XIV.3.CHARACTERISTIC FUNCTIONS 715

Both Inequalltles can be satisfled simultaneously for all m 29. After fixing ~,
compute all quantities In the wupper bound of Lemma 3.3. Since
C(z)=(Coto ()| z | +u,** with Cy=4/(97), 1t 1s easy to see that
1
[Cy = (Coto ME (| X | +u4*)™)
where X 1s a random varlable with denslty g, and a=4(m -1)/(m +4). We can
choose ¢ such that E(|X |©) is close to u,*/* (e.g., In Example 3.4, take r =86

or larger In the bound for unimodal densitles; taklng r ==4 lsn't good enough

because for r=4, E(|X |*=o00). Noting next that u,'/* ~ /m /3% as
1

[ T

m —»00, We note that fC'g Increases as a constant tlmes m /2, Next, fC 7

Increases as a constant times

1+a(2--l-)
_
4
My
5.2
which In turn Increases as m 2 7. The upper bound In Lemma 3.3 Increases as .
2o+ 2L o Ll
m = m 2

The smallest allowable value for v 1s 1/a~1/4. Thus, the upper bound on the
expected complexlty Is of the order of magnitude of m 5%, i

3.4. Exercises.

1. Show that when a characteristic function ¢ 1s absolutely Integrable, then the
distribution has a bounded contlnuous denslty f . Is the density also unl-
formly continuous?

2. Construct a symmetric real characteristic function for a distribution with a
density, having the property that ¢ takes negative and posltlve values.
3. Conslder symmetric nonnegative characteristic functlons ¢, and define
Vou ==[t" §(t) dt.
A. Show that v,, Y(3")=o (n) implles that (22" v,, )/(2n)! 1s summable
for all z >0.

B. Show that f 1s unlmodal and has a unlque mode at O (Feller, 1971, p.
528).

C. In the alternating serles algorithm for thls class of denslitles glven In the
text, why can we take b ==, Or b =¢ In the formula for the dom!nating
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curve where p, Is the first absolute moment for / and o Is the standard
deviation for f ?

D. A continuation of part C. If all operations In the algorithm take one
unlt of tlme, glve a useful sufficlent condltlon on ¢ for the expected
time of the algorithm to be finlte.

The following Is an Important symmetric nonnegatlive characteristic func-
tion:

(t) = [/~ Vat _ 1
Inh(v2¢
sinh(vat ) \/1+QI;!I+2M5!I2+...

(see e.g. Anderson and Darling, 1952). Near t=0, ¢ varles as 1-|t | /6.
This Implies that the flrst absolute moment is Infinite. Find a dominating
curve for this particular characteristic function, verlfy that the denslty [ is
determined by Ilts Taylor serles about O, and glve all the detalls of the alter-
nating serles method for this distribution.

The following characteristic functlon appears as the llmit of a sequence of
characteristic functions In mathematical statistics (Anderson and Darling,
1952):

-2mit 2

cos(—;-r-\/ 1+8it )

o(t) =

Glve a finlte time random varlate generator for this distribution. Ignore
efficlency Issues (e.g., the expected time is allowed to be infinite).

Glve the full detalls of the proof that the expected number of evaluations of
¢ In the serles method for generating the sum of m ild unlform [-1,1] ran-
dom varlables (Example 3.8) 1s O (m 5+€)/8) for all ¢>0.

How can you lmprove on the expected complexity in Example 3.67

4. THE SIMULATION OF SUMS.

4.1. Problem statement.

we

X, .

Let X be a random varlable with density f on the real llne. In this sectlon
consider the problem of the slmulation of S, =X 4+ - - +X, where
.., X, are 1id random varlables distributed as X . The nalve method
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Naive method

S—o0

FOR 1:=1"TO n DO
Generate X with density f .
SeS+X

RETURN §

takes worst-case or expected tlme proportional to n depending upon whether X
can be generated In constant worst-case or constant expected time. We say that a
generator 1s unlformly fast when the expected time E (T, ) needed to generate S,
satlsfles

sup E(T,) < co .
n>1

Thils supremum 1s allowed to depend upon f . Note that the unlformity Is with
respect to n and not to f . This differs from our standard notlon of unlformity
over a class of distributlons.

In trylng to develop unlformly fast generators, we should get a lot of help
from the central llmit theorem, which states that under some conditions on the
distribution of X, the sum S, , properly normallized, tends In distributlon to one
of the stable laws. Ideally, a unilformly fast generator should return such a stable
random varlate most of the time. What compllcates matters 1s that the dlstribu-
tion of S,, 1s not easy to describe. For example, In a rejectlon based method, the
computatlon of the value of the density of S, at one polnt usually requires time
increasing with n. Needless to say, it Is this hurdle which makes the problem
both challenging and Interesting.

In a first approach, we will cheat a bit: recall that If ¢ Is the characteristle
function of X, then S, has characteristlc function ¢". If we have a uniformly
fast generator for the family {¢,¢% ..., ¢",..}, then we are done. In other
words, we reduce the problem to that of the generation of random varlates with a
glven characterlstic function, discussed In sectlon 3. The reason why we call thls
cheating Is that ¢ Is usually not avallable, only [ .

In the second approach, the problem Is tackled head on. We will first derive
Inequalltles which relate the density of S, to the normal density. In proving the
Inequalltles, we have to rederive a so-called local central limlt theorem. The Ine-
qualltles allow us to design uniformly fast relection algorithms which return a
stable random varlate with hlgh probabllity. The tightness of the bounds allows
us to obtaln thls result desplte the fact that the density of S, can't usually be
computed In constant time. When the density can be computed in constant time,
the algorithm Is extremely efficlent. This is the case when the density of S, has
a relatlvely slmple analytlc form, as In the case of the exponentlal density when
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S, 1s gamma (n ).
Other solutlons are suggested In the exerclses and In later sectlons, but the

most promlising generally appllcable strategles are deflnitely the two mentloned
above.

4.2. A detour via characteristic functions.

S, has characteristic function ¢" when X has characteristic function ¢.
This fact can be used to generate S, efficlently provided that all the ¢, 's belong
to a famlly of characteristic functlons for which a good efficlent generator ls
avallable.

One such famlly is the famlly of Polya characteristic functions dealt with in
section IV.8.7. In particular, If ¢ Is Polya, so 1s ¢" . Based upon Theorems IV.6.8
and I'V.8.9, we can conclude the following:

Theorem 4.1.

If ¢ 1s a Polya characteristic function, then X «——Z}-f- has characterlstlc func-

tion ¢" when Y ,Z are Independent random varlables, ¥ has the FVP denslity
(defined In Theorem IV.6.9), and Z has distribution function

F(s)=1-¢"+sn ¢ (s)p" Y (s) (s>0).

Here ¢' is the right-hand derlvative of ¢. When F s absolutely contlnuous, then
it has denslty

s§%n (n-1)¢'*(s )¢" (s )+5°n ¢""(s )" "X(s) (s >0).

When ¢ Is explicltly glven, and It often s, this method should prove to be a
formidable competitor. For one thing, we have reduced the problem to one of
generating a random varlate with an explicitly glven distributlon function or den-
sity, l.e. we have taken the problem out of the domaln of characteristic functions.

The princlple outllned here can be extended to a few other classes of charac-
teristic functions, but we are still far away from a generally applicable technlque,
let alone a unlversal black box method. The approach outlined In the next section
1s better sulted for this purpose.
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4.3. Rejection based upon a local central limit theorem.

We assume that f 1Is a zero mean denslty with finlte varlance o®. Summing
n 11d random varlables with thls density Is known to glve a random varlable with
approximately normal (0,n 02) distributlon. The study of the closeness of this
approxlmatlion Is the subject of the classical central llmit theory. The only things
that can be of use to us are preclse (1.e., not asymptotlc) Inequalltles which clarify
Just how close the density of S, Is to the normal (0,n 0%) denslty. For a smooth
treatment, we put two further restrictions on f :

A. The density f has an absolutely Integrable characteristic function ¢. Recall
that thls lmplies among other things that f 1is bounded and continuous.

B. The random varlable X has finite third absolute moment not exceeding 0
E(]X]% <8< oo

Condltlon A allows us to use the slmple Inverslon formula for characterlstic func-
tlons, while condition B guarantees us that the error term 1s O (1/\/71.— ). Densltles
f satisfylng all the condltlons outlined above are called regular. Clearly, most
zero mean densitles occurring In practice are regular. There Is only one large class
of exceptlons, the dlstributlons In the domaln of attraction of stable laws. By
forcing the varlance to be finlte, we can only have convergence to the normal dis-
tributlon. In exercise 4.1, which Is more a research project than an exerclse, the
reader Is challenged to repeat thls sectlon for distributions whose sums converge
to symmetric stable laws with parameter aa<<2. For once we will do things back-
wards, by glving the results and thelr implications before the proofs, which are
deferred to next sectlon.

The fundamental result upon which this entire sectlon rests s the following
form of a local central 1imit theorem:

Theorem 4.2.

Let f be a regular density, and let [, be the density of .S, /(0\/—17 ). Let ¢
be the standard normal density. There exist sequences a, and b, only depend-
ing upon f such that

: b
| fa(@)g(z)| S hy(z) = mln(an,—;—z-),

and

max(a, ,b, ) =

For a proof and references, see sectlon 4.4. Explicit values for a, and b,
follow. It Is Important to note that

g_hn an Sg+hn ’
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where fhn = 0 (1/\/;) . In other words, the Inequallty 1s eminently sulted for
use In a rejection algorithm with squeezing. Both ¢ and h, can be consldered as
very easy densltles from a random varlate generatlon polint of view. Furthermore,
the obvious rejectlon algorithm, described In Example 11.3.8, has rejectlon con-
stant 1+fhn tending to 1 as n —oo. There Is even more good news: If the lower
bound Is used for squeezing, then the expected number of evaluations of f 1s at
most 2fh,, =0 (1/Vn )=o0 (1). The cumbersome part Is the evaluation of fn-

There are essentlally two possibilitles when it comes to evaluating f o+ first,

f » 15 expllcitly known. This Is for example the case when f Is an exponentlal

density centered around its mean, and f, Is the density of a linearly transformed

gamma (n ) density. In the case of the gamma denslty, we can easlly compute the

different constants In the bound of Theorem 4.2. as Is done In exercise 4.2,

" Another example for the sums of uniform random variables follows In a separate
sectlon.

To compute f, Vvia convolutlons is all but Impossible. The only other -alter-
natlve 1s to write f, as a serles based upon the Inverslon formula for ¢", and to
apply the serles method. Here too the hurdles are formidable,

4.4. A local limit theorem.

It 1s the purpose of this sectlon to prove Theorem 4.2. The proof i1s qulte
long, and Is glven In full because we require expliclt knowledge of the bounding
sequence, and a careful derlvatlon of the bounds to keep the constants as small as
possible. Local llmit theorems of the type needed by us have been derived in a
number of papers, see e.g. Inzevitov (1977), Survila (1964) and Maejima (1980).
An excellent general reference is Petrov (1975). For example, Survila (1964) has
obtalned the existence of a constant C depending upon f only such that for reg-
ular f,

C

“+z

| fa(z)g(z)| <

7

C
Ibragimov and Linnlk (1971) have obtained an upper bound of the type -7—-——
n

Note that Survila's bound does not tend to zero with n. The Ibragimov-Linnlk
upper bound s called a uniform estimate In the local central llmit theorem. Such
unlform estlmates are useless to us because the upper bound when Integrated
with respect to z 1s not finlte. The bound which we derlve here uses well-known
tricks of the trade, documented for example In Petrov (1975) and Maejlma
(1980).

Let us start slowly with a few key lemmas.




XIV.4.SIMULATION OF SUMS 721

Lemma 4.1.
For any real ¢,

¢ "L (t) t"
et-S B < 5 o).
]'=0 » .

Lemma 4.2.

Let ¢ be the characteristic function for a regular density f . Then the fol-
lowing inequallties are valid:

| $(t -1+ 2‘2| < Blt]®

|#)+tor| < Dun,

| ¢ (t)+o? | < Bt ] .

Proof of Lemma 4.2.

Since three absolute moments exist, we notice that the first three derlvatives

of ¢ exlst and are contlnuous functlons given by the formulas (Feller, 1971, p.
512)

¢(i)(t) = fe"t" (iz )-" f(z)dz (3=0,1,2,3).

’ Observe that

5¢U}4+- \ < [le® -1~ ity 4+ ]f(u)du
sfil—l—éﬂ-l—lfwwu =—é-lt13-
Next,
¢’ (1 )+3;—t = [(e™ -1~itu )iuf (v) du .
Thus,
oo+ S < J1E e @) de < 2
Flnally,

" (t)+o? = f(c‘t“ Yu?f (u) du .
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Thus,
| ¢"(t)+o? | < [ltu |u?f (u)du < B[t} .1

Lemma 4.3.

Counslder the absolute differences
t2

- 12 —
A, (t)= |(1—-é—n—)"‘—e 2| (m=n-2,n-1,n).
For t2<n, we have
t2
A )< T
—_ ,
2 (8) S 4n
1 _
2(n-1) 2
e e ,
A, () < (% _1)
2 _t?
A, () < 26”‘26 z

If all integrals shown below are over { | ¢ | <\/—} then we have

[A,(t) dt <—\/_ [t24,(t) dt < \/2_,
Var Tnl—'b‘

2(n-1 )

b

A, (t)dt < -—\/_+

1
[t24,_(t) dt < \/_+ Var e A1)

2(n-1 )

[Aq o(t) dt < —\/—+2\/_ ,

Jt24, ,(t) dt < 15 fomy2V2T, "'2
4n n-2

Proof of Lemma 4.3,
First, "
t2 t2

e~__(1___)n—2 < e_?—(l—t—)"'l
2n
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ntt

—_—T
L O
l_e 2n

IA

t? ntt

—— s

2
<e ?2|1-e ¥

- 44

<e ? -,

- 4n

Here we wused the Inequallty log(1-u)>-u-u?/(2(1-u))>-u-u? valld for
0<u <1/2. Since

the bound for A, 1s proved. For the other bounds, consider A, In general.
Clearly,

$2 _t? _t AL Ty e

(1-=—)" e 2 < ¢ 2 |e 2 2n 8n®_y
2n -

For m =n ~1, the exponent Is at most t% /(2n )~t*(n -1 )/(8n?%). This functlon 1s
at most 12/(2(n~1)). By the Inequallty e*-1<wue® valld for u >0, we finally
conclude that the expression on the right hand slde of the last Inequallty is at
most

A L
2 ¢ e An=i)

2(n—1)

This proves all the polntwlise Inequallties for A, . The Integral Inequalities are
obtalned by Integrating the polntwise inequalltles over the whole real llne (thls

can only make the upper bounds larger). One needs the facts that for a normal
random varlable N, E (N?)=1,E (N*)=3, and E (N®)==15. |
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Lemma 4.4.

£2
i

3
For regular f , and | ¢ | S—%\/E—-,We have
2 2
t T < ALY
" (—=)-e 2| < e * +1A, ()] .
o0 (—g=e T < BT )

Integrated over the glven Interval for {, we have

3

n e T |4t < 188 8 Som
Ile (a\/—n—) | — 30%/n 4n
Proof of Lemma 4.4.
Note that

12 2

t - t t
| 8™ ( e 2| < |e"( FA-==)" |+ | A, (t)] .

oVvn ovn 2n

The last term 1s taken care of by applylng Lemma 4.3. Here we need the fact

that the glven Interval for { s always

Included In [-vVn ,vn |, so that the

bounds of Lemma 4.3 are Indeed applicable. By Lemma 4.2, the first term can be

written as
t2 68|t |3
1-—)" | (1 "1
(g [+ —5—)
60°n 2 (1-—)
] 2n

where | 6| <1. Using the fact that (144 )*-1<n |« |e™ I* | for all n >0, and
all v €R, this can be bounded from above by

t2 . Bt
e"_z—ﬂtlaeacr"n <
303Vn -

To obtailn the Integral inequallity,
2
[t |3/t dt=16. N

use

£2 '
ey k2
303\/n—

Lemma 4.3 agaln, and note that
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Lemma 4.5.
For regular [,
sup | fo(2)-g(z)]| £ a,
where
1 188 1 e
4, = ——t (14— 32
toer 303\/77( 2 ) ,
1 3 1
+ — ——\or + — | é(t) [ "oV [|¢],
2T 4n 2m
|t l >-—
38
[ » 1s the density of S, /(evV/n" ) and ¢ Is the normal density. Also,
a ~ ——--Sﬁ.—
3na®Vn
as n —oo.

Proof of Lemma 4.5.

By the Inverslon formula for absolutely Integrable characteristic funectlons,
we see that

t2

om| [ (@)-g(z)] < [1e™( e * |
t2 t2
: . L
< P (—==)-e 2| dt + " (—=) | +e 2| dt
Sl Gre s [0
3
where D 1s the Interval defined by the condltion | ¢ | < —3—0—4—;;;—, and D¢ s the
complement of D . The integral over D 1s bounded In Lemma 4.4 by
lﬁﬂ 3 m
303\/-
The Integral over D¢ does not exceed
84 _9c®n
2
|¢(t)|n10'\/_—f!¢l+ \/___6 32;@,
| ¢ | >—_

235
where we used a well-known Inequallty for the tall of the normal distribution, l.e.
[e}

fg9 < g(u)/u. This concludes the proof of Lemma 4.5. i
u
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Lemma 4.6.
For regular [, and

L] < 303Vn
— 4ﬁ ’
we have’
t2 3 t2
- t ry t e
| 6" Ho=)e | < Bl
ovn 3c°vn
Integrated over the glven interval for ¢, we have
t2
- t Y 164 3
n-1 —e 2 dt < —L—d4-—/27.
JlorGmre P s o tan

Proof of Lemma 4.6.
Note that
t2 ’
t t ¢

—— - 2
6" H—m=)e | S 180 o) T [ Aan(8) ]

c

The last term Is taken care of by applylng Lemma 4.3. Here we need the fact
that the given Interval for ¢ 1s always Included In [—\/_n—,\/—n_], so that the
bounds of Lemma 4.3 are Indeed applicable. By Lemma 4.2, the first term can be
wrltten as

861t |°

2n E. t2

8o3n 2 (1-—)
2n

_1|

where | 6| <1. Uslng the fact that (1+u)" -1<n |u |e®[*] for all n >0,
and all © €ER, this can be bounded from above by

2 glt])? 1,2
eXn U B¢t laesﬁ?\# < JwWT AL
2n 30%Vn - 30%Vn

To obtaln the Integral Inequality, use Lemma 4.3 agaln, and note that
2
f1t]2%e /% dt=16. W
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Lemma 4.7.

Let ¢ be the normal density and let j’,, be the denslty of the normalized
sum S, /(6v/n ) for 11d random varlables with a regular density f . Let ¢ be the
characteristic function for f . Then

bn
| fa(a)g(@)| < =,
z
where
90%n 90°n
b —1 ——‘1._6__6—32ﬁ2+_\/—..§.e—64ﬁ2
3no®Vn s
3
1 1 2
4 — "'20‘\/7_7,— o n-853, 2 [42
ol Jlél +—=» ft21¢]
1 2080 18ver
T +
27 { 30%Vn 4n
1 3
+ +
Varn (n-1) (n-2)Varm
1 Il 1
+ + ( +2) .
no®/ar o3V/n o*V8r
b
Here p= sup _ | #(t)] . Note that as n-—oo, b, ~ —= Where
n
1255
6. 1 208
= = +2+ ).
o® o%V8rm 87

Proof of Lemma 4.7.

As In Lemma 4.5, we deflne the Interval D by the condlition
3/
[t ] < -:Z’-;Fn—, and let D¢ be the complement of D. Let I be the Interval
2

deflned by |t | < -34—0—, and let J¢ be the complement of /. By Lemma 4.2, 1t Is
easy to see that for t €1, | o(t) | <1-0%t?/4. Thus,

_i_ n t ‘n~1 ¢
mw ( o™X

)| de

)_
ovn ocvn

1 t ¢ n -1
S;;lf)ll—ﬂ;\z—:)f '4)(0\/;{)' at

_{n-ne?
<l g

f
IH
4

3
N
3
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1
o Varn (n-1)
Simlilarly,
= [12] ¢ (—mypr A —y | at
27T D a\/F 0\/;
t

n -2
vl

A oree g2t
< 27r£t | 1-¢ a\/—n—)l | &(

_(n-2)t?

-3

LD ee—————

(n-2)Ver

So far for the prellminary computations. We begin with the observation that
t2
1 ——— .
23, (z)g(z)) = E;f((tz-l)e 2-¢,""(t)Ne" gt

where ¢n Is the characterlstic function corresponding to f » - Obviously,
t2
1 i
22| fo(@)rg(z)]| < E;fl(tz-l)e 2-¢,"(t)| dt .

The second derivative of the n-th power of ¢(t /(cvVn ) 1s

n-1 12 40 -2 _L AN —~1
R

0.2
where all the omlitted arguments are t/(O’\/; ). By the trlangle Inequality, we
obtaln

t2
1 i
2 [ fal@rg@)] < [ (t%1)e 2-g,"(t)| dt

t2 t2

S o= ([ le 24"t /ovm ) | dt + [12] e -t oV )| dt

_t?
+ fe P EZRgt/(ovm )-t2 ] dt
o
i
+ fe ? |o7%¢"(t/(oVn )+1]| dt

= J T+t

From Lemma 4.2, we recall
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, 2
l M.*.t I S ﬂt ,
o : 20%Vn
11
l LA | < Alel
o? ovn
Using the fact that | ¢/(¢t /(ovn ) | <E(| X |)/(6Vn )<1/Vn , we have
12 ! /
A A vy
Fo o g
1 Bt?
< (—;‘*- [t 1) el
Uslng the fact that [ |¢|%e~*2 dt takes the values V2m,2,V/27 and 4 for
1 ==0,1,2,3 respectively, we see that
t2
J +J < 0'—2¢'2 2 dt+ B 2:3
sas [ | m 205\/_ r*Vn
1 B 1 +2) .

<
- n02\/2_7F+03\/ﬁ_(02\/8_7r_

This leaves us with J, and J,. Here we wlill split the Integrals over D and D°.
First of all,

= [fie TgnE /v ) | dt + [tP] e P-g" ¢t /(ovVn )| db
D D

12 12 )

< —1—[f le T (t/(oVm )| dt + [t2]e 2—¢"(t/(oVm )| dt
21 D D

+om [[16 VT D6 /oY ) | a

(D

+ [t2] "%t /(oVn ))-o" (t /(oVn )| dt
D

The last two terms were bounded from above earller on in the proof by
1

3
Vamrn (n-1) + (n-2)Vor

By Lemma 4.4, we have for tED

< BLLLTT +|A,,<t)|
303\/_
Thus, by Lemma 4.3, and the following Integrals:
t2
flt]% * dt =186,

W, ¢
6" (—=)-e
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J1t]% * dt =192,

[t |4e-—2—dt = 3v2m,
t2

1t 1% 4 dt = 15V,

we have

__1__ 2 n ¢ __—-2—
2 JAH 6N (=)e * | dt

1
< Ey?f(1+t2)

ﬂ-t 3__t_2 ¢4 -ﬁ
—J—-l—e‘*+——e2 dt

- 30%V/n 4n
1 [ 2084 18V2r

S + ‘
27 30-3\/72 4n

Finally, we have to evaluate the Integrals In J,+J, taken over D°¢. These are
estimated from above by

1 £ 1 1 2

— [(@+tHe 2 dt + —p*20vVn + —p"30%n 2 12

2 J 0+ = [16] +=p Jt2le]

where p=sup || . The reglon D° 1Is defined by the conditlon |t |>c for
It

some constant ¢ . The first term In the last expresslon can thus be rewrlitten as
1

L[ (@u)?+VEu e du

u>c?/2
c? c?
< ‘—:'1'—6 2 +.l/_—§_e 4
- i
90®n 90°n
— 4B Twp VB o
3mo®Vn T

Collecting bounds glves the desired result. JJj

For the bound of Lemma 4.7 to be.useful, 1t 1s necessary that f not only be
regular, but also that its characteristic functlon satisfy

Jt2]e(t)] dt < oo

This Implies that f has two bounded contlnuous derivatives tending to O as
| £ | —o0, and In fact
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['"(z) =—21—7rfe'“-" t24(t) dt .

(see e.g. Kawata, 1972, pp. 438-439). Thls smoothness conditlon Is rather restric-
tlve and can be considerably weakened. The asymptotlc bound b /(z%Vn )
remalns valld If [¢%| ¢(¢) | * <oo for some positive Integer k (exerclse 4.4). Lem-
mas 4.5 and 4.7 together are but speclal cases of more general local limit
theorems, such as those found in Maejlma (1980) and Inzevitov (1977), except
that here we explicitly compute the universal constants In the bounds.

4.5. The mixture method for simulating sums.
When a density f can be written as a mixture

o0
J (@)= Xp: [i(z),
f =1
where the f,‘ 's are slmple densltles, then simulation of the sum S, of n iid ran-
dom varlables with denslty f can be carrled out as follows.

The mixture method for simulating sums

Generate a multinomial (n,p,,p,,...) random sequence N,,N,,... (note that the N;’s sum to
n). Let KX be the index of the largest nonzero N;.

X0

FOR 1:=1 TO K DO
Generate S, the sum of N; iid random variables with common density f;.
Xe«X+8

RETURN X

The valldity of the algorithm Is obvious. The algorlthm Is put In 1ts most general
form, allowlng for Infinlte mixtures. A multlnomlal random sequence iIs of course
defined In the standard way: Imagline that we have an Inflnlte number of urns,
and that n balls are independently thrown in the urns. Each ball lands with pro-
bablllty p; In the -th urn. The sequence of cardinallities of the urns Is a multino-
mlal (n,p,Pq...) random sequence. To slmulate such a sequence, note that NV, Is
blnomial (n,p,), and that glven N,, N, Is blnomlal (n -V ,p,/(1-p,)), etcetera.
If K s the Index of the last occupled urn, then 1t Is easy to see that the multino-
mlal sequence can be generated in expected time O (E (K)).

The mixture method 1s efficlent If sums of 11d random varlables with densl-
tles f; are easy to generate. This would for example be the case If [ were a




732 XIV.4.SIMULATION OF SUMS

finlte mixture of stable, gamma, exponential or normal random variables. Perhaps
the most Intriguing decomposition is that of a unlmodal density: every unlmodal
density can be written as a countable mixture of uniform densities. This state-
ment 1s Intultlvely clear, because subtracting a functlon of the form cl, ()
from [ leaves a unimodal plece on [a,b] and two unimodal talls. Thls can be
repeated for all pleces Indlvidually, and at the same tlme the Integral of the left-
over function can be made to tend to zero by the Judiclous cholce of rectangular
functions (see exercise 4.5). If we can generate sums of iid uniform random varl-
ables uniformly fast (with respect to n ), then the expected time taken by the
mixture method Is O (F (K )). A few remarks about generating uniform sums are
given In the next sectlon.

4.6. Sums of independent uniform random variables.
In this sectlon we conslder the distribution of
n
S, = > Ui s
=1

where U,, ..., U, are lid uniform [-1,1] random variables. The distribution can
be described In a varlety of ways:

Theorem 4.3.
The characteristic function of S, 1s

n

For all n >2, the density f, can be obtalned by the Inversion formula

fn($)=-51-7;-f[sm—t(t) cos(tz ) dt .

This ylelds

L LS o () eotakon
0

Ialz)= (t-1) 2,2

where 271 -2-n <z <21-n ;t=1,2, ..., n .
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Proof of Theorem 4.3.

The characteristlc function Is obtalned by using the definitlon. Since the
characteristlc functlon of S, for all n >2 1s absolutely Integrable, f, can be
obtalned by the glven Inversion Integral. There Is also a direct way of computing
the distribution function F, and denslty of .S, ; its derlvatlon goes back to the
nineteenth century (see e.g. Cramer (1951, p. 245)). Different proofs include the
geometric approach followed by us In Theorem I.4.4 (see also Hall (1927) and
Roach (1963)), an Inductlon argument (Olds, 1952), and an appllcation of the
residue theorem (Lusk and Wright, 1982). Taklng the derlvative of F, glven in
Theorem 1.4.4 glves the formula

S S P
(n—1)p \7F
for the denslty of the sum of n ild uniform [0,1] random varlables. The the den-

slty of sums of symmetric uniform random varlables Is easlly obtained by the
transformation formula for densities. [Jj

L (-1),h It [g] (=20, - - +(1)" [z] (z-n )+,.-1]

It 1s easy to see that the local limit theorems developed In Lemmas 4.5 and
4.7 are applicable to thls case. There 1s one small technlcal hurdle since the
characteristic functlon of a unlform random varlable Is not absolutely integrable.
This Is easlly overcome by noting that the square of the characterlstic function 1s
absolutely Integrable. If we recall the rejection algorlthm of sectlon 4.3, we note
that the expected number of lterations Is O (1/vn ) and that the expected
number of evaluatlons of f, Is O (1/vn ) . Unfortunately, this Is not good
enough, slnce the evaluation of f, (z) by the last formula of Theorem 4.3 takes
time roughly proportional to n for nearly all £ of Interest. This would yleld a
global expected time roughly increasing as v/n . The formula for fn 1s thus of
limited value. There are two solutlons: elther one uses the serles method based
upon a serles expansion for f . Which Is tallored around the normal denslty, or
one uses a local llmit theorem with O (1/n) error by using as maln component
the normal density plus the first term In the asymptotic expansion which is a nor-
mal density multlplled with a Hermlte polynomlal (see e.g. Petrov, 1975). The
latter approach seems the most promlsing at this polnt (see exerclse 4.8).
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4.7. Exercises.

1. Let f be a denslty, whose normalized sums tend In distribution to the sym-
metric stable (o) denslty. Assume that the stable density can be evaluated
exactly In one unit of tlme at every polnt. Derlve first some Inequalities for
the difference between the density of the normalized sum and the stable den-
sity. These non-unlform lnequalitlies should be such that the integral of the
error bound with respect to z tends to 0 as n —o0o. Hint: look for error
terms of the form min(a, ,b, |z | ~°) where ¢ Is a positive constant, and
a, ,b,, are positive number sequences tending to O with n. Mimlc the derlva-
tion of the local limit theorem in the case of attraction to the normal law,

2. The gamma density. The zero mean exponentlal denslty has characterls-
tlc functlon ¢ == e~ /(1-it). In the notation of this chapter, derive for this
distribution the following guantitles:

1
A. a=1,ﬁ=-;2--2.

B. [l¢]l=0c0,[l0|2=nm.
C. |?1|1p> | #(t)] = 1/V1+c? (¢ >0).

Note that the bounds in the local {lmit theorems are not dlrectly appllcable
since [ | ¢ | =occ. However, this can be overcome by bounding [ |¢|" by
s f | |2 where s 1s the supremum of | ¢ | over the domaln of integration,
to the power n —2. Using thls device, derlve the rejection constant from the
thus modifled local imit theorem as a function of n.

3. A contlnuation of exerclse 2. Let f, be the normalized (zero mean, unit

variance) gamma (a ) density, and let ¢ be the normal density. By dlrect
means, find sequences a, ,b, such that for all a >1,

by
I fa (:27 )_g (x) I _<_ mln(an 9—'—2_) y
T

and compare your constants with those obtalned In exercise 2. (They should
be dramatically smaller.)

4. Prove the clalm that In Lemma 4.7, b, ~ b/(x2\/'1-z-) when the condition
Jt2| é(t)| dt <oo 1Is relaxed to

St ot) | * dt <oo

where k >0 1s a fixed integer.

5. Conslder a monotone density f on [0,00). Glve a constructive completely
automatic rule for decomposing this denslty as a countable mlxture of unl-
form densitles, l.e. the decomposition should be obtalnable even if f Is only
given in black box format, and the countable mixture should glve us the
monotone density agaln ln the sense that the L ; distance between the two
densities 1s zero (thls allows the functlons to be different on possibly
uncountable sets of zero measure). Can you make a statement about the rate
of decrease of p,; for the following subclasses of monotone densitles: the log-
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concave densltl.es, the concave densitles, the convex densitles? Prove that
when p; <ce~ for some b,c >0 and all ¢, then E (K )=0 (log(n )), Where
K 1s the largest Integer In a sample of slze n drawn from probability vector
P 1P os--.. Conclude that for Important classes of denslties, we can generate
sums of n 11d random varlates In expected time O (log(n )).

8. Gram-Charlier series. The standard approx!mation for the density f 2 Of
S /(cV'n' ) where S, Is the sum of n 1id zero mean random varlables with
second moment 0% Is ¢ where g Is the normal density. The closeness ls
covered by local central limlt theorems, and the errors are of the order of
l/ﬁ. To obtaln errors of the order of 1/n 1t Is necessary to user a flner
approximation. For example, one could use an extra term In the Gram-
Charller serles (see e.g. Ord (1972, p. 28)). This leads to the approxlmation
by

22

1 __2— /'1‘3 3
— 1+ ~————(z°-2)),
vem 803V n
where us 1s the third moment for f . For symmetrlc distributions, the extra
correction term Is zero. This suggests that the local Ilmlt theorems of section

4.3 can be lmproved. For the symmetrlc uniform density, find constants a ,b
such that | f,-g | Simln(a,bx'g). Use thls to deslgn a uniformly fast
n

generator for sums of symmetric uniform random varlables.

7. A contlnuatlon of the previous exerclse. Let a €ER be a constant. Glve a ran-
dom variate generator for the following class of densltles related to the

Gram-Charller series approximation of the previous exerclse:

z2

g(z)=c jz_ﬂe“z'(wa(x%» K

where ¢ 1s a normallzation constant.

5. DISCRETE EVENT SIMULATION.

5.1. Future event set algorithms.

Several complex systems evolving In time fall into the following category:
they can be characterized by a state, and the state changes only at discrete
times. Systems falllng Into this category Include most queuelng systems such as
those appearing In banks, elevators, computer networks, computer operating sys-
tems and telephone networks. Systems not Included In this category are those
which change state continuously, such as systems driven by differential equations
(physlcal or chemlical processes, trafflc control systems). In discrete event slmula-
tlon of such systems, one keeps a subset of all the future events In a future event
set, where an event Is defined as a change of state, e.g. the arrival or departure of
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a person In a bank. By taking the next event from the future event set, we can
make time advance wlth blg Jumps. After having grabbed thls event, 1t Is neces-
sary to update the state and If necessary schedule new future events. In other
words, the future event set can shrink and grow in its lifetlme. What matters is

that no event Is missed. All future event set algorithms can be summarized as fol-
lows:

Future event set algorithm

Time «0.

Initialize State (the state of the system).

Initialize FES (future event set) by scheduling at least one event.

WHILE NOT EMPTY (FES) DO
Select the minimal time event in FES, and remove it from FES.
Time « time of the selected event, i.e. make time progress.
Analyze the selected event, and update State and FES accordingly.

For worked out examples, we refer the readers to more speclallzed texts such as
Bratley, Fox and Schrage (1983), Banks and Carson (1984) or Law and Kelton
(1982). Our maln concern s with the complexity aspect of future event set algo-
rithms. It 1s difficult to get a good general handle on the time complexity due to
the state updates. On the other hand, the contribution to the time complexity of
all operations Involving FES, the future event set, 1s amenable to analysls. These
operations Include

" A. INSERT a new event \n FES.
B. DELETE the minimal time event from FES.
C. CANCEL a particular event (remove 1t from FES).

There are two kinds of INSERT: INSERT based upon the time of the event, and
INSERT based upon other information related to the event. The latter INSERT
1s required when a simulatlon demands Information retrieval from the FES other
than selectlon of the minimal time event. This Is the case when cancelations can
occur, l.e. deletlons of events other than the minimal time event. It can always be
avolded by leaving the event to be canceled in FES but marking it "canceled”, so
that when 1t Is selected at some polnt as the minimal tlme event, It can immedl-
ately be discarded. In most cases we have to use a dual data structure which
allows us to lmplement the operations INSERT, DELETE and elther CANCEL or
MARK efliciently. Typlcally, one part of the data structure conslsts of a diction-
ary (ordered according to keys used for cancellng or marking), and another part
1s a priority queue (see Aho, Hopcroft and Ullman (1983) for our terminolgy).
Since the number of elements In FES grows and shrinks with time, 1t 1s difficult
to uniformize the analysls. For this reason, sometimes the followlng assumptlons
are made:
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A. The future event set has n events at all tlmes. This Implies that when the
minlmum time event Is deleted, the empty slot Is Immediately fllled by a
new event, l.e. the DELETE and INSERT operatlons always go together.

B. Initially, the future event set has n events, with random times, all 11d with
common distribution functlon F on [0,00).

C. When an event with event time ¢ 1s deleted from FES, the new event replac-
Ing 1t in FES has time £ +T, where T also has distributlon functlon F.

These three assumptlons taken together form the basls of the so-called hold
model, colned after the SIMULA HOLD operation, which combines our DELETE
and INSERT operatlons. Assumptions B and C are of a stochastic nature to facll-
ltate the expected time analysls. They are motivated by the fact that In homo-
geneous Polsson processes, the Inter-event times are Independent exponentlally
distributed. Therefore, the distribution functlon F s typlcally the exponential
distributlon. The quantity of Interest to us Is the expected time needed to execute
a HOLD operation. Unfortunately, thls quantity depends not only upon n, but
also on F and the tlme Instant at which the expected tlme analysls s needed.
This Is due to the fact that the times of the events In the FES have distributions
that vary. It 1s true that relative to the minimum time in the FES, the distribu-
tlon of the n-1 non-minimal times approaches a llmit distribution, which
depends upon F and n. Analysls based upon this limit distribution Is at times
risky because 1t is difficult to plnpolnt In complex systems when the steady state
1s almost reached. What complicates matters even more is the dependence of the
limlt distribution upon n . The llmit of the llmit distribution with respect to n, a
double ltmit of sorts, has density (1-F (z))/¢ (z >0) where g 1s the mean for F
(Vaucher, 1977). The analyses are greatly facllitated If this llmit distribution s
used as the distrlbutlon of the relatlve event times in FES. The results of these
analyses should be handled with great care. Two extensive reports based upon
this model were carried out by Kingston (1985) and McCormack and Sargent
(1981). An alternative model was proposed by Reeves (1984). He also works with
this llmiting distribution, but departs from the HOLD model, In that events are
Inserted, or scheduled, in the FES according to a homogeneous Polsson process.
This Implles that the slze of the FES Is no longer flxed at a glven level n, but
hovers around a mean value n . It seems thus safer to perform a worst-case time
analysts, and to Include an expected time analysis only where exact calculations
can be carrled out. Lucklly, for the Important exponentlal distributlon, thls can
be done.

Theorem 5.1.

If assumptions A-C hold, and F Is the exponentlal (X\) distribution, if k
HOLD operatlons have been carrled out for any integer k£, If X* Is the minimal
event tlme In the FES, and X, X,, ..., X, _, are the n-1 non-minimal event
times In the FES (unordered, but In order of thelr Insertion In the FES), then
X ,-X*,...,X,_,—X* are lld exponential (\) random varlables.
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Proof of Theorem 5.1.

This is best proved Inductively. Initlally, we have n exponentially distri-
buted times. The assertion Is certalnly true, by the memoryless property of the
exponential distributlon. Now, take the minimum time, say M, remove 1t, and
Insert the time M +E In the FES, where E Is exponential (\). Clearly, all n
times in the FES are now 1ld with an exponential (\) distributlon on [M ,00). We
are thus back where we started from, and can apply the memoryless property

again. ]

Reeves's model allows for a simple direct analysls for all distributlon func-
tlons F . Because of Its Importance, we will brlefly study his model In a separate
section, before moving on to the description of a few possible data structures for
the FES.

5.2. Reeves’s model.

In Reeves's model, the FES is Inltlally empty. Insertions occur at random
times, which correspond to a homogeneous Poisson process with rate A\. The time
of an inserted event Is the insertlon time plus a delay time which has distribution
function F . A few properties will be needed further on, and these are collected In
Theorem 5.2:

Theorem 5.2.

Let 0< T1< T2< - - - be a homogeneous Polsson process with rate A>0
(the T;'s are the Insertlon tlmes), and let X ;,X,,... be I1d random variables with
common dlstributlon functlon F' on [0,00). Then

A. The random varlables T; +X; ,1<7, form a nonhomogeneous Polsson pro-
cess with rate functlon AF (¢).

B. If tNt Is the number of events In FES at time ¢, then /V; Is Polsson

(x f (1-F)). N; 1s thus stochastically smaller than a Polsson (M) random

0
0

varlable where g = [(1-F ) is the mean for F .
0
C. Let V;,i <N, be the event times for the events In FES at tlme ¢. Then the
random varlables V;-{ form a nonhomogeneous Polsson process with rate
function MF (¢t +u )~F (u)), u >0.
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Proof of Theorem 5.2.

Most of the theorem is left as an exerclse on Polsson processes. The maln
task ls to verify the Polsson nature of the deflned processes by checking the
Independence property for nonoverlapping Intervals. We will malnly polnt out
how the varlous rate functions are obtalned.

For part A, let L be the number of Insertions up to tlme ¢, a Polsson (\t)
random variable, and let M be the number of T; +X;'s not exceeding ¢. Clearly,

by the uniform distributlon property of homogeneous Polsson processes, M 1s dis-
tributed as

L

'E I(tU‘+X,' <t]:

t =0
where the U;’s are iid uniform [0,1] random varlables. Note that this Is a Polsson
sum of 11d Bernoulll random varlables. As we have seen elsewhere, such sums are
agaln Polsson distributed. The parameter Is Atp where p =P (tU,+X,<t). The
parameter can be rewrltten as

1

NP (X, <tU,) = Xt[F (tu) du
0
t
= X\[F(u) du .
0
For part B, the rate function can be obtalned similarly by wrliting Nt as a Pols-

son (At) sum of 1id Bernoulll random varlables w%th success probability

p =P (tU,+X,>t). This Is easlly seen to be Polsson ()\f(l—F )). For the second

0
o0
statement of part B, recall that the mean for distributlion functlon F s f(l-F ).
0

Finally, consider part C. Here agaln, we argue analogously. Let M be the
number of events In FES at time ¢ wlith event tlmes not exceeding {+u . Then
M 1s a Polsson (A!) sum of 11d Bernoulll random varlables with success parame-
ter p glven by

1

Pt <tU,+X,<t+u)= [(F(tz+u)}-F (1)) dz
Q

t
— -}t-f(F(z+u)—-F(z)) dz .
0

The statement about the rate function follows directly from this. i

The asymptotics In Reeves’s model should not be with respect to /Ny, the
slze of the FES, because thls osclilates randomly. Rather, 1t should be with
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respect to ¢, the tlme. Tltle first lmportant observation s that the expected size

of the FES at tlme ¢ s >\f(1~F) — Al as t —o0o, where u Is the mean for F. If u
0

ts small, the FES Is small because events spend only a short time in FES. On the
other hand, If u=o00, then the expected slze of the FES tends to co as t —o00, l.e.
we would need Infinite space In order to be able to carry out an unlimited time
simulation. The sltuation 1s also bad when u<<oo, although not as bad as In the

case u==00: 1t can be shown (see exerclses) that llm sup V; = oo almost surely.
t —o00
Thus, In all cases, an unlimlted memory would be required. This should be

viewed as a serlous drawback of Reeves's model. But the Insight we gain from his
model Is Invaluable, as we will find out In the next sectlon on linear lists.

5.3. Linear lists.

The oldest and simplest structure for an FES 1s a linear list in which the ele-
ments are kept accordlng to Increasing event times. For what follows, 1t Is all but
Irrelevant whether a llnked llst Implementation or an array lmplementation is
chosen. Deletlon Is obvlously a constant time operation. Insertion of an element
In the 7-th position takes tlme proportional to ¢ If we start searching from the
front (small event times) of the list, and to n—¢ +1 If we start from the back and
n s the cardinality of the FES. We can’t say that the time is min(¢,n—¢ +1)
because the value of ¢+ 1s unknown beforehand. Thus, one of the questions to be
studled 1s whether we should start the search from the front or the back.

By Theorem 5.2, part C, we observe that at tlme i, the expected value of
the number of events exceeding the currently Inserted element (called M; ) 1s

[eeles]

EM;) =X[[(F(to+u)}-F (uv)) du dF (t)
ot
= M[(F (to+u)-F (u)) [dF (¢) du
0 0

= X[F (u)(F (tg+u)-F (v)) du .
0

Here we used a standard Interchange of Integrals. Since the expected number of
o0

elements 1n the FES 1s X\ [(F({,+u)-F(u)) du, the expected value of the
0

number of event times at most equal to the event time of the currently inserted
element (called L; ) Is

E(Ly) = N[ (1-F (w))(F (tg+u )-F (u)) du .
0 N
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We should search from the back when E (M; )<E (L)), and from the front other-
wise. In an array Implementatlon, the search can always be done by blnary search
In logarithmle time, but the updating of the array calls for the shift by one posl-
tlon of the entire lower or upper portlon of the array. If one imaglnes a circular
array lmplementation with free wrap-around, of the sort used to lmplement
queues (Standish, 1980), then 1t Is always posslble to move only the smaller por-
tion. The same Is true for a linked llst Implementation If we keep polnters to the
front, rear and mlddle elements In the linked list and use double linking to allow
for the two types of search. The mlddle element s flrst compared with the
Inserted element. The outcome determlnes In which half we should insert, where
the search should start from, and how the middle element should be updated.
The last operation would also require us to keep a count of the number of ele-
ments In the llnked list. We can thus conclude that for a llnear list insertion, we
can find an implementation taking tlme bounded by mln(Mto,Lto). By Jensen's
Inequality, the expected time for lnsertion does not exceed

min(E (M, ).E (L) -

The fact that all the formulas for expected values encountered so far depend
upon the current time t'o could deprive us from some badly needed insight. Luck-
lly, as t,—00, a steady state Is reached. In fact, thls Is the only case studied by
Reeves (1984). We summarize:

Theorem 5.3.

In Reeves's model, we have
[oe]

EM; )1 X[F(-F)as ty—o0,
]

E(L;) 1 N[(1-F )? as ty—co0 .
)

Proof of Theorem 5.3.
We will only conslder the first statement. Note that E (M; ) Is monotone | In
[0,0]

to» and that for every o, the value does not exceed X [ F (1-F). Also, by Fatou's

Q
lemmea,

o0 o0

m inf E(M,) > \[lim inf F(u)(F (te+u)-F (u)) du = \[F (1-F) .1
Q

to—oo to— 0 0
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Remark 5.1. Front or back search.

From Theorem 5.3, we deduce that a front search s indlcated when
f(l——F 2 < fF (1-F). It 1s perhaps Interesting to note that equality ls reached

for the exponentlal distribution. Barlow and Proschan (1975) defilne the NBUE
(NWUE) distributions as those distributions for which for all ¢ >0,

JO-F) < (2)pa-F(t),
t

where u Is the mean for F'. Examples of NBUE (new better than used In expecta-
tlon) distributions Include the uniform, normal and gamma distributions for
parameter at least one. NWUE distributions include mixtures of exponentials and
gamma distributions with parameter at most one. By our orlglnal change of
Integral we note that for NBUE dlistributions,

00

N F(1-F)=X\/[
0 0

o0

fa-F)| aF (t)
t

< MfO-F ) dF (1) = 22
o]

Since the asymptotic expected size of the FES is Ay, we observe that for NBUE
distributions, a back search Is to be preferred. For NWUE distributions, a front
search 1s better. In all cases, the trick with the medlan polnter (for linked lists) or
the. medlan comparison (for circular arrays) automatically selects the best search
mode. i}

Remark 5.2. The HOLD model.

In the HOLD model, the worst-case insertion time can be as poor as n. For
the expected Insertion time, the computations are simple for the exponential dis-

tribution function. In view of Theorem 5.1, it 1s easy to see that the expected
n+2 1 n n The

= —

2 n +1 2 n +1
expected number of backward scans Is equal to this, by symmetry. For all distri-
butions F' having a denslity, the expected insertion time grows llnearly with n
(see exercises). i

number of comparisons In a forward scan s

A brief historical remark 1s In order. Linear llsts have been used extenslvely
In the past. They are slmple to Implement, easy to analyze and’ use minimal
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storage. Among the possible physical Implementations, the doubly linked llst is
perhaps the most popular (Knuth, 1969). The asymptotlc expected Insertion time
for front and back search under the HOLD model was obtalned by Vaucher
(1977) and Englebrecht-Wiggans and Maxwell (1978). Reeves (1984) dlscusses the
same thing for hls model. Interestingly, If the slze n I1n the HOLD model Is
replaced by the asymptotic value of the expected slze of the FES, \u, the two
results colncide. In particular, Remark 5.1 applles to both models. The polnt
about NBUE distributlons In that remark s due to McCormack and Sargent
(1981). The idea of uslng a medlan polnter or a medlan comparlson goes back to
Pritsker (1976) and Davey and Vaucher (1980). For more analysis Involving
linear lists, see e.g. Jonassen and Dahl (1975).

The simple llnear llst has been generalized and Improved upon In many
ways. For example, a number of algorithms have been proposed whlich keep an
addlitional set of polnters to selected events In the FES. These are known as mul-
tiple polnter methods, and the Implementations are sometimes called Indexed
linear list implementations. The polnters partition the FES Into smaller sets con-
talning a few events each. Thls greatly facllitates Insertlon. For example, Vaucher
and Duval (1975) space polnter events (events polnted to by these polnters) equal
amounts of tlme (A) apart. In view of thls, we can locate a particular subset of
the FES very quickly by making use of the truncation operation. The subset 1s
then searched In the standard sequentlal manner. Ideally, one would llke to have
a constant number of events per Interval, but this Is difficult to enforce. In
Reeves’'s model, the analysls of the Vaucher-Duval bucket structure is easy. We
need only concern ourselves with insertions. Furthermore, the tlme needed to
locate the subset (or bucket) In which we should insert Is constant. The buckets
should be thought of as small linked lists. They actually need not be globally
concatenated, but within each list, the events are ordered. The global time Inter-
val Is divided Into Intervals [0,A),[A,2A),.... Let A; be the j-th Interval, and let
F (A;) denote the probablilty of the j-th Interval. For the sake of simplicity, let
us assume that the tlme spent on an Insertion 1s equal to the number of events
already present in the Interval Into which we need to Insert. In any case, 1gnoring
a constant access tlme, this wlll be an upper bound on the actual Insertlon time.
The expected number of events In bucket A;==[(7-1)A,7 A) under Reeves model
at time ¢ is glven by

f N(F(t+u)-F(u)) du
A -t

)

where A;~t means the obvlous thing. Let J be the collectlon of all Indlces for
which A; overlaps with [¢,00), and let B; be A;U[t,00). Then the expected time
Is

S [ NF(+u)-F(u)) du F(B;-t).
JjeJ B,-t

In Theorem 5.4, we dertve useful upper bounds for the expected time.
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Theorem 5.4.

Conslder the bucket based llnear list structure of Vaucher and Duval with
bucket width A. Then the expected time for Inserting (scheduling) an event at
time ¢ In the FES under Reeves's model Is bounded from above by

A. .
B. )\A.

C. XCuA, where C is an upper bound for the density f for F (this polnt 1s
only applicable when a density exlsts).

. c
In particular, for any ¢ and F, taklng A §—>\— for some constant ¢ guarantees

that the expected time spent on insertions is bounded by ¢.

Proof of Theorem 5.4.

Bound A Is obtalned by noting that each F (B;-t) In the sum Is at most
equal to 1, and that F (¢ +u )<1. Bound B Is obtalned by bounding

[ N (F(t+u)-F (u)) du
B, -t

J

by AA, and observing that the terms F (B;j-t) summed over j€J yleld the value
1. Finally inequallty C uses the fact that F (B;~¢)<C A for all 7. |

Theorem 5.4 Is extremely Important. We see that It is possible to have con-
stant expected time deletions and insertlons, uniformly over all F, ¢ and \, pro-
vided that A Is taken small enough. The bound on A depends upon M. If A Is
* known, there Is no problem. Unfortunately, A has to be estimated most of the
time. Recall also that we are In Reeves's ideallzed model. The present analysis
does not extend beyond thls model. As a rule of thumb, one can take A equal to
1/X where X\ Is the expected number of polnts Inserted per unlt of tlme. This
should Insure that every bucket has at most one polnt on the average. Taking A
too small 1s harmful from a space polnt of view because the number of Intervals
Into which the FES Is cut up is

[(max( Y, )t )/A.‘

where the Y;'s are the scheduled event times at time ¢{. Taklng the expected
value, we see that thls 1s bounded from above by

E Y,...,Y
1+ (max( 1A N))

1]

where N s Polsson (Au). Recall that for an upper bound the Y;’'s can be con-
sidered as 11d random varlables with density (1-F )/u on [0,00). This allows us 0
get a good ldea of the expected number of buckets needed as a function of the
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expected FES slze, or A\. We offer two quantitative results.

Theorem 5.5.
The expected number of buckets needed In Reeves's model does not exceed

/X
\/ FEE)

1+ ’
A

where X has distribution function F. If AN-)C\— as A\—oo for some constant c,

then thls upper bound ~

1 3
/s E((NX)°) .

Furthermore, If E (e *¥ )<co for some 4 >0, and A Is as shown above, then the
expected number of buckets Is O (Aog(\)).

Proof of Theorem 5.5.

For the first part of the Theorem, we can assume wlithout loss of generallty
that X has finlte third moment. We argue as follows:

E Y, .., YWW<E( /3T
(max(Y, N ;?N
SVEWM)E(Y,?) (Jensen s inequallty)
= V\uE (X3)/(3p) = V\E (X?)/3.

The last step follows from the simple observation that

[o0] F oo o]
fx2w dz =fx2f-—1-dF(t)dw
0 H o z M

0 t
= [L[z%ds dF (t)
oMo

= L Ex?%.
3u

The second statement of the Theorem follows 1n three lines. Let u be a flxed con-
stant for which E (e *X )==a <co. Then, using X, . . . , X, to denote an id sam-
ple with distribution function F',

E(max(Y, ..., Y,) < E(max(X,, ..., X))

: 1
< EB(Zlog( 3 e™)
i <N

< Liog(B(V)E () = Slog(ua) .
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This concludes the proof of Theorem 5.5. ]

Except when F has compact support, the expected number of buckets
needed grows superlinearly with A, when A 1s plcked as a constant over A. The
sltuation s worse when A 1s picked even smaller. This Is a good example of the
tlme-space trade-off, because taking A larger than 1/X\ effectively decreases the
space requirements but slows down the algorithm. However, large A's are unin-
teresting since we will see that there are nonllnear data structures which will run
In expected or even worst-case time O (log(M\)). Thus, there 1s no need to study
cases In which the Vaucher-Duval structure performs worse than this. Vaucher
and Duval (1975) and Davey and Vaucher (1980) clrcumvent the superlinear (In
\) storage need by collapsing many buckets In one big bucket, called an overflow
bucket, or overflow list. Denardo and Fox (1979) conslder a hlerarchy of bucket
structures where bucket width decreases wilth the level.

Varlous other multiple polnter structures have been proposed, such as the
structures of Franta and Maly (1977, 1978) and Wyman (19768). They are largely
simllar to the Vaucher-Duval bucket structure. One nlce new ldea surfacing in
these methods Is the following. Assume that one wants to keep the cardinality of
all sublists about equal and close to a number m, and assume that the FES has
about n elements. Therefore, about n /m polnters are needed, which in turn
can be kept In a linear list, to be scanned sequentially from left to right or right

n
to left. The time needed for an Insertlon cannot exceed a constant tlmes ~—+m
m

where the last term accounts for the sequentlal search Into the selected sublist.
The optimal cholce for m Is thus about \/— , and the resulting complexlty of an
Insertlon grows also as \/; . The difficulty with theses structures Is the dynamlic
balancing of the subllst cardinalitles so that all sublists have about m elements.
Henriksen (1977) proposes to keep about m events per sublist, but the pointer
records are now kept In a balanced blnary search tree, which 1s dynamlcally
ad}usted. The complexlty of an Insertion Is not Immediately clear since the
updating of the polnter tree requlres some complicated work. Without the

updating, we would need tlme about equal to log(i)—r-m Just to locate the point
m

of insertion of one event. This expression Is minimal for constant m (m =4 1s the
usual recommendatlon for Henrlksen's algorithm (Kingston, 1984)). The complex-
1ty of Insertion without updating is ©(log(n )). For a more detalled expected time
analysls, see Kingston (1984). In the next sectlon, we discuss O (log(n)) worst-
case structures which are much slmpler to implement than Henrlksen's structure,
and perform about equally well In practice.
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5.4. Tree structures.

If the event tlmes are kept In a blnary search tree, then one would suspect
that after a whlle the tree would be skewed to the right, because elements are
deleted from the left and added mostly to the right. Interestingly, this 1s not
always the case, and the explanatlon parallels that for the forward and backward
scanning methods In llnear llsts. Conslder for example an exponential F 1n the
HOLD model. As we have seen In Theorem 5.1, all the relatlve event times In the
FES are 11d exponentlally distributed. Thus, the binary search tree at every point
In tlme s dlstributed as for any binary search tree constructed from a random
permutation of 1, ..., n. The propertles of these trees are well-known. For
example, the expected number of comparisons needed for an insertlon of a new
element, distributed as the n other elements, and Independent of 1t, Is ~2log(n )
(see e.g. Knuth (1973) or Standish (1980)). The expected tlme needed to delete
the smallest element 1s O (log(n)). First, we need to locate the element at the
bottom left, and then we need to restore the binary tree In case the deleted ele-
ment had right descendants, by putting the bottom left descendant of these right
descendants In its place. Unfortunately, one cannot count on F belng exponen-
tlal, and some distributions could lead to dangerous unbalancing, elther to the
left or the right. Thls was for example polnted out by Kingston (1985).

For robust performance, 1t Is necessary to look at worst-case Insertlon and
deletlon times. They are O (log(n)) for such structures as the 2-3 tree, the AVL
tree and the heap. Of these, the heap Is the easlest to Implement and understand.
The overhead with the other trees Is excesslve. Suggested for the FES by Floyd In
a letter to Fox In the late sixtles, and formalized by Gonnet (1976), the heap
compares favorably In the extensive tlming studles of McCormack and Sargent
(1981), Ulrich (1978) and Reeves (1984). However, In Isolated appllications, 1t 1s
clearly Inferlor to the bucket structures (Franta and Maly, 1978). Thls should
come as no surprise since properly deslgned bucket structures have constant
" expected time Insertlons and deletlons. If robustness !s needed such as In a gen-
eral purpose software package, the heap structure 1s warmly recommended (see
also Ulrich (1978) and Kingston (1985)).

It Is possible to streamline the heap for use in discrete event simulation. The
first modificatlon (Franta and Maly, 1978) conslsts of combining the DELETE
and INSERT operations Into one operation, the HOLD operation. Since a deletion
calls for a replacement of the root of the heap, It would be a waste of effort to
replace it by the last element 1n the heap, fix the heap, then Insert a new element
In the last position, and finally ix the heap agaln. In the HOLD operation, the
root positlon can be fllled by the new element directly. After thls, the heap needs
only be flxed once. This Improvement s most marked when the number of HOLD
operations Is relatively large compared to the number of bare DELETE or
INSERT operations. A second improvement, suggested by Kingston (1985), con-
sists of uslng an m -ary heap Instead of a binary heap. Good experimental results
were obtalned by hlm for the ternary heap. Thls Improvement Is based on the
fact that Insertlons are more efflclent for large values of m, whlle deletlons
become only slightly more time-consuming.
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5.5. Exercises.
1. Prove Theorem 5.2.

2. Conslder Reeves's model. Show that when u<oo, llm sup [V; = oo almost
: t—o0
surely.

3. Show that the gamma (a) ( ¢ >1 ) and unlform [0,1] distributlons are
NBUE. Show that the gamma (a ) ( ¢ <1 ) distribution Is NWUE.

4. Generallze Theorem 5.5 as follows. For r >1, the expected number of buck-
ets needed In Reeves’'s model does not exceed
1

[ A E (X7+1) ’
r+1

1+ ’
FAN

c
where X has distribution function F . If /_\~-;\— as A\—o00o for some constant

¢, then this upper bound ~
1
.1.1 E((xX)f“)) '
¢ r+1 '

5. Assume that F Is the absolute normal distributlon function. Prove that if A

Is 1/X\ In the Vaucher-Duval bucket structure, then the expected number of
buckets needed 1s O (Avlog(A)) and Q(AV1og(h)) as A—oo.

8. In the HOLD model, show that whenever F has a density, the expected time
needed for insertion of a new element In an ordered doubly llnked list Is
Q(n)and O(n).

7. Conslider the binary heap under the HOLD model with an exponentlal distrl-

bution F. Show that the expected time needed for inserting an element at
time ¢ in the FES 1s O (1).

8. Glve a heap-based data structure for implementing the operations DELETE,
INSERT and CANCEL in O (log(n )) worst-case tlme.

9. Counsider the HOLD model with an ordinary binary search tree lmplementa-
tlon. Find a distribution F for which the expected Insertion time of a new
element at time ¢t >0 1s Q(¥(n)) for some function ¢ Increasing faster than a
logarithm: lim ¥(n )/log(n ) = oo.

n —+00
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6. REGENERATIVE PHENOMENA.

6.1. The principle.

Many processes In simulatlon are repetitive, l.e. one can ldentlfy a null state,
or origln, to which a system evolving In tlme returns, and glven that the system
Is In the null state at a certaln time, the future evolutlon does not depend upon
what has happened up to that point. Conslder for example a slmple random walk
In which at each time unlt, one step to the right or left Is taken with equal pro-
babllity 1/2. When the random walk returns to the origin, we start from scratch.
The future of the random walk 1s Independent of the history up to the polnt of
return to the origin. In some simulatlons of such processes, we can efficlently skip
ahead In time by generating the walting time until a return occurs, at least when
thls walting tlme ls a proper random variable. Systems In which the probability
of a return is less than one should be treated differently.

The galn In efficlency Is due to the fact that the walting tlme until the first
return to the orlgin 1s sometimes easy to generate. We will work through the
example of the slmple random walk In the next section. Regenerative phenomena
are ublquitous: they occur In queuelng systems (see section 6.3), In Markov
chalns, and renewal processes Iln general. Heyman and Sobel (1982) provide a
solld study of many stochastlc processes of practical lmportance and pay partlcu-
lar attentlon to regeneratlive phenomena.

6.2. Random walks.

The one-dimensional random walk 1s deflned as follows. Let U,,U,,... be 1ld

{~1,1}-valued random varlables where P(U1=1)=P(U1=——1)=—;—. Form the

partial sums

Here S, can be considered as a gambler's gain of coln tosslng after n tosses pro-
vided that the stake 1s one dollar; n s the time. Let T be the time until a fArst
return to the origin. If we need to generate Sn, then 1t Is not necessary to gen-
erate the Indlvidual U;’s. Rather, It suffices to proceed as follows:
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X+~o0
WHILE X <n DO

Generate a random variate T (distributed as the waiting time for the first return to
the origin).

X~X+T
VX-T ,Y+«0
WHILE V <n DO

Generate a random {1,-1}-valued step U .

YY+U ,V<V+1

IF Y=0 THEN V+«X-T (reset V by rejecting partial random walk)
RETURN Y

The princliple is clear: we generate all returns to the origin up to tlme n, and
slmulate the random walk explicltly from the last return onwards, keeping In
mind that from the last return onwards, the random walk Is conditional: no
further returns to the origin are allowed. If another return occurs, the partlal ran-
dom walk 1s rejected. The example of the simple random walk s rather unfor-

1
tunate In two respects: first, we know that S, 1s binomlal (n ,-5). Thus, there s

no need for an algorlthm such as the one described above, which cannot possibly
run In uniformly bounded time. But more Importantly, the method described
above is Intrinslcally Inefficlent because random walks spend most of thelr time
on one of the two sldes of the origin. Thus, the last return to the origin Is likely
to be (n ) away from n, so that the probabllity of acceptance of the explicitly
generated random walk, which is equal to the probabllity of not returning to the

origin, i1s O (-}-). Even If we could generate T in zero time, we would be looking
n

at an overall expected time complexity of #(n?). Nevertheless, the example has
great didactical value.

The distribution of the time of the first return to the origin Is given In the
following Theorem.
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1 Theorem 6.1.

In a symmetric random walk, the time T of the first return to the origln
satlsfles :

. 1 2n -2
P(T=2n)=p2n =-n—22-1::— n-1 (nZl),

P(T=2n+1)=0 (n>>0).

If ¢4, Is the probabllity that the random walk returns to the origin at time 2n,
then we have

A. Pop = qg,/(2n-1);

Pan ~ 1/(2Vn3/2);

E(T) = oo;

Popn = Qon-o7q2n>

1

1 1
pPo = -2' »Pont2 = Pon (1“"2_n)(1+'7;) .

IR

Proof of Theorem 6.1.

This proof will be given in full, because It 1s a beautiful lllustration of how
one can compute certaln renewal tlme dlstributions via generatilng functions. We
begin with the generating functlon G (s) for the probabllitles ¢, =P (S,; =0)
where S,; 1s the value of the random walk at tlme 2¢. We have

G(s)= ng,‘s" = §2“2" [2;]3'

$ =1

L
5| ;e = A=
= . -8 = -1.
52=31 ' 1-s
Let us now relate p,, to ¢,;. It Is clear that
n-1
Qon = Pont 3 Pon-2ifoi -
=1

If H (s ) Is the generating functlon for p,,, then we have

H(s)= 3 qgns™

n=1

(e ) n-1

== Z p2n8n+zp2n—2i’3n-tq2isi

n=1 f==1

=H@GEHY, ¥ Ponis" ' qos!

f=1n =f +1
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= H(s)+ 3 028 33 pons™ = H(s)+G (s)H (s) .

=1 n=1

Therefore,

1
G(s) o [ 2 l N
H(s) = ——*— = 1-V1-s A (=1) st
(s) 1+G (s) ,E_;’l v ( )
Equating the coefliclent of s' with Po; glves the distribution of T . Statement A
Is easlly verlfled. Statement B follows by uslng Stirling's formula. Statement C

follows directly from B. Flnally, D and E are obtalned by simple computations. .

Even though T has a unimodal distribution on the even Integers with peak
at 2, generatlon by sequential Inversion started at 2 Is not recommended because
E (T )=00. We can proceed by rejectlon based upon the followlng inequalities:

Lemma 6.1.

The probabillities p,, satisfy for n >1,

1 1
1 Pan < g 12(2n-1) < e_l? _
2n T 1 - -

3
2vr(n —é—)g

Proof of Lemma 6.1.
We rewrlte p,, as follows:
r(2n-1)

Doy =
" ono?mirl(n)
0
on 02n=2¢=2n , 2n 2T
n
.
¢ (1__}__)2n—1c 12(2n -1)
- 2n
n vam(2n-1)

for some 0<#< 1. An upper bound Is provided by

1
e 12(2n -1)

S
(n_-;-)zm
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A lower bound Is provided by

1 27
e 1__.._
(1-2>)

3
(n-—;-)zm

1 \on 1 1on
14 —)27 (1-—
( 2n) ( 2n)

v

3
(n -—%)2 Var

v

AV
lo|
]

Generatlon can now be dealt with by truncatlon of a contlnuous random
varlate. Note that p,, <cg (z) where

—;— (n=1,n-1<z<n)

cg(z)= 1
12

¢ 3 (n>1,n-1<z<n)

\/4_77(1: ——;—)?

where

Random varlates with denslty ¢ can quite easlly be generated by Inversion. The
algorlthm can be summarized as follows:
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Generator for first return to origin in simple random walk

[SET-UP]
1
‘e 1 . 2e 12
2 :;71'
[GENERATOR]
REPEAT
Generate a uniform [0,c ] random variate U .
FU<L
2
THEN RETURN X «2
ELSE
Generate a uniform [0,1) random variate V.
Y<—%+ 1 : (Y has density g restricted to [1,00)).
2-(U-)Vre
1
T Ve 12 /(\/1?(Y-—;—)3/2) (prepare for rejection)
X—[7]
We—1/(Vr(X ——;—)3/ %) (prepare for squeeze steps)
rT/W 5_1—-2-13—(- (quick acceptance)
THEN RETURN 2X
1
ELSE IF T /W <e ¥3X-1 (quick rejection)
THEN IF T <p,x THEN RETURN 2X
UNTIL False

The relection constant ¢ Is a good Indlcator of the expected time spent before
halting provided that p,x can be evaluated In constant time uniformly over all
X . However, If p,x 1s computed dlrectly from 1ts definitlon, l.e. as a ratlo of fac-
torials, then the computation takes time roughly proportional to X . Assume that
1t 1s exactly X . Without squeeze steps, the expected time spent computing p,y
would be ¢ tlmes E (X ) where X has density ¢g. This Is oo (exercise 8.1). How-
ever, with the squeeze steps, the probablilty of evaluating Pox explicitly for fxed

value of X decreases as 31(— as X —o00. This implles that the overall expected time

of the algorithm Is finite (exercise 6.2).
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6.3. Birth and death processes.

A birth and death process Is a process with states 0,1,2,3,..., In which the
time spent In state ¢ 1s distributed as an exponentlal random varlate divided by
A; +4;, at which time the system Jumps to state ¢ +1 (a birth) with probabllity
N /(O\; +1; ), and to state 1 -1 (a death) otherwlse. Simple examples Include

A. The Polsson process: \;=\>0, u; =0, Births correspond essentlally to
events such as arrivals In a bank.

B. The Yule process: \; =Xt >0, u; =0. Here we also require that at time O,
the state be 1. This Is a particular case of a pure birth process. The state

can be ldentifled wlith the size of a glven populatlon 1n which no deaths can
occur.

C. The M/M/1 queue: N\;=A>0, u; =u>0, py=0. Here the state can be
identifled with the size of a queue, a birth with an arrival, and a death with
a departure. The condlitlon u,==0 1s natural slnce nobody can leave the
queue when the queue Is empty.

In all these examples, slmulation can often be accelerated by making use of
first-passage-time random varlables. Formally, we define the first passage time
from ¢ to j (5 >1), Ty;, by

T =t {t:X,=j | Xo=i} .

Here X; 1Is the state of the system (an Integer) at tlme ¢, and X, !s the Inltial
state. Let us conslder the M/M/1 queue. The busy perlod of such a queue 1s T ;.
If the system starts In state O (empty queue), and we define a system cycle as the
minimal time untll for the first time another empty queue state Is reached after
some busy period, l.e. after at least one person has been In the queue, then the
system cycle Is distributed as E /A\+T o, where E 1s an exponentlal random varl-
ate, Independent of T ,,. The only M/M/1 queues of Interest to us are those
which have with probabllity one a finite value for T, l.e. those for which u>X\
(Heyman and Sobel, 1982, p. 91). The actual derlvation of the distribution of T ,,
would lead us astray. What matters is that we can generate random varlates dls-
tributed as T, quite easlly. This should of course not be done by generating all
the arrivals and departures untll an empty queue 1s reached, because the expected
time of this method 1s not unlformly bounded over all values of A<<u. This Is
best seen by noting that E (T ,,)=1/(u~-\).

The M/M/1 queue provides one of the few Instances In which the distribu-
tlon of the first passage tlmes Is analytically manageable. For example, 2V iuT
has density

z 1
fz)=¢ 2 f)fl(x)f (z>0),

where E———\/-E—- and I, 1s the Bessel functlon of the first kind with imaginary

argument (see section IX.7.1 for a definition). Direct generatlon can be carried out
based upon the following result.
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Theorem 6.2.

When E 1s exponentially distributed, Y 1s a random varlable with density

\/ 1._.
9(y)=c— y:(l v) o<y <1),
—(é+=)1+2
2(§+ 5) 1+2y
where ¢ =i7-r§- and €= —;—‘-, and FE,Y are Independent, then
E/(é—(&+—2—)+2¥——1) has denslty f, and F /(u+ +2VvVuXr(2Y -1)) Is distributed

as T .

Proof of Theorem 6.2.

This theorem lllustrates once again the power of Integral representations for
densities. By an integral representation of 11 (Magnus et al, 1966, p. 84),

z 1
~Z(e+)
fey=e7 fres
z 1 1
~Zie+d)
= ? Eéife'ZZV1—22 dz
T,

- (.}_

. (E+2)+2y- SIS
= [(GlerT)ay-ne  ° TPrTal vy ()
0

; 1.1 dy
il
—(&+=)+2y -1
5 (& £)+ y
1 1
1 1 —z(—(€+—)+2Y—1)
= E((—(f+—=)+2Y-1)e 2 ¢
2 £
where Y has denslty ¢g. Glven Y, this Is the density of F /(%—(E+-1é-)+2 Y-1). R

Generatlon of Y can be taken care of very simply by rejection. Note that
Ny (-y)

2y
Yy Qa-y)

1 1. .
—2-(€+E)-1

g(y) <

1 3
where c=i§-. The top upper bound, proportional to a beta (—2—,—2—) denslity
il

: 3 3
Integrates to £. The bottom upper bound, proportional to a beta (—,—) density,
integrates to (£/(£-1))>. One should always pick the bound which has the
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smallest Integral. The cross-over polnt Is at §=-é-(3+\/3)%2.6.

Generator for g

CASE

€<3+\/§

2
REPEAT

Generate a uniform [0,1] random variate U .

13
Generate a beta (?,;) random variate Y.

U 2Y

UNTIL —5 < ———
FEr

3+v5
2
REPEAT

Generate a uniform [0,1) random variate U .

£>

3 3
Generate a beta (?,;) random variate Y.

1 1
U ;‘(5'*'—&:)—1
UN <
T 1-U~— 2Y
RETURN Y

The expected number of lterations Is mln(f,(-—gi-)z). This is a unimodal functlon
in &, taking the value 1 as €1 and €lco. The peak Is at £=(3+V5)/2. The algo-
rithm 1s unlformly fast with respect to €2 1. In the case {=1 the acceptance con-
dition is automatically satisfled, and the combination of the ¢ generator with the

property of Theorem 6.2 Is reduced to a generator already dealt with in Theorem
IX.7.1.

6.4. Phase type distributions.

Phase type distributions (or simply PH-distributions) are the distribu-
tlons of absorption times In absorbing Markov chalns, which are useful In study-
Ing queues and rellabllity problems. We conslder only discrete (or: dlscrete-time)
Markov chalns with a finite number of states. An absorption state 1s one which,
when reached, does not allow escape. Even If there is at least one absorptlon
state, 1t 1s not at all certaln that 1t will ever be reached. Thus, phase type dlstrl-
butions can be degenerate,
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Any state can also be "promoted” to absorption state to study the time
needed untll thls state Is reached. If we promote the starting state to absorption
state Immedlately after we leave it, then thls promotion mechanlsm can be used
to simulate Markov chalns by the shortcuts discussed In thils sectlon, at least If
we can get a good handle on the tlmes untll absorption.

Discrete Markov chalns can always be slmulated by using a slmple discrete
random varlate generator for every state transitlon (Neuts and Pagano, 1981).
Thls generator 1s not uniformly fast over all Markov chalns with m states and
nondegenerate phase type distribution. In the search for uniformly fast genera-
tors, slmple shortcuts are of little help.

For example, when we are In state ¢, we could generate the (geometrically
distributed) time untll we first leave ¢ In constant expected time. The
corresponding state can also be generated uniformly fast by a method such as
Walker’s, because we have a slmple condltlonal dlscrete distributlon with m -1
outcomes. This method can be used to ellmlnate the tlmes spent 1dling In indivi-
dual states. It cannot elimlnate the tlmes spent in cycles, such as In a Markov
chaln In which with hlgh probabllity we stay In a cycle Visiting states
t10%g, - . ., 4 In turn. Thus, It cannot possibly be uniformly fast over all Markov
chalns with m states.

It seems that In thls problem, uniform speed does not come cheaply. Some
preprocessing Involving the transitlon matrix seems necessary.

6.5. Exercises.

1. Conslder the rejection algorithm for the time 2X until the first return to the
origin In a symmetrlic random walk given In the text. Show that when the
time needed to compute p,y s equal to X, then the expected tlme taken by
the algorithm wlithout squeeze steps 1s oo.

2. A contlnuation of exercise 1. Show that when squeeze steps are added as In
the text, then the algorithm halts In finite expected time.

3. Discrete Markov chains. Conslder a discrete Markov chaln with m
states and Initial state 1. You are allowed to preprocess at any cost, but Just
once. What sort of preprocessing would you do on the transitlon matrix so
that you can deslgn an algorlthm for generating the state Sn at time n In
expected time unlformly bounded over n. The expected time 1s however
allowed to Increase with m . Hint: can you decompose the transition matrix
uslng a spectral representation so that the n-th power of it can be computed
unlformly quickly over all n?

4. The lost-games distribution. Let X be the number of games lost before
a player Is rulned in the classical gambler’s ruin problem, l.e. a gambler adds
one to hils fortune with probabllity p and loses one unit with probabllity
1-p . He starts out with r units (dollars). The purpose of thls exerclise 1s to
deslgn an algorithm for generating X In expected tlme unliformly bounded In
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r when p <1-p Is fixed. Unlform speed In both r and p would be even
better. Notlce first that the restrictlon p <1-p 1s needed to Insure that X Is
a proper random varlable, l.e. to Insure that the player s rulned with proba-
billty one.

A. Show that when p <1-p, the player will eventually be rulned with pro-
bablllty one.

B. Show that X has discrete distributlon glven by

2n —-r r
PX=n)= [ n )p""(l—p)" Py (n=r,r+1,..)

(Kemp and Kemp, 1968).

C. Suppose that customers arrlve at a queue accordlng to a homogeneous
Polsson process with parameter A, that the service time 1s exponential
with parameter pg<<X, and that the queue has Inltlally r customers.
Show that the number of customers served until the queue first vanishes
has the lost-games distributlon with parameters r and p =X/(A+u).

D. Using Stirling’s approximatlion, determine the general dependence of
P (X*——-n) upon 7, and use 1t to design a unlformly fast relectlon algo-
rithm.

For a survey of these and other walting tlme mechanlsms, see e.g. Patll and
Boswell (1975).

7. THE GENERALIZATION OF A SAMPLE.

7.1. Problem statement.

As In sectlon XIV.2, we will discuss an Incompletely specified random varlate
generation problem. Assume that we are glven a sample X,, ..., X, of iid
R %-valued random vectors with common unknown denstty f , and that we are
asked to generate a new Independent sample Y, ..., Y, of Independent ran-
dom vectors with the same density f . Stated In thls manner, the problem Is
obvlously unsolvable, unless we are Incredibly lucky.

What one can do Is construct a density estimate
fnl@)=f,(z.,X,, ...,X,) of f(z) and then generate a sample of slze m
from fn. Thls procedure has several drawbacks: first of all, f,, Is typlcally not
equal to f . Also, the new sample depends upon the origlnal sample. Yet, we
have very few options avallable to us. Ideally, we would llke the new sample to
appear to be distributed as the origlnal sample. This will be called sample Indis-
tingulshability. Thils and other lIssues wlll be dlscussed In this sectlon. The
material appeared orlginally In Devroye and Gyorfi (1985, chapter 8).
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7.2. Sample independence.

There Is little that can be done about the dependence between X4, . . ., X,
and Y,, ..., Y, except to hope that for n large enough, some sort of asymp-

totlc Independence Is obtalned. In some appllications, sample Independence 1s not
an Issue at all.

Since the Y;'s are condltionally independent given X,, ..., X,, we need
only consider the dependence between Y, and X,, ..., X, . A measure of the
dependence is

D, = iu%IP(YEA X€EB)»P(YEA)P(XEB)| ,

where the supremum ls with respect to all Borel sets A of R ¢ and all Borel sets
B of R™, and where Y=Y, and X s our shorthand notatlon for

(X, ..., X,). We say that the samples are asymptotically Independent when
lm D, =0.
n =0
In situations In which Xl, C ey X,, 1s used to deslgn or bulld a system, and
Yl, ..., Y, 1s used to test it, the sample dependence often causes optimlistic

evaluations. Without the asymptotic independence, we can’t even hope to dimin-
ish this optimistic blas by Increasing n.

The Inequallty in Theorem 7.1 below provides us with a sufficlent condition
for asymptotlc Independence. First, we need the following Lemma.

Lemma 7.1. (Scheffe, 1947).
For all densltles f/ and ¢ on R ¢,

J1f-g| =2sw|[f-]g],
B B

where the supremum Is with respect to all Borel sets B of R a4,

Proof qf Lemma 7.1.

Let us take B={f >g}, and let A be another Borel set of R?. Because
f(f —g)=0, we see that

[l1f-g|=2f(f-9).
B

Thus, we have shown that f | f -¢g | !s at most twice the supremum over all
Borel sets of | [(f ~g)|. To show the other half of the Lemma, note that If B’
B

denotes the complement of B, then

| f(f-a)l = 1| [ -9+ [ (f-9)]
A

ANB ANB

<max( [ (f-9) [ (/-9)

ANEB ANB
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< max(f(f -9).[(g-]))
B B!

=—é—f|f—g'] @l A) .1

Scheffe’s lemma tells us that If we assign probabliltles to sets (events) uslng
two different densitles, then the maximal difference between the probabllities over

all sets 1s equal to one half of the L, distance between the densitles. From
Lemma 7.1, we obtaln

Theorem 7.1. ‘
Let f, be a denslty estlmate, which 1tself 1s density. Then

Dy SE(fIfa-11).

Proof of Theorem 7.1.
Let X,, ..., X, ,, be lid. Then

D, < sup| P(Y€EA ,XEB)-P (X, ,,€A,XEB)|
+ sup | P (X, .,€A X €B )P (X, ,,€4)P (X €B)]
+iu%|P(X,,+1€A)P(X€B)—P(Y€A)P(XGB)|
< supE(Ixep | [fa-ff |)+0+sup| P(X, ,,€A)-P(YEA)|
A.B s 4 A
<suwp E(| [fo-ff |)+sup | JE(fo)-[] |
A A A A Y A
< E@Guw|[fa-f7 D+ =[IEU-] |
Ayt 2

=E(-;-f|fn—f |)+%’f|E(fn)_f | -l

We see that for the sake of asymptotic sample Independence, 1t suffices that
the expected L, distance between f, and f tends to zero with n. This Is also
called consistency. Conslstency does not Imply asymptotic Independence: Just
let f, be the unlform denslty In all cases, and observe that D,=0, yet
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f | .-/ | s a positive constant for all n and all nonuniform f .

7.3. Consistency of density estimates.
A denslty estimate [, s consistent If for all denslitles f ,

um E(f ] fo-] [)=0.

Conslstency guarantees that the expected value of the maximal error committed
by replacing probabllitles defilned with f with probabllitles defined with f,
tends to 0. Many estimates are consistent, see e.g. Devroye and Gyorfi (1985).
Parametric estimates, l.e. est!mates In which the form of f, s fixed up to a
finlte number of parameters, which are estlmated from the sample, cannot be
consistent because f, Is required to converge to f for all f, not a small sub-
class. Perhaps the best known and most widely used conslstent dens!ty estlmate
Is the kernel estimate
1 n IL‘—X,'
[a(@)=—F B E(——),

i=1

where K 1s a glven density (or kernel), chosen by the user, and A >0 Is a
smoothing parameter, which typlcally depends upon n or the data (Rosenblatt,
1956; Parzen, 1962). For consistency it Is necessary and sufficlent that A —0 and
nh?—o00 In probabllity as n —oo (Devroye and Gyorfl, 1985). How one should
choose h as a functlon of n or the data Is the subjlect of a lot of controversy.
Usually, the cholce is made based upon the approximate minimization of an error
criterion. Sample Independence (Theorem 7.1) and sample Indistingulshability
(next sectlon) suggest that we try to minimize ‘

E(f| 1.1 ]).

But even after narrowing down the error criterlon, there are several strategles.
One could minimize the supremum of the criterlon where the supremum is taken
over a class of densities. This Is called 2 minimax strategy. If / has compact
support on the real llne and a bounded contlnuous second derlvative, then the
best cholces for Individual f (l.e., not in the minlmax sense) are

1

h = Cn 5,

K(@)=2a-2%) (lz|<1),

where C s a constant depending upon f only:

2
s _JVI|®
2m f I fIII

C =
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The optimal kernel colncldes with the optimal kernel for L2 criteria (Bartlett,
1963). The optlmal formula for A, which depends upon the unknown density f ,
can be estilmated from the data. Alternatlvely, one could compute the formula
for a glven parametric density, a rough guess of sorts, and then estimate the
parameters from the data. For example, If this 1s done with the normal density as
inltlal guess, we obtaln the recommendation to take

1
h=[156\/2—7r

?A
8n

where & Is a robust estimate of the standard deviation of the normal denslty
(Devroye and Gyorfl, 1985). A typlical robust estimate ls the so-called quick-and-
dirty estimate

X (np X (ng)

Z

p—x

q

where ¥, ,z, are the p-th and ¢ -th quantlles of the standard normal density, and
X(np) and X ,, are the p-th and ¢-th quantlles In the data, l.e. the (np }-th and
(ng )-th order statistics.

The construction glven here wlth the kernel estimate s simple, and ylelds
fast generators. Other constructions have been suggested In the llterature with
random varlate generation in mind. Often, the explicit form of f n 1s not glven or
needed. Constructions often start from an empirical distributlon function based
upon X, ..., X,, and a smooth approximatlon of this distributlon functlon
(obtalned by Interpolation), which s directly useful in the lnversion method.
Guerra, Tapla and Thompson (1978) use Aklma's (Aklma, 1970) quasl-Hermlte
plecewlse cublc Interpolation to obtaln a smooth monotone function colnclding
with the empirlcal distribution function at the polnts X,-. Recall that the emplri-

1
cal distribution Is the distribution which puts mass -~ at point X;. Hora (1983)

glves another method for the same problem. Butler (1970) on the other hand uses
Lagrange’s quadratic interpolation on the inverse emplrical distribution function
to speed random varlate generation up even further.

7.4. Sample indistinguishability.

In simulations, one Important qualltative measure of the goodness of a
method Is the Indistinguishabllity of X,, ..., X,, and Y, ..., Y, for the
glven sample slze m . Note that we have forced both sample sizes to be the
same, although for the construction of fn we keep on using n polnts. The indls-
tingulshabllity could be measured quantitatively by

Spom ==SI/11p |E(INA)-EMA)Y X, ..., X))

=ms§1p|ff—ffnl
A A
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m
= 1121 |

Here, A 1s a Borel set of R ¢, N (A ) is the cardinallty of A for the original sam-
ple (the data, artificlally Inflated to size m ), and M (A ) is the cardinallty of A
for the artlficlal Y; sample. By cardinallty of a set, we mean the number of data
polnts falling in the set.

When S, ,, 1s smaller than one, then the expected cardinality of a set A
with a perfect sample of slze m dliffers by at most one from the conditional
expected cardinality of the generated sample of slze m. We say that f, 1Is k-
excellent for samples of slze m when

E(S, m)< k.

This Is equivalent to asking that the expected L, distance between f and f, ls
at most 2k /m . The notlon of 1-excellence Is very strong. For example, for most
nonparametric estimates such as the kernel estlmate 1-excellence forces us to use
phenomenally large values of n for even moderate values of m . Devroye and
Gyorfl (1985) have shown that for all kernel estimates (regardless of cholce of K
and k), and for all densitles f , 1-excellence 1s not achlevable for samples of size
m ==1000 unless n >4,000,000. For m =10,000, we need n >1,300,000,000. For
the hlstogram estimate, the situation is even worse.

But even l-excellence may not be good enough for one's application. For one
thing, no assurances are given as to the discrepancy In moments between the gen-
erated sample and the original sample.

7.5. Moment matching.

Some statisticlans attach a great deal of Importance to the moments of the
densitles f, and f . For d =1, the +-th moment mismatch is defined as

My;i=[zif,-[z'f (i=1,23,.).

Clearly, M, ; 1s a random varlable. Assume that we employ the kernel estimate
with a zero mean finite varlance (o2) kernel K. Then, we have

My =1S-BY),

{=1

n
M, , = -71-1- Y (X, 2-E (X; %) + h%0® .

t =1
This follows from the fact that f, Is an equiprobable mixture of densitles K
shifted to the X,- 's , each having varlance h%0% and zero mean. It Is Interesting
to note that the distribution of M, ; Is not influenced by & or K. By the weak
law of large numbers, M, ; tends to O In probabllity as h —co when f has a
finite first moment. The story s different for the second moment mlsmatch.
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Whereas E (M, ;)==0, we now have E (M, ,)="h?0? a positive blas. Fortunately,
h 1s usually small enough so that thls Is not too big a blas. Note further that the
variances of M, , , M, , are equal to

Var (X,) Var(X,%

’
n n

respectively. Thus, A and K only affect the blas of the second order mismatch.
Making the blas very small Is not recommended as 1t Increases the expected L,
error, and thus the sample dependence and distingulshabllity.

7.6. Generators for f,.

For the kernel estlmate, generators can be based upon the property that a
random varlate is distrlbuted as an equlprobable mixture, as s seen from the fol-
lowlng trivial algorithm.

Mixture method for kernel estimate

Generate Z, a random integer uniformly distributed on {1,2, . . ., n }.
Generate a random variate W with density K .
RETURN X +hW

3
For Bartlett's kernel K (z )=X(1—$2)+, we suggest elther rejection or a

method based upon properties of order statistics:

Generator based upon rejection for Bartlett’s kernel

REPEAT

Generate a uniform [-1,1] random variate X and an independent uniform [0,1] ran-
dom variate U.

UNTIL U <1-X?
RETURN X
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The order statistics method for Bartlett’s kernel

Generate three iid uniform {-1,1} random variates V,,V,, V,.
F | Vs|>max(| V |,| V)

THEN RETURN X «V,

ELSE RETURN X «V,

In the rejectlon method, X Is accepted with probabllity 2/3, so that the algo-
rithm requires on average three independent uniform random varlates. However,
we also need some multiplications. The order statistics method always uses pre-
cisely three Independent unlform random varlables, but the multipllcations are
replaced by a few absolute value operations.

7.7.
1.

Exercises.

Monte Carlo integration. To estimate fH(x)f (z) dz, where H is a
given functlon, and f s a denslty, the Monte Carlo method uses a sample
of size n drawn from [ (say, X,, ..., X, ). The nalve estimate s

l,n
wE .

When n Is small, this estlmate has a lot of bullt-In varlance. Compute the
varlance and assume that 1t Is finlte. Then construct the bootstrap esti-
mate

1 m
g,

where the Y;'s are 1id random varlables with density f,, the kernel estl-
mate of f based upon X,, ..., X, . The sample size m can be taken as

large as the user can afford. Thus, In the limlit, one can expect the bootstrap .

estimate to provide a good estimate of fH(x Va(z) dz.
A. Show that |[Hf-[Hf,|<2(upH)[|[f~f,| (Devroye and
Gyorfl, 1985).

B. Compare the mean square errors of the natve Monte Carlo estimate and
the estimate f Hf, (the latter Is a lmlit as m —oo of the bootstrap estl-
mate).

C. Compute the mean square error of the bootstrap estimate as a function
of n and m, and compare with the nalve Monte Carlo estimate. AlsO
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conslder what happens when you let m —oo In the expresslon for the
mean square error.

2. The generators for the kernel estlmate based upon Bartlett's kernel In the
text use the mixture method. Still for Bartlett's kernel, derive the inverslon
method with all the detalls. Hint: note that the distributlon function can be
written as the sum of polynomlals of degree three with compact support, and
can therefore be consldered as a cublc spline with at most 2n breakpolnts
when there are n data polnts (Devroye and Gyorfl, 1985).

3. Bratley, Fox and Schrage (1983) conslder a denslty estlmate f, which pro-
vides fast generation by Inverslon. The X;'s are ordered, and f, Is constant
on the Intervals determlined by the order statistics. In addltlon, in the inter-
vals to the left of the minlmum and to the right of the maximum exponen-
tlal talls are added. The constant pleces and exponentall talls Integrate to
1/(n +1) over thelr supports, l.e. all pleces are equally llkely to be plcked.
Rederlve thelr fast Inverslon algorithm for f,. Is thelr estimate asymptoti-
cally Independent? Show that It Is not conslistent for any density f . To cure
the latter problem, Bratley, Fox and Schrage suggest coalescing breakpolnts.
Conslder coalescing breakpolnts by lettlng f, be constant on the Intervals
determined by the k-th, 2k-th, 3k-th, - - - order statlstics. How should one
define the helghts of f, on these Intervals, and how should k£ vary with n
for conslistency?

4. For the kernel estlmate, show that for any density K, any [, and any
sequence of numbers k >0 with h —0 ,nh ¢ —oo, we have E([ | f =, | )—0
as n —oo. Proceed as follows: first prove the statement for continuous f
with compact support. Then, using the fact that any measurable function In
L, can be approximated arbltrarily closely by continuous functlons with
compact support, wrap up the proof. In the first half of the proof, it Is useful
to split the Integral by constdering | f ~E (f, )| separately. In the second
half of the proof, you will need an embedding argument, in which you create
a sample which with a few deletions can be considered as a sample drawn
from f, and with a few different deletlons can be consldered as a sample
drawn from the L, approximation of f.




