v 1s a unlform 

[-1,1] random variable, and B 1s fl wlth equal probablllty. The reJectlon 
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4 

7r 
constant of - In thls lnequallty 1s usually qulte acceptable. Thus, we have: 

FVP generator based upon rejection 

REPEAT 
Generate iid uniform [-1,1] random variates u ,x. 
IF u<o 

THEN 
1 X+- 
X 

Accept --[ I U 1 <sin2(X)] 
ELSE Accept +[ I u I X2ss in2(X) )  

UNTIL Accept 
RETURN 2x 

The expected tlme can be reduced by the Judlclous use of squeeze steps. Flrst, If 

I X I 1s outslde the range [O,-1, I t  can always be reduced to a value wlthln that 

range (as far as the value of sin2(X) 1s concerned). Then there are two cases: 

(1) If I x I st, we can use 

A 

2 

A A  7r (11) If I X I E(--,--], then we can use the fact that sln(X)=cos(---X)=cos(Y), 
where Y now is In the range of (1). The followlng lnequalltles wlll be helpful: 

4 2  2 

Y 2  Y 4  1-Yz < sln(X> I--+-- .m 
2 -  2 24 

Example 6.7. The symmetric stable distribution. 
In Theorem 6.9, has denslty g glven by 

g (s ) = (012s2*-1+01(l-a)sa-1)e-S (s >o) . 

But we note that  Z a  has denslty 

cr(se-8 )+(l-a)(e-' ) (s BO) , 
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whlch 1s a mlxture of a gamma (2) and an exponentlal denslty. Thus, Z 1s dlstrl- 
buted as 

1 - 

where E,,E, and U are lndependent random varlables: E ,  and E ,  have an 
exponentlal denslty, and U 1s unlformly dlstrlbuted on [0,1]. It 1s also worth 
observlng that If we use Ul ,  ... for lld unlform [0,1] random varlables, then Z 1s 
dlstrlbuted as 

1 - 
( E  ,+max(E ,+log(a),O)) a 

and as 

Example 6.8. Linnik's distribution 
We verlfy that 2 In Theorem 6.9 has denslty g glven by 

g (s ) = ((a2+a)s2a-1+(a-a2)S"-1)(1+Sa)-3 (s >o) * 

It 1s perhaps easler to work wlth the denslty of Za: 

(s >O) . s (a+l)+(l-a) 
(l+s )3 

l+a + a The latter denslty has dlstrlbutlon functlon 1-- , and thls Is easy 
l+s ( l+sP 

to  Invert. Thus, a random varlate Z can be generated & 

where U 1s a unlform [o,1] random varlate. If speed 1s extremely Important, the 
square root can be avolded If we use the rejectlon method for the denslty of z", 
wlth domlnatlng denslty ( i + ~ ) - ~ ,  whlch 1s the denslty of --1. A little work 

shows that Z can be generated as follows: 

1 
U 
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REPEAT 
Generate iid uniform [ O , l ]  random variates U ,  V .  

UNTIL 2aU 5 v (Now, x is distributed as zp.)  
RETURN X' 

1 

The expected number of iterations 1s l+a. 

Example 6.9. Other examples. 
Assume that $( t  ) = (1- I t I for a>l. Then $(s )-s $'(s ) 1s absolutely 

contlnuous. Thus, the random varlable Z of Theorem 6.9 has beta (2,a-1) den- 

There are sltuatlons In whlch the dlstrlbutlon functlon F of Theorems 6.8 
and 6.9 1s not absolutely contlnuous. To lllustrate thls, take q5(t)=(l- I t I O)+, 

and note that F (s) = (1-a)s" ( 0 5 s  51). Also, F (l)=l. Thus, F has an atom 
of welght a at 1, and I t  has an absolutely contlnuous part of welght l-a wlth 
support on (0,l). The absolutely contlnuous part has denslty ( 0 5 s  si), 

which 1s the denslty of U where u 1s unlform on [0,1]. Thus, 

slty g (s )=a(a-l)s (l-s ( 0 5 s  51). 

1 - 

1 wlth probablllty a 

U wlth probablllty l-a 
z = (  - 1 

Here we can use the standard trlck of recuperatlng part of the unlform [O,l] ran- 
dom varlate used t o  make the "wlth probablllty a'' cholce. 
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A. 

B. 
f 1s convex If and only If a , 6  21. It 1s concave If and only If a ,6  <I. 
Y b  has denslty f , where Y Is beta ( b  ,a +1) dlstrlbuted. 

- 

b 
) has denslty f where Y 1s gamma ( 6  ) dlstrlbuted, and 2 is c. (rtz 

gamma ( a  +1) dlstrlbuted and lndependent of Y .  
6. Thls 1s a contlnuatlon of exerclse 5 for the speclal case b =l. The denslty is 

f (z)=(a +l)(l-s)' (05% 51). From the prevlous exerclse we recall that a 

random varlate wlth thls dlstrlbutlon can be obtalned as 1-U at-1 and as 
1 - 

- 
where U Is a uniform [0,1] random varlate, E 1s an exponentlal 

E +Ga +1 
random varlate, and G,+l 1s a gamma ( a  +1) random varlate lndependent of 
E .  Both these methods requlre costly operatlons. The followlng reJectlon 
algorlthms are usually faster: 

Rejection method #1, recommended for a > 1 

REPEAT 
REPEAT 

Generate two iid exponential random variates, E I ,E2 .  
E 

U N T I L X I 1  
Accept t[Ez(l-X)-ux2~O] 
IF NOT Accept THEN Accept +[uX+E2+a l o g ( l - X ) ~ O ]  

X 4 - 1  
U 

UNTIL Accept 
RETURN X 

Rejection method #2, recommended for a < 1 

REPEAT 
Generate two iid uniform [0,1] random variates, U ,X . 

UNTIL U<(l-X)' 
RETURN X 

Show that the reJectlon algorlthms are valld. Show furthermore that the 
expected number of lteratlons 1s - a and a +1 respectlvely. (Thus, a unl- 

formly fast  algorlthm can be obtalned by uslng the Arst method for a 21 
U 

I 

I 
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6.8. Exercises. 
1. 

2. 

3. 

4. 

5. 

191 

The gamma-integral distribution. We say that X 1s GI(a)  (has the 
gamma-lntegral dlstrlbutlon wlth parameter a >0) when Its denslty 1s 

Oo U a - 2 e - u  

2 r ( a >  
f ( a : ) = J  du (a: >o) . 

Thls dlstrlbutlon has a few remarkable propertles: I t  decreases monotonlcally 
on [O,co). It has an lnflnlte peak at 0 when a 5 1 .  At a =1, we obtaln the 

1 

a -1 
exponentlal-lntegral denslty. When a >1, we have f (O)=- . For a=2,  

the exponentlal denslty 1s obtalned. When a >2, there 1s a polnt of lnflectlon 
at a -2, and f'(O)=O. For a =3, the dlstrlbutlon 1s very close to  the normal 
dlstrlbutlon. In thls exerclse we are malnly lnterested In random varlate gen- 
eratlon. Show the followlng: 
A. X can be generated as U Y  where U 1s unlformly dlstrlbuted on [O,l] 

and Y 1s gamma ( a  ) dlstrlbuted. 
B. When a 1s Integer, X 1s dlstrlbuted as GZ where 1s unlformly dlstrl- 

buted on 1, . . . , a-1, and Gz 1s a gamma ( 2 )  random varlate. Note 
that  X 1s dlstrlbuted as -log( U, . . U, ) where the .Vi's are lld unl- 
form [0,1] random varlates. Hlnt: use lnductlon on a .  

As a +co, - tends In dlstrlbutlon to  the unlform [0,1] denslty. 

Compute all moments of the GI(a ) dlstrlbutlon. (Hlnt: use Khlnchlne's 
theorem .) 

X C. 

D 

The denslty of the energy spectrum of flsslon neutrons 1s 

U 

1. Apply 
1 
2 

where a ,6 >O are parameters. Recall that  slnh(x )=-(e2 -e-' 

Theorem 6.4 for deslgnlng a generator for thls dlstrlbutlon(Mlkhallov, 1965). 
How would you compute f (a:) wlth seven dlglts of accuracy for the 
exponentlal-lntegral denslty of Example 6.3? Prove also that for the same 
dlstrlbutlon, F (a: )=(1-e -' )+xf (x ) where F 1s the dlstrlbutlon functlon. 

If U,T/ are lid unlform [O,l] random varlables, then for O<a <1, Uv 
has denslty x-' -1 (OC x < 1). 
In the next three exerclses, we conslder the followlng class of monotone den- 
sltles on [%I]: 

1 - 

where a ,6 > O  are parameters. The coefflclent wlll be called B .  The mode of 
the denslty occurs at x =0, and f (O)=B. Show the followlng: 
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and the second method for a <1.) 

Contlnuatlon of exerclse 5 for 6 =- . The denslty we are conslderlng here 

can be wrltten as follows: 

1 
2 

7. 

f ( x )  = B(l-x2)a ( O S X  5 1 )  . 

N .  
A. 

B. 

C. 

3 r(a +TI 
.) From exerclse 5 we recall that a random varlate 

where N 1s a normal 

1s a gamma ( a  +1) random varlate lndependent of 

2 (Here B =- 

wlth thls denslty can be generated as 

random varlate, and G, 

J;; r(a+i) 
N 

d m  

Show that We can also use I 2Y-1 I where Y 1s beta ( a  + l , a  +1) dlstrl- 
buted. 
Show that If we keep generatlng lld unlform [0,1] random varlates u,x 
untll u s ( 1 - x 2 ) " ,  then X has denslty f , the expected number Of 

lteratlons 1s B , and B lncreases monotonlcally from 1 ( a  =0) to 

Show that the followlng reJectlon algorithm 1s valld and has reJectlon 
00 ( a  -)00). 

3 r(a +,I 
4 constant (whlch tends monotonlcally to 1 as a 400): Ja r ( a  +I)  

Rejection from a normal density 

REPEAT 
Generate independent normal and exponential random variates 
N , E .  

I N \  , y t x a  x'\/20 
aY Accept -[ Y - 11AND [ 1- Y (1+ E) 2 01 

IF NOT Accept . THEN Accept - [Y<l:  A i  
[ u Y + E + u  ~ o ~ ( I - Y ) L o ]  

UNTIL Accept 
RETURN x 

X Hlnt: use the lnequalltles -- < l o g ( l - x ) ~ - x  (O<x el). 
1-x - 

8.  The exponential power distribution. Show that If S Is a random sign. 

and G has the exponentla1 
1 - 1 

T 
1s a gamma (-) random varlate, then S ( G  ) 

7 
- 
7 
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9. 

10. 

11. 

12. 

power dlstrlbutlon wlth parameter 7, that is, Its denslty 1s of the form 
c e -  I 
Extend Theorem 6.2 by showlng that for all monotone densltles, I t  sufflces to 
take Y wlth dlstrlbutlon functlon 

I 'where c 1s a normallzatlon constant. 

03 

F ( s )  = 1-Jf ( u )  d u - z f  ( a : )  ( Z E R ) .  
z 

Extend Theorem 6.5 t o  all convex densltles In C. 
The Pareto distribution. Let E ,  Y be lndependent random varlables, 
where E 1s exponentlally dlstrlbuted, and Y has denslty g on [O,m). Glve 
an lntegral form for the denslty and dlstrlbutlon functlon of X =E / Y .  Ran- 
dom varlables of thls type are called exponentlal scale mlxtures. Show that 
when Y 1s gamma ( a  ), then 1-l-E / Y  Is Pareto wlth parameter a ,  1.e. 
i+E / Y has denslty a / a :  
Develop a unlformly fa s t  generator for the famlly of densltles 

(a: > 1) (see e.g. Harrls, 1968). 

where n 21 1s an lnteger parameter, and C, 1s a constant dependlng upon 
n only. 

7. THE RATIO-OF-UNIFORMS METHOD. 

7.1. Introduction. 
The reJectlon method has one blg drawback: densltles wlth lnflnlte talls have 

to be handled wlth care; often, talls have to be cut off and treated separately. In 
many cases, thls can be avolded if the ratlo-of-unlforms method 1s used. Thls 
method 1s partlcularly well sulted for bell-shaped densltles wlth talls that 
decrease at least as f a s t  as z - ~ .  The ratlo-of-unlforms method was flrst proposed 
by Klnderman and Monahan (1977), and later applled t o  a varlety of dlstrlbu- 
tlons such as the t dlstrlbutlon (Klnderman and Monahan,ig79) and the gamma 
dlstrlbutlon (Cheng and Feast, 1979). 

Because the resultlng algorlthms are short and often fast, and because we 
have yet another beautlful lllustratlon of the reJectlon and squeeze prlnclples, we 
wlll devote qulte a blt of space to thls method. The treatment wlll be systematlc 
and slmple: we are not looklng for the most general form of algorlthm but for one 
that 1s easy to understand. 

We begln wlth 
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Theorem 7.1. (Kinderman and Monahan, 1977) 

Let A ={ (u  , v ) :Osv  < where f 30 Is an lntegrable functlon. If 
V 
U 

- 
( U , V )  1s a random vector unlformly dlstrlbuted over A ,  then - has denslty 
1 -f where c =Jf =2 area ( A  ). 
C 

Proof of Theorem 7.1. 

The Jacoblan of the transformatlon V Deflne ( X , Y )  by X = U , Y = -  U' 
u =z ,v  =zy 1s x . The denslty of (u  ,-v) 1s IA (u  ,v )/(c /2). Thus, the denslty of 

V ( X , Y )  1s z tlmes IA ( z , y z ) / ( c  /2) = z I p ~ ~ ~ ~ ~ ( x ) / ( c  /2). The denslty of Y = -  
U 

Is the marglnal denslty computed as 

But we already know how to generate unlformly dlstrlbuted random vectors: 
I t  sufflces t o  enclose the area A by a slmple set such as a rectangle, In whlch we 
know how to generate unlform random vectors, and to apply the rejectlon prlncl- 
ple. Thus, I t  1s lmportant to verlfy what A looks llke In general. Flrst, A 1s a 
subset of [O,m)XR . It Is symrnetrlc about the u -axls If f 1s symrnetrlc about 0. 
It vanlshes In the negatlve v-quadrant when f 1s the denslty of a nonnegatlve 
random varlable. But what lnterests us more than anythlng else are condltlons 
lnsurlng that A C [ O , b ) X [ a - , a + ]  - for some flnlte constants 6 ~ O , a - ~ O , a + ~ O .  It 
helps to note that the boundary of A can be found parametrlcally by 
{ ( u  ( x ) , v  (z )):z ER } where 

u ( z ) =  m, 
v (5) = x m F j  . 

Thus, A can be enclosed In a rectangle If and only If 

(1) I (z)  Is bounded; 
(11) z2f (x ) 1s bounded. 

Baslcaily, thls lncludes all bounded densltles wlth subquadratlc talls; such as the 
normal, gamma, beta, t and exponentlal densltles. From now on, the encloslng 
rectangle wlll be called B =[o,6 ) X  [a-,a +]. For the sake of slmpllclty, we wlll 
only treat densltles satlsfylng (1) and (11) In thls sectlon. 
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The ratio-of-uniforms method 

[SET-UP] 

Compute b ,a - ,a+  ror an enclosing rectangle. Note that 
b > s u p d m , a _ 5 i n r  x ~ , a + L s u p  z m. 
[GENERATOR] 
REPEAT 

Generate U uniformly on [o,b I ,  and V uniformly on [ a  ,,a +]. 
V X + -  U 

UNTIL UaSf  (x) 
RETURN x 

By Theorem 11.3.2, ( U , V )  1s unlformly dlstrlbuted In A . Thus, the algorlthm 1s 
valld, 1.e. X has denslty proportlonal to the functlon f . We can also replace f 
by cf for any constant c . Thls allows us to  ellmlnate all annoylng normallzatlon 
constants. In any case, the expected number of lteratlons 1s 

6 ( ~ , - a , )  26 b+-d - 
03 area A 
J f ( a : )  dx 

-00 

Thls wlll be called the reJectlon constant. Good densltles are densltles In whlch A 
fills up most of Its encloslng rectangle. As we wlll see from the examples, thls 1s 
usually the case when f puts most of Its mass near zero and has monotonlcally 
decreaslng talls. Roughly speaklng, most bell-shaped f are acceptable candl- 
dates. 

The acceptance condltlon U 2 s  f (x) cannot be slmpllAed by uslng loga- 
rlthmlc transformatlons as we sometlmes dld in the reJectlon method - thls 1s 
because U 1s expllcltly needed In the deflnltlon of X .  The next best thlng 1s to 
make sure that we can avold computlng f most of the tlme. Thls can be done 
by lntroduclng one or more qulck acceptance and qulck reJectlon steps. Typlcally, 
the algorlthm takes the followlng form. 
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The ratio-of-uniforms method with two-sided squeezing 

[SET-UP) 

Compute b ,a-,a+ for an enclosing rectangle. Note that 
b > s u p d T G T , a - ~ i n f  x m , a + > s u p  x \/r?.'-i. 
[ G E N E U T O R ]  
REPEAT 

Generate U uniformly on [O, b 1, and I/ uniformly on [ a  -, a +]. 
V X+- U 

IF [Quick acceptance condition] 
THEN Accept 4- True 
ELSE IF [Quick rejection condition] 

THEN Accept + False 
ELSE Accept + [Acceptance condition ( u2s f (x) )] 

UNTIL Accept 
RETURN x 

In the next sub-sectlon, we wlll glve varlous qulck acceptance and qulck reJectlon 
condltlons for the dlstrlbutlons llsted In thls lntroductlon, and analyze the perfor- 
mance for these examples. 

7.2. Several examples. 

lng Lemma can be useful In thls respect. 
We wlll need varlous lnequalltles In the deslgn of squeeze steps. The follow- 
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Lemma 7.1. 
X 

1-x (1) -x 2 log(1-x) 2 -- ( O S X  <1) . 
(11) -x-- > log(1-s ) X 2  

2 -  
X 2  

2( 1-x ) 
2 -x- ( O I X  a). 

(111) log(x) 5 x-1 (x >o). 
(lv) 5-- X 2  5 log(l+x) 

2 

( 0 - 3  <1). 
x 2  x3 < x--+- x 
2 3  - 

2x +3x2 < log(l+x ) 
2(l+x)2 - (VI 

2 s  +3x 2+x < - 
2(1+$ l2 

X 
(5 20). = 2-  

2(l+x ) 
(vl) Reverse the lnequalltles In (v) when - l < x  SO. 

Proof of Lemma 7.1. 
Parts  (1) through (lv) were obtalned In Lemma IV.3.2. By the Taylor serles 

for g (x )=(l+z )log(l+x ), we see that 

for some & between 0 and 5.  But 
g (O)=O,g’(x )=l0g(l +x )--1 ,g’(O)=1 ,g”(x )= - . Thus, for x >O, 1 

l + x  
X 2  X 2  

X +  L g ( x )  5 a:+-. 2(1+x) 2 

Thls proves (v) and (vl). 

For varlous densltles, we llst qulck acceptance and reJectlon condltlons In 
terms of u , v  , x .  When used in the algorlthm, these runnlng varlables should be 
replaced by the random varlates U , V , X  of course. Other useful quantltles such 

I 
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Acceptance condition 

Quick acceptance condition 

199 

dlre 
2’ 5 -4lOgu 
za  .e 4(-cu +l+l0gc ) (e >O) 

x a  5 4-4u 

2’ 5 6-8u +2u’ 

za 5 44-12u + 6 u ~ - % ~  
3 

a s  the reJectlon constant and values for 6 ,a- ,a,  are llsted too. 

Example 7.1, The normal density. 
All of the above 1s summarized In the table glven below: 

I _- .J* I 

I 

T 

2 
area ( A  ) - 
Rejection constant 14 

I 4 Quick rejection condition I za 2 ,-4 
u 

2 z a  2 ---2u I 
The table 1s nearly self-explanatory. The qulck acceptance and reJectlon condl- 
tlons were obtalned from the acceptance condltlon and Lemma 7.1. Most of these 
are rather stralghtforward. The fastest experlmental results were obtalned wlth 
the thlrd entrles In both llsts. It 1s worth polntlng out that the flrst qulck accep- 
tance and rejection condltlons are valld for all constants c >O lntroduced In the 
condltlons, by uslng lnequalltles for log(uc ) glven In Lemma 7.1. The parameter 
c should be chosen so that the area under the qulck acceptance curve 1s maxl- 
mal, and the area under the qulck reJectlon curve 1s mlnlmal. 
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e 
Acceptance condition 2 5 -2logu 

Quick acceptance condition 2 5 2(1-u) - 

Example 7.2. The exponential density. 
In analogy wlth the normal denslty, we present the followlng table. 

area (A ) I "  
I Rejection constant I '  

I 2 1 2 2 7 - 2  

Quick rejection condition 
l 2  

(u --) 2 e 
eu U 

2 2 -- 

It 1s lnslghtful to draw A and to construct slmple qulck acceptance and reJectlon 
condltlons by examlnlng the shape of A .  Slnce A 1s convex, several linear func- 
tlons could be useful. 

Example 7.3. The t distribution. 
The ratlo-of-unlforms method has led to some of the fastest known algo- 

rlthms for the t dlstrlbutlon. In thls sectlon, we omlt, as we can, the normallza- 
tlon constant of the t denslty wlth parameter a ,  whlch 1s 

U 6 r(?) 

Slnce for large values of a ,  the t denslty 1s close to the normal denslty, we would 
expect that the performance of the algorlthm would be slmllar too. Thls 1s indeed 
the case. For example, as a + m ,  the reJectlon constant tends to - whlch 1s 6' 
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. a ’  
. b   SUP^ 1 

a -1 - (I -1 - 

the value for the normal denslty. 

area (A ) 

I 
0 - 1  - 

G ( a - 1 )  ‘ 
a + I  

2 - 

Rejection constant . ,  I d  

I I -- I 
Acceptance condition I 2 2  5 a ( u  “+l-1)  

I a + I  - , -  - 
1 4  I Quick acceptance condition I Z 2  5 5 - 4 U ( l + - )  

4 1 4  I Quick rejection condition I z2  3 -3+-(l+-) (only valid for a 23) I 

We observe that the ratlo-of-unlforms method can only be useful when a 21 for 
otherwise A would be unbounded. The qulck acceptance and rejectlon steps fol- 
low from lnequalltles obtalned by Klnderman and Monahan (1979). The 
correspondlng algorlthm 1s known In the llterature as algorlthm TROU: one can 
show that the expected number of lteratlons 1s uniformly bounded over a 21, 

and that I t  varles from - at a =1 to  - 4 4 

7r Jnl; asa4cQ. 
There are two important speclal cases. For the Cauchy denslty ( a = l ) ,  the 

acceptance condltlon 1s u 2L - , or, put dlfferently, u 2 f v 2 L 1 .  Thus, we 

obtaln the result that If ( U , V )  1s unlformly dlstrlbuted In the unlt clrcle, then 
V - 1s Cauchy dlstrlbuted. Wlthout squeeze steps, we have: U 

l + x 2  

A Cauchy generator based upon the ratio-of-uniforms method 

REPEAT 
Generate iid uniform [-1,1] random variates u , v. 

UNTIL U2+ vas  1 
V RETURN Xt- U 
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For the t denslty wlth 3 degrees of freedom (a =3), 
. 2  1 

x 2  1 the acceptance condition 1s -5--1, or w 2 5 3 u  (1-u). Thus, once agaln, the 

acceptance reglon A 1s elllpsoldal. The unadorned ratlo-of-unlforms algorlthm 1s: 
3 u  

t3 generator based upon ratio-of-uniforms method 

REPEAT 
Generate U uniformly on [OJ]. 

Generate V uniformly on [--,-I. didi 
2 2  

UNTIL Va<3U(1-u)  
V RETURN x +- - 
U 

Thls 1s equlvalent t o  

t3 generator based upon ratio-of-uniforms method 

REPEAT 
Generate iid uniform [-1,1] random variates u , v. 

UNTIL Us+ va<l 
RETURN X - 6 -  V 

Both the Cauchy and t3 generators have obvlously reJectlon constants of -, 4 and 
should be accelerated by the Judlclous use of qulck acceptance and rejection con- 
dltlons that a re  llnear In thelr arguments. 

7r 
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Example 7.4. The gamma density. 

the orlgln, 
In thls example, we conslder the centered gamma ( a  ) denslty wlth mode at 

e a-1  
(z +a-l)a-le++a-l) (z +a - D O )  . f ( z ) = c  ( a  -1y-1 - 

Here c 1s a normallzatlon constant equal to whlch wlll be 

dropped.The table wlth facts 1s glven below. Notlce that the expected number of 
lteratlons 1s - at a =1, and /i- as a -+m, Just as for the t densltu. 

e a- l r (a  ) 

4 4 

f (2 )  

Q   SUP^ 
a+=suPz m , a - = i n f X  
area ( A  ) 
Rejection constant 

Acceptance condition 

e 0-1 

l )a - l  (5 +a -1)a -1 e 43 + a  -1) (5 +a - 1 3 0 )  
3 

- 
1 

z + d f  (%+) where z + = l + f i  , z - J f  ( z - )  where z-=i-= 
a +-a - 
2c  (a+%) 

?l I (  
0--1 ++a-1  

e ( z + a - 1 )  2 -- 
) e 2  

a -1 

Quick acceptance condition 

Quick rejection condition 
(a-1)(2u2-2)  2 -uz2 (2 50) 

We leave the verlflcatlon of the lnequalltles lmpllclt In the qulck acceptance and 
reJectlon steps to the readers. All one needs here 1s Lemma 7.1. Tlmlngs wlth thls 
algorlthm have shown that good speeds are obtalned for a greater than 5. The 
algorlthm 1s unlformly fast  for a E[l,m). The ratlo-of-unlforms algorithms of 
Cheng and Feast (1979), Robertson and Walls (1980) and Klnderman and 
Monahan (1979) are dlfferent In conceptlon. 

7.3. Exercises. 
1. For the qulck acceptance and reJectlon condltlons for Student's t dlstrlbu- 

tlon, the followlng lnequallty due to  Klnderman and Monahan (1979) was 
used: 

a +1 -- 
1 4  

a - a +I 4 4(1+-) -- 
1 4  

U U 
5-4(1+-) u 5 a ( u  '"-1) 5 -3+ (u 2 0 )  ' 
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The upper bound Is only valid for a 23. Show thls. Hlnt: first show that the 
mlddle expression g (u  ) 1s convex In u . Thus, 

9 ( u  1 L 9 ( 2  >+(u -2 )$'(Z 1 . 
Here z 1s to be plcked later. Show that the area under the qulck acceptance 

curve Is maxlmal when z=(l+-) , and substltute thls value. For the 
a +I -- 

1 4  

U 
1 

U 
lower bound, show that g (u  ) as a functlon of - 1s concave, and argue slml- 

larly. 
Barbu (1982) has polnted out that when (u,v) Is unlformly dlstrlbuted In 
A = { ( u  , v ) :O<u - -  < f  ( u  +v)}, then U + v  has a denslty whlch Is propor- 
tlonal to  f . Slmllarly, If In the deflnltlon of A , we replace f ( u  +TI ) by 

has a denslty whlch 1s proportlonal to  f . Show thls. (f (-)) , then - 
3. Prove the following property. Let x have denslty f and define 

Y = d m m a x ( U , , U , )  where U, ,U ,  are lld unlform [0,1] random varl- 
ables. Deflne also u = Y  V==XY. Then (u ,V)  1s unlformly dlstrlbuted In 

A ={ (u  ,v):O<u 5 f (-)}. Note that thls can be useful for reJectlon In 
the (u  ,v  ) plane when rectangular rejectlon 1s not feaslble. 

4. In this exerclse, we study sufflcient condltlons for convergence of perfor- 
mances. Assume that f, is a sequence of densltles converging In some sense 
to a denslty f as n --too. Let b,  ,a+ ,  ,a+ be the deflnlng constants for the 
encloslng rectangles In the ratlo-of-unlforms method. Let b ,a +,a - be the 
constants for f . Show that the rejection constants converge,l.e. 

2. 

2 
v 3  V 

- 
6- m 

c 
Ilm 6,(a+,-a-,) = b(a+-a- )  

n -KXI 

when 

or when 

5. 

6. 

7. 

Glve an example of a bounded denslty on [O,m) for whlch the reglon A 1s 

Let f be a mixture of nonoverlapplng unlform densltles of varylng wldths 
and helghts. Draw the reglon A .  
From general prlnclples (such as exerclse 4), prove that the rejectlon con- 
stant for the t dlstrlbutlon tends to  the reJectlon constant for the normal 
denslty as a - m .  

unbounded In the v-dlrectlon, 1.e. b -09. - 
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8. Prove that all the qulck acceptance and rejection lnequalltles used for the 
gamma denslty are valld. 


