Chapter Fourteen
PROBABILISTIC SHORTCUTS
AND ADDITIONAL TOPICS

A. probabllistlc shortcut In random varlate generatlon Is a method for redue-
Ing the expected time In a simulation by recognizing a certaln structure In the
problem. This princlple can be lllustrated In hundreds of ways. Indeed, there s
not a single example that could be called "typlcal”. It should be stressed that the
efficlency 1s derlved from the problem ltself, and 1s probabilistic in nature. This
distingulshes these shortcuts from certaln techniques that are based upon clever
data structures or fast algorithms for certain sub-tasks. We will draw our exam-
ples from three sources: the simulation of maxima and sums of 11d random varl-
ables, and the simulation of regeneratlve processes.

Other toplcs brlefly touched upon include the problem of the generation of
random varlates under Incomplete Information (e.g. one Just wants to generate
random varlates with a unlmodal density having certaln given moments) and the
generatlon of random varlates when the distributlon is Indirectly specified (e.g.
the characteristic function Is given). Finally, we will briefly deal with the problem
of the deslgn of efficlent algorithms for large simulations.

1. THE MAXIMUM OF IID RANDOM VARIABLES.

1.1. Overview of methods.

In this sectlon, we Wil look at methods for generating
X =max(X,, ..., X, ) where the X;'s are 1ld random varlables with common
density f (the corresponding distribution function will be called F). We will
malnly be Interested In the expeéted time as a function of n. For example, the
nalve method takes time proportional to n, and should be avolded whenever pos-
sible. Because X has distribution function F'™, it Is easy to see that the following
algorithm is valld:
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Inversion method

Generate a uniform [0,1] random variate U.
1

RETURN X —F YU ™).

The problem with thls approach 1s that for large n, U™ 15 close to 1, so that In
regular wordslze arithmetlic, there could be an accuracy problem (see e.g. Dev-
roye, 1980). This problem can be alleviated If we use G =1-F Instead of F and
proceed as follows: '

Inversion method with more accuracy
Generate an exponential random variate £ and a gamma (n ) random variate G, .

E_,
E+G, "~

RETURN X G

Unless the distributlon function Is explicitly invertible, both inversion-based algo-
rithms are virtually useless. In the remalning sectlons, we present two probabllis-
tic shortcuts, one based upon the qulick ellmlnation principle, and one on the use
of records. The expected tlmes of these methods usually Increase as log(n ). This
Is not as good as the constant tlme inverslon method, but a lot better than the
nalve method. The advantages over the inverslon method are measured In terms
of accuracy and flexlbility (fewer things are needed In order to be able to apply
the shortcuts). '

1.2. The quick elimination principle.

In the qulck eliminatlon principle, we generate the maximum of a sequence
of 11d random varlables after having elimlnated all but a few of the X;'s without
ever generating them. We need a threshold polnt ¢{ and the tall probability
p=1-F (t). These are picked before application of the algorithm. Typlcally, p 1s
of the order of (log(n))/n . The number of X;'s that exceed ¢ Is binomlal (n,p ).
Thus. the following algorithm 1s guaranteed to work:
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The quick elimination algorithm (Devroye, 1980)

Generate a binomial (n,p ) random variate = .

IF Z=0
THEN
RETURN X «max(X;, . . . . &, - where the X, 's are iid random variates with
density f /(1-p) on (-oo,t].
ELSE
RETURN X «max(X,, .. ..-Xr: where the X;’s are iid random variates with

density f /p on [t,o00).

To analyze the expected tlme complexity. cbserve that the binomial (n,p) ran-
dom varlate can be generated In expected :!me proportlonal to np as np —oo by
the waltlng tlme method. Obviously, we ccuid use O (1) expected time algorithms
too, but there Is no need for thls here. Asszme furthermore that every X; in the
algorlithm Is generated In one unit of expested time, uniformly over all values of
p. It I1s easy to see that the expected tlme of the algorithm I1s T 40 (np ) where
we deflne T =aP(Z=0)n+b(1-P(Z=0))np+cnp for some constants
a,b,c >o0.

Lemma 1.1.

Inf T ~ (b+c)log(n) (n—=x<).
0<p <1 :

If we set
log(n )+46,

p = ———,
n

then T ~ (b +c )log(n ) provided that the sequence of real numbers §, 1s chosen
so that '

Nm §, +log(log(n )) = oo, 6, = o (log(n)) .
n ~-00
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Proof of Lemma 1.1.
Note that

T = na(1-p )" +bnp (1-(1-p )" )+cnp
< (b+c)np +ane™ |

The upper bound Is convex In p with one minimum. Setting the derivative with
respect to p equal to zero and solving for p glves the solutlon

) -

an

L
p = —log(
n

Resubstitution In the upper bound for T shows that

).

ane
b+c

When p ==(log(n }+4, )/n, then the upper bound for T is
ae _5"+(b +c¢ )(log(n )+6, ) .

T < (b+c)og(

This ~ (b +c)log(n) If §, =0 (log(n )) and e =0 (log(n )). The latter condition
Is satisfled when §, +log(log(n ))—oco.
Finally, 1t suffices to work on a lower bound for T'. We have for every ¢>0
and all n large enough, since the optimal p tends to zero:
_ne
T > (na-bnple YP+(b+c)np
e,
> na (1-€)e Y +(b +c )np.

- We have already -minimized such an expresslon with respect to p above. It
suffices to formally replace n by n/(1-€), a by a(1-€)?, and (b+c) by
(b +¢ )(1-€). Thus,

Inf T > (1-€)(b +c )og(

ane
0<p <1 b+

)
c

for all n large enough. This concludes the prdof of Lemma 1.1. .

2 ). When Z =0 In the
b+c
algorithm, 1ld random varlates from the density f /(1-p) restricted to (-co,l]
can be generated by generatlng random varlates from f until n values less than
or equal to ¢ are observed. This would force us to replace the term aP (Z =0)n
In the deflnition of T by aP (Z =0)n /(1-p). However, all the statements of
Lemma 1.1 remaln valid.

A good cholce for §, In Lemma 1.1 Is §, = log(
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The maln problem 1s that of the computation of a palr (p,t). For If we start
with a value for p, such as the value suggested by Lemma 1.1, then the value for
t 1s given by F}{1-p) (or G7Y(p) where G =1-F, If numerical accuracy Is of
concern). This Is unfortunately possible only when the Inverse of the distribution
function Is known. But If the inverse of the distribution were known, we would
have been able to generate the maximum quite efficlently by the inversion
method. There Is a subtle difference though: for here, we need one Inverslon, even
If we would need to generate a million i1d random varlables all distributed as the
maximum X . With the Inversion method, a milllon Inversions would be required.

If on the other hand we were to start with a value for ¢, then p would have to
o0

be set equal to ff = G (t) = 1-F (¢). This requires knowledge of the distribu-
t
tion function but not of its Inverse. The value of { we start with should be such

that p satisfles the conditions of Lemma 1.1. Typlcally, ¢ 1s plcked on theoretical
grounds as 1s now lllustrated for the normal density.

Example 1.1.

For the normal denslty 1t is known that G (z)~f (z)/z as z—oco. A first
approximate solutlon of f (£)/t = p Is t=V2log(1/p), but even If we substl-
tute the value p =(log(n ))/n in this formula, the value of G (¢) would be such
that the expected time taken by the algorithm far exceeds log(n ). A second
approximation 1s

log(47r)+log(log(-1p-))

t =« / 2log(>)- ,
P 2; ; 2log(—1p—)

with p =(log(n ))/n . It can be verified that with this cholce, T =0 (log(n)). |}

For other densltles, one can use simlilar arguments. For the gamma (a ) den-
sity for example, we have G(z)~f (z) as T —00, and
f ()G () f (z)/(1-(a /z)) for a >1,z >a-1. This helps In the construction
of a useful value for {.

The computation of G (t) Is relatlvely stralghtforward for most distribu-
tlons. For the normal density, see the series of papers published after the book of
Kendall and Stuart (1977) (Cooper (1968), Hill (1969), Hitchin (1973)), the paper
by Adams (1969), and an Improved version of Adams’s method, called algorithm
AS86 (Hill (1973)). For the gamma density, algorithm AS32 (Bhattachar)ee
(1970)) 1s recommended: 1t Is based upon a continued fractlon expansion glven in
Abramowlitz and Stegun (1965). ‘
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1.3. The record time method.

In some process.simulations one needs a sequence (Z, p - s Zp)of maxima
that correspond to one reallzation of the experiment, where ny<n,< - <ny.
In other words, for all 1, we have Z;=max(X,, . . ., X;) where the X;'s are 114
random varlables with common density f . The Inverslon method requires k
inversions, and can be Implemented as follows:

Inversion method

n¢«0,Z +—-0c0

FOR ¢:=1 TO k DO
Generate Z, the maximum of n;-n;_, iid random variables with common density f .
Z,,'_«—ma.x(Z,,'__l,Z) ) ’

The record tlme method Introduced In thls sectlon requires on the average
about log(n, ) exponentlal random varlates and evaluatlons of the distribution
function. In addltlon, we need to report the k values Z,,'.. When log(n; ) Is small
compared to k£, the record time method can be competltive. It exploits the fact
that In a sequence of n 1ld random varlables with common denslty f , there are
about log(n ) records, where we call the n-th observation a record If it Is the larg-
est observation seen thus far. If the n-th observation Is a record, then the Index
n ltself Is called a record tlme. It s noteworthy that given the value V; of the
¢-th record, and given the record time T; of the ¢-th record, Ty ,~-T; and V;_,

? ]
- are Independent: T; ;—T; s geometrically distributed with parameter G (V;):

P(Tiyy-Ti=3 | T;,Vi) = G(V)a-G(V; )™ (5 21).
Also, V;,, has condltional density f /G (V;) restricted to [V;,00). An Infinlte

sequence of records and record times {(V;,T;), ¢+ 21} can be generated as fol-
lows:
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The record time method (Devroye, 1980)

T,—1,i<1
Generate a random variate V, with density f .
p—G(V) .
WHILE True DO
te1+1
Generate an exponential random variate £ .
T; —T; 1+ [-E flog(1-p) ]
f(z)
1-p

Generate V; from the tail density

p—G(V;)

Tasv,

It 1s a stralghtforward exerclse to report the Z,,'. values glven the sequence of
records and record times. We should exit from the loop when T;>mn,. The
expected number of loops before halting is thus equal to the expected number of
records In a sequence of length n,, l.e. 1t is

>

§ =1

-17 = log(ny }++0 (1)

where v=0.5772... 1s Euler's constant. We note that the most time consuming
operatlon In every lteration s the evaluation of G'. If the inverse of G s avall-
able, the llnes

f (=)

1-p

Generate V; from the tail density

p+—G (V)

Tasv,

can be replaced by
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unit

Generate a uniform [0,1] random variate U.
p—pU
Vie=G™(p)

A final remark is In order here. If we assume that G can be computed In one
of tlme for all distributions, then the (random) time taken by the algorithm

Is an invariant, because the distribution of record times s distributlon-free.

1.4.
1.

Exercises.

Tail of the normal density. Let f/ be the normal density, let ¢ >0 and
deflne p =G () where G =1-F and F is the normal distribution function.
Prove the following statements:

A. Gordon’s inequality. (Gordon (1941), Mitrinovic (1970)).
¢ 1
FT@)ysep < =7(1).
T (t)<n» / (
B. Ast—oo, G(t)~f (t)/t.

C. If t=v2log(n /log(n)), then for the quick ellmination algorithm,
T = Q(n'™) for every ¢>0 as n —o0.

D. It t=s —Elg(log(4n)+log(log(£—-(n)))), where s 1s as In polnt C, then
g

for the quick elimination algorithm, T = O (log{n)). Does
T ~(b +c)log(n) If b,c are the constants In the definltlon of T (see
Lemma 1.1) ? :

Let T,,T,,... be the record tlmes In a sequence of iid un!form [0,1] random
varlables. Prove that E (T ,)==co. Show furthermore that log(7T, )~n In pro-
babllity as n —o00.
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2. RANDOM VARIATES WITH GIVEN MOMENTS

2.1. The moment problem.

The classical moment problem can be formulated as follows. Let {u,;. 1<1:}
be a collectlon of moments. Determine whether there 1s at least one distribution
which glves rise to these moments; If so, construct such a distributlon and deter-
mine whether 1t Is unique. Solld detalled treatments of this problem can be found
In Shohat and Tamarkin (1943) and Widder (1941). The maln result Is the follow-
ing.

Theorem 2.1.
If there exists a distributlon with moments y; , 1<¢, then

O S I
My Ho Hg41

v >0
Hg -« o . Hog

for all Integers s with s >1. The Inequalltles hold strictly If the distributlon Is
nonatomlec. Conversely, If the matrix Inequality holds strictly for all integers s
with s 21, then there exlsts a nonatomic distributlon matching the glven
moments.

Proof of Theorem 2.1.

We will only outline why the matrix Inequallty 1s necessary. Considering the
fact that

E((cote, X+ +¢, X*P®) >0

for all values of ¢y, . .., ¢s, We have by a standard result from linear algebra.
(Mirsky (1955, p. 400)) that

) TR
By Ko Bs 41

N %
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Theorem 22

If there exlsts a distrlbutlon on [0,00) With moments y; , 1<i, then

1oy
Ky Mo

My
Ho

Mg 41

for all Integers s >0. The Inequalitlies hold strictly If the distributlon s nona-
tomlc. Conversely, If the matrix lnequality holds strictly for all Integers s >0,

Ko
M3

Mg
Ks 41
>0,

Kag

K +1

g +2

>0,
Hag 41

then there exlsts a nonatomlc distribution matching the glven moments.

The determlinants In Theorems 2.1, 2.2 are called Hankel determinants.
What happens when one or more of them are zero Is more compllicated (see e.g.
Widder (1941)). The problem of the uniqueness of a distribution ls covered by

Theorem 2.3.
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—

Theorem 2.3.
Let py,pty,... be the moment sequence of at least one distribution. Then this
distribution Is unique If Carleman’s condltlon holds, l.e.
’ 1
> g
E Iu2i | . == 00
{ ==0
If we have a distribution on the posltlve halfline, then a sufficlent condition for
unliqueness 1s

o . -

T (u;) =00

{ =0
When the distribution has a density [ , then a necessary and sufficlent condition
for uniqueness Is

o0

f log(f (=) 4. — _

I B

(Kreln's condition).

For example, normal distributlons or distributions on compact sets satisfy
Carleman's condition and are thus uniquely determined by thelr moment
sequence. In exercises 2.2 and 2.3, examples are developed of distributions having
ldentlcal Infinite moment sequences, but widely varylng densitles. In exercise 2.2,
a unimodal dlscrete distribution is given which has the same moments as the log-
normal distribution.

The problem that we refer to as the moment problem s that of the genera-
tlon of a random varlate with a glven collection of moments fy,ly, . . ., fy,

where n can be co. Note that If we expand the characteristic function ¢ of a ran-
dom varlable In its Taylor serles about 0, then

tk—l

= o*-1(0)+R,

P(t) = ¢(O)+Tt!'¢(1)(0)+ R

where the remalinder term satisfles

t k
| R | Suk'l'—l—-

k!

This uses the fact that If |y, | <oo, the k-th derlvative of ¢ exists, and is a
continuous function glven by E ((1X )* ¢ *X). In particular, the k-th derivative 1s
In absolute value not greater than E (| X | k). See for example Feller (1871, pp-
512-514). The remalnder term R, tends to O In a neighborhood of the origin
when
| g |
lm sup ———— <0 .

k
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Thus, the Taylor serles converges In those cases. It follows that ¢ 1s analytic in a
nelghborhood of the origln, and hence completely determined by 1ts power. serles
about the orlgin. The condltion glven above 1S thus sufficlent for the moment
sequence to unlquely determine the distribution. One can verlfy that the condi-
tlon Is weaker, but not much weaker, than Carleman’s conditlon. The polnt of all
this 1s that If we are glven an Inflnlte moment sequence which unlquely deter-
mines the distributlon, we are In fact glven the characterlstic function In a speclal
form. The problem of the generatlon of a random varlate with a glven charac-
teristic functlon will be dealt with In sectlon 3. Here we will malnly be concerned
with the finite moment case. This I1s by far the most Important case In practice,
because researchers usually worry about matching the first few moments, and
because the majority of distributions have only a finlte number of finlte
moments. Unfortunately, there are typlcally an Infinite number of distributlons
sharing the same flrst n moments. These Include discrete distributions and dis-
tributlons with densltles. If some additional constralnts are satisfied by the
moments, 1t may be possible to plck a distribution from relatively small classes of
distributlons. These Include:

The class of all unlmodal denslties, l.e. uniform scale mixtures.
The class of normal scale mixtures.

Pearson's system of densltles.

Johnson's system of densltles.

The class of all histograms.

aBoawy

The c¢lass of all distributions of random varlables of the form
a +bN +¢N?+dN® where N 1s normally distributed. '

The list Is Incomplete, but representative of the attempts made In practice by
some statlsticlans. For example, In cases C,D and F, we can match the first four
moments with those of exactly one member in the class except In case F', where
some comblnations of the first four moments have no match In the class. The fact
that a match always occurs In the Pearson system has contributed a lot to the
early popularlty of the system. For a description and detalls of the Pearson sys-
tem, see exerclse IX.7.4. Johnson's system (exerclse IX.7.12) Is better for quantile
matching than moment msatching. We also refer the reader to the Burr famlly
(sectlon IX.7.4) and other familles given In section IX.7.5. These famllles of distri-
butions are usually designed for matching up to four moments. This of course !s
thelr maln limitatlon. What 1s needed 1s a general algorithm that can be used for
arbltrary n >4. In this respect, it may first be worthwhlle to verlfy whether there
exists a uniform or normal scale mixture having the given set of moments. If thils
Is the case, then one could proceed with the construction of one such distributlon.
If this attempt falls, 1t may be necessary to construct a matching histogram or
discrete distribution (note that dlscrete distributions are llmlts of histograms).
Good references about the moment problem Include Widder (1941), Shohat and
Tamarkin (1943), Godwin (1964), von Mises (1984), Hill (1969) and Springer
(1979). :
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2.2. Discrete distributions.

Assume that we want to match the first 2n -1 moments with those of a
discrete distributlon having n atoms located at z,, ..., z,, with respective
welghts p,, . . ., p, - We know that we should have

n . )
Ypiw) =up; (0<5j<2n-1).
t =1

This 1s a system of 2n equalities with 2n unknowns. It has preclsely one solution
If at least one distrlbutlon exlsts with the glven moments (von Mises, 1964). In
particular, If the locatlons z; are known, then the p;’s can be determlned from
the first n linear equatlons. The locations can first be obtalned as the n roots of
the equation

g +c, 2"+ - +e ey, =0,

where the ¢;’s are the solutions of

Ho - Hna Co |- Fn
B1 - b €1 K41
Hn_1 - Hon—g Cn -1 Haon -1

To do thls could take some valuable time, but at least we have a minlmal solu-
tlon, In the sense that the dlstrlbution ls as concentrated as posslble In as few
atoms as possible. One could argue that this ylelds some savings in space, but n
1s rarely large enough to make thls the declding factor. On the other hand, 1t Is
Impossible to start with 2n locatlons of atoms and solve the 2n equations for the
welghts p;, because there Is no guarantee that all p,’s are nonnegative.

If an even number of moments Is glven, say 2n, then we have 2n +1 equa-
tlons. If we conslder n +1 atom locatlons with n +1 welghts, then there Is an
excess of one varlable. We can thus choose one ltem, such as the locatlon of one
atom. Call this locatlon a. Shohat and Tamarkin (1943) (see also Royden, 1953)
have shown that If there exlsts at least one distribution with the glven moments,
then there exists at least one distribution with at most n +1 atoms, one of them
located at a, sharlng the same moments. The locatlons z,, . . ., 2, of the atoms
are the zeros of

1 1 Ho - Hp-y
z a By o My
=20.
ghtl an+1 Bpi1 - Hog
The welghts pg,p,, . . ., p, are linear combinatlons of the moments:

n
p'. — Z c].‘.uj .
=0
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The coefficlents ¢;; In turn are deflned by the ldentity

fL’—.’IIj

n .
Yciz? =11 0o<i<n).
j=o0

j#Ei LT
When the distribution puts -all 1ts mass on the nonnegative real line, a slight
modification Is necessary (Royden, 19853). Closely related to dlscrete dlstrlbutlons

are the histograms: these can be considered as special cases of distributions with
densltles

f@)= 3 2g
T) = —_— K (—),

,‘21 hi hi
where K 1s a fixed form density (such as the unlform [-1,1] denslty in the case of
a histogram), z; 1s the center of the ¢-th component, p; 1s the welght of the ¢-th
component, and k; Is the "wldth” of the ¢-th component. Densltles of this form
are well-known In the nonparametrlic denslty estimation llterature: they are the
kernel estimates. Archer (1980) proposes to solve the moment equations numeri-
cally for the unknown parameters In the histogram. We should point out that the
density f shown above Is the density of 2;-+h; ¥ where Y has density K, and
Z has probabllity vector p,, ..., p, on {1, ..., n } This greatly facllitates the
computations and the visuallzation process.

2.3. Unimodal densities and scale mixtures.

A random variable X has a unimodal distrlbution If and only If there exlsts
a random varlable Y such that X s distributed as YU where U Is a unlform
[0,1] random vartable Independent of Y (Khinchine's theorem). If U 1s not uni-
form and Y s arblirary then the distribution of X is called a scale mlxture for
U. Of partlcular Importance are the normal scale mixtures, which correspond to
the case when U 1s normally distributed. For us 1t helps to be able to verlfy
whether for a given collection of n moments, there exists a unimodal distribution
or a scale mlxture which matches these moments. Usually, we have a particular
scale mixture .ln mind. Assume for example that U has moments Vy,Vy,.... Then,
because E (X*)=E (Y*)E(U"), we see that Y has ¢-th moment K; /v;. Thus,
the existence problem 1s solved If we can find at least one distribution having
moments u; /v; .

Applylng Theorem 2.1, then we observe that a sufficlent condltion for the
moment sequence y,; to correspond to a U scale mixture Is that the determinants

1 7Y 4 Ny 4 78
Bi/Vy Ho/Vy Bs+1/Vs 41

Bs/Vs . C o Mo Vs
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are all positlve for 2s <n, n odd. Thls was first observed by Johnson and Rogers
(1951). For uniform mixtures, l.e. unimodal distributlons, we should replace v; by
1/(¢ +1) In the determinants. Having established the existence of a scale mixture
with the glven moments, 1t 1s then up to us to determlne at least one Y with
moment sequence pu; /v;. This can be done by the methods of the prevlous sec-
tlon.

. By Inslisting that a particular scale mlixture be matched, we are narrowing
down the possibllities. By thls Is meant that fewer moment sequences lead to
solutions. The advantage 1s that If a solutlon exists, 1t Is typlcally "nlcer” than In
the dlscrete case. For example, If Y 1s discrete with no atom at 0, and U is unl-
form, then X has a unimodal stalrcase-shaped density with mode at the origin
and breakpolints at the atoms of Y. If U 1s normal, then X 1Is a superposition of
a few normal densitles centered at O wlth dlfferent varlances. Let us lllustrate
briefly how restrictlve some scale mixtures are. We will take as example the case
of four moments, with normallzed mean and varlance, y,=O0,u,=1. Then, the
condlitlons of Theorem 2.1 Imply that we must always have

1 0 1
0 1 ug|=>0.

1 Kg Ky

Thus, p,>(ps)’+1. It turns out that for all ug,u, satlsfylng the inequality, we can
find at least one distribution with these moments. Incldentally, equallty occurs
for the Bernoulll distribution. When the Inequality iIs strict, a denslty exists. Con-
slder next the case of a unlmodal distributlon with zero mean and unit varlance.
" The existence of at least one dlstrlbution with the glven moments Is guaranteed 1If

1 0 3
0 3 4u,|=>0,

3 4ug Suy

In other words, u4_>_—§-+-i—§—(u3)2. It Is easy to check that In the (ug,u,) Dlane, 2

smaller area gets selected by thls conditlon. It 1s precisely the (N3,ﬂ4) plane which
can help us In the fast constructlon of moment matching distributlons. This Is
done In the next section.
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2.4, Convex combinations.

If Y and Z are random varlables with moment sequences u; and v; respec-
tively, then the r_anddm varlable X which equals Y with probabllity p and Z
with probabllity 1-p has moment sequence p u; +(1-p Jv;, In other words, 1t Is
the convex combination of the original moment sequences. Assume that we want
to match four normalized moments. Recall that the allowable area In the (uy,u,)
plane Is the area above the parabola p,>(uz)?+1. Every polnt (ug,444) 10 this area
lles on a horizontal line at helght u, which Intersects the parabola at the polnts
(=v/ #4=1,4), (\/14—1,14,). In other words, we can match the moments by a slmple
convex comblnatlon of two distributions with third and fourth moments
(v #4~1,u4) and (y/p4~1,u,) respectively.

The welght In the convex comblnation is determined quite easlly since we
must have, attaching welght p to the distrlbution with positive third moment,

(»—(1-p N/ kg1 = pg .

Thus, 1t suffices to take

1+__"ﬁ:3__
v N4‘1

p = >

It is also easy to verlfy that for a Bernoulll (¢ ) random varlable, we have normal-
1zed fourth moment

3¢2%-3q+1
q(1-q)
and normalized third moment
1-2¢q

Vq(Q-q)

Notice that thls distribution always falls on the limlting parabola. Furthermore,
by letting ¢ vary from O to 1, all points on the parabola are obtained. Glven the
fourth moment u,, we can determine ¢ via the equatlon

N4"1

pat3

1
= (1 ,
q 2(:1: )

where the plus slgn Is chosen If u320, and the milnus sign Is chosen otherwlse.
Let us call the solutlon with the plus sign ¢. The minus sign solutlon 1s 1-¢. If
B 1s a Bernoulll (¢) random varlable, then (B-¢)/V¢(l-¢) and
~-(B-q)/Vq(1-q) are the two random varlables corresponding to the two Inter-
sectlon polints on the parabola. Thus, the following algorithm can be used to gen-
erate a general random variate with four moments g, . . ., fyt
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Generator matching first four moments

Normalize the moments: o/ po—(1,)?,

u3—3/.42,AA1+2(u1)3 u4—4/‘3”1+6#2(u1)2—3(“1)4
(MS"‘Q) b 0’3 ’ 04

Myl
Myt3

1+ Ha
Vil
2
Generate a uniform {0,1] random variate U .
IFUZp
THEN
X eIy <pg) (X is Bernoulli (¢ ))

X-q
RETURN X «—pu,+o
' 39 (1-¢)
ELSE
X*_I[USP +(1-p)q] (X i;(Bernoulli (q ))
RETURN X i, ~0 — e
Ve g)

1
— (14
q 2( )

pi—

The algorithm shown above can be shortened by a varlety of tricks. As 1t stands,
one uniform random varlate s needed per returned random varlate. The polint of
this example Is that It Is very simple to generate random varlates that match four
moments If one Is not picky. Indeed, few users will be pleased with the convex
comblnation of two Bernoulll distributions used in the example. But Interestingly,
the example can also be used In the construction of the distribution of Y in scale
mixtures of the form YU dlscussed In the previous section. In that respect, the
algorithm becomes more useful, because the returned distributions are “nlcer”.
The algorithm for unlmodal distributions with mode at O 1s given below.




XIV.2.RANDOM VARIATES WITH GIVEN MOMENTS 691

Simple unimodal distribution generator matching four moments

Readjustment of moments: p;«—21y, pot~31y, Ma—4lts, a5l

Generate a random variate Y having the readjusted moments (e.g. by the algorithm given
above).

Generate a uniform [0,1] random variate U .-
RETURN X «~YU.

The algorithms for other scale mixtures are simllar.

One flnal remark about moment matching is In order here. Even with a unl-
modality constraint, there are many distributlons with widely varylng denslties
but ldentical moments up to the n-th moment. One should therefore always ask
the question whether it Is a good thing at all to bllndly go ahead and generate
random varlates with a certaln collection of moments. Let us make thls point
wlith two examples.

Example 2.1.(Godwin, 1964)
The following two densities have 1dentlcal Infinlte moment sequences:

1
J@)=—e 151" @eR).
1
¢(@)= e 1# 171+ cos(VTa ) (2€R)
(Kendall and Stuart (1977), see exercise 2.3). Thus, notlng that
[f =o04656...; [¢ =0.7328...,
A A

where A =[-n?/4,m%/4], we observe that
J1f-g] >05344

Consldering that the L distance between two densitles Is at most 2, the distance
0.5344... Is phenomenally large. |
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Example 2.2.

The previous example Involves a unimodal and an osclllating density. But
even {f we enforce unimodallty on our counterexamples, not much changes. See
for example Lelpnik’s example described In exerclse 2.2. Another way of illustrat-
Ing this Is as follows: for any symmetric unimodal denslty f with moments u,,
ty, 18 18 true that

sup J17-91 2 (1w

where the supremum Is taken over all symmetric unimodal ¢ with the same
second and fourth moments, and w==+/(34,)?/(5u,). It should be noted that
0<w<1 In all cases (thls follows from the nonnegatlvity of the Hankel deter-
minants applled to unimodal distributions). When f Is normal, w=\/§ﬁ and the

lower bound Is —?—)—(1— j %), which Is still quite large. For some comblnations of

4
moments, the lower bound can be as large as -2—7 There are two differences with

Example 2.1: we are only matching the first four moments, not all moments, and
the counterexample applles to any symmetric unimodal f , not }ust one density
plcked beforehand for convenlence. Example 2.2 thus relnforces the bellef that
the moments contaln surprisingly little Information about the distribution. To
prove the lnequality of thls example, we will argue as follows: let f ,g ,h be three
densltles In the glven class of densltles. Clearly,

max(f | £~k | [1/-g D= S 1=k [+ 11 =g )
1
> >flh-g 1.

Thus 1t suffices to prove twice the lower bound for [ | h~g | for two particular
densitles h ,g . Conslder densitles of random varlables YU where U s uniformly
distributed on [0,1] and Y 1is independent of U and has a symmetric discrete dis-
tribution with atoms at +b ,+c¢, where 0<b <c¢ <oo. The atom at ¢ has welght
p /2, and the atom at b has welght (1~p)/2. For h and g we will consider
different cholces of b,c,p. First, any cholce must be consistent with the moment
restrictions:

(1-p )b 2+pc? = g
(1-p )b *4pe® = 5p, .
Solving for p glves
5u~3uzc?
b4—b202
Forcing p €[0,1] glves us the constraints 0<3u,c 255, <b2(c2-b2). It 1s to our
advantage to take the extreme values for ¢ . In particular, for ¢ we will take

¢ =+/(514)/(8us), b =0, p=w? It should be noted that this not yleld a density
g since there will be an atom at the origin. Thus, we use an approximating

1-p =
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argument with a sequence g, approaching ¢ In the sense 't;hat the atom at O is
approached by an atom at €, —0. Next, for h, we take the limlit of the sequence
h, where as n —o0, b —+/3u,, p —0, and ¢ —oo. This is the case In which the
rightmost atom escapes to Inflnity but has Increasingly negligible welght p . Since
p —0, the contribution of the rightmost atom to the L, distance Is also o (1).

Thus, & can be consldered as having one atom at /3u, of welght 1/2. We obtaln
by slmple geometrical conslderations, '

nn—inoof \ In “h’n ‘ = 4(\/13/*‘4)/(3112)"\/3,“2)(%‘”2 1

V (5144)/ (312) :

= 2w3(1-w) .

Since the sequences h, ,g, are entirely In our class, we see that the lower bound
forsup [ | [ —g | Is at least w?(1-w). |l
g

2.5. Exercises.
1. Show that for the normal denslty, the 2¢-th moment Is

Moi = (20-1)(2¢-8) - - - (3)1) (722).

Show furthermore that Carleman’s conditlon holds.

2. The lognormal density. In thls exerclse, we consider the lognormal den-
sity .

L _(log(z ))*
2

f ()= ——=—e % T >0) .

V2nox (

Show first that this density falls both Carleman’s condltloneagld Kreln’s con-

ditlon. Hint: show first that the r-th moment s u, = e " /2. Thus, there

exist other dlstributions with the same moments. We wlll construct a famlly

of such distributions, referred to hereafter as Heyde's famlly (Heyde (1963),

Feller (1971, p. 227)): let -1<a <1 be a parameter, and deflne the density

f.(x)= f (z)1+asin(2rlog(z))) (z>0).

To show that f, Is a density, and that all the moments are equal to the
moments of f o=/ , It suffices to show that '
o0

f2¥ f (z)sin(2miog(z)) iz =0
0
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for all integer k >0. Show this. Show also the followlng result due to Lelpnik
(1981): there exlsts a famlly of discrete unimodal random varlables X having
the same moments as a lognormal random varlable. It suffices to let X take
the value ae“’ with probabllity ca™* e %2 for 1 =0,+1,4+2,..., where a¢ >0
is a parameter, and ¢ s a normallzatlon constant.

3. The Kendall-Stuart density. Kendall and Stuart (1977) Introduced the
denslty

[@)=Se" 121" @eR).

Following Kendall and Stuart, show that for all real ¢ with | a | <1,

S

fo@)=Le 1117040 cosVTET) (eR)
are densitles with moments equal to those of f .
4. Yet another famlly of densitles sharing the same moment sequence s given
by
1
% (1-a sin(z %))
24

fa(x)*-:e’_ (z >0),

where a €[0,1) 1s a parameter. Show that f , violates Krein's condition and
that all moments are equal to those of f o- This example 1s due to Stieltjes
(see e.g. Widder (1941, pp. 125-126)). '

5 Let p E(O,—;—) be a parameter, and let ¢ =(p cos(p 7))/? /T(1/p) be a con-

stant. Show that the following two densltles on (0,00) have the same
moments: '

[ (@) =c e otom,
9(2) = f (5) Q+sin(s? sin(p 7))

(Lukacs (1970, p. 20)).

8. Fleishman’s family of distributions. Consider all random varlables of
the form a+b0N +cN2+dN® where N 1s a normal random varlable, and
a,b,c,d are constants. Many distributlons are known to be approximately
normal, and can probably be modeled by distributions of random varlables
of the form glven above. This famlily of distributions, studied by Flelshman
(1978), has the advantage that random varlate generation Is easy once the
constants are determined. To compute the constants, the first four moments
can be matched with fixed values p,,U,,43,4,4. For the sake of simplicity, let
us normalize as follows: u,==0,u,==1. Show that b,d can be found by solv-
ing

1 = b246bd +15d%+2¢?,
pa=3 = 24(bd +c2(1+b%4+28bd )+d*(12+48bd +141¢ *+255d?)) ,
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where
TN
2(b2+24bd +105d%+2)

Furthermore, a==-c. Show that not all combinations of normalized
moments of distributlons (l.e. all palrs (ug,u,) With f,>(ug)?+1 ) lead to a
solutlon. Determine the reglon In the (u4,u,) plane of allowable palrs.
Flinally, prove that there exlst comblnations of constants for which the den-

sity 1s not unimodal, and determine the form of the distribution In _these
cases. '

7. Assume that we wish to match the first slx moments of a symmetric distrl-
butlon (all odd moments are zero). We normalize by forelng to to be 1. Show
first that the allowable reglon in the (u,,ug) plane 1s defined by the lnequall-
tles u,>1, uGZ(u4)2. Find slmple famlilles of distributions which cover the
borders of thls reglon. Rewrlte each polnt In the plane as the convex combi-
nation of two of these slmple distributlons, and glve the corresponding gen-
erator, l.e. the generator for the distribution that corresponds to this poilnt.

8. Let the a-th and b-th absoclute moments of a unlmodal symmetric distribu-
tion with a density be glven. FInd a useful lower bound for

Intsup [ | f-¢ |,
f 9

where the Infimum and supremum Is over all symmetric unimodal densitles
having the glven absolute moments. The lower bound should colnclde with
that of Example 2.2 In the case a =2,b =4.

3. CHARACTERISTIC FUNCTIONS.

3.1. Problem statement.

In many applications, a distributlon 1s best described by 1ts characterlstic
function ¢. Sometimes, 1t 1s outright difficult to Invert the characteristic function
to obtaln a value for the density or distribution function. One might ask whether
In those cases, 1t Is still possible to generate a random variate X with the glven
distributlon. An example of such a distribution 1s the stable distributlon. In par-
tlcular, the symmetric stable distribution with parameter «€(0,2] has the simple
~ltfe

1
characteristic function e . Yet, except for a€{3,1,2}, no convenlent analytic

expresslon 1s known for the corresponding denslty f ; the density Is best com-
puted with the help of a convergent serles or a dlvergent asymptotic expanslon
(section IX.6.3). For random varlate generation In thls slmple case, we refer to
sectlon IX.8. For a€(0,1] the characteristlc functlon can be written as a mlxture
of triangular characteristic functions. This property Is shared by all real (thus,
symmetric) convex characteristlc functions, also called Polya characterlstic
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functions. The mlxture property can be used to obtaln generators (Devroye,
1984; see also sectlon IV.6.7). In a black box method one only assumes that 1)
belongs to a certaln class of characterlstic functions, and that ¢(¢) can be com-
puted In finlte time for every ¢. Thus, making use of the mixture property of
Polya characteristic functlons cannot lead to a black box method because ¢ has
to be glven expllcltly in analytlc form.

Under certaln regularity condltions, upper bounds for the density can be
obtained In terms of quantities (functionals, suprema, and so forth) deflned in
terms of the characteristic function (Devroye, 1981). These upper bounds can in
turn be used In a rejection algorithm. This simple approach is developed In sec-
tlon 3.2. Unfortunately, one now needs to compute f In every lteratlon of the
rejection algorithm. This requires once again an inversion of ¢, and may not be
feasible. One should note however that thls can be avolded If we are able to use
the serles method based upon a convergent serles for f . This serles could be
based upon the Inversion formula.

A genulne black box method for a large subclass of Polya characteristic func-
tlons was developed In Devroye (1985). Another black box method based upon
the serles method will be studied in section 3.3.

3.2. The rejection method for characteristic functions.
General rejectlon algorithms can be based upon the following Inequality:

Theorem 3.1.

Assume that a glven distribution has two finite moments, and that the
characteristic function ¢ has two absolutely Integrable. Then the distrlbution has
a denslty f bounded as follows:

1
/@) < w1
)< ) .
1 f|¢ni

oms?

The area under the minimum of the two bounding curves Is -?r-\/f | 6| f | ¢ | .
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Proof of Theorem 3.1.
Since ¢ 1s absolutely Integrable, f/ can be computed as follows from é:

1 .
z)=—[d(t)e™ dt .
[(z)=Z=]4(t)
Furthermore, because the first absolute moment is finite, ¢’ exlsts and
'1 .
z)= ——(¢'(t)e** dt .
(@)= s=[¢()
Because the second moment Is finite, ¢'' exlsts and

! (ac)=—21 [¢"(t)e™ at

7z ?

(Loeve, 1963, p. 199). From this, all the Inequallties follow trivially. .

The Integrabllity condlitlon on ¢ lmplles that f 1s bounded and contlnuous.
The Integrablllty condltlon on ¢’/ translates Into a strong tall condition: the tall
of f can be tucked under a quickly decreasing curve. Thls explalns why f can
globally be tucked under a bounded Integrable curve. Based upon Theorem 3.1,
we can now formulate a first general rejection algorithm for characteristic func-
tlons satisfying the condltions of the Theorem.

General rejection algorithm for characteristic functions

[SET-UP)
1 1
— b — "
o= f161 b=t f 0]
[GENERATOR]
REPEAT
Generate two iid uniform [-1,1] random variates U,V .
Ir U<o
THENX«—\/-%—V , T—|Ulea
b1 Ulb
ELSE X<— -;-V ) T<—-J—)?;|—

(Note that thisis | U | aV?2)
UNTIL T < f (X)
RETURN X
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Varlous simplificatlons are possible In this rudimentary algorithm. What matters
s that f 1s stlll required In the acceptance step.

Remark 3.1.

The expected number of lterations 1s %\/f |61 [ |¢"|. This 1s a scale

Invariant quantity: indeed, let X have characteristic function ¢. Then, under the
conditlons of Theorem 3.1, ¢(t)=E (e X)), ¢''(t )=F (X 2¢ "X ). For the scaled
random varlable aX , we obtaln respectively ¢(at) and a?¢''(at). The product of
the Integrals of the last two functions does not depend upon a. Unfortunately,
the product Is not translation Invarlant. Noting that X 4+c¢ has characteristic
functlon ¢(t)e®, we see that [ | ¢ | Is translatlon Invarlant. However,

J1¢"| = [|E-(X~c)?e™)|

1s not. From the quadratic form of the Integrand, one deduces qulckly that the
Integral Is approximately minimal when ¢ =FE (X ), l.e. when the distrlbution s
centered at the mean. This Is a common sense observation, reinforced by the
symmetric form of the dominating curve. Let us finally note that In Theorem 3.1
we have lmpllelitly proved the Inequallty

fletflen] 2=,

which is of Independent Interest In mathematical statistics. Jj

If the evaluation of f Is to be avolded, then we must find at the very least a
converging serles for f . Assume first that ¢ 1s absolutely Integrable, symmetric
and nonnegative. Then f (z) Is sandwiched between consecutive partlal sums In
the series

2 4
] O-Z 1O+ )=

This can be seen as follows: since cos({z ) 1s sandwiched between consecutive par-
tlal sums In i1ts Taylor serles expanslon, and since

[ @)= 5= [é(t)eos(tz) dt ,

we see that by our assumptlons on ¢, f (z) Is sandwiched between consecutive
partial sums In

2 $4

I/.__._-— __V_...
o Vet Vs '
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where
1
v,, ==—[t2® &(t) dt .
2n 271,[ ¢( )

If ft2" #(t) dt 1s finlte, then f (2*) exists, and Its value at O Is equal to 1t. This

glves the desired collectlon of lnequallties. Note thus that for an Inequallty
involving f (") to be valld, we need to ask that

ft2(t) dt < oo .

This moment condition on ¢ Is a smoothness condltion on f . For extremely
smooth f , all moments can be finlte. Examples include the normal denslty, the
Cauchy denslty and all symmetric stable densities with parameter at least equal
to one. Also, all characteristic functions with compact support are included, such
as the trlangular characteristic functlon. If furthermore the serles z%" v,, /(2n )
Is summable for all £ >0, we see that f 1s determlned by all its derlvatlves at O.
A sufficlent condition Is
1

Von 2* =0 (n).

This class of densltles 1s enormously smooth. In addition, these densitles are uni-
modal with a unlque mode at O (see exercises). Random varlate generation can
thus be based upon the alternating series method. As domlnating curve, we can
use any curve avallable to us. If Theorem 3.1 Is wused, note that

J1¢l=[é=1 (0).
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Series method for very smooth densities

[NOTE: This algorithm is valid for densities with a symmetric real nonnegative characteris-
tic function for which the value of f is uniquely determined by the Taylor series expansion
of f about 0.]

[SET-UP]
1 1 "
a«—;fw (=f(0)),b<—5;fl¢ [

[GENERATOR]
REPEAT

Generate a uniform [0,1] random variate U, and a random variate X with density
proportional to ¢ (z )=min(a ,b /22).

T«Ug(X)
S+ f(0), n+—0, @ +1 (prepare for series method)
WHILE T <§ DO

n—n-+1, Q@ +—QX?%/(2n(2n-1))

S—8+Qf *)Xo)

IF T<S THEN RETURN X

nen+1, Q —QX?%/(2n(2n-1)), S—S+Qf *)X0)

UNTIL False

This algorithm could have been presented In the section on the series method, or
In the sectlon on universal algorithms. It has a place In this sectlon because it
shows how one can avold Inverting the characteristic function In a general rejec-
tlon method for characterlstic functions.

3.3. A black box method.

When ¢ 1Is absolutely Integrable, the value of the density f can be com-
puted by the Inversion formula

J (@)= o=[o(t)e™™ dt = [y(t) dt .

This Integral can be approximated In a number of ways, by using well-known
techniques from numerical Integration. If such approximations are to be useful, 1t
s essentlal that we have good expllicit estimates of the error. The approximations
include the rectangular rule

b-—a n-1

() = 2225 g +0-a)dy,

J=0
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where [a,b] 1s a finlte Interval. Other popular rules are the trapeioidal rule
b-a
n

— s L G-1)b-a) 1 J-a)
ty () EI(Qw(H ” e )

and Simpson’s rule

_b-a 2 1 (J-1)(b-a)
w(e) = 225 B (guta+ L=t
.1
(J-=Xb-a) .
2@ el S ya +L0=0)y)
6 6 n

These are the first few rules In an Infinite sequence of rules called the Newton-
Cotes integration formulas. The simple trapezoldal rule Integrates llnear func-
tlons on [a,b] exactly, and Simpson’s rule Integrates cubles exactly. The next few
rules, listed for example In Davils and Rabinowltz (1975, p. 63-84), Integrate
higher degree polynomlals exactly. For example, Boole’s rule is

(F-2)b-a)
__b-a I 7 (j-1)(b-a), 32 4
(@) = =7 B (Ga¥le + = ket ———)
.1 .1
(1-=)b-a) (3-=Xb-a)
12 32 4
ot S e —

7 J(b-a)
+90 W(a +——-——-n ) .

The error committed by these rules Is very Important to us. In general ¢ Is a
complex-valued functlon; and so are the estlmates r,, t,, etcetera. A little care
should be taken when we use only the real parts of these estimates. The maln
tools are collected in Theorem 3.2:
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Theorem 3.2.

Let [~a,a] be a finlte Interval on the real line, let n be an arbltrary Integer,
and let the denslty [ (z) be approximated by f,(z) where f,(z)1s Re(r, (2)),
Re(t, (2 )), Re(s, (2 )), or Re(b, (z)). Let X be a random varlable with denslty /
and y-th absolute moment pu j- Deflne the absolute difference
E,=|f (z)-f,(z)|, and the tall Integral

—_];-—-a (s o]
To=on([ 181+[181).

Then:
A. If r, Is used and u,< oo, then

E, <T, +(2“) (12 |+u,) -
B. 1If ¢, s used and u,< oo, then
2

© =

|

En < Tn+(2a) [I.’E |+N2
mn

C. Ifs, Isused and uy<oo, then
4

.h'v-t

|

B, < 1,422 [ |4 |4,
360mn

D. If b, Is used and ug<oo, then
6

1

2a ) ry

E <T+—-—(—————[ 2 +u6)
"= " 3870720706 KRR

Before proving Theorem 3.2, 1t is helpful to point out the followlng inequall-
tles:
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Lemma 3.1.
Let ¢ be a characteristic function, and let 3 be defined by

P(t) = Pt )e M .

Assume that the absolute moments for the distribution corresponding to ¢ are
denoted by u je Then, If the 7 -th absolute moment is finite,

J
1
sw [#0)| < 1o 140,7)

where 7==0,1,2,... .

Proof of Lemma 3.1.

Note that y%i)=g; e~ for some functlon g;. It can be verlfied by Induc-
tion that

0 = % 1) ciar a0,
k=0

When pj<oo, ¢U) 1s a bounded continuous function glven by
[Gz) e 42 f (1) dz . In partlcular, | ¢(7) | <u;.If we also use the inequalltles
k

pe <p;? (k<7),

then we obtaln

FUESIES, HIEE.
J-k

< 2]_‘. [i] | = lkﬂj .j

k=0

<)

I

| »

|z | +u;

Proof of Theorem 3.2.

Let us define (¢ )=_2}-7F¢(t )e =% . Then by Lemma 3.1,

27T|¢(1')| < [lx [_,_uj}f]] ,
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where 4 Is the finite J-th absolute moment of the distrlbutlon. Next, we need
some estimates from numerlcal analysls. In particular,

| f (@)>Ta(@)] < T+ | fRe(9(t) dt-f,(z)] .

To the last term, which Is an error term In the estimation of the integral of Re(v)
over a finlte Interval, we can apply estimates such as those glven In Davis and
Rablnowitz (1975, pp. 40-64). To apply these estimates, we recall that, when
Y <00, % 1s a bounded continuous function on the real line. If r, Is used and
{4, <oo, then the last term does not exceed

o F up | Rewy | < ELsup |40 |
2
< %—‘:;1—[ |z | +u,) .

If ¢, 1s used and u,<<00, then the last term does not exceed
2

3 3 3
Qo) gup | @ | < —(3—)——[ o 1 a?)
12n 24mn

If s, 1s used and u,<<oo, then the last term does not exceed

4
1
2a)° 2a)° "y
@ ) 0| < 202 [ o lant)
180n 360mn
If b, 1s used and pg<oo, then the last term does not exceed

6

1
(2a ) 6) (2a¢) [ z]
— . sup | YO € e 3 | 4u .
19353601, ° | | 387072070 8 |2 | +ue n

The bounds of Theorem 3.2 allow us to apply the serles method. There are
two key problems left to solve:

A. The cholce of ¢ as a function of n.
B. The selection of a dominating curve ¢ for rejectlon.

It 1s wasteful to compute ¢, ,t, 41,8, +0.... When trylng to make an acceptance or
re)ection declsion. Because the error decreases at a polynomlal rate with n, it
seems better vo evaluate {,:+ for some ¢ >1 and k =1,2,... . Additlonally, 1t IS
advantageous to use the standard dyadlc "trick” of computing only t,, t4 tg
etcetera. When computing ¢,, , the computations made for {, can be reused pro-
vided that we allgn the cutpolnts. In other words, If g, Is the constant a with
the dependence upon n made expliclt, 1t 1s necessary to demand that

(12k

————

2k
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be equal to
G gk+1
ok +1
or to
G ok +1
2/:

Thus, a,++ Is equal to a,+ or to twice that value. Note that for the estimates [,

In Theorem 3.2 to tend to f (z), 1t Is necessary that @, —co (unless the charac-
J

terlstlc function has compact support), and that a, =o(n /*!) where 7 1s 1,2,4
or 8 depending upon the estimator used. Thus, {t does not hurt to choose a,
monotone and of the form

ag = a,2%
where- ¢, 1s a posltlve Integer sequence satisfylng c; .,—¢ €{0,1}, and a, Is a con-
stant.

The problem of the selection of a dominating curve has a simple solution In
many cases. To be able to use Theorem 3.2, we need upper bounds for u; and
o .

f | # | . Lucklly, this Is also sufficlent for the design of good upper bounds. To
a .
make this point, we conslder several examples, after an auxlliary lemma.

Lemma 3.2.

Let ¢ be a characteristic function with continuous absolutely -lntegrdble n-th
derlvative qS(") where n 1s a nonnegative Integer. Then ¢ has a density f where

(n)
_ L
T oom|z |®

/(z)

If f bt ]| o(t) | dt <oco, then ¢ has a Lipschitz denslty f with Lipschltz con-
stant not exceeding '

Jlel e a

2m
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Proof of Lemma 3.2.

When ¢ has a contlnuous absolutely Integrable n-th dertvatlve ¢{*), then a
density f exlists, and the followlng Inverslon formula Is valld:

(iz)" f (2) = E%qum(t)e-w dt .

The first Inequallty follows directly from thls. Next, assume that
J1t] 1e(t)] dt <co. Once again, a density f exists, and because f can be
computed by the standard inverslon formula, we have

| £ @)1 )] = 5= | fle™™ —e=) gt) dt |

S oof Lo | g(t)| dt

1
< Zly-e | flt] )] dt MW

Example 3.1. Characteristic functions with compact support.

Assume that ¢ 1s known to vanlsh outslde [-A ,A ] for some finite value A .
It should be stressed that this Is a very strong conditlon of smoothness for the
density f of this distribution. From Lemma 3.2, we know that f 1s a bounded
denslity:

f@y <4
w

Furthermore, f 1s Lipschitz with Lipschitz constant C not exceeding A 2/(2w).
The densltles In thls class can have arbltrarlly large talls, and can not be unl-
formly bounded without imposing some sort of tall condltion. For a detailed dis-
cusslon of this, we refer to sectlon VIil.3.3, and In particular to Example VI1.3.4,
where a domlnating curve for a Lipschitz (C) density on the positive real line
with absolute moment p; (J >2) Is glven. The area under that dominating
curve 1s

. 1
2v8(C ‘.i"#j I
12
Here the factor 2 allows for the extension of the bound to the entlire real line.
Note that with C =A %/(27), the rejection constant becomes
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whlich Is scale Invariant.

We suggest that ¢ be picked constant and equal to A, slnce T =0 In
Theorem 3.2 when ¢ > A . |}

Ex;émple 3.2. Unimodal densities.

For unimodal densitles with mode at 0, a varlety of good dominating curves
were glven In sectlon VII.3.2. These required a bound on the value of f (0) and
one additional plece of lnformatlon, such as an upper bound for u; g For the
bound at the mode, we can use

G )<“"5l

It Is difflcult to verify the unimodallty of a denslty from a characterlstic function,
so thls example 1s not as strong as Example 3.1. Also, the cholce of ¢ causes 3
few extra problems. See Example 3.3 below. JJj

Example 3.3. Optimization of parameter a.
Using a Chebyshev type lnequality applled to characteristic functions,

© J1t171et)] at
Jle] <=2 -

r

we can obtain upper bounds of the form cak +da”" for the error E, 1n Theorem
3.2, where ¢,d ,k,r are positive constants, and ¢ depends upon n . Considered as
a function of a, this has'one minimum at

Ic+r
a =

The minimal value Is

r k k & r
c k+rd k+r((%)k+r+(_;)'k+r) )
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What matters here Is that the only factor dependlng upon n Is the first one, and
that 1t tends to O at the rate ¢ "/(+7), Since ¢ varles typlcally as n=*¥-1 for the
estimators glven In Theorem 3.2, we obtaln the rate

_rik-1)
k+r

n
This rate is necessarlly sublinear when r =1, regardless of how large k 1s. Note
that 1t decreases quickly when r >2 for all usual values of k. For example, with
r =2 and Simpson's rule (k ==5), our rate is n"%/7, With r =3 and the trapezoldal
rule (k =3), our rate 1s n~%/2, |

Example 3.4. Sums of iid uniform random variables.

The uniform density on [-1,1] has characteristic function @(t) = sin(t)/t.
The sum of m 1id uniform [-1,1) random varlables has characteristic function

S (t) = [Eﬁlffl]m

The corresponding density is unimodal, which should be of help in the derlvation
of bounds for the density. By taklng consecutive derlvatives of ¢,,, It Is easlly

established that the second moment pu, Is -7:—-, and that the fourth moment u, ls

2
ﬁ;—--—%%. Furthermore, the mode, which occurs at zero, has value

1
E;r-f¢m (t) dt

< —:—l—fmln((l—-t—g-+-£-)m, [t |-™) dt
- 27 8 120

m o t2

< -—l—fmln(e_?t( % [t |~™) dt
— 27r !

_m 19,
< ——2——-—+f—}—e 620 gy
2m(m ~1) o
1 60
- m(m ~1) Tom '

where we split the integral over the Intervals [-1,1] and its complement. We now
refer to Theorem VIL.3.2 for symmetric unimodal densitles bounded by M and
having r-th absolute moment u,. Such densltles are bounded by
min(M ,(r +1)u, / | = | "), and the dominating curve has Integral

1 r

((r+1)m, ) FEM T

7 +1
r
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For example, for r =4, we obtaln Iln our example
5 - 2 5.5 + 60 2
4(u4) 4(3) (19) .

as m —oo. In other words, as m —o0, the rejectlon constant tends to a fixed

value. One can verlfy that thls same property holds true for all values of r >0.
This example Is contlnued In Example 3.6. JJ|

This leaves us with the black box algorithm and its analysis. We assume
that a domlnating curve cg 1s known, where ¢ 1s a denslty, that another func-
tlon A 1s known having the property that

= flol+f1e]| <h(a) (a>0),

2m - [

and that Integrals wlll be evaluated only for the subsequence a02" ,k >0, where
a, 1s a glven Integer. Let f, denote a numerlical integral estlmating 4 such as
Tas Sps t, oOr b,. This estimate uses as Interval of Integration {-I(n,z),[(n,z)]
for some function / which normally diverges as n tends to co.

Series method based upon numerical integration

REPEAT
Generate a random variate X with density ¢ .
Generate a uniform [0,1] random variate U.
Compute T «—Uecg (X) (recall that f <cg).
n «—aoz” ,a +—{(n ,X) (prepare for integration)
REPEAT

We—f.(X) (f,. is an integral estimate of [ == f 1 with parameter n on inter-
val [-a ,a]; the number of evaluations of ¢ required is proportional to n)

Conipube an upper bound on the error, E. (Use the bounds of Theorem 3.2
plus k (a).)

n «-2n
UNTIL |T-W | >E
UNTIL T < W
RETURN X

The first 1ssue 1s that of correctness of the algorithm. This bolls down to verlfylng
Whether the algorithm halts with probabllity one. We have:
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Theorem 3.3.

The algorithm based upon the series method given above Is correct, l.e. halts
with probabllity one, when

Im l(n,z)=0o00 (allz),
n -0

Im Ah(e) = o0
a—00

(this forces ¢ to be absolutely integrable), and one of the following conditlons
holds:

A. 71, 1s used, p; <00, and [ (n,z)=0(n'/?) for all z.
B. t, Is used, u,<oo, and I (n,z)==0 (n?%%) for all .
C. s, s used, u,<oo, and [ (n,z)=0 (n*3) for all z.

D. b, is used, ug<oo, and I (n ,z)==0 (n%7) for all .
Here p; Is the j-th absolute moment for f .

Proof of Theorem 3.3.

We need only verlfy that the error bound used In the algorithm tends to O as
n —oo for all . Theorem 3.3 Is a direct corollary of Theorem 3.2. |}

Theorem 3.3 1s reassuring. Under very mlld conditions on the density, a
valld algorithm indeed exists. We have to know u § for some 7 and we need also
an expliclt expresslon for the tail bound A (a). The theorem just states that
glven thils Informatlon, we can choose a functlon /(n,r) and an estimator f,
which guarantee the validity. Unfortunately, there Is a snake In the grass. The
function [(n,r) has a profound impact on the time before halting. In many
examples, the expected time Is oo. Thus, let us consider the expected number of
evaluations of 1 (or ¢) before halting. This can't possibly be glven without dis-
cussing how large A (.) 1s, and which function [/ (.,.) 1s picked. Perhaps the best
thing to do at thils stage Is to offer a helpful lemma, and then to lllustrate it on a
few examples,
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Lemma 3.3.

Conslder the serles method glven above, and assume that for the given func-
tlons & and [, we have an lnequallty of the type

| [ (@) f,(@)| S C)n™ (n>1,allz),
where C' 1s a positive functlon and a>1 1s a constant. If a,=1 and f, requlres

fn +1 evaluations of 9 for some constant g (for ¢, ,f=1, and for 8,y f=2), then
the expected number of evaluations of 1 before halting does not exceed

- 2,3-{-1
Te 1 Tgl-v 21—
< ¢ (B+1) + 27 ng s

117
<e (ﬁ"l‘l) + 27 17 2ﬂ+1 [ng) 1-y [fcg_;_] |

- 1-21-7

where < 1s a number satisfylng

oy>1,7y<1.

Proof of Lemma 3.3.

By Wald’s equation, our expected number Is equal to ¢ tlmes the expected
number of evaluations In the first 1teration (regardless of acceptance or rejection).
Let us first conditlon on X ==z with denslty ¢. For f ,, we use up f+1 evalua-
tlons In all cases. The probabllity of having to evaluate f o does not exceed

2C (z)17%/cg (z ). Continuing In this fashlon, It Is easlly seen that the expected
number of evaluations of ¢ Is not greater than

% (,32k +1+1)mln( 2C (:17 )(2k )—o:

P2 e (2) 1) + B+1 .

Taking expectations with respect to ¢ (z) dzr and multiplylng with ¢ glves the
unconditional upper bound

c(B+1) + 33 (52441 min(2C ()2t )%, eq (2)) da)
k =0
< c(B+1) + 3 (B2 +1+1)f min(2C (2 )(2* ) 2,cq (2)) da)
k=0

< c(B+1) + [ (2C (@) (eg () dz 30 27 B2k Hig1)
k=0

- 20 1
Vo1V OV 17
¢ (B+1) + 27 Cg Y ( i + o )

—~ 2041
Yo 1= Vgl 21—
< c(f+1) + 2% f CTg S
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where 7y Is a number satisfying

ay>1,7<1.

By Holder's inequallty, the Integral in the last expression does not exceed

(o) L= W-l

Lemma 3.3 reveals the extent to which the efficlency of the algorithm Is
affected by ¢ ,C(z ),g (z) and ;.

Example 3.5. Characteristic functions with compact support.

Assume that the characteristic function vanishes outslde [-A ,A ). If we take
[(n,z)==A, then h =0 In the algorithm. Note that this cholce violates the con-
sistency condltions of Theorem 3.3, but leads nevertheless to a consistent pro-
cedure. With t, , we have f=1,0==2 and an error

E, < C(z)n™™
where
3
c@) =L (s |+

With s, , we have f=2, a=4 and

1
24 )° ry
C(z) = (24 ) z | ut).
(z) 3607 (l l By®)
"With both error bounds, f C =00, so we can't take 4=1 In Lemma 3.3. Also,
v -1
f¢ "<
when —1—>2+—%—. Thus, for the bound of Lemma 3.3 to be useful, we need to
5 o
choose
1
— < 7<L .
o 20+1

. 2 1 4
This ylelds the Intervals (—;—,g) and (;’—5) respectively. Of course, the former

Interval 1s empty. This Is due to the fact that the last inequallty In Lemma 3.3
(combined with Theorem 3.2) never leads to a finlte upper bound for the tra-
pezoldal rule. Let us further concentrate therefore on s, . Note that
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5 1
feg < AL 1oy o | 4u, ) deo

380w
5
AL sfg@) |z | *+u,) da

324 5(u 4+ uy)
457

IA

where u % 1s the fourth absolute moment for g . Typlcally, when ¢ Is close to f ,
the fourth moment s close to that of f/ . We won't proceed here with the expll-
clt computation of the full bound of Lemma 3.3. It suffices to note that the
bound Is large when etther A or u, Is large. In other words, 1t Is large when the
support of ¢ Is large (the density 1s less smooth) and/or the tall of the density 1s
large. Let us conclude this sectlon by repeating the algorithm:

Series method based upon numerical integration

[NOTE: The characteristic function ¢ vanishes off (~A,A], and the fourth absolute mo-
ment does not exceed u,.]

REPEAT
Generate a random variate X with density ¢ .
Generate a uniform [0,1] random variate U.
Compute T «Ucg (X) (recall that f <eg).
n +—a, (prepare for integration)
REPEAT

W «—Re(s, (X)) (s, is Simpson’s integral estimate of f == f 1 with parameter
n on interval (-4 ,A ]; the number of evaluations of ¢ required is 2n +1)
A)® L
Be-BAL () x| pt
n+«2n
UNTIL | T-W | >E
UNTIL T< W
RETURN X

For dominating curves cg, there are numerous possibllltles. See for example
Lemma 3.2. In Example 3.1, a dominating curve based upon an lnequallty for
Lipschltz densitles (sectlon VII.3.4) was developed. The rejectlon constant ¢ for
that example Is

8 -

Ap,t .
\/_TFM4 .
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Example 3.6. Sums of iid uniform random variables.

This 1s a continuation of Example 3.4, where a good dominating density was
found for use in the rejectlon algorithm. What is left here 1s malnly the cholce of
h and ! for use In the algorithm. Let us start with the declslon to estimate / by
Simpson's rule s, . This 1s based upon a qulck prellminary analysls which shows
that the trapezoldal rule for example just Isn't good enough to obtaln fnite

expected time.

The function h(a) can be chosen as
h(a)= S S—
ma ™" (m-1)

where m 1s the number of uniform [-1,1] random variables that are summed. To
see this, note that

1
2{;

Glven X ==z In the algorlthm, we see that with s,, the error E, 1s not greater
than

sin(t)

m 100
dt < = -m = _
" t__ﬂ{lt] dt h(a)

20 Y5( | z | +p,1/4)4
EnSh(a)-}-( )(| l bg’?) ’
360 mnt

where a determines the integration interval (Theorem 3.2). Optimlzation of the
upper bound with respect to ¢ 1Is slmple and leads to the value
1
gn* m+4

41z | +pg

I

With this value for ¢ (or [(n,z)), we obtaln
E, < C(z)n@

for a=4(m -1)/(m +4) and
m~-1
m +4

C(z) = (|2 | a9 .

m-1m

m 1[4
9

This Is all the users need to Implement the algorithm. We can now apply Lemma
3.3 to obtaln an idea of the expected complexity of the algorithm. We will show
that the expected time Is better than O (m®+/8) for all €>0. A brlef outline of

the proof should suffice at this polnt. In Lemma 3.3, we need to pick a constant

P

~. The conditions ay>1 and f C 7 <oo force us to impose the conditions

m +4 4m -4
a <7< .
4m —4 om —4




