Chapter Nine
CONTINUOUS UNIVARIATE DENSITIES

Chapters IX and X are Included for the convenlence of a large sub-
population of users, the statlsticlans. The maln principles In random varlate gen-
eration were developed In the flrst elght chapters. Most particular distributions
found here are members of speclal classes of densitles for which unlversal
methods are avallable. For example, a short algorithm for log-concave densitles
was developed 1n sectlon VII.2. When speed 1s at a premlum, then one of the
table methods of the previous chapter could be used. Thls chapter Is purely com-
plementary. We are not In the least Interested In a hlstorical review of the
different methods proposed over the years for the popular densltles. Some
Interesting developments which glve us new Insight or illustrate certaln general
principles will be reported. The list of distributlons corresponds roughly speaking
to the list of distributions In the three volumes of Johnson and Kotz.

1. THE NORMAL DENSITY.

1.1. Definition.

A random varlable X 1s normally distributed If 1t has density
502

2

1

f(z)= e
vam
When X 1s normally distributed, then pu+ocX Is sald to be normal (1,0%). The

mean ¢ and the varlance o? are uninteresting from a random varlate generatlion
point of view.

Comparative studles of normal generators were published by Muller (1959),
Ahrens and Dieter (1872), Atkinson and Pearce (1976), Kinderman and Ramage
(1978), Payne (1979) and Best (1979). In the table below, we glve a general out-
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line of how the avallable algorithms are related.

Method References Speed Size of code Sectior
Inversion Muller (1959) Slow Moderate .23
Polar method Box and Muller (1958) Moderate Small V.4.4
Bell (1968)
Rejection Von Neumann (1951) Moderate Small 11.3.2
' Sibuya (1962)

Ratio-of-uniforms Kinderman and Monahan (1977) Fast Small to moderate | IV.7.0
Composition/rejection Marsaglia and Bray (1964) Fast Small to moderate

Ahrens and Dieter (1972)

Kinderman and Ramage (1976)

Sakasegawa (1978)

Series method Fast Small to moderate 5.
Almost-exact inversion | Wallace (1976) Moderate | Small IvV.3.3
Table methods Marsaglia, Maclaren and Bray (1964) | Very fast Large

Forsythe’s method Forsythe (1972) Fast, Moderate IvV.2.1

Ahrens and Dieter (1973)

Brent (1974)

The list glven here Is not exhaustlve. Many references are missing. What matters
are the general trends. We know that table methods are fast, and the rectangle-
wedge-tall method of Marsaglia, Maclaren and Bray (1964) 1s no exception. At
the other end of the scale are the small programs of moderate speed, such as the
programs for the polar method and some rejection methods. In between are r
moderate-sized programs that have good speed, such as the ratio-of-uniforms
method, the serles method, Forsythe's method and the composition/rejection |
method. Only the Inverslon method is inadmissible because 1t 1s slower and less
space effliclent than all of the other methods, the table methods excepted. Below,
we wlll malnly focus on the compositlon/rejection methods which have not been !
described In earller chapters. Because we will cut off the tall of the normal den- |
slty, 1t seems Important to show how random varlates with a denslty proportional

to the tall can be generated.

1.2. The tail of the normal density.

In this sectlon, we conslder generators for the famlly of tall densities
2:2

€
®(a)

2

f(z)= (z>a),

o0 £4

where ®(a )=fe ? Is a normallzation constant and ¢ >0 Is a parameter. Two

a
algorithms will be described:
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Marsaglia’s method for the tail-of-the-normal density (Marsaglia, 19 64)

REPEAT
Generate iid uniform {0,1] random variates U,V .
X —Va*-2log(U)

UNTIL VX <a

RETURN X

Marsaglia’s method Is based upon the trivial inequallty

72 72
e 2 <Ze 2 (z>a).
a
a%z?
But ze 2 (z >a)ls a density having distribution function
a%z?
F(z)=1-¢ *? (x2a),

which 1s the tall part of the Raylelgh distribution functlon. Thus, by inverslon,
vV a%-2log(U) has distribution function F, which explalns the algorithm. The

probablilty of acceptance in the rejection algorithm Is

00 a2-z2 a?

P(VXSa)=E(—%)=fae 2 dx =ae?<b(a)—>1
a

as a —o0. Thus, the rejectlon algorithm Is asymptotically optimal. Even for small
values of @, the probabllity of acceptance is quite high: It Is about 66% for a =1
and about 88% for a =3. Note that Marsaglia’s method can be sped up some-
what by postponling the square root until after the acceptance:

REPEAT
Generate iid uniform {0,1} random variates U,V .
X —c -log(U) (where ¢ =a?/2)

UNTIL V2X <¢

RETURN v2X

An algorithm which does not require any square roots can be obtalned by rejec-
tlon from an exponentlal density. We begln with the lnequallty
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which follows from the observatlon that (z -a )2_>_0. The upper bound Is propor-
tional to the density of a +—f— where E' 1s exponentially distributed. This ylelds

Wlthoilt further work the following algorithm:

REPEAT
Generate iid exponential random variates E ,E*,
UNTIL E?<2q¢2E+

RETURN X «a + %—

The probabllity of acceptance is precisely as for Marsaglia's method:
00 z? a?

P(E+>E%/(2a%)) = [e °° dr = ae 2 ®(a) =1 (a—00).
0

If a fast exponential random varlate generator 1s avallable, the second rejection
algorithm is probably faster than Marsaglia’s.

1.3. Composition/rejection methods.

The princlple underlying all good composition/rejectlon methods s the fol-
lowing: decompose the density of f Into two parts, f (z)=pg (z)+(1-p)h(z)
where p €(0,1) Is a mixture parameter, ¢ Is an easy density, and h s a residual
density not very often needed when p Is close to 1. We rarely stumble upon a
good cholce for g by accldent. But we can always find the optimal g 1n a family
of sultable candidates parametrized by 6. The welght of g4 In the mixture Is
denoted by p (6):

p (6) = inf _f__(_a:_)_ .
z go(z)

The candldates ¢4 should preferably be densitles of simple transformations of
Independent uniform [0,1] random varlables. Among the simple transformations
one milght conslder, we clte:
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(1) 0(V1+ o +Vn )

(2) fmedlan(V,, ..., V,)
3) 6,V ,+0,V,;

(4) 0,V +0,(V,)°.

Here V,,V,,... are 1id unlform [-1,1} random varlates, and 6,6,,0, are parameters
to be selected. Marsaglla and Bray (1964) used the first cholce with n =3 and
with the dellberately suboptimal value #=1 (because a time-consuming multlpli-
cation Is avolded for this value). Kinderman and Ramage (1978) optimized § for
cholce (1) when n =2. And Ahrens and Dieter (1872) proposed to use cholce (3).
Because the shape of g4 Is trapezoldal, this method Is known as the trapezoidal
method. All three approaches lead to algorlthms of about equal length and
speed. We will look at cholces (1) and (2) In more detall below, and provide
enough detall for the reader to be able to reconstruct the algorlthms of Marsaglla
and Bray (1964) and Kinderman and Ramage (19786).

Theorem 1.1.
The denstty of § medlan(V,, ..., V,, ) for n positive and §>0 Is

27&
c(l——f;;—) (lz]<6)

!
where ¢ =—M. The maximal value of p (6) is reached for §=v2n +1, and
92n+1, 129
takes the value

1
92n +1, 42, [~ +=

— 1)
P = Tre @n+1) o)

‘We have
8
M p= \/-—_—% 0.8382112 (n =1);

n p= 125~ 0.9017717  (n=2);
18me
(m) Hmp =1.

n —0oo

Proof of Theorem 1.1.

The density can be derlved very easlly after recalling that the medlan of
2n 41 1id unlform [0,1] random varlables has a symmetric beta denslty glven by

Crt sy <z <)
n! '

Deflne g4(z) = ¢ (1-(z%/6%))* (|2 | <6), and note that log(f /g4) attalns an
extremum at some polnt z for which the derlvative of the logarithm 1s 0. This
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ylelds the equation

. —$+-%2:?— 722 =0,
1-=2_
92

or,
£ =0 ; 22 =§%"2n .
When 6°<2n, [ /g, attalns only one minimum, at z=0. When §°>2n, the

functlon f /g4 Is symmetric around O: it has a local peak at O, dips to a mlim-
imum, and Increases monotonlcally agaln to co as z 6. Thus, we have

1 021 +1, 129 (@ <2n)
== n
p ng f(z) vame (2n +1)ver
p()—x;. gg(:v)_ 1 e P &
’——271-6 (?7;) g’ e 2 (02> 2n ).

We still have to maximize thls functlon with respect to 6. The function p (f)
Incredses llnearly from O up to 0=‘\/2_n_ . Then, It Increases some more , peaks,
and decreases In a bell-shaped fashlon. The maximum ls attalned for some value
#>+/2n . Since In that reglon, p (f) Is a constant tlmes 62" *1¢ ¢/2, the maximum
is attalned for f=+v2n +1. This gives the desired result. .

Had we consldered the Taylor serles expansion of f about 0, glven by

1 z? z* 28
f (@)= —=-—=(1-—AF""yp - ),
(@) \/27!'( 2 8 48 )
which Is known to give partlal sums that alternately overestimate and underestl-
2
mate f, then we would have been tempted to choose ¢ (z) = 3_(1——-%-),
4/ 2

because of

2
1@) 2 =) =pg@) (2] <VR)

4 : -
where p =-;\/——_-%0.7522528 Is the welght of ¢ In the mixture. This lllustrates the
m

usefulness and the shortcomings of Taylor's serles. Simple polynomlal bounds are
very easy to obtaln, but the cholce could be suboptimal. From Theorem 1.1 for
example, we recall that the optimal g of the Inverted parabolic form 1s a con-

2
stant tlmes (1——%—) (|z | S\/E). Sometimes a suboptimal choice of 6 is prefer-

able because the residual density h ls easler po handle. This Is the case for n =1
in Theorem 1.1. The suboptimal cholce §=+/2n , which Is the cholce impliclt in
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Taylor’s serles expansion, ylelds a much cleaner residual density. For n =2, we
need 5 random varlates Instead of 3, an Increase of 6697, while the galn In
efliclency (In value of p) Is only of the order of 10%. For thls reason, the case
n >1 Is less Important In practice. Let us briefly describe the entire algorithm for
the case n =1, f=1/2. We can decompose [ as follows:

[ (z)=pg(z)+qh(z)+rt(z)

where

3 z?
M g(=)= :\—/-—2—(1—7),

4
= —— R 0.7522528;
P 3\/1? .
) t() = — -z%/2 2);
a @)= _—=e (lz | >Vv2)
1 2
r= —¢~* /% dz = 0.15729921;
|z | >Vv2 2m .
() h(z) = S—=(e/2(1-Z2) (|2 | <V2);
q Vvar 22 -
q= L_(e=+*2_(1-2_) dr ~ 0.08044801 .
|$ l S\/E V2ﬂ' 2

Sampling from the tall density ¢ has been discussed In the previous sub-sectlon.
Sampling from ¢ ls slmple: just generate three 11d uniform [-1,1] random varl-
ates, and take \/5 times the medlan. Sampling from the residual density A can
be done as follows:

REPEAT _
Generate V uniformly on [-1,1], and U uniformly on [0,8].
X—V2V/|V |
Accept —[U >X?

IF NOT Accept THEN
2
U 2X”(1——‘§—) THEN
X2 2
Accept —[(1-2)X*<8(e 7 ~(1-2)

UNTIL Accept
RETURN X

This 1s a simple rejection algorithm with squeezing based upon the inequallties

12

Ty < (2| <VR)s
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2
4 6 _E 2 4 .6 8
I <e 2 p-fy< 2 2
8 48 — 2 - 8 48 384

The reader can easlly work out the detalls. The probability of Immedlate accep-
tance In the first iteration 1s

1

1
P(X*<U)= [P(X?<6z)dz = [P(|X | <V6z ) dz
0 0

1
3 — 5 1
0 4V2 5 1
' 3
5
_ 2.2 8% _ 8
3 z 7
4232

The same smooth performance for a resldual density could not have been
obtalned had we not based our decomposltion upon the Taylor serles expanston.

Let us next look at the density g4 of 8(V,+ V,+V3) where the V;'s are 11d
uniform [-1,1] random varlables. For the density of §(V,+V,), the trlangular
density, we refer to the exercises where among other things it s shown that the
optimal § 1s 1.1080179... , and that the corresponding value p (¢} Is 0.8840704... .

Theorem 1.2.

The optimal value for § In the decomposition of the normal density into
p (0)g lz ) plus a resldual density (wWhere g, s the density of 8(V 4+ V,+V ;) and
the V;'s are 11d uniform [-1,1] random varlables), 1s

0 = 0.956668451229... .

The corresponding optimal value for p (6) is 0.962365327... .

Proof of Theorém 1.2.
The density ggof 8(V 4+ V,+V,)1s
1 z 2
—(3—(— <
=65 Iz (<0

1 z 2
m@-(gl) (9§|?|S39)

0 (lz|>80).

go(z) =
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The functlon hg=f /g4 can be written as

12
2 _
% e z? (O<z=h)
i
hoz) = _z?
160 e ?
L (9<s <36),
2 =4 >
VAT (3.2

when z >0. We need to find the value of ¢ for which mlg eh oz ) 1s maximal.
0<z <3

By setting the derlvative of log(h g) with respect to z equal to O, and by analyz-

Ing the shape of hy, we see that the minimum of %, belongs to the followlng set

of values: 0, 8, b, ¢, where

b = ¢ 3——%— ;
92
39
¢ == —-—-+_6- g__§.. .
2 2 92
The followlng table glves all the local minlma together with the values for h .
Local minimum | Value of h, at minimum | Local minimum exists when:
' 80 2
0 == , P2t
7 3/2n -3
o L 2
b =2 . 1>P>=
ar 3
40 i
6 f= e 2 f=1
ar -
-z
¢ - 160 e 022_8_
2T c ? 9
(3—7)

The general shape of hy s as follows: when §2>1, there Is no local minimum on
(0,0), and he decreases monotonlcally to reach a global minimum at £ =¢ equal
to ¢, after which 1t increases agaln. When §%=1, the same shape s observed, but
a zero derivative occurs at z =46, although this does not correspond to a local

minimum. When ?8)-<02<1, there are two local minima, one on (0,0) (at b, of

value ), and one on (4,36) (at ¢, of value ¢). For -§—<02<%, the local minimum

at ¢ ceases to exlst. We have agaln a function with one minlmum, thls tlme at
b <6, of value 1. Flnally, for 025-2—, the functlon lncreases monotonically, and

Its global minimum occurs at z =0 and has value 7.
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Conslder now the behavior of 7 and % as a functlon of 4. Clearly, g
Increases llnearly with 4. Furthermore, v 1s gamma shaped with global peak at

2
=1, and n==1 for 92=~§-. The value of ¢ on the other hand decreases monotoni-
8 _
cally on the set 62> re We verlfy easlly that ¢ and 1 cross each other on the seg-

ment -g—<02< 1. It Is at thils polnt that mlin gh ¢(z ) 1s maximal. Thls cross-over
o<z <3

polnt Is preclsely the value given In the statement of the theorem. .

Theorem 1.2 can be used In the design of a fast composition/rejectlon algo-
rithm. In partlcular, the tall beyond the optlmal 36 is very small, having proba-
bility 0.004104648.... The resldual density on [-36,30] has probability
0.033530022... , but has unfortunately -enough flve peaks, the largest of which
occurs at the origin. It 1s clear once agaln that the maximilzation criterlon does
not take the complexlty of the residual denslty Into account. A suboptimal value
for 6 sometimes leads to better residual densltles. For example, when f==1, we
save one multiplication and end up with a more manageable residual density.
This cholce was first suggested by Marsaglla and Bray (1964). We conclude this
sectlon by glving thelr algorithm 1n its entlirety. :

From the proof of Theorem 1.2, we see that (In the notatlon of that proof),

p(f) =¢ = \/;_:’r? = 0.86385548... .

The normal density f can be decomposed as follows:
4
f@)= p fi(z),
f =1
where (p,04,03,P4) Is a probabllity vector, and the f;'s are denslitles defined as
follows:

(1) p,=0.86385546..., f , Is the denslty of V,+V,+V,, where the V's are 11d
uniform [-1,1] random varlables.

(1) p4=0.002609796063...== [ [ [, Is the tall-of-the-normal denslty res-
lz |23
tricted to |z | >8.

() f(z)= -;—(6—41:5 1) (J= \s-g-); p ,=0.1108179673... .

1
(Iv) pg==1-p,—-p ;P ,=0.02262677245... ; [ 3=7)-—( J=pyf pof opaf o)
. :

In the deslgn, Marsaglia and Bray declded upon the triangular form of f o flrst,
3
‘because random varlates with this density can be generated simply as —4—(V4+ Vs)

where the V;'s are again 11d uniform [-1,1] random variates. After having plcked
this simple [ ,, 1t Is necessary to choose the best (largest) welght p, , glven by
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_ L@ @)
e S

This Inflmum 1s found as follows. The derlvative of the ratlo s O at |z | =2 and
at |z | =0.87386312884... . Only the latter |z | corresponds to a minlmum,
and the corresponding value for p, s p,=0.11081796873... . Having determined
random varlate generation methods for all parts except f 5, It remalns to estab-
lish Just this for [ ;. First, note that f , has supremum 0.3181471173.... If we
use relection from a rectangular density with support on [-3,3], then the expected
number of lterations Is
8<X0.3181471173...

P3

= 1.9088827038... .

Combining all of this Into one algorithm, we have:
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Normal generator of Marsaglia and Bray (1964)

[NOTE: This algorithm follows the implementation suggested by Kinderman and Ramage
(1977).)

Generate a uniform [0,1} random variate U .
CASE
0< U <£0.8638:
Generate two iid uniform {-1,1] random variates V ,W.
RETURN X «2.3153508...U~14+V + W
0.8638 < U <0.9745:
Generate a uniform [0,1] random variate V.

RETURN X<—%(V—1+9.0334237...( U -0.8638))

0.9973002..< U <1:
REPEAT
Generate iid uniform [0,1] random variates V,W .

X<—-§——log(W)
UNTIL XV@%
RETURN X «v2X sign(U -0.9986501...)
0.9745 < U <0.9973002...:

REPEAT

Generate a uniform [-3,3] random variate X and a uniform [0,1] ran-
dom variate U,

Ve |X |
W «—6.6313339...(3-V)?
Sum «0
IF V<-g- THEN Sum «—6.0432809...(-3—-V)
IF V <1 THEN Sum « Sum +13.2626678...(3—-V?)-W
V2
UNTIL U <49.0024445...¢ 2 -Sum-W
RETURN X
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1.4. Exercises.

1.

In the trapezoldal method of Ahrens and Dileter (1972), the largest sym-
metric trapezold under the normal density Is used as the maln component In
the mixture. Show that thls trapezold Is defilned by the vertices
(-£,0),(£,0),(n,p),(-n,p) where £==2.1140280833... ,n==0.28972957386... ,
p==0.3825445560... . (Note: the area under the trapezold Is 0.9195444057... .)
A random varlate with such a trapezoldal density can be generated as
aV,+bV, for some constants a,b >0 where V,,V, are 11d uniform [-1,1]
random varlates. Determine a¢,b In this case.

Show that as a 1oo,

The optimal probability p In Theorem 1.1 depends upon n. Use Stirllng’s
formula to determine a constant ¢ such that p Zl—i, valld for all n >3.
n

It we want to generate a normal random variate by rejectlon from the

Xz

exponentlal density %e , the smallest rejection constant ls obtalned

when A=1. The constant is \/_2—:. Show thls. Note that the corresponding
g
rejection algorithm ls:

REPEAT

Generate two iid exponential random variates, X ,E .
UNTIL 2E <(X-1)?
RETURN SX where S is a random sign.

This algorithm Is mentioned in Abramowitz and Stegun (1970), where von
Neumann Is credited. Butcher (1961) attributes it to Kahn. Others have
redlscovered 1t later.

Teichroew’s distribution. Telchroew (1957) has shown that the functions

o(t) = -(-—-1—2)(1— are valld characteristic functions for all values ¢ >0 of the
141

parameter. Show that random varlates from thls family can be generated as

(1) G,-G,, where the G;'s are 1ld gamma (¢ ) random varlables;

(1) NV2G where N,G are Independent random variables with a normal
and gamma (a ) distribution respectively. '

This question Is related to the algorithm of Kinderman and Ramage (1978)
(programs given In Kinderman and Ramage (1977)). Consider the Isosceles
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trlangular density g, of the random varlable 8(V ,+V,) where V|, V, are 11d

uniform [-1,1] random varlates. Show that the largest triangle to fit under

the normal denslty f touches f at the origin. Show next that the sides of -
the largest trlangle touch f somewhere else. Conclude that the optimal 8 Is

glven by 6=1.1080179... , and that the corresponding optimal welght of the

triangle 1s p =0.88407040... .

7. The lognormal density. When /N s normally distributed, then §+e TN
Is lognormal with parameters 6,¢,0, all real numbers. The lognormal distribu-
tlon has a density with support on (4,00) given by

_ (log(z -6)~9)*

— ___1______ 20°
[(z)= (x—@)a@e (.-T >90) .

Random varlate generation requires the exponentlation of a normal random
varlate, and can be beaten speedwise by the Judiclous use of a
composition/rejectlon algorithm, or a relectlon algorithm with a good
squeeze step. Develop Just such an algorithm. To help you find a solution, 1t
Is lnstructlve to draw several lognormal densitles. Conslder only the case
=0 since 6 I1s a translatlon parameter. Show also that In that case, the
mode 1s at €57, the medlan Is at ¢S, and that the r-th moment Is e 7 $*7°0"/2
when r >0. :

8. In the compositlon/rejectlon algorithm of Marsaglla and Bray (1964), we
return the sum of three Independent uniform [-1,1] random variates about
86% of the time. Schuster (1983) has shown that by consldering sums of the
form a,V,+a,V,+a;V, where the V;'s are 11d uniform [-1,1] random vari-
ates, 1t Is posslble to find coefficlents a,,a,,a 5 such that we can return the
sald sum about 97% of the tlme (note however that the multiplications
could actually cause a slowdown). Find these coefliclents, and glve the
entlre algorithm.

2. THE EXPONENTIAL DENSITY.

2.1. Overview.

We hardly have to convince the reader of the cruclal role played by the
exponential distribution In probabllity and statlstics and In random varlate gen-
eration. We have discussed varlous generators in the early chapters of this book.
No method Is shorter than the Inverslon method, which returns ~log(U ) where U
Is a uniform [0,1] random varlate. For most users, this method 1s satisfactory for
their needs. In a high level language, the Inversion method Is difficult to beat. A
varlety of algorithms should be considered when the computer does not have a
log operation in hardware and one wants to obtaln a faster method. These
Include:
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The unlform spacings method (sectlon V.3.5).

von Neumann's method (sectlon IV.2.2).

Marsaglla’s exponentlal generator, or 1ts modificatlons (discussed below).
The ratio-of-uniforms method (sectlon IV.7.2).

The serles method (section IV.5.3).

Table methods.

The methods lsted under polnts 4 and 5 wlill not be discussed agaln In this
chapter. Methods 2, 3 and 6 are all based upon the memoryless property of the
exponentlal distrlbution, which states that glven that an exponential random
variable F exceeds 2 >0, F -z Is agaln exponentially distributed. This Is at the
basis of Lemma IV.2.1, repeated here for the sake of readability:

R R S

Lemma IV.2.1.

An exponentlal random varlable £ 1s distributed as (Z-1)u+Y where Z,Y
are Independent random variables and >0 Is an arbltrary posltlve number: Z 1s
geometrically distributed with

t U
P(Z=i)= [ e dz = el Dhe=is (;>1),
(1-1u

and Y 1s a truncated exponential random variable with denslity

f (@)= -2

€
1-e~#

(0<z <p).

Since Z,Y are independent, exponential random varlate generation can
truly be considered as the problem of the generatlon of a discrete random variate
plus a continuous random varlate with compact support. And because the con-
tlnuous random variate has compact support, any fast table method can be used .

The uniform spacings method Is based upon the fact that GS,, ..., GS,
are 11d exponentlal random varlables when G 1s gamma (n), and S, ..., S,

are spaclngs defilned by a uniform sample of slze n —1. For n =2 thls Is sometlmes
faster than stralghtforward Inversion:
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Generate iid uniform [0,1) random variates U,V , W .
Y —-log(UV')

RETURN WY ,(1-W)Y

Notlce that three uniform random varlates and one logarithm are needed per cou-

ple of exponéntlal random variates. The overhead for the case n =3 Is sometimes
a drawback. We summarlze nevertheless:

Generate iid uniform (0,1] random variates U,,U, U, U, Us. ‘

Vemin(U,,Ug), W «—max(U,,Uy)
RETURN VY (W-V)Y,1-W)Y

2.2. Marsaglia’s exponential generator.

Marsaglia (1961) proved the following theorem:
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Theorem 2.1. (Marsaglia, 1961)

Let U,U,,.. be 11d uniform [0,1] random variables. Let Z be a truncated
Polsson random varlate with probabllity vector
1 J .
£ >y,
e/‘_l 1!

P(Z=i)=

where u>0 Is a constant. Let M be a geometrlc random vector with probabllity
vector

P(M=i)=(1—e e (i>0).

Then X —u(M +min(U,, . . ., Uz)) Is exponentlally distributed. Also,

1
E(M) = ,
(M) e
EzZ) =t
ek-1

Proof of Theorem 2.1.
We note that for u>z >0,

00 ,
Pumnn(U,, ..., Uz)L[z)= SP(Z=t)P(umin(U,, ..., U;)<z)
f==1
= £ (-a-2))
i2=31 eh-1 ¢! M
z {
w o Wa-Z)
= 1-— 2 - K
§==1 e:u_l 2!
b=z _
ot 1
eh-1
I
1-e¢ 7
Thus, 4 mIn(U,, ..., Uz) has the exponential distributlon truncated to [0,u].

The first part of the theorem now follows directly from Lemma IV.2.1. For the

second part, use the fact that M41 I1s geometrlcally dlstrlbuted, so that
1

E(M+1)= . Furthermore,
1-e”
1 ptoop?
F(7)= e——(f L ...
(Z) c#_1(0!+1!_+2!+ )
pek
= ,ll

eb-1
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‘We can now suggest an algorithm based upon Theorem 2.1:

Marsaglia’s exponential generator

Generate a geometric random variate M defined by P (M =1 )=(1-¢ #)e* (i >0).
Z 1
Generate {id uniform [0,1] random variates U,V .
Y~V
WHILE True Do
IF U <F(Z) (Note: F (i ym—m 33 £
ef-1 ;210!
THEN RETURN X «—u(M +7)
ELSE
Z—Z+1
Generate a uniform [0,1] random variate V.
Y «—min(Y,V)

For the geometric random varlate, the Inversion method based upoﬁ sequential

search seems the obvious cholce. This can be sped up by storing the cumulative
probabilitles, or by mixing sequential search with the allas method. Simllarly, the
cumulative distribution function F of Z can be partially stored to speed up the
second part of the algorithm. The deslgn parameter g must be found by
compromlise. Note that If sequentlal search based Inverslon 1s used for the

geometric random varlate M, then

comparisons are needed on the aver-
1-e ‘
age: thlis decreases from oo to 1 as pu varles from 0 to co. Also, the expected
number of accesses of F In the second part of the algorithm s equal to

E(Z)=

S , and this Increases from 1 to ¢o as u varles from 0 to co. Further-
—e

more, the algorithm In lts entirety requlres on the average 2+4-E (Z ) uniform [0,1]
random varlates. The two effects have to be properly balanced. For most imple-
mentations, a value u4 In the range 0.40...0.80 seems to be optimal. This point
was addressed In more detall by Sibuya (1981). Speclal advantages are offered by
the cholces u=1 and u==log(2).

The speclal case u==log(2) allows one to generate the desired geometric ran-
dom varlate by analyzing the random blts In a uniform [0,1] random variate,
which can be done convenlently In assembly language by the logical shift opera-
tlon. This algorithm was proposed by Ahrens and Dleter (1972), where the reader
can also find an excellent survey of exponential random varlate generatlon.
Agaln, a table of F (i) values Is needed. |
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Exponential generator of Ahrens and Dieter (1972).

§ Fl
[NOTE: a table of values F (i)=Y QEE(,Z%)—— is required.]
) = ]

M«o0
Generate a uniform [0,1] random variate U.

WHILE U <-3— DO U2l , M —M +log(2)

{M is now correctly distributed. It is equal to the number of 0’s before the first 1 in

the binary expansion of U. Note that U«2U is implementable by a shift opera-
tion.)

U«~2U~1 (U is again uniform [0,1] and independent of M .)
IF U <log(2)
THEN RETURN X M +U
ELSE
Z 2
Generate a uniform [0,1) random variate V.
YV
WHILE True Do

Generate a uniform [0,1] random variate V.
Y —min(Y,V)
IF ULSF(Z)
THEN RETURN X «M +Y log(2)
ELSE Z+Z+1

Ahrens and Dieter squeeze the first unlform [0,1] random varlate U dry. Because
of this, the algorithm requires very few unlform random varlates on the average:
the expected number Is 1+log(2), which Is about 1.69315.

2.3. The rectangle-wedge-tail method.

One of the fastest table methods for the exponential distrlbution was flrst
published by Maclaren, Marsaglla and Bray (1984). It 1s ideally sulted for Imple-
mentation In machline language, but even 1n a high level language 1t 1s faster than
most other methods described 1n thls section. The extra speed Is obtalned by
princlples related to the table method. First, the tall of the density s cut off at
some polnt n u where n is a deslgn Integer and >0 Is a small deslgn constant.
The remalnder of the graph of f 1Is then dlvided Into n equal strips of width u.
And on Interval [(¢-1)u,tu], we divide the graph Into a rectangular plece of
helght e~'#, and a wedge [ (z)-e~*#. Thus, the denslty Is decomposed into
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2n +1 pileces of the following welghts:

one tall of welght ¢ "#; .
n rectangles with welghts ue ™ # ,1<¢<n;
n wedges of welghts e ' H#(eHF-1-u) ,1<i<n.

These numbers can be used to set up a table for discrete random varlate genera-
tlon. The algorlthm then proceeds as follows:

The rectangle-wedge-tail method

[NOTE: we refer to the 2n +1 probabilities defined above.]

X 0
REPEAT
Generate a random integer Z with values in 1, ..., 2n +1 having the given proba-
bility vector.
CASE
Rectangle ¢ chosen: RETURN X <X +(i-1+U)u where U is a uniform [0,1]
random variate. :
Wedge ¢ chosen: RETURN X «X +(1-1)u+Y where Y is a random variate
b~z _
having the wedge density g (z )= 0Lz <pu.
etlp
Tail is chosen: X <X +n u
UNTIL False

Note that when the tall Is plcked, we do In fact reject the cholce, but keep at the
same time track of the number of rejectlons. Equlvalently, we could have
returned n u-log(U) but this would have been less elegant since we would in
effect rely on-a logarithm. The recurslive approach followed here seems cleaner.
Random varlates from the wedge density can be obtalned in a number of ways.
‘We could proceed by rejection from the triangular denslity: note that

el % < u-z  eh-1
el-1-u Hooeb-1-p

g(z)=
and

() > eFl—zet-1
T eb-1-u ’

so that the following rejection algorithm 1s valld:
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Wedge generator

REPEAT
Generate two iid uniform {[0,1} random variates X ,U .

IF X >U THEN (X ,U)—(U,X) (X,U) is now uniformly distributed under the tri-
angle with unit sides.)

B
IF U<i1-X-£°
ek-1
THEN RETURN puX
el HX
S THEN RETURN pX
c —

UNTIL False

The wedge generator requires on the average

1 p(ef-1)
2 el-1-u

lterations. It Is easy to see that this tends to 1 as p|0. The expected number of
uniform random variates needed Is thus twice this number. But note that this
can be bounded as follows:

eh-1 1

= p(1+
et-1-p eb-1-u

) < “(H%) = p+2 .

Here we used an lnequallty based upon the truncated Taylor serles expansion. In
view of the squeeze step, the expected number of evaluations of the exponentlal
function Is of course much less than the expected number of iteratlons. Having
establlshed thls, we can summarize the performance of the algorithm by repeated
use of Wald’s equation:

Theorem 2.2. -

This theorem Is about the analysls of the rectangle-wedge-tall algorithm
shown above.

(1) The expected number of global lterations 1s A ='_177['
1-e”
(1) The expected number of uniform [0,1] random varlates needed (excluding the

U
1-e7#

discrete random varlate generation portlon) Is
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Proof of Theorem 2.2.
Theorem 2.2 1s established as follows: we have 1 uniform random variate per

n . e-”_e —(ﬂ+1)}l
rectangle (the probabllity of thisis Y3 ue ™' # =py——--———— in the first ltera-
“—-_:1 1"‘6—
k_q .
tlon). We have u—-%——— per wedge (the probability of this s
eF-1-u

e tHet-1-p)=——->——
i=1 1-e™

lishing the correctness of statement (1), and applylng Wald’s equation, we observe
that the expected number of uniform random varlates needed Is
e—“_e-(n+1)“ eﬂ_l e—”_e "(n+1)l‘

Ap——m—"m——+upu (e#-1-p))
1-e et—1-p 1-e7# '

e H_g—(n+lu

(e“~1-u) In the first iteration). Thus, by estab-

= A (ue”
1-e7#

1-e " H

I

A(p

L
1-e7H

1-e7#

The number of Intervals n does not affect the expected number of unlform
random varlates needed in the algorithm. Of course, the expected number of
L i
1-¢ "H
Is clear that p should be made very small because as u]0, the expected number of
2
2
n large to keep the expected number of teratlons down. For example, if we want

discrete random varlates needed depends very much on n, since it Is
unlform random varlates Is 1+

+o0 (u). But when g 1s small, we have to choose

the expected number of lterations to be

T which 1s entirely reasonable, then
1-¢~

we should choose n =i. ‘When u=—2-16, the table size is 2n +1=161.
u

The algorithm glven here may differ slightly from the algorithms found else-
where. The 1dea remalns basically the same: by plcking certaln design constants,
we can practically guarantee that one exponentlal random varlate can be
obtalned at the expense of one discrete random varlate and one uniform random
varlate. The discrete random variate In turn can be obtalned extremely quickly
by the allas method or the allas-urn method at the cost of one other unilform ran-
dom varlate and elther one or two table look-ups.
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2.4. Exercises.

1.

It 1s Important to have a fast generator for the truncated exponential density
f (z)=e* /(1-e#), a<z <p. From Theorem 2.1, we recall that a random
varlate with thls density can be generated as u min(U,, . . ., Uz ) where the
U;'s are 11d unlform [0,1] random varlates and Z 1s a truncated Polsson varl-
ate with probabllity vector

P(Z=i)= : £ (2.
e”-1 t:

The purpose of this exerclse Is to explore alternatlve methods. In particular,
compare with a strip table method based upon n equl-sized Intervals and
wlith a grid table method based upon n equl-sized Intervals. Compare also
with reJectlon from a trapezoldal domlnating function, comblned with clever
squeeze steps.

The Laplace density. The Laplace density 1s [ (z )=—;—e“‘ z |, Show that

a random varlate X with this denslty can be generated as SE or as E -F,
where F ,E,E, are 11d exponentlal random varlates, and S 1s a random
sign.

Find the density of the sum of two 11d Laplace random varlables, and verify
Its bell shape. Prove that such a random wvariate can be generated as
Uv,u,
UsU,
rejectlon algorithm for normal random variates with qulck acceptance and
rejection steps based upon the Inequalities:

log( ) where the U;’s are ild uniform {0,1] random variates. Develop a

z3 e 2 1 2z >0

Prove these Inequalltles by using Taylor's series expansion truncated at the
third term.

3. THE GAMMA DENSITY.

3.1. The gamma family.

A random variable X is gamma (a,b) distributed when 1t has denslty

z

a-1 b

fz)y=2-S

—_—— >0).
I'(a)b® (= 20)
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Here a >0 Is the shape parameter and b >0 Is the scale parameter. We say that
X 1Is gamma (a) distributed when 1t Is gamma (a,1). Before reviewlng random
varlate generatlon techniques for this famlly, we will look at some key propertles
that are relevant to us and that could ald In the deslgn of an algorithm.

The denslty Is unimodal with mode at (¢ -1)b when a >1. When a <1, 1t Is
monotone with an Infinlte peak at 0. The moments are easlly computed. For
example, we have

o0
F(a +1)b a-+1

P dr = et — :
EX) {xf(x) z T(a)b® ab

I"(a +2)b a+2

= b2,
I'(a)b® a{a+1)

EX?* = [22f (z) dz =
0

Thus, Var (X) = ab?2.

The gamma famlly 1s closed under many operations. For example, when X Is
gamma (a,b ), then c¢X Is gamma (a,bc ) when ¢ >0. Also, summing gamma ran-
dom variables ylelds another gamma random varlable. This Is perhaps best seen
by conslderlng the characteristic function ¢(¢) of a gamma (a,b) random varl-
able:

® g1 _z(%_it)
= E(e®Xy = [Z_°€
$(t) = E (e™X) { T

( b )a —z (L)
1-4th’ gz -l !
= f dz
be 0
(e )(——)

—ith
-1
(1—1tb ) _
Thus, if X, ..., X, are Independent gamma (a,), . .., gamma (a, ) random
n

varlables, then X == 37 X; has character@stlc‘ functlon
t=1

1 1

¢(t ) = I-_[ = v n [}
] =1 (1 zt ) d 2 aj
(1-it =

on
and Is therefore gamma ( )] aj,l) distributed. The famlly Is also closed under
j=1 '
more complicated transformations. To illustrate thils, we consider Kullback's
result (Kullback, 1934) which states that when X 1.X, are Independent gamma

(e¢) and gamma (a +— ) random varlables, then 24/X X, Is gamma (2a ).

The gamma dlstrlbutlon Is related in Innumerable ways to other well-known
distributlons. The exponentlal density Is a gamma density with parameters (1,1).
And when X Is normally distrlbuted, then X2 1s gamma (%,2)vdlstrlbuted. This
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1s called the chi-square distributlon with one degree of fleedom In general,
gamma (—,2) random varlable Is called a chl-square random varlable with r

degrees of freedom. We wlll not use the chl-square terminology In this sectlon.
Perhaps the most Important property of the gamma density Is 1its relationship
with the beta density. This Is summarized In the followlng theorem:

Theorem 3.1.

If X,,X, are Independent gamma (a,) and gamma (a,) random variables,

then —)Z_-:-_-l-i,— and X,+X, are Independent beta (a,,a,) and gamma (a,+a,)
1749 ‘

random varlables. Furthermore, If Y Is gamma (a) and Z s beta (b,a-b) for

some b >a >0, then YZ and Y (1-Z) are Independent gamma (b ) and gamma

(a-b) random varlables.

Proof of Theorem 3.1.

We will only prove the first part of the theorem, and leave the second part
to the reader (see exercises). Conslder first the transformatlon y =z ,/(z,+z,),

z=z,+%, Wwhich has an Inverse z,=yz,r,=(1-y)z. The Jacoblan of the
transformation 1Is

8x1 axl
ay 0z z
(9:172 axz -z 1-y = |z|
dy Oz
Thus, the density f (y,z)of (Y ,Z)= (X X X, +X,) 18
(y2)' eV ((1-y)z)*7 e {1792
z
I'(a,) I'(a,)
T(a 4a)y ™ (1my )'7! jartart,
I'(a )l (ay) I'(a,+a,)

which was to be shown. [Jj

The observation that for large values of a, the gamma density 1s close to the
normal denslty could ald In the cholce of a dominating curve for the rejection
method. This fact follows of course from the observation that sums of gamma
random variables are again gamma random variables, and from the central limit
theorem. However, since the central llmlt theorem Is concerned with the conver-
gence of dlstribution functions, and since we are interested In a local central limlt
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theorem, convergence of a denslty to a density, 1t Is perhaps lnstructive to glve a
direct proof of this resuit. We have:

Theorem 3.2.

If X, 1s gamma (e ) distributed and If J o 1s the denslity of the normalized
gamma random variable (X, ~a )/Va , then

22

\/%e > (z€R).

11Tmfa(w)=

Proof of Theorem 3.2.
The density of (X, -a)/Va evaluated at z Is

P T e e B

~~

T a1

T(a) ELy T Varta D

P

21 € a -1

. -2 40(F)

= —=(14+0(1))e ? ¢

vVaen

32

= -\—/—1_2—7;-6“2_(1+0 1)) .

Here we used Stirling’s approximation, and the Taylor serles expansion for
log(1+u ) when o<u <1. ||}

3.2. Gamma variate generators.

Features we could appreclate In good gamma generators Include
(1) Unlform speed: the expected time 1s unlformly bounded over all values of a,
the shape parameter.

(11) Simpllelty: short easy programs are more likely to become widely used.

(111) Small or nonexistent set-up times: deslgn parameters which depend upon a

need to be recalculated every time @ changes. These recalculations take
often more time than the generator.

No famlly has recelved more attention In the literature than the gamma famlly.
Many experlmental comparisons are avallable In the general llterature: see e.g.
Atkinson and Pearce (1978), Vaduva (1977), or Tadlkamalla and Johnson
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(1980,1981).

For speclal cases, there are some good recipes: for example, when a =1, we
return an exponential random varlate. When a¢ 1s a small Integer, we can return
elther

where the E;'s are 11d exponentlal random varlates, or

-log( ﬁ Ui)

§ =1

where the U;'s are lld unlform [0,1] random variates. When a¢ equals -;—+lc for

some small Integer &k, 1t 1s possible to return

1 k

_N2+ E E‘.

2 f=1
where NN 1s a normal random varlate independent of the E,- 's. In older texts one
wlll often find the recommendation that a gamma (a ) random varlate should be
generated as the sum of a gamma ( l_aJ) and a gamma (a — |_aJ) random varlate.
The former random variate 1s to be obtalned as a sum of Independent exponential
. random varlates. The parameter of the second gamma varlate Is less than 1. All

these strategles take time linearly Increasing with a; none lead to good gamma
generators In general.

There are several successful approaches In the design of good gamma genera-
tors: first and foremost are the rejection algorithms. The rejection algorithms can
be classified according to the famlily of dominating curves used. The differences in
tlmings are usually minor: they often depend upon the efficlency of some quick:
acceptance step, and upon the way the rejectlon constant varles with ¢ as a foo.
Because of Theorem 3.2, we see that for the rejection constant to converge to 1
as a Too 1t 1s necessary for the domlinating curve to approach the normal density.
Thus, some rejectlon algorithms are suboptimal from the start. Curlously, this Is
sometimes not a blg drawback provided that the rejectlon constant remalns rea-
sonably close to 1. To discuss algorithms, we wlill Inherit the names avallable in
the llterature for otherwise our discussion would be too verbose. Some successful
relection algorithms Include:

GB. (Cheng, 1977): rejectlon from the Burr XII distribution. To be discussed
below.

GO. (Ahrens and Dleter, 1974): rejection from a comblnation of normal and
exponentlial densilties.

GC. (Ahrens and Dieter, 1974): rejection from the Cauchy denslty.
XG. (Best, 1978): rejection from the t distribution with 2 degrees of freedom.
TAD2.

(Tadlkamalla, 1978): rejectlon from the Laplace density.
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Of these approaches, algorlthm GO has the best asymptotle value for the rejec-
tlon constant. Thils by ltself does not make It the fastest and certainly not the
shortest algorithm. The real reason why there are so many rejection algorithms
around s that the normallzed gamma denslty cannot be fitted under the normal
denslity because Its tall decreases much slower than the tall of the normal density.
We can of course apply the almost exact Inversion principle and find a nonlinear
transformation which would transform the gamma density Into a density which is
very nearly normal, and which among other things would enable us to tuck the
new denslty under a normal curve. Such normalizing transformations include a
quadratic transformation (Fisher’s transformatlon) and a cubic transformation
(the WIllson-Hilferty transformation): the resulting algorithms are extremely fast
because of the good fit. A prototype algorithm of this kind was developed and
analyzed In detall In sectlon IV.3.4, Marsagila's algorithm RGAMA (Marsaglla
(1977), Greenwood (1974)). In sectlon IV.7.2, we presented some gamma genera-
tors based upon the ratlo-of-uniforms method, which improve slightly over siml-
lar algorithms published by Kinderman and Monahan (1977, 1978, 1979) (algo-
rithm GRUB) and Cheng and Feast (1979, 1979) (algorithm GBH). Desplte the
fact that no ratlo-of-uniforms algorithm can have an asymptotically optimal
rejectlon constant, they are typlcally comparable to the best rejectlon algorithms
because of the simplicity of the domlnating density. Most useful algorithms fall
Into one of the categorles described above. The unlversal method for log-concave
densities (sectlon VIIL.2.3) (Devroye, 1984) Is of course not competlitive with spe-
clally designed algorithms.

There are no algorithms of the types described above which are uniformly
fast for all ¢ because the design Is usually geared towards good pérformance for
large values of a. Thus, for most algorithms, we have uniform speed on some
Interval [a¥,00) where a* is typically near 1. For small values of a, the algo-
rithms are often not valld - this is due to the fact that the gamma denslty has an
Infinite peak at 0 when a <1, while dominating curves are often taken from a
famlily of bounded densltles. We will devote a speclal sectlon to the problem of
gamma generators for values a¢ <1.

Sometimes, there Is a need for a very fast algorithm which would be applied
for a flxed value of ¢ . What one should do in such case 1s cut off the tall, and use
a strip-based table method (sectlon VIII.2) on the body. Since these table
methods can be automated, It Is not worth spending extra tlme on this Issue. It Is
nevertheless worth noting that some automated table methods have table sizes
that In the case of the gamma density Increase unboundedly as a —oo Il the
expected time per random varlate s to remaln bounded, unless one applles a spe-
clally deslgned technlque simllar to what was done for the exponential density in
the rectangle-wedge-tall method. In an Interesting paper, Schmelser and Lal
(1980) have developed a seml-table method: the graph of the denslty Is partl-
tloned Into about 10 pleces, all rectangular, trlangular or exponentlial In shape,
and the set-up time, about filve times the tlme needed to generate one random
varlate, Is reasonable. Moreover, the table size {(number of pleces) remalns fixed
for all values of ¢ . When speed per random varlate Is at a premium, one should
certalnly use some sort of table method. When speed 1s lmportant, and e varles
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Theorem 3.3.
A. The denslty ¢ has distribution function
£
V2
2

z
2

G(x):-——;- 1+
1+

A random varlate with thls distribution can be generated as
) .
\/E(U—;)
vU(Q1-U)

where U Is a uniform [0,1] random varlate.
B. Let f ©be the gamma (a) density, and let g, be the density of
(a-1)+Y 4 / 321—-2— where Y has denslty ¢. Then
1
f(2) < cogu(e) = —
z-(a-1) \*\ 2
/ﬂ._.?’_-]
N/ 278

where the rejectlon constant Is glven by

1
r 1+—
(a) 14

2 3a—§-

4 a1“‘1

T(a) ( )

C. We have sup c, e \/_, and llm ¢ —\/:é—-.
a oo T

Csg =

Proof of Theorem 3.3.

The clalm about the distrlbution function G 1s quickly verified. When U 1s
uniformly distributed on [0,1], then the solution X of G (X )=U Is preclsely

\/§(U—%)
== m——————— . Thi t A.
D) IS proves par

Let Y have density ¢g. Then (a-1)+Y A / -:-3-29-—-8- has denslity
2
2

_z-(a-1)
3a 3

2\/52

2
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with each call, the almost-exact-Inversion method seems to be the winner In most
experlmental comparlsons, and certalnly when fast exponentlal and normal ran-
dom wvarlate generators are avallable. The best ratio-of-uniforms methods and the

best rejectlon methods (XG,GO,GB) are next In llne, well ahead of all table
methods.

Finally, we will discuss random variate generatlon for closely related dlstri-
butlons such as the Welbull distribution and the exponential power dlstributton.

3.3. Uniformly fast rejection algorithms for ¢ >1.

‘We beglin with one of the shortest algorithms for the gamma density, which
1s based upon rejectlon from the { density with 2 degrees of freedom:
3

1 z?. 2
T) = ——=(l4+=—
g(z) > \/-2-( 5 )
This density decreases as >, and Is symmetric bout 0. Thus, It can be used as a
dominating curve of a properly rescaled and transiated gamma denslty. Best's
algorithm XG (Best, 1978) 1s based upon the followlng facts:
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To prove statement B, we need only show that for z >0,

a-1
z—le—z <( 1) 1

PR G (o 98
2 ﬂ_i
or, after resubstltutlon y =2z ~(a -1), that for y >—(a -1),
a-1 . __2.
-y [1+——y—-) < |1+—-2 l .

a-1 - 3
3qa ——
4

Taking logarithms, we see that we must show that

2
<O0.

1+

h(y) = -y +(a -1)iog(1+—4=)+>log
a -1 2

3¢ ——
4

Clearly, h (0)==0. It suffices to show that A’(y )=>0 for ¥ <0 and that h’(y )<O for
y >0. But

-1 3 2 1
W(y) = -1+ = +=— -
(a-1)a+—%-) “8a-= 4%
a-| 4 3
3a ~——
_ y ¥
a—-1+y 1 . y2
a_..— ———
4 3
3 y2
y(y < 3

2
(a-1+y )(a—i-+-"-/3—)

The denominator 1s >0 for a 2%. The numerator Is >0 for y <0, and Is <O for

¥ =0 (this can be seen by rewrlting 1t as ———(y —--—)2 This concludes the proof of

part B.
For part C, we apply Stirllng’s approximation, and observe that
2v3a a 1 e-1
27r €
&
__ 2eV3a (1___1_)“ -t

2mwa

6

- .
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The first ~ Is also an upper bound, so that

1
. 8 —
CaS\/-;ea

when a >1. This proves part C. |Jj

Based upon Theorem 3.3, we can now state Best's reJection algorlthm:

Best’s rejection algorithm XG for gamma random variates (Best, 1978)

[SET-UP]
be—a~1,c —3a -2
4
{GENERATOR)]
REPEAT

Generate iid uniform [0,1] random variates U,V

c 1
W‘—U(l—U),Y«—\/%(U—?),X«—b +Y
IF X220

THEN
Z —64W3V?
2
Accept «—[Z SI‘E)YT]
IF NOT Accept
THEN Accept «[log(Z )<2(b log(%)—}’)]

UNTIL Accept
RETURN X

The random varlate X generated at the outset of the REPEAT loop has density
g, - The acceptance condition Is

3
a~-1 2 Y
e'Y(1+-;—I£1-) > v —] *.

3a-—
4

This can be rewritten In a number of ways: for example, in the notation of the
algorithm,

3
2

&) > vawye
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~Y +b log(%) > -rl)-log(él"'V2 w3 ;
2(-Y +b 1og(%)) > log(Z) .

Thls explalns the acceptance condition used in the algorithm. The squeeze step Is
derived from the acceptance condltion, by noting that
(1) log(Z) < Z-1;
Y Y 2Y?
1) 2(blog(1+=)-Y) > 2Y(-———— - .
() 20bl0ga+)1Y) 2 2Y (=5 e
The last Inequallty Is obtalned by noting that the left hand slde as a function of

Y 1s 0 at Y =0, and has dertvative —

Therefore, by the Taylor serles
expanslon truncated at the first term, we see that for Y >0, the left hand slde Is
at least equal to 2(0+ Y(— )) For Y <0, the same bound Is valld. Thus,

when Z-1<-2Y%/X, we ale able to conclude that the acceptance conditlon Is
satisfled. It should be noted that In view of the rather large rejectlon constant,
the squeeze step 1s probably not very effective, and could be omitted wlthout a
big tlme penalty.

‘We wlll now move on to Cheng’s algorithm GB which Is based upon relec-
tion from the Burr XII denslty
k 1
g(z)= >\M-T-
(u+z ) ‘
for parameters p,A\>0 to be determined as a functlon of ¢. Random variates
with this denslty can be obtalned as

1

U~
(M

where U is uniformly distributed on [0,1]. This follows from the fact that the dis-
tribution functlon corresponding to g Is xx/(u+x)‘),a: >0. We have to choose A
and p. Unfortunately, minimlzation of the area under the dominating curve does
not glve expllcltly solvable equatlons. It 1s useful to match the curves of f and
g, Which are both unlmodal. Since f peaks at e -1, It makes sense to match
this peak. The peak of ¢ occurs at
: 1
A=1)1e (X
g = (( ) )
A1
If we choose A\ large, l.e. lhcreaslng wlith ¢, then this peak wlill approximately
match the other peak when u=a)‘. Conslder now log(-{}-). The derlvatlve of thls
function is
a-x-z 2 g™!
+ -
T a’+z
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This derlvative attalns the value 0 when (a +X -z )xx+(a—>\—x )a>‘==0. By analyz-

Ing the derivative, we can see that 1t has a unique solutlon at z =0 when
A=V2a-1. Thus, we have

[ (@)L cg(z)

where

aa—le-—a(2a)\)2
T(e)a>a*?
__a’e"4

~ T(e)X

nes
~ T (afee).

¢ ==

Resubstitution of the value of A ylelds the asymptotic value of \/2%1.13. In
T
fact, we have

4o _ 4/ 1 8
CS\/2_7r>\— p- a/(a*"z')S‘\/;v

uniformly over ¢ >1. Thus, the rejection algorithm suggested by Cheng has a
good rejectlon constant. In the deslgn, we notlce that If X 1s a random varlate

with density ¢, and U 1s a uniform [0,1] random varlate, then the acceptance
condlition 1s

a X 2\
a2y (X U< X leX
e Y1 (a>‘+X>‘)2

Equivalently, since V=X>/(a>+X?) Is uniformly distrlbuted on [0,1], the accep-
tance condition can be rewrltten as

a
4Ly VU < xMeeX |
[A
or

log(4)+(\+a)log(a )-a +log(UV?) < (A+a)log(X )-X ,

or
log(UV?) < a—log(4)+(>\+a)log(2a(~)—X .

A qulck acceptance step can be introduced which uses the inequality
log(UV2) <d (UV,2)~log(d -1

which 1s valld for all d. The value d ==—Z— was suggested by Cheng. Combining all
of this, we obtaln:
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Cheng’s rejection :;.lgorithm GB for gamma random variates (Cheng, 1977)

[SET-UP]
b—a-log(4) , ¢ +a+V2a~-1
 |GENERATOR]

REPEAT
Generate iid uniform [0,1] random variates U, V.
Y «—alog( IYV) , X —ae"
Z+UV?
R~b+cY-X

Accept —[R Z%Z—(l+log(%))} {note that (1+log(—2—))=2.5040774...)

IF NOT Accept THEN Accept —([R >log(Z )]
UNTIL Accept
RETURN X

‘We will close this sectlon with a word about the hilstorlcally Ilmportant algo-
rithm GO of Ahrens and Dleter (1974), which was the first uniformly fast gamma
generator. It also has a very good asymptotic rejection constant, slightly larger
than 1. The authors got around the problem of the tall of the gamma density by
noting that most of the gamma denslty can be tucked under a normal curve, and
that the right tall can be tucked under an exponential curve. The breakpoint
must of course be to the right of the peak a-1. Ahrens and Dleter suggest the

value (a—1)+\/§(a +\/-83—a). We recall that if X 1s gamma (a’) distributed,

then _(_)%/_“__‘}_)_ tends in distribution to a normal density. Thus, with the break-
a

point of Ahrens and Dleter, we cannot hope to construct a dominating curve with
Integral tending to 1 as a foo (for this, the breakpolnt must be at a-1 plus a
term Increasing faster than Va ). Tt Is true however that we are In practice very
close. The almost-exact Inversion method for normal random varlates ylelds
asymptotically optimal relection constants without great difficulty. For thls rea-
son, we wlill delegate the treatment of algorithm GO to the exerclses.
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3.4. The Weibull density.

A random varlable has the standard Weibull density with parameter ¢ >0
when 1t has denslty

f(z)=azle*" (z2>0).
1

In thls, we recognize the denslty of F * where E s an exponentlal random vari-
able. This fact can also be deduced from the form of 1ts distribution function,

F(z)=1-¢*" (2>0).
Because of thls, It seems hardly worthwhlle to deslgn rejection algorithms for this

density. But, turnlng the tables around for the moment, the Welbull density Is
very useful as an auxlllary denslty in generators for other densitles.

Example 3.1. Gumbel’s extreme value distribution.
When X is Welbull (a ), then Y =-a log(X ) has the extreme value density
f(@)=eZ*e® (z€ER).
1
By the fact that X 1s distributed as E-“—, we see of course that the parameter a

plays no speclal role: thus, —-log(£' ) and —Iog(log(-lﬁ)) are both extreme value ran-

dom varlables when E s exponentially distributed, and E 1s exponentially distri-
buted. Jj

Example 3.2. A compound Weibull distribution.

1
Dubey (1968) has pointed out that the ratlo W, /Gy ® has the Pareto-like
denslty
abz !
f(z)=-——-—-—b-_;;- (z 20) .
(1+2%)

Here W, 1s a Welbull (¢ ) random varlable, and G is a gamma (b ) random varl-
able. As a speclal case, we note that the ratio of two independent exponential

random varlables has density —-—1——-2- on [0,00).
(1+z)
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Example 3.3. Gamma variates by rejection from the Weibull dehsity.

Conslder the gamma (a) denslty f with parameter 0<a <1. For thls den-
sity, random varlates can be generated by rejectlon from the Weibull (a ) density
(which will be called ¢ ). This Is based upon the Inequallty

f(x) _ ez“—z < cb—b7
g(z) al(a) = T(a+1)

where

A rejection algorithm based upon thls 1neduallty has rejectlon constant
e (1-a)a
I'(i1+a)

The rejection constant has the following propertles:
1. Ittendstolas a0, oradfl.

2. It Is not greater than —0—-8—:5—66- for any value of a €(0,1]. This can be seen by

noting that (1-¢ )b <1-a¢ <1 and that I'(1+a )>0.8856031944... (the gamma
function at 14a s absolutely bounded from below by lts value at
1+a ==1.4616321449...; see e.g. Abramowltz and Stegun (1970, pp. 259)).

This leads to a modifled verslon of an algorithm of Vaduva's (1977):

Gamma generator for parameter smaller than 1

[SET-UP]

a

¢ *—-i- , d+a :(l—a )
[GENERATOR]
REPEAT
Generate iid exponential random variates Z ,E . Set X+—2°¢ (X is Weibull (a)).
UNTIL Z+E <d+X
RETURN X i}
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3.5. Johnk'’s theorem and its implications.

Random varlate generation for the case a <1 can be based upon a speclal
property of the beta and gamma distributions. This property Is usually attributed

to Johnk (1964), and has later been rediscovered by others (Newman and Odell,
1971; Whittaker, 1974). We have:

Theorem 3.4. (Johnk, 1964)

Let a,b >0 be given constants, and let U,V be 11d uniform [0,1] random
1 1
varlables. Then, conditloned on U *+V ® <1, the random varlable
L
U a
RS 1
U a+V b
Is beta (a,b) distributed.

Theorem 3.5. (Berman, 1971)

Let a,b >0 be glven constants, and let U,V be ild uniform [0,1] random
1 1

variables. Then, condltloned on U ¢+ V ¢ <1, the random varlable
1

Ue

Is beta (a,b +1) distributed.

Proof of Theorems 3.4 and 3.5.
1

Note that X=U ¢ has distributlon functlon z° on [0,1]. The density Is
1

az ®~!, Thus, the jolnt denslty of X and Y=V ? 15

f(z.y)=ba*y? (0<z,y<1).

Consider the transformation 2=z +y ,t=——i-? with Inverse z =iz ,y ==(1-t)z.
z

This transformatlion has Jacoblan

55 o1
ot 9z z t
2y oy |= |e 1| = 17

at 9z
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X _
X+Y

|2 | f (t2,(1—t)2) = zab (t2)* " N((1-t)z)"~'  (0<tz,(1-t)z <1)
= abt* M-t ) zotb-l (0<tz,(1-t)z <1).

The Joint density of (2 ,T )=(X+Y, ) 1s

The reglon In the (z,f) plane on which thls density Is nonzero Is
A ={(z,t):t >0,0<z <m1n(-lz-,—1}—t)}. Let A; be the collectlon of values z for

1
which 0<z <m1n(—t-,-1-1—t-). Then, writing ¢ (2,t) for the jolnt density of (Z,T)

at (z,t), we see that the denslty of T conditlonal on Z <1 Is given by

[ g(z.t)de
2 <1,z€A4A;

fg(z,t)dz dt
A

1 ab
¢ a+b

¢ a—l(l_t )b -1
where ¢ =fg (z,t)dz dt 1s a normallzation constant. Clearly,
A

ab_T(a)r(h) _ D(a+)C(b+1)

— P(X+Y<1) =
¢ =PEFYSU= TG T0) T(a+b+1)

This concludes the proof of Theorem 3.4.

For Berman's theorem, consider the transformation z==z,?=r4y with
Inverse T=I,y=2-T. The Jolnt density of (X,2) Is
[ (z,2-2)=abz*Y(2-2)*'Ig(z,z) where B Is the set of (z,z) satisfylng
0<z <1,0<z <2z <z +1. This Is a parallellepid In the (z,z ) plane. The density
of X condltlonal on Z <1 Is equal to a constant times

f abz* Y z-2) 1 dz = az®'(1-2)° .
T <z <1

This concludes the proof of Theorem 3.5. ||

These theorems provide us with recipes for generating gamma and beta varl-
ates. For gamma random varlates , we observe that YZ Is gamma (a ) distributed
when Y Is beta (a,1-a) and Z 1s gamma (1) (l.e. exponential), or when Y Is
beta (a ,2-a ) and Z s gamma (2). Summarizing all of thls, we have:
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Johnk’s beta generator

REPEAT

Generate iid uniform [0,1] random variates U/, V.

1 1
XU YV}
UNTIL X+Y <1

RETURN —X—f-); (X is beta (a ,b ) distributed)

Berman’s beta generator

REPEAT

Generate iid uniform [0,1] random variates U,V .

1 1
X—U®%Y<V?
UNTIL X+Y <1
RETURN X (X is beta (a,b +1) distributed)

Johnk's gamma generator

REPEAT

Generate iid uniform (0,1] random variates U,V
1 1

XeU®Yevie
UNTIL X +Y <1

Generate an exponential random variate E .

EX .
RETURN %G (X is gamma (e ) distributed)
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Berman’s gamma generator

REPEAT

Generate iid uniform [0,1] random variates U, V.
1 1

XeU®,YeVie
UNTIL X+7Y <1

Generate a gamma (2) random variate Z (either as the sum of two iid exponential random
variates or as ~log(U#V#) where U#,V* are iid uniform [0,1] random variates).

RETURN ZX (X is gamma (a) distributed)

Both beta generators require on the average

1 _ _Tla+b+1)
P(X+Y<1) T(a+1)I(b+1)

Iterations, and thils Increases rapldly with a and b. It s however uniformly
bounded over all a,b with 0<a,b <1. The two gamma generators should only
be used for ¢ <1. The expected number of terations Is In both cases
1
r(l+a)(2-a)

It i1s known that I'(a )I'(1-a¢ ) = 7/sin(mae ). Thus, the expected number of ltera-
tlons 1s

sinma
ma(l1-a) '

which 1s a symmetric function of a around —;— taking the value 1 near both end-

points (e |0, a =1), and peaking at the polnt a =%z thus, the rejection constant

does not exceed 2 for any a €(0,1}.
T

3.6. Gamma variate generators when ¢ <1.

We can now summarlze the avalalble algorithms for gamma (a ) random
varlate generatlon when the parameter ls less than one. The fact that there Is an
infinite peak ellmlnates other tlme-honored approaches (such as the ratlo-of-
uniforms method) from contentlon. We have:

1. Relectlon from the Welbull density (Vaduva, 1977): see section IX.3.7.
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2. The Johnk and Berman algorithms (Johnk, 1971; Berman, 1971): see sectlon
IX.3.8.
' R
3. The generator based upon Stuart’s theorem ( see section IV.8.4): G, ,U® 1s
gamma (e ) distributed when G, ., 1s gamma (a +1) distributed, and U 1s

uniformly distributed on [0,1]. For G, ., use an efficlent gamma generator
wlith parameter greater than unity.

The Forsythe-von Neumann method (see sectlon IV.2.4).

The composition/rejectlon method, with rejection from an exponentlal den-
sity on [1,00), and from a polynomial density on [0,1]. See sections IV.2.5
and I1.3.3 for varlous pleces of the algorithm malnly due to Vaduva (1977).
See also algorithm GS of Ahrens and Dileter (1974) and Its modification by
Best (1983) developed In the exerclse sectlon. '

8. The transformation of an EPD. variate obtained by the rejection method of
sectlon VII.2.8.

All of these algorithms are unlformly fast over the parameter range. Compara-~
tive timings vary from experlment to experlment. Tadlkamalla and Johnson
(1981) report good results with algorithm GS but fall to Include some of the other
algorithms In thelr comparison. The algorithms of Johnk and Berman are prob-
ably better sulted for beta random varlate generation because two expensive
powers of uniform random varlates are needed In every lteratlon. The Forsythe-
von Neumann method seems also less efficlent time-wise. Thls leaves us with
approaches 1,3,5 and 6. If a very efficlent gamma generator s avallable for e >1,
then method 3 could be as fast as algorlthm GS, or Vaduva's Welbull-based
rejection method. Methods 1 and 6 are probably comparable in all respects,
although the relection constant of method 6 certalnly Is superior.

3.7. The tail of the gamma density.

As for the normal denslty, 1t 1s worthwhlile to have a good generator for the
tall gamma (a ) density truncated at ¢{. It Is only natural to look at dominating
densltles of the form be (=%} (z >t). The parameter b has to be plcked as a
function of ¢ and t. Note that a random varlate with this denslty can be gen-

erated as t+-—§— where F 1s an exponential random varlate. We conslder the cases

a <1 and @ >1 separately. We can take b=1 because the gamma denslty
decreases faster than e ~%. Therefore, rejectlon can be based upon the inequality

zt7le™® < t%le™® (z2t).

It 1s easlly seen that the corresponding algorithm is
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REPEAT

Generate a uniform random variate U and an exponential random variate FE. Set
X—t+E

1
UNTIL XU "*<a

RETURN X (X has the gamma density restricted to (¢ ,00))

The efficlency of the algorithm s given by the ratlo of the Integrals of the two
functions. This glves

ta—le-—t

[o0)
fx“‘le'” dx
t

IA

|
[y
—i-

—1 ast —o0 .

When a >1, the exponentlal with parameter 1 does not suffice because of the
polynomlal portion in the gamma density. It 1s necessary to take a slightly slower
decreasing exponentlal denslty. The inequallty that we wlill usé 1s

z
(_x—)a—l < e(a—l)(-t-—l)
t —_—

which is easlly establlshed by standard optlmlzatlon methods. This suggests the
cholce b ——1—

in the exponentlal curve. Thus, we have

r
gttt < ta—le(a‘l)(_t__l)_z
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Based on this, the rejection algorithm becomes

REPEAT

Generate two iid exponential random variates E ,E+* .
E
a-1

t

X t
U L1 4] -—) <
NTIL : +log( X)__

Xe—t+

1-
E*
a-1
RETURN X (X has the gamma (a ) density restricted to [¢ ,00).)

The algorithm 1s valld for all ¢ >1 and all ¢{ >a-1 (the latter conditlon states
that the tall should not Include the mode of the gamma denslty). A squeeze step

can be Included by noting that
10%(’)%)=10g(1+ Xt‘t )>2 §;2= - fE . Here we used the lnequallty
(1- ; X +t)

log(14u )=>2u /(v +2). Thus, the qulck acceptance step to be Inserted In the algo-
rithm Is

E? < Ex

IF = <=
ye(X+t) T

THEN RETURN X
a—

t

(-

We conclude thls section by showing that the rejectlon constant 1s asymptotically
optimal as ¢ foo: the ratlo of the integrals of the two functlons Involved 1s
t a-1 e -t

1 o0
a- Y[zt le™® dg
t

(1-

1

a-~1

1 [oe]
¢- )f(1+-:§-) e™® dz
0

t

(1-

which once agaln tends to 1 as { —o00. We note here that the algorithms given In
this sectlon are due to Devroye (1980). The algorithm for the case ¢ >1 can be
slightly Improved at the expense of more compllicated deslgn parameters. This
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possibility iIs explored in the exercises.

3.8. Stacy’s generalized gamma distribution.
» ‘Stacy (1962) introduced the generalized gamma distribution with two shape
parameters, ¢ ,¢ >0: the denslty 1s

— ¢ ca-1,-2°
f(x)—r(a)x ‘e (z >0) .

Thlis famllyy of densltles includes the gamma densltles (¢ =1), the halfnormal den-
sity (a =-§-,c =2) and the Welbull denslties (@ =1). Because of the flexibllity of

having two shape parameters, thls distribution has been used quite often in
modellng stochastle Inputs. Random varlate generation 1s no problem because we
1

observe that G, ° has the sald distributlon where G, is a gamma (¢ ) random
varlable.

Tadlkamalla (1979) has developed a relection algorithm for the case a >1
which uses as a dominating density the Burr XII denslty used by Cheng In hils
algorithm GB. The parameters g, of the Burr XII denslty are A=c V2a -1,

p==aV2%~1, The rejectlon constant Is a functlon of ¢ only. The algorithm Is vir-

L

tually equlvalent to generating Ga by Cheng’s algorithm GB and returning Ga ¢
(which explains why the rejectlon constant does not depend upon c¢ ).

3.9. Exercises.
1. Show Kullback's result (Kullback, 1934) which states that when X ,,X, are

Independent gamma (a) and gamma (a +-§-) random varlables, then

24/X X, Is gamma (2¢).

2. Prove Stuart's theorem (the second statement of Theorem 3.1): If Y Is
gamma (¢) and Z s beta (b,a-b) for some b >a >0, then YZ and
Y (1-Z ) are Independent gamma (b ) and gamma (a —b ) random varlables.

3. Algorithm GO (Ahrens and Dieter, 1974). Defilne the breakpolnt

b =a—1+\/6(a +\/-83—a). Find the smallest exponentlially decreasing

functlon dominating the gamma (a ) denslty to the right of b. Find a normal
curve centered at @ -1 domlnating the gamma denslty to the left of b, which
has the property that the area under the dominating curve dlvided by the
area under the leftmost plece of the gamma denslty tends to a constant as
a foo. Also, find the simllarly defined asymptotic ratlo for the rightmost
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plece, and establlsh that 1t Is greater than 1. By combining this, obtain an
expression for the llmit value of the rejectlon constant. Having established
the bounds, give a relection method for generating a random varlate with
the gamma density. Find efficlent squeeze steps If possible.

The Weibull density. Prove the following propertles of the Welbull (a )
distribution:

1
o

A. For a 21, the density Is unimodal with mode at (1~—i) . The posltion
a

of the mode tends to 1 as a {oo.

B. The value of the distribution function at r =1 1s 1—--1— for all values of
e

a.

C. The r-th moment Is I‘(1+-—2-).

The minimum of n 11d Welbull random varlables Is distrlbuted as a
constant times a Welbull random varlable. Determine the constant and
the parameter of the latter random variable.

E. As aloo, the first moment of the Welbull distribution varies as
1--1+o (-L) where ==0.57722... 1s Euler's constant. Also, the varlance
~1:2/6a2.a

Obta‘ln a good uniform upper bound for the rejectlon constant In Vaduva's

algorithm for gamma random varlates when a <1 which Is based upon rejec-
tlon from the Welbull denslty.

Algorithm GS (Ahrens and Dieter, 1974). The following algorithm was
proposed by Ahrens and Dleter (1974) for generatlng gamma (a ) random
variates when the parameter a Is <1:
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Rejection algorithm GS for gamma variates (Ahrens and Dieter, 1974)

[SET-UP]
potta 1

¢ ——
a

[GENERATOR]
REPEAT
Generate iid uniform [0,1) random variates U, W . Set V—bU .
IF V<1
THEN
X+Ve
Accept —[W <eX)
ELSE
X —-log(e (b-V))
Accept —{W <X*-)

»

UNTIL Accept
RETURN X

The algorithm Is based upon the Inequalltles:

a o a o -
/ (z)smx 10<z<1)and f (x)g———r(l+a)e (z >1). Show that

. e +a ,
the relectlon constant Is ———i—— Show that the relectlon constant
el(1+a) ‘

approaches 1 as a' |0, that 1t Is 1+-1— at ¢ =1, and that It 1s uniformly
e

bounded over a €(0,1] by a number not exceeding % Show that in sam-

pling from the composite dominating denslty, we have probabllity welghts

°  for az®-! (0<z <1), and 2
e-ta e+a

Show that the exponentlal function of the form ce~®* (z >t) of smallest

Integral dominating the gamma (a) density on [t,00) (for @ >1, t >0) has
parameter b given by

p = tmetV(t-a)t+at
2t '

for e ™% (z >1) respectlvely.

Hint: show flrst that the ratlo of the gamma denstty over e~%% reaches a
- a-1
peak at x—-——-‘-i-—; (whlch 1s to the right of ¢ when b >1-

). Then com-

a-—-1
pute the optimal b and verlfy that b >1-

. Glve the algorithm for the

tall of the gamma density that corresponds to thls optimal inequality. Show

-1
furthermore that as ¢t foo, b =1- g

+o (—lt-), which proves that the cholce
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of b In the text Is asymptotlcally optimal (Dagpunar, 1978).

Algorithm RGS (Best, 1983). Algorithm GS (of exercise 8) can be optim-
1zed by two devices: first, the gamma density f with parameter a can be
maximlzed by a functlon which is z°~!/T'(a ) on [0,t] and ¢t 'e™® /I'(a ) on
[t ,00), where ¢ Is a breakpoint. In algorithm GS, the breakpolnt was chosen
as t=1. Secondly, a squeeze step can be added.

A. Show that the optlmal breakpolnt (in terms of minlmlzation of the area
under the dominating curve) Is glven by the solution of the transcen-

dental equatlon t=e "¢ (1-a +t). (Best approximates thls solution by
0.0740.75V1-a .)

B. Prove the inequallties e * >(2-z)/(2+z) (z>0) and
(1+z)°>21/(1+cz) (z 20,12>c¢ 2>0). (These are needed for the squeeze
steps.)

C. Show that the algorithm given below s valld:

Algorithm RGS for gamma variates (Best, 1983)

[SET-UP)

eta 1

y € t——
a

t «0.0740.75v1-a ,b —1+

[GENERATOR)|
REPEAT
Generate iid uniform (0,1} random variates U, W . Set V«bU .
IF V<1
THEN
X —tVe
2-X
Accept — (W <L X
IF NOT Accept THEN Accept —[W <e~X]
ELSE

X<——log(ct((;~V)),Y¢——-)t£

Accept —[W(a+Y-~-aY)<1]

IF NOT Accept THEN Accept «[W <Y*™Y)
UNTIL Accept
RETURN X

Algorithm G4PE (Schmeiser and Lal, 1980). The graph of the gamma
density can be covered by a collectlon of rectangles, triangles and exponen-
tlal curves having the properties that (1) all parameters Involved are easy to
compute; and (11) the total area under the domlnating curve Is unlformly
bounded over a >1. One such proposal 1s due to Schmelser and Lal (1980):
defilne five breakpolnts,
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lg=a-1
t4=t3+\/t—3
bs=14(1+1/(¢ 4~ t3))
t2==max(0,t3—\/73_)
ty=to(1-1/ (25t 5))

where {3 Is the mode, and ¢,,t, are the polnts of Inflectlon of the gamma
denslity. Furthermore, t,,t5 are the polnts at which the tangents of [ at ¢,
and ¢, cross the x-axis. The dominating curve has flve pleces: an exponential
tall on (-oo,t,} with parameter 1-t,/¢, and touchlng f at ¢,. On [tg,00) we
have a simllar exponentlal domlnating curve with parameter 1-{5;/t{s. On
[£,,t5] and [t4t], we have a llnear domlnating curve touching the denslty at
the breakpolnts. Finally, we have a constant plece of helght f (¢3) on {t,,¢,].
All the strips except the two tall sectlons are partitioned Into a rectangle
(the largest rectangle fitted under the curve of f ) and a leftover plece. This
glves ten pleces, of which four are rectangles totally tucked under the
gamma denslty. For the slx remalning pleces, we can construct very slmple
linear acceptance steps. '

A. Develop the algorithm.

B. Compute the area under the domlinating curve, and determine Its
~asymptotlc value.

C. Determine the asymptotlc probabllity that we need only one uniform
random varlate (the random varlate needed to select one of the four rec-
tangles Is recycled). This I1s equlvalent to computing the asymptotlc area
under the four rectangles. '

D. W1ith all the squeeze steps deflned above In place, compute the asymp-
totlc value of the expected number of evaluations of f .

Hint: obtaln the values for an appropriately transformed normal denslty and
use the convergence of the gamma denslty to the normal denslty.

10. The t-distribution. Show that when G, G, , are Independent gamma
random varlables, then \/aG 5/ G, /), 1s distributed as the absolute value of
a random varlable having the ¢ dlstribution with a degrees of freedom.
(Recall that the ¢ density is
a+1

I‘(2

)

f(z)= )

a+1

a z? 2
vra N+

In particular, If G,G* are lld gamma (%) random varliables, then VG /G *
Is Cauchy distributed.

11. The Pearson VI distribution. Show that G, /G, has density

z a-1

(@)= B, y (1+2)81

(z 20)
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when G,,G, are Independent gamma random varlables with parameters a ]
and b respectively. Here B, ; =I'(a) T'(b)/T(a +b) Is a normallzation con-

stant. The denslty In question Is the Pearson VI density. It Is also called the

beta density of the second kind with parameters ¢ and b. b /e times the

random variable In question Is also called an F distributed random varlable

with 2¢ and 26 degrees of freedom.

4. THE BETA DENSITY.

4.1. Properties of the beta density.
‘We say that a random varlable X on [0,1] Is beta (a,b) distributed
when 1t has denslty

_ xa-—l(l__sC )b—l
J (@)= B,

(0<z L1)

|
where a,b >0 are shape parameters, and ;
1

Bab =fxa_1(]__g;)b"1 dr = T(a)r(b)
) .

I'(a+b)

1s a normalization constant. The density can take a number of Interesting

shapes:
1. When 0<a,b <1, the density Is U-shaped with infinlte peaks at O and
1.

2. When 0<a <1<b, the denslty Is sald to be J-shaped: It has an infinite
peak at O and decreases monotonically to a positlve constant {when
b=1) or to 0 (when b >1).

3. When a==1<0b, the density 1s bounded and decreases monotonlcally to
0.

4. When a =b ==1, we have the uniform [0,1] density.

When 1<a,b, the density I1s unimodal, and takes the value O at the
endpoints.

The fact that there are two shape parameters makes the beta density a solid

candldate for lllustrating the varlous technlques of nonuniform random varl-

ate generation. It 1s important for the design to understand the baslc proper-

tles. For example, when a,b >1, the mode is located at -—5%5. It 1s also
a -

qulte trivial to show that for r >-a,

B
E (Xr ) = —~;+rb'b
a,
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a
In particular, E(X) =
P (X) a-+b

a number of relationships with other distributions. These are

Theorem 4.1:

and Var (X) =

ab

(a+6)%(a+b+1)

429

. There are

summarized in
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Theorem 4.1.

This 1s about the relatlonships between the beta (a,b) density and
other densltles.

A. Relatlonshlp with the gamma density: if G, ,G, are Independent

a

gamma (a ), gamma (b ) random varlables, then Is beta (a,b)

G,+G,
distributed.
B. Relattonshlp with the Pearson VI (or f, ) density: If X 1s beta (a,b),
then Y = 1XX Is By(a,b), that 1s, Y 1s a beta of the second kind, with
z a-1

density [ (z) =

B, ; (1+z)**? (=20}

C. Relationship with the (Student’s) t distribution: If X Is beta (-]1-,—(21—),

aX
1-X

and S s a random sign, then S Is t-distributed with a

degrees of freedom, l.e. 1t has denslty

a+1
)

I‘(2

f(z)=

g +1

Vra n sty 2
2 a

By the previous property, note that \/a—Y— 1s t-distributed with parame-
ter ¢ when Y Is fB,(a,b). Furthermore, if X denotes a beta (a,a ) ran-
dom varlable, and T denotes a ¢ random variable with 2a degrees of
freedom, then we have the following equallty In distribution:

X=-1-+-L——I—, or T=——————-—“2G(2X—1). In particular, when U Is
2 2 \/op4+T2 2VX-X?2
Va(U-=)

uniform on [0,1], then ——=====— 1s { wWith 2 degrees of freedom.
VU-U?

D. Relationship with the F (Snedecor) distribution: when X Is beta

(a,b), then -—(fz(—ﬁ Is F-distributed with a and b degrees of free-
a —

dom, l.e. It has density %f (a_bx) (z >0), where [ Is the ﬂg(%,-g—) den-
sity.

E. Relationship with the Cauchy density: when X is beta (71)-,—1-) distri-

buted (thls 15 called the arc sine distribution), then —_XT 1s distrl-

buted as the absolute value of a Cauchy random variable.
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Proof of Theorem 4.1.

All the propertles can be obtalned by applylng the methods for computing
densltles of transformed random varlables explained for example In section I1.4.1.

We should also mention the Important connection between the beta distribu-
‘tlon and order statistlcs. When 0<U(;y< -+ + <U,y are the order statlstlcs of a

~uniform [0,1] random sample, then Ui )' I1s beta (k,n-—k +1) distributed. See sec-
tlon 1.4.3.

4.2. Overview of beta generators.

Beta varlates can be generated by explolting speclial propertles of the distrl-
butlon. The order statistlcs method, applicable only when both a and b are
Integer, proceeds as follows:

Order statistics method for beta variates

Generate a +b ~1 iid uniform [0,1] random variates.

Find the a -th order statistic X (a-th smallest) among these variates.
RETURN X

This method, mentioned as early as 1963 by Fox, requires time at least propor-
tional to a +b —1. If standard sorting routines are used to obtain the a-th smal-
lest element, then the tlme complexlty 1Is even worse, posslbly
Q((a +b -1)log(a +b —1)). There are obvious Improvements: it 1s wasteful to sort a
sample Just to obtaln the a-th smallest number. First of all, vla llnear selectlon
algorithms we can find the a-th smallest In worst case time O (¢ +b -1) (see e.g.
Blum, Floyd, Pratt, Rlvest and Tar)an (1973) or Schonhage, Paterson and Pip-
penger (1976) ). But In fact, there Is no need to generate the entlire sample. The
unlform sample can be generated dlrectly from left to right or right to left, as
shown In sectlon V.3. This would reduce the time to O (min(e,b)). Except In spe-
clal applications, not requirlng non-integer or large parameters, this method Is
not recommended.

When property A of Theorem 4.1 1s used, the time needed for one beta varl-
ate 1s about equal to the tlme required to generate two gamma varlates. This
method Is usually very competlitlve because there are many fast gamma genera-
tors. In any case, If the gamma generator I1s unlformly fast, so will be the beta
generator. Formally we have:




432

IX.4.THE BETA DENSITY

Beta variates via gamma variates

Generate two independent gamma random variates, G, and G, .

a

RETURN ————
Ga -+ Gb

Roughly speaking, we wlill be able to Improve over this generator by at most
509%. There 1s no need to discuss beta varlate generators which are not time
efficlent. A survey of pre-1972 methods can be found in Arnason (1972). None of
the methods glven there has unlformly bounded expected time. Among the com-
petitive approaches, we mention:

A.

Standard rejectlon methods. For example, we have:
Rejection from the Burr XII denslty (Cheng, 1978).
Rejlectlon from the normal density (Ahrens and Dieter, 1974).
Rejectlon from polynomlal demnsitles (Atkinson and Whittaker,
1978, 1979; Atkinson, 1979).
Rejection and composition with trlangles, rectangles, and exponen-
tlal curves (Schmelser and Babu, 1980).

The best of these methods will be developed below. In particular, we will
highlight Cheng’s uniformly fast algorithms. The algorithm of Schmelser and
Babu (1980), which Is uniformly fast over a,b >1, Is discussed In section
VII.2.6.

Forsythe's method, as applied for example by Atkinson and Pearce (1976).
This method requires a lot of code and the set-up tlme is conslderable. In

comparison with thls investment, the speed obtalnable via thls approach ls
disappointing.

Johnk’s method (Johnk, 1964) and its modifications. This too should be con-
sldered as a method based upon special propertles of the beta density. The
expected tlme 1s not unlformly bounded In the parameters. It should be
used only when both parameters are less than one. See section IX.3.5.

Unlversal algorithms. The beta denslty Is unimodal when both parameters
are at least one, and 1t Is monotone when one parameter is less than one and
one 1s at least equal to one. Thus, the unlversal methods of section VIL.3.2
are appllcable. At the very least, the Inequalitles derlved in that section can
be used to deslgn good (albelt not superb) bounds for the beta density. In
any case, the expected time 1s provably uniform over all parameters a,b
with max(a,b )>1.

Strip table methods, as developed In sectlon VIII.2.2. We will study below
how many strips should be selected as a function of a¢ and b 1n order to
have uniformly bounded expected generation times.




IX.4. THE BETA DENSITY 433

The bottom Ilne Is that the cholce of a method depends upon the user: If he Is
not willing to Invest a lot of time, he should use the ratlo of gamma varlates. If
he does not mind ¢oding short programs, and ¢ and/or b vary frequently, one of
the rejectlon methods based upon analysis of the beta density or upon universal
Inequallties can be used. The method of Cheng Is very robust, For speclal cases,
such as symmetric beta densitles, rejection from the normal density s very com-
petitlve. If the user does not foresee frequent changes In ¢ and b, a strip table
method or the algorlthm of Schmelser and Babu (1980) are recommended.
Flnally, when both parameters.are smaller than one, it 1s possible to use rejectlon
from polynomial denslities or to apply Johnk’s method.

4.3. The symmetric beta density.

In thls sectlon, we will take a close look at one of the slmplest speclal cases,

the symmetric beta density with parameter a :
f(z)= Iq—(z—‘—l-l(x(l—ﬂc Nt = C(z(1-2z))*" (0<z<1).
I'(a) :

For large values of a, this denslty Is qulte close to the normal denslity. To see
thls, conslder y ==z —-3—', and

log(f (z)) —_ log(C 5+(a -1)log(1+2y )+(a ~-1)log(1-2y )-(a -1)log4
= log(C )—(a -1)log4-+(a —1)log(1-4y?) .

The last term on the right hand slde 1s not greater than —4(a -1)y?, and it Is at

1 T
least equal to -4(a-1)y>-16(a -1)y*/(1-4y?). Thus, lo —+4——=—=)) tends
q 2( Dy*-16(e-1)y*/(1-4y7) g(/ (5 8((%1)))
to —log(\/27r)—£2- as ¢ —oo for all z €R . Here we used Stirling’s formula to prove

that log(C )-(a-1)log4 tends to -log(v2w). Thus, tf X 1s beta (a,a), then the
density of v8(a-1)(X —-%—) tends to the standard normal density as a —oo. The

only hope for an asymptotlically optlmal rejection constant in a rejectlon algo-
rithm 1s to use a dominating density which 1s elther normal or tends polntwlise to
the normal denslty as ¢ —oco. The question Is whether we should use the normall-
zatlon suggested by the llmit theorem stated above. It turns out that the best
rejectlon constant s obtalned not by taking 8(a -1) In the formula for the normal

denslty, but 8(a 4—;—-). We state the algorithm first, then announce Its propertles

In a theorem:
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Symmetric beta generator via rejection from the normal density

1 1
[NOTE: b =(a -1)log(1+ Py )—;.]
[GENERATOR)
REPEAT

REPEAT

Generate a normal random variate N and an exponential random variate E .

1 N
Xe—= Z+—N2
2+ QSa—A!
UNTIL Z <2a -1 (now, X €[0,1])
Z (a-1)Z

A t —[E+= b>o0
ceept —| +2 2a—1—Z+ >0]

IF NOT Accept THEN Accept «—[E +-§+(a -1)log(1-

>
20 -1 )+b >0

UNTIL Accept
RETURN X

Theorem 4.2.

Let f be the beta (a) density with parameter ¢ >1. Then let 0>0 be a
constant and let ¢, be the smallest constant such that for all z,

L2
(1'*'5')

1 - )
f(m)_<_ca\/2—7;ae 20

Then ¢, Is minlmal for o?= 5 1
a

, and the minlmal value Is

a-1 8¢ -4
. — [ 8(a-1) vam . 8
d 4e (8a—4) v8a-4B, , '

In the rejectlon algorithm shown above, the relectlon constant Is ¢, The rejec-

me

tlon copstant 1s unlformly bounded for a €[1,00): selected values are at

a =2, V38me at a =3. We have

Ime,=1.
a —00

1 1

and In fact, ¢, < e 240 2¢-1,
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Proof of Theorem 4.2.
Let us wrlte g (z) for the normal denslty with mean —;—- and varlance o2. We

first determine the supremum of f /g by setting the derlvative of log(-—f—) equal
_ g
to zero. This ylelds the equation

_Lyge_20a-1)
(= 2)(0 x(l—x)) 0

One can easlly see from this that f /¢ has a local minimum at x=-;—- and two

local maxima symmetrically located on elther side of —;— at %i%\/ 1-8(a —1)o.
The value of f /g at the maxima is

a-1 1
. — [ 8(a —1)o? ) vamo 5%
g 4e B, , '

1
This depends upon ¢ as follows: g% le 8"2. This has a unique minlmum at

o=1/Vv8a —4. Resubstitution of this value glves
1
. — [ a-1 ] ver %

7 40 -2 vV8a-4B, ,

By well-known bounds on the gamma function (Whittaker ans Watson, 1927, p.
253), we have

a-1

1 a-L L

< 4 2 1624“
a,a -

=
1 ~ 4 Zﬁ
B, , T
as ¢ —co. Thus,
a-1 1 1 1
a-1 var 477 @ Tas. 7
ca< — -— e
- 4a -2 v8a -4 m
1
1 m 1 a-1
= ae /(a——)e 1-
\/ e /a-)e P ()
1 _-t
S ac/(a—-—;-)e 24(16 2a -1
f— L, 1
— 1+ 1 ¢ 240 4a-2
2a -1
< -2_};_!-2(11—1 .
[ .
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The algorithm shown above Is applicable for all ¢ > 1. For large values of «a,
we need about one normal random varlate per beta random varlate, and the pro-
babllity that the long acceptance condltion has to be verifled at all tends to O as
a —oo (exercise 4.1). There Is another school of thought, In which normal random
varlates are avolded altogether, and the algorithms are phrased In terms of uni-
form random varlates. After all, normal random varlates are also bullt from unl-
form random varlates. In the search for a good dominating curve, help can be
obtalned from other symmetric unimodal long-talled distributlons. There are two
examples that have been explicitly mentloned In the literature, one by Best
(1978), and one by Ulrich (1984):

Theorem 4.3,

When Y s a ¢ distributed random varlable with parameter 2a, then

X<——1-+-1——\/__l____— Is beta (a ,a ) distributed (Best, 1978).

2 2 +2a+Y?
When U,V are Independent uniform [0,1] random varlables, then

p
X«——-;——i—%sln(ZwV) 1-U 2¢1

Is beta (a,a ) distributed (Ulrich, 1984).

Proof of Theorem 4.3.

The proof Is left as an exerclse on transformations of random variables. JJj

If we follow Best, then we need a fast { generator, and we refer to section
IX.5 for such algorithms. Ulrich's suggestion Is Intriguing because It Is remlniscent

of the polar method. Recall that when X ,Y is unlformly distributed in the unit
X Y

circle with S=X2+Y? then (\/_ \/_) and S are Independent, and S Is uni-
formly distributed on [0,1]. Also, switching to polar coordinates (R ,©), we see
that XY /S =cos(©)sin(©)=2s1n(20). Thus, slnce 2@ Is unlfoxmly distributed on
[0,47], we see that the random varlable
. 2
1,XY4/, o7
2 S

has a beta (a,a) distribution. We summarlze:
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Ulrich’s polar method for symmetric beta random variates

REPEAT
Generate U uniformly on [0,1] and V uniformly on [-1,1].
S U+ V?

UNTIL § <1

RETURN X <—-;—+—%Y- 1-§ 2¢1

It should be stressed that Ulrich’s method is valid for all ¢ >0, provided that for
the case a ==1/2, we obtaln X as 1/2 + UV /S, that 1s, X 1Is distributed as a
linearly transformed arc sin random varlable. Desplte the power and the square
root needed In the algorithm for general a, 1ts elegance and generality make it a
formidable candldate for incluslon In computer librarles.

4.4. Uniformly fast rejection algorithms.

The beta (@ ,b) density has two shape parameters. If we are to construct a
unlformly fast relection algorithm, It seems unlikely that we can Just conslder
rejection from a density with no shape parameter such as the normal denslity.
This 1s generally speakling only feasible when there Is one shape parameter as In
the case of the gamma or symmetric beta families. The trick wili then be to find
3 flexible famlly of easy dominating densities. In his work, Cheng has repeatedly
used the Burr XII density with one scale parameter and one shape parameter
with a great deal of success. This denslty Is constructed as follows. If U 1s unl-

formly distributed on [0,1], then

UU has density (1+z )2 on [0,00). For u,\>0,
the density of

-

( U '~
KT

Is
(z >0) .

This Is an Infinlte-talled density, of little direct use for the beta density. For-
tunately, beta and §, random varlables are closely related (see Theorem 4.1), so
that we need only conslder the Infinlte-talled f, density with parameters (a,b):

[ (z)=

xa-—l

Ba b (1+.’1§ )a +b

(z >0) .
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The values of ¢ and X suggested by Cheng (1978) for good rejection constants are
A
a
“’ - ( b) )

min(ae,b) (min(a,d)<1)

A= .
/ 2ab—(a+0b)
b S L AR 1 ,
PR (min(a ,b)>1)

With these cholces, It is not difficult to verify that f /g Is maximal at z ==a /b,
and that f <cg where

¢ = 4a°b?
MB, s (a+b)e+?

Note that c¢g (z)/f (z) can be simplified quite a bit. The unadorned algorithm Is:

Cheng'’s rejection algorithm BA for beta random variates (Cheng, 1978)

[SET-UP]
s—a-+b
IF min(a,b )<1
THEN \+<—min(a ,b)

ELSE Ae—y / 22222
8-2
U —a -+
[GENERATOR]
REPEAT
Generate two ild uniform [0,1] random variates U,,U,.
1 Uy
Ve—— , Ye—aeV
TN T1T,
UNTIL s log( 7 iy)-l—uV-log(‘i)Zlog(Ulez)
Y
RETURN X +——
b+Y

The fundamental property of Cheng's algorithm Is that

4
sup ¢ =43 sup ¢ = —
a.,b>0 a.b>1 e

~ 1.47 .

For fixed a, ¢ !s minimal when b==a and Increases when b |0 or b 100. The
detalls of the proofs of the varlous statements about thls algorithm are left as an
exerclse. There exlsts an Improved vetslon of the algorithm for the case that both
parameters are greater than 1 which 1s based upon the sqﬁeeze method (Cheng's
algorithm BB). Cheng's algorithm 1s slowest when min(a,b )<1. In that reglon of
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the parameter space, 1t 13 worthwhile to deslgn special algorithms that may or
may not be unlformly fast over the entlre parameter space.

4.5. Generators when min(a,b)<1.

Cheng's algorithm BA 1s robust and can be used for all values of a,b. How-
ever, when both a,b are smaller than one, and a +b <1.5, Johnk’s method Is
typlcally more efficlent. When min(a,b) is very small, and max(a,b) Is rather
large, nelther Johnk's method nor algorithm BA are particularly fast. To flll this
gap, several algorlthms were proposed by Atkinson and Whittaker (1876, 1979)
and Atkinson (1979). In additlon, Cheng (1977) developed an algorithm of his
own, called algorithm BC.

Atkinson and Whittaker (1976,1979) split [0,1] into [0,t] and [¢,1], and con-
struct a domlnating curve for use In the relection method based upon the lne-
qualities:

gt (1-t) " (2 <t)
--],(1 x)b"l { -1 b1 — .
t*(1~-z) (z>t)
The areas under the two pleces of the domlnatlng curve are, respectlvely,
(1- t)b"l—t— and t°%- 1_(.1_}.)__. Thus, the followlng rejection algorlthm can be
a

b
used:
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First algorithm of Atkinson and Whittaker (1976, 1979)

Generate a uniform [0,1] random variate U and an exponential random variate E .

[SET-UP)
Choose t €[0,1].
PR L
Pt ra-t)
(GENERATOR]
REPEAT
FUZp
THEN
1
xet(Zye
P X
Accept «—[(1-b )log( 11‘_t )<E]
ELSE
1-U %
Xe1-(1-t)( l—p)
X
Accept «[(1~a )log(-T)_<__E]
UNTIL Accept
RETURN X

Desplte 1ts simpllicity, this algorithm performs remarkably well when both param-
eters are less than one, although for a +b <1, Johnk’s algorithm 1s still to be pre-
ferred. The explanation for this Is glven In the next theorem. At the same time,

the best cholce for ¢ is derlved In the theorem.
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Theorem 4.4.

Assume that ¢ <1,b <1. The expected number of iterations In Johnk's algo-
rithm 1s

T'(a +b +1)
T T(a+1)0(b+1)

The expected number of lterations (£ (N )) in the first algorithm of Atkinson and
‘Whittaker 15

bt +a (1-t)
(a+b)t1-e (1t )

When a +b <1, then for all values of t, E(N)>c¢.In any case, E(NN) s minim-
1zed for the value

- va(l-a)
opt Va(-a)+vb(a-b)

With ¢==t,,, we have E(N)<c whenever a +b >1. For ¢ +b >1, t=—;—, It 1s
also true that E (N )<c.

Finally, E(N) 1s uniformly bounded over a,b <1 when t—--; (and 1t 1s

therefore unlformly bounded when & ==t,, ).

Proof of Theorem 4.4.
‘We begin with the fundamental Inequality:

g 1=t ) (2 <t)
- b —
1(1 x) -1 {ta—l(l x)b—l ($>t)

—t)
The area under the top curve Is (1-t )% "1— e + t“’l-(—l—b—)-—. The area under the

bottom curve Is of course I’(a )I'(b )/T'(a +b) The ratlo glves us the expression
for E(N). E(N)1s minimal for the solution ¢ of

(1-t)Ya(a-1)-t2%b(b-1) =0,

which glves us t =t,,; . For the performance of Johnk's algorlthm, we refer to

Theorem 3.4. To compare performances for a +b <1, we have to show that for
all ¢,

1 b a

7))

— a+b1-t¢

Lye Lyp
() (=)

By the arlthmetlc-geometri¢ mean Inequality, the left hand slde Is In fact not
greater than

a+b
(=44

a+b
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1 b a
< ——
- a+b(1—t+t)

because a +b <1, and the argument of the power Is a number at least equal to 1.
When a+b >1, 1t 1s easy to check that E(N)<c for t=%. The statement

about the uniform boundedness of F (/N ) when ¢ =% follows simply from
E(N)= 2"t

and the fact that ¢ s unlformly bounded over a,b <1. ||

Generally speaking, the first algorithm of Atkinson and Whittaker should be
used Instead of Johnk's when a@,b <1 and a+b >1. The computatlon of ¢,,,
which Involves one square root, 1s only justified when many random varlates are

needed for the same values of ¢ and b . Otherwlse, one should choose t=%.
When e <1 and b >1, the performance of the first algorithm of Atkinson

and Whittaker deterlorates with Increaslng values of b: for flxed ¢ <1,
bllm E(N)=oc0. The lnequalities used to develop the algorlthm are altered
- 00

slightly:
{ z¢ 1t (z <t)

R P E R

a
The areas under the two pleces of the domlnating curve are, respectively, -E——
a

Y
and t“"‘—(}——Z—)—-. The following re)ectlon algorithm can be used:
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Second algorithm of Atkinson and Whittaker (1978, 1979)

[SET-UP]
Choose t €[0,1)].
bt
S er———————
bt +a (1-t)°
(GENERATOR)]
REPEAT
Generate a uniform [0,1] random variate U and an exponential random variate F .
IFU<p
THEN
1
Xt (Zye
14
Accept «—{(1-b Jlog(1-X)<E]
ELSE
1
X 11— ) A=Yy
1-p

Accept —[(1-a )log(if-)sm

UNTIL Accept
RETURN X

Stmple calculations show that

bt® +a (1-t)b tot

E(N)=c¢ >

where ¢ Is the expécted number of lterations in Johnk's algorithm (see Theorems
3.4 and 4.4). The optimum value of ¢ s the solutlon of -

bt +(a-1)1=t ) -bt (1-t) 1 =o0.

Although thls can be solved numerlcally, most of the tlme we can not afford a
numerical solutlon Just to generate one random variate. We have, however, the

following reassuring performance analysls for a cholce for ¢ suggested by Atkin-
son and Whittaker (1978):
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Theorem 4.5.

For the second algorithm of Atkinson and Whittaker with ¢ -—-—————b }f-’la .
-a
sup E(N) < oo,
e <1, >1

Im E(N)=o00 (all a >1).
b —o00

4.6.
1.

Exercises.

For the symmetric beta algorithm studled In Theorem 4.2, show that the
qulck acceptance step s valld, and that with the qulck acceptance step In
place, the expected number of evaluations of the full acceptance step tends
to 0 as a —o0.

Prove Ulrich's part of Theorem 4.3.
Let X be a fy(a,b) random variable. Show that —;7 I1s fB,(b,a), and that

E(Y)=-2— (b >1), and Var (Y )=—2001b-1)
b-1 (b-1)%(b-2)
In the table below, some densities are listed with one parameter ¢ >0 or two
parameters a,b >0. Let ¢ be the shorthand notatlon for 1/B(a,b). Show
for each denslty how a random varlate can be generated by a sultable
transformation of a beta random varlate.

(b >2).

2¢22°(1-22) ! (0<z <1)
2¢ sin®*"Y(z )eos?® Nz) (0<gz S-;L)
a1
G (620
2a-1
e
1
P 0SS
2ya~1
22(“1';;()a .a) (0s221)

Prove Theorem 4.5.

Grassia’s distribution. Grassia (1977) Introduced a distribution which Is
close to the beta distribution, and can be consldered to be as flexible, If not
more flexlble, than the beta distributlon. When X 15 gamma (a,b), then
eX 1is Grassla I, and 1-e~X 1s Grassla II. Prove that for every possible
comblnation of skewness and kurtosls achlevable by the beta density, there
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exists a Grassla distributlon with the same skewness and kurtosls (Tadl-
kamalla, 1981).

7. A contlnuation of exerclse 8. Use the Grassla distributlon to obtaln an
efficlent algorithm for the generation of random varlates with denslty

8a%z? ‘llog(—l-)

_ i
[ (z) e (o<z <1),

where ¢ >0 Is a parameter.

5. THE t DISTRIBUTION.

5.1. Overview.

The t distribution plays a key role In statistlcs. The distribution has a
symmetric denslty with one shape parameter ¢ >0:
a+1

)

I‘(2

f(z)=

e +1
\/'Hr(-;-)(w-‘f;-) 2

This 1s a bell-shaped density which can be dealt with In a number of ways. As
speclal members, we note the Cauchy density (¢ =1), and the t; denslty
‘(a =3). When a Is Integer-valued, 1t 1s sometimes referred to as the number of -
degrees of freedom of the distribution. Random varlate generation methods for
this distribution Include:

1. The laverslon method. Expliclt forms of the dlstribution functlon are only
avallable In speclal cases: for the Cauchy density (a =1), see section II.2.1.
For the ¢, density (a =2), see Theorem IX.3.3 In sectlon IX.3.3. For the i,
density (a =3), see exerclse I1.2.4. In general, the inversion method Is not
competitlve because the dlstribution function 1s only avallable as an integral, -
and not as a simple explicit function of 1ts argument.

2. Transformatlon of gamma variates. When N Is a normal random varlate,

and G, , Is 2 gamma (-g—) random varlate Independent of NV,

v2a N
V Ga/Z

Is ¢, distributed. Equivalently, If G,,,,G, , are Independent gamma random
varlables, then

G
SVa 1/2

Ga. /2
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Is ¢, distributed where S Is a random sign. See example 1.4.8 for the derlva-
tlon of this property. Somewhat less useful, but still noteworthy, Is the pro-
perty that if G, ,,G*, , are 1id gamma random varlates, then

Va Goo=G* o
2 Ga /2G*a/2

1s ¢, distributed (Cacoullos, 1965).
3. Transformation of a symmetric beta random varlate. It i1s known that it X
Is symmetric beta (%,—;—), then

x-+
2

a vX (1-X)

-Is ¢, distributed. Symmetric beta random variate generation was studled in
section IX.4.3. The combination of a normal rejectlon method for symmetric
random varlates, and the present transformation was proposed by Marsaglia
(1980).

4. Transformation of an F random varlate. When S 1Is a random sign and X Is
F (1,a )distributed, then SvVX s t, distributed (see exercise 1.4.8). Also,
when X 1s symmetric F with parameters ¢ and a, then

Ve 1-X
2 VX
Is t, distributed.
The ratio-of-uniforms method. See section IV.7.2.

6. The ordinary rejectlon method. Since the ¢ density cannot be domlnated by
densitles with exponentlally decreasing talls, one needs to find a polynomi-
ally decreasing domlnating functlon. Typlcal candldates for the dominating
curve Include the Cauchy density and the {; density. The corresponding
algorithms are quite short, and do not rely on fast normal or exponential
generators. See below for more detalls.

7. The composition/rejection method, similar to the method used for normal
random varlate generation. The algorithms are generally speaking longer,
more design constants need to be computed for each cholce of a, and the
speed 1s usually a blt better than for the ordinary rejection method. See for
example Kinderman, Monahan and Ramage (1877) for such methods.

8. The acceptance-complement method (Stadlober, 1981).
9. Table methods.

One of the transformations of gamma or beta random varlates Is recommended If
one wants to save time wrltlng programs. It Is rare that additional speed Is
required beyond these transformation methods. For direct methods, good speed
can be obtalned with the ratlo-of-unlforms method and with the ordinary rejec-
tlon methods. Typlcally, the expected time per random varlate s uniformly
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bounded over a subset of the parameter range, such as [1,00) or [3,00). Not unex-
pectedly, the small values of ¢ are the troublemakers, because these densltles
decrease as x’(“‘“), so that no flxed exponent polynomlal dominating denslity
exists. The large values of ¢ glve least problems because 1t Is easy to see that for
every z,

2

Im f (z) = 1 e 2

a ~+00 var

The problem of small a is not lmportant enough to warrant a speclal sectlon. See
however the exerclses.

5.2. Ordinary rejection methods.

Let us first start with the development of slmple upper bounds for -f . For
example, when a >1, the following Inequallty Is trivially true:

1 < 1
a+1 — ’
(+x2) 2 1+a2-1;1x2
1 —r—
a

The top bound Is proportlonal to the denslty of 2;'1 C where C 1s a Cau-
V a

chy random varlate. If we want to verlfy Just how good thls Inequallty is, we note

that the area under the domlinating curve Is 7 251 . The area under the
. a
v F( =)
curve on the left hand side of the Inequallty is ———T— By the convergence
a
I
( > )

to the normal density, we deduce wlthout computations that this quantity tends
to V2. Thus, the ratlo of the areas, our rejectlon constant, tends to \/7—1' as
a —o00o. The fit 1s not very good, except perhaps for ¢ close to 1: for a =1, the
rejection constafit is obviously 1. The detalls of the rejectlon algorlthm are left to
the reader.

Conslder next rejectlon from the {; denslty
1

1 3 z? 2
V3B (-5,'2—)(1‘*-—3-)

g(z)=

Best (1978) has shown the following:



448 IX.5.THE t DISTRIBUTION

Theorem 5.1.
Let f Dbe the ¢, denslty with @ >3, and let ¢ be the {5 denslty. Then:
f(z) < cg(z)
where
_ 8mV3
¢ = a+1
2
gx/a_B(—l-,i)[H—l—]
2 2 a
Also, if
2
2
|1+5-
m):::——-—f(x) =.—9—.. 1
cg(z) 16 o
z 2
14—
a
1++
a
then
g -z 212
T(z)> —e? 2 [1+—z—] .
- 18 3
Finally,
1
VIV TR
- 27e a+1
and
Im ¢ = A / -3—2-71 .
a —Q0 27e¢

Proof of Theorem 5.1.

Verlfy that [ /g 1s maximal for £ =q=41. The lower bound for T (z) follows
from the Inequality

) a+1
1+ ) o1

a =[1+m—1) <e1‘32
14~ il

a

Finally, the statement about ¢ follows from Stirling's formula and bounds
related %o Stlrling’s formula. For example, the upper bound Is obtalned as
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follows:
. — sTV3
9\/_3( )[ i]
a
a1 e 1 a+1
< 8vV3m a+1 2 2 a m 2
< ( ) (—) —_ (—)
ova a PN a+1
; 1
— 8varm ¢ .+
gv2e a+1
32
27e

A simllar lower bound Is valld, which establishes the asymptotic result. JJj

The fit with the ¢4 dpmlnatlng denslity Is much better than with the Cauchy
density. Also, recalling the ratlo-of-uniforms method for generating {5 random
varlates In a form convenlent to us (see section 1v.7.2),

t3 generator based upon the ratio-of-uniforms method

REPEAT

Generate iid uniform [0,1] random variates U,V . Set V«—V-%-.
UNTIL U4+ VE<U
RETURN X<—\/§%;-

We can summarize Best's algorithm as follows:
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t generator based upon rejection from a t3 density (Best, 19878)

REPEAT

Generate a !4 random variate X by the ratio-of-uniforms method (see above).
Generate a uniform [0,1] random variate U.

Z+X?, W«—1+-éz—
9 we
Y «2 log 16

Accept —[Y >1-2)
IF NOT Accept THEN Accept «—[Y >(a +1)log(

a1 )
a+2
UNTIL Accept N
RETURN X

The algorithm glven above differs slightly from that glven In Best (1978). Best
adds another squeeze step before the first logarithm.

5.3. The Cauchy density.
The Cauchy density
1
@)= —2—
n(1+z2)

plays another key role In statlstlcs. It has no shape parameters, and the mean
does not exist. Just as for the exponentlal distribution, 1t is easlly seen that this
density causes no problems whatsoever. To start with, the inverslon method Is
applicable because the distribution functlon is

F(z)= —;—+larc tan z .
T

This leads to the generator tan(nlU ) where U is a uniform random variate. The
tangent belng a relatlvely slow operation, there 1s hope for Improvement. The
maln property of the Cauchy density s that whenever (X,Y ) Is a radlally distri-

buted random vector in R? without an atom at the orlgln, then 7 Is Cauchy
distributed. The proof uses the fact that if (R ,©) are the polar coordlnates for
(X,Y), then %:tan(e), and © is distributed as 27U where U is a uniform [0,1)

random varlate. Thls leads to two straightforward algorithms for generating
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Cauchy random varlates:

Polar method I for Cauchy random variates

Generate iid normal random variates N, N,.

RETURN X e
N,

Polar method II for Cauchy random variates

REPEAT

Generate iid uniform [-1,1] random variates V,V,,.
UNTIL V24V, <1
RETURN X

Even though the expected number of uniform random variates needed In the

second algorithm Is —8-, 1t seems unlikely that the expected. time of the second
T

algorithm will be smaller than the expected time of the algorithm based upon the
ratio of two normal random varlates. Other algorithms have been proposed In the
llterature, see for example the acceptance-complement method (sectlon II.5.4 and
exercise II.5.1) and the article by Kronmal and Peterson (1981).

5.4. Exercises.

1.

EO

Laha’s density (Laha, 1958). The ratlo of two Independent normal ran-
dom variates 1s Cauchy distributed. This property s shared by other densl-
tles as well, In the sense that the term "normal” can be replaced by the
name of some other distributions. Show first that the ratio of two Indepen-
dent random variables with Laha's density
V2
f(z)=—"r
_ m(1+z%)
1s Cauchy distributed. Glve a good algorithm for generating random varlates
with Laha's density.

Let (X,Y) be uniformly distributed on the circle with center (a,b ). Describe

the density of % Note that when (a¢,b)=(0,0), you should obtaln the
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Cauchy density.
Conslder the class of generallzed Cauchy densitles

a sln(l)
a

f(z)=

em(l+ |z | %)

where ¢ >1 Is a parameter. The densitles in this class are domlinated by the
Cauchy density times a constant when e >2. Use this fact to develop a gen-
erator which Is uniformly fast on [2,00). Can you also suggest an algorithm
which 1s uniformly fast on (1,00) ?

The density

1
f@)= ———= (2>0)
@) m(1+z Wz i
possesses both a heavy tall and a sharp peak at 0. Suggest a good and short
algorithm for the generation of random varlates with this density. ‘
Cacoullos’s theorem (Cacoullos, 19685). Prove that when G ,G* are 1id
a

gamma (—) random varlates, then

\/— G-G*

2 \/ G ¥
Is ¢, distrlbuted. In particular, note that when N,;,IN, are 11d normal ran-
dom varlates, then (IV,-N,)/(24/N,N,) 1s Cauchy distributed.

The following famlly of denslties has heavier talls than any member of the ¢
famlly:

_ a-1
f ()= ———_—z(log(x))“ (z>e).

Here a >1 Is a parameter. Propose a simple algorithm for generating random
varlates from thils famlly, and verify that it Is uniformly fast over all values
a>1. .

In this exerclse, let C,,C,,C4 be 11d Cauchy random varlables, and let U be
a uniform [0,1] random varlable. Prove the following distributional proper-
tles:

A. C,C, has density (log(z?))/(n%(z%-1)) (Feller, 1971, p. 64).

B. (,C,C, has density (1r2+(log(m2))2)/(27r3(1+m2)).

C. UC, has density log( )/(2 ).
Show that when X ,Y are 11d random varlables with density -—-——2-———-.
m(e® 4+e™%)
then X + Y has denslty
4z 2
g(z)= =
71'2(6 T _e-% ) 2 1t

2y X T ...
7r(1+3'+ + )
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10.

11.

Hint: find the density of log( | C | ) first, where C 1s a Cauchy random varl-
ate, and use the prevlous exerclse. Show how you can generate random varl-
ates with density ¢ directly and efficlently by the rejectlon method (Feller,

1971, p. 64).

Develop a composition-rejection algorithm for the ¢ distribution which Is
based on the inequallty

o _(e+1)2?
! > e 2a
a+1 -

1+
a

22

which for large a 1s close to e 2. Make sure that If the remalnder term Is
malorized for use In the rejectlon algorithm, that the area under the
remalnder term Is o (1) as a —oo. Note: the remalnder term must have talls
which Increase at least as |z | (¢+1). Note also that the ratlo of the areas
under the normal lower bound and the area under the ¢ density tends to 1
as @ —o00.

The tail of the Cauchy density. We consider the family of tall densities
of the Cauchy, with the tall ‘belng defined as the interval [{,00), where ¢t >0
s a parameter. Show first that

X ~tan | arctan(¢ )(1- U)+-7—r—-U—

has such a tall denslty. (This Is the Inverslon method.) By using the polar
propertles of the Cauchy density, show that the following rejection method
Is also valld, and that the rejectlon constant tends to 1 as t —o00;

REPEAT

Generate iid uniform [0,1] random variates U,V .
t
X e—
T
1
UNTIL V(1+—)—(—2—)Sl

RETURN X

This exerclse Is about Inequallties for the function
a+1

x‘_’
fa (z) = (1+T)
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which Is proportional to the ¢ density with parameter ¢ >1. The lnequallties
have been used by Kinderman, Monahan and Ramage (1977) in the develop-
ment of several rejectlon algorithms with squeeze steps:

1
A f,2)<Z mln(l,——?). Using this Inequality In the rejectlon method
z
corresponds to using the ratio-of-uniforms method.

z
B. f,(z)2> 1——|—2—L. The trlangular lower bound Is the largest such

lower bound not depending upon a that Is valld for all ¢ >1.

a+1
c 1, 2 2
C. f,(@)< where ¢ =2(1+-—) <—=. If this lnequallty Is
1+x? a Ve
used_1In the rejectlon method, then the rejection constant tends to
2

—— as a —oo. The bound can also be used as a quick rejection
€

step.
12. A unlformly fast rejection method for the ¢ family can be obtalned by using
a combination of a constant bound (f (0)) and a polynomial tail bound: for
a-+1
, ——12

2
the function (H_%) , find an upper bound of the form _cb__ where ¢ ,b
x
are chosen to keep the area under the combined upper bound uniformly
bounded over a >0.

6. THE STABLE DISTRIBUTION.

6.1. Definition and properties.

It 1s well known that the sum of lid random varlables with finite varlance
tends In distribution to the normal law. When the variance Is not finite, the sum
tends In distribution to one of the stable laws, see e.g. Feller (1871). Stable laws
have thlcker talls than the normal distribution, and are well sulted for modeling
economic data, see e.g. Mandelbrot (1983), Press (1975). Unfortunately, stable
laws are not easy to work with because with a few exceptions no slmple expres-
slons are known for the density or distrlbution function of the stable distribu-
tlons. The stable dlstributions are most easlly defined in terms of thelr charac-
teristic functlons. Without translation and scale parameters, the characterlstic
function ¢ Is usually deflned by

- |t (i B sgn(t an(S0)  (axl)
log(¢(t)) =

oy |(1+iﬁ%sgn(t)log( 1t])  (a=1)

where —-1<A<1 and 0<a<2 are the parameters of the distrlbution, and sgn(¢)
Is the sign of {. This wlll be called Levy's representation. There 1s another
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parametrization and representation, which we will call the polar form (Zolotarev,
1959; Feller, 1971):

log(¢(t))y=-|1¢ | ag-iysgn(t)

Here, 0<a<2 and |+| §-g-mln(a,2—a) are the parameters. Note however that

one should not equate the two forms to deduce the relationshlp between the
parameters because the representations have different scale factors. After throw-
Ing in a scale factor, one quickly notlices that the a's are 1dentical, and that § and
~ are related via the equatlon f==tan(+y)/tan(am/2). Because ~ has a range which

depends upon «, 1t Is more convenlent to replace v by —g-mln(a,z-a)é, where § 1s
now allowed to vary in [~1,1]. Thus, we rewrlite the polar form as follows:

-—i—g—min(a,z—a)é sgn(t )

log($(t)) = - | t | %e

When we say that a random varlable Is stable (1.3,0.4), we are referring to
the last polar form with a==1.3 and §=0.4. The parameters 8, v and 6 are called
the skewness parameters. For §=0 (y==0, §=0), we obtaln the symmetric stable
distribution, which 1s by far the most important sub-class of stable distributions.
For all forms, the symmetric stable characterlstic functlon Is

g(t)=eI*1°
By using the product of characteristic functions, it s easy to see that If
X, ...,X, arelld symmetric stable (a), then

Lo, '

n R X

t =1

Is agaln symmetric stable (a). The following particular cases are important: the
symmetric stable (1) law coincldes with the Cauchy law, and the symmetric
stable (2) distribution Is normal with zero mean and variance 2. These two
representatives are typlcal: all symmetric stable densitles are unimodal (Ibragl-
mov and Chernln, 1859; Kanter, 1975) and In fact bell-shaped with two Infinlte
talls. All moments exist when a==2. For a<2, all moments of order <o« exlst,
and the o-th moment Is co. '

- The asymmetric stable laws have a nonzero skewness parameter, but in all
cases, « Is Indlcative of the slze of the tall(s) of the denslty. Roughly speaking,
the tall or talls drop off as |z | {1*®) as |z | —oo. All densltles are unimodal,
and the exlstence or nonexistence of moments Is as for the symmetric stable den-
sitles with the same value of a. There are two Infinlte talls when |§] 51 or
when a>1, and there is one Infinite tail otherwise. When 0<a<1, the mode has
the same slgn as 8. Thus, for <1, a stable (¢,1) random varlable Is posltive, and

a stable (@,~1) random varlable Is negative. Both are shaped as the gamma den-
sity.

There are a few relatlonships between stable random varlates that will be
useful In the sequel. It IS not necessary to treat negative-valued skewness
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parameters since minus a stable (¢,8) random varlable s stable (a,—8) distributed.
Next, we have the followlng baslc relatlonship:

A.

B.

Lemma 6.1.

Let Y be a stable (o/,1) random varlable with o’ <1, and let X be an

independent stable (&,6) random varlable with as£1. Then XYV® is stable
' —
(aa!,b o min(e,2-a) ). Furthermore, the following is true:

min(aa’,2-a0’)
If N is a normal random varlable, and Y Is an Independent stable (o/,1)
random varlable with o/ <1, then Nv2Y Is stable (2¢&/,0).

A stable (%,1) random variable Is distributed as 1/(2/N?) where N Is a nor-

mal random variable. In other words, 1t 1s Pearson V distributed.
If N,,N,,... are 11d normal random varlables, then for integer k >1,

k-1 1
I'I e
j=o (2N, %)
k
1
— 2'(2*"1) H
j=1 N] 2’

Is stable (27% ,1).
For N,,N,,..., 1d normal random variables, and Integer k >1,

k-1 k 1
N, +12~(2 1) H 7\7—;—:
J=14V;
Is stable (217% ,0).
For N,,N,,..., 1id normal random varlables , and Integer k >0,
Niyr * 1 7
Ni 42 j=o[ 2N;? ]
= Dbt [ 1 ]2’
k42 j=0 Nj2
1s stable (—k-l—-,o).
ok +1

Proof of Lemma 6.1.

The first statement is left as an exerclse. If In it, we take a=2, 6=0, we

obtain part A. It Is also seen that a symmetric stable (1) Is distributed as a sym-
metric stable (2) random varlable times vX where X Is stable (-;—,1). But by the

property that stable (1) random varlables are nothing but 'Cauchy random vart-
ables, l.e. ratlos of two Independent normal random variables, we conclude that
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X must be distributed as 1/(2N?) where N 1s normally distributed. This proves

part B. Next, agaln by the maln property, If X 1s as above, and Y Is stable

(o/,1), then XY? 1s stable (——— 1), at least when o/ <1. If this Is applied succes-
11

1
sively for o = —-:2— : -8- ..., We obtaln statement C. Statement D follows from

statements A and C. Finally, using the fact that a symmetric stable (1/2"“) Is
distributed as a symmetric stable (1/2") times X% , where X Is stable (—;—,1), we
see that a stable (1/2F 71,0) Is distributed as a Cauchy random variable times
k 2

1
1L | 557

; .2
=0 2N]

This concludes the proof of part E. ]

Properties A-E In Lemma 6.1 are all corollarles of the maln property glven
there. The maln property Is due to Feller (1971). Property A tells us that all sym-
metric stable random varlables can be obtalned If we can obtaln all positive
(6==1) stable random varlables with parameter aa<<1l. Property B 1s due to Levy
(1940). Property C goes back to Brown and Tukey (1948). Property D Is but a
simple corollary of property C, and finally, property E Is a representation of
Mitra's (1981). For other simlilar representations, see Mitra (1982).

There 1s another property worthy of mention. It states that all stable («,6)
random varlables can be written as welghted sums of two 1id stable («,1) random
varlables. It was mentioned In chapter IV (Lemma. 8.1), but we reproduce it here
for the sake of completeness.

Lemma 6.2.
If X and Y are iid stable(a,1), then Z «—pX —¢Y 1is stable(c,6) where

sin( Vil mln(a,z—a)(1+5) )

Po= sin(m min(a,2-a)) '
sin( 7 min(e,2-a)(1-6) )
g% = 2

sin(7m min(o,2-a))
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Proof of Lemma 6.2.
The characteristic functlon of Z s

é(t) = E (e "PX)E (e~H7)
= (pt )Y(-gt)

where 9 Is the characteristic function of the stable (a,1) law:

—u‘%nm(aﬁ-a) sgn(t)

P(t) = e It1%
Note next that for u >0, p%e "¢ +g¢%e 15 equal to

cos(u )(p *+g %)~ sin(u )(p *-¢ %)

— 1 L ~ b3 . )
= im0 min(aa—a)) 2coste (S min(an2-a))cos((-bmin(e,2-a)))

1 sin(u )cos(-zzr-mln(a,z—-a))sln((—;L&mln(a,2~oz))) ) .

T
After replacing « by 1ts value, Emln(a,z-—a), we see that we have

2cos(u )sinu

. __ ,—ibu
(2% (cos(bu )-isin(bu)) = e .

Resubstitution gives us our result. .

6.2. Overview of generators.

The difficulty with most stable densitles and distributlon functlons Is that no
simple analytical expression for its computation 1s avallable., The exceptions are
spelled out in the previous sectlon. Basically, stable random variates with param-
eter o« equal 10 2"‘ for k >0, and with arbitrary value for 6, can be generated
quite easlly by the methods outlined in Lemmas 6.1 and 6.2. One Just needs to
combine an appropriate number of 11d normal random varlates. For general «,6,
methods requiring accurate values of the density or distributlon function are thus
doomed, because these cannot be obtalned In finlte time. Approximate inversions
of the distributlon functlon are reported In Fama and Roll (1968), Dumouchel
(1971) and Paulson, Holcomb and Leltch (1975). Paulauskas (1982) suggests
another approximate method In which enough 1id random variables are summed.
Candldates for summing Include the Pareto densitles. For symmetric stable densl-
ties, Bartels (1978) also presents approximate methods. Bondesson (1982) pro-
poses yet another approximate method in which a stable random varlable Is writ-
ten as an Inflnite sum of powers of the event times In a homogeneous Polsson
process on [0,00). The sum Is truncated, and the tall sum Is replaced by an
appropriately plcked normal random variate. :

Fortunately, exact methods do exist. First of all, the stable denslty can be
written as an Integral which In turn leads to a simple formula for generating
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stable random varlates as a comblnation of one unlform and one exponentlal ran-
dom varliate. These generators were developed in section IV.8.8, and are based
upon Integral representatlons of Ibraglmov and Chernin (1959) and Zolotarev

(1966). The generators themselves were proposed by Kanter (1975) and
1-«o
‘Chambers, Mallows and Stuck (1978), and are all of the form g (U)E ¢ where
E 1s exponentlally distributed, and g (U) Is a functlon of a uniform {0,1] random
varlate U. The sheer slmpllicity of the representation makes this method very
attractlve, even though ¢ 1Is a rather complicated functlon of Its argument
Involving several trigonometric and exponential/logarithmlc operatlons. Unless

speed 1s absolutely at a premium, this method 1s highly recommended.

For symmetric stable random varlates with o<1, there Is another represen-
tatlon: such random varlates are dlstributed as

Y

1
(E 1+E21[U <a]) «

where Y has the Feler-de la Vallee Poussin denslty, and E,,F, are 1id exponen-
tial random varlates. Thls representatlon 1s based upon propertles of Polya
characteristic functlons, see sectlon IV.8.7, Theorems IV.6.8, IV.8.9, and Example
IV.8.7. Since the Feler-de la Vallee Poussin denslity does not vary with «, ran-
dom varlates with thls density can be generated qulte quickly (remark IV.8.1).
This can lead to speeds which are superlor to the speed of the method of Kanter
and Chambers, Mallows and Stuck. '

In the rest of thls sectlon we outline how the serles method (section IV.5)
can be used to generate stable random varlates. Recall that the serles method 1s
based upon rejectlon, and that it is designed for denslties that are glven as a con-
vergent serles. For stable densltles, such convergent serles were obtalned by
Bergstrom (1952) and Feller (1971). In addlition, we will need good dominating
curves for the stable densitles, and sharp estlmates for the tall sums of the con-
vergent serles. In the next sectlon, the Bergstrom-Feller serles will be presented,
together with estimates of the tall sums due to Bartels (1981). Inequalities for the
stable distribution which lead to practical Implementations of the serles method
are obtalned In the last sectlon. At the same tlme, we wlll obtaln estlmates of the
expected tlme performance as a functlon of the parameters of the distributton.



460 IX.6.STABLE DISTRIBUTION

6.3. The Bergstrom-Feller series.

The purpose of thls section 1s to get ready for the next section, where the
serles method for stable random varlates 1s developed. The form of the charac-
teristic functlon most convenlent to us 1s the first polar form, with parameters «
and ~. To obtaln serles expanslons for the stable density function, we conslder

the Fourler Inverse of ¢, which takes a slmple form since |¢| Is absolutely
integrable:

e o]
1 _- _ - ()
[ (@)= L f et gm0y,
™
—00
1 o0
= Re{ = [ ¢1%¢" gt
m
0
o0 x
s (z+Y)
1 _ s _pap i, (o)
=Re __fetze et"’ee dt
s
o]

provided that | oy~ | Slzr— and that | -721+1/)| 3-721 with at least one of these

belng a strict inequality. We have used the fact that changing the sign of v s
equlvalent to mirroring the denslty about the origin, and we have consldered a
contour In the complex plane. The last expression for f wlll be our starting
polnt. Recall that we need not only a convergent serles, but also good bounds for
f and for the tall sums. Bergstrom (1952) replaces each of the exponents In the
last expression In turn by lts Maclaurin serles, and integrates (see also Feller
(1971)). Bartels (1981) uses Darboux’'s formula (1878) for the remalnder term In
the serles expanslon to obtaln good truncation bounds. In Theorem 8.1 below, we
present the two Bergstrom-Feller serles together with Bartels’'s bounds. The proof
follows Bartels (1981).
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Theorem 86.1.

The stable (a,7) denslty f can be expanded for values >0 as follows:

[ @)= Y a,(z)+4% . ()

J=1
where
r(-L)z 7 -tsin(5 (L +2Ly)
a;(z) = _1_.(_1)1'—1 o 2 o
J am 7 -1 '
S
|A¥§¢+1($)| ..<..An+1(1')= o parpadl

ni(cos(d)) @

where #==0 1If 7<0 and ==~ If v>0. For z <0, note that the value of the den- |
sity 1s equal to f (-2) provided that « Is replaced by -~. The expansion con-
verges for 1<a<2. For 0<a<1, we have a divergent asymptotic serles for small
|z |, le., for fixed n, A, (z)—0as | z | —0. Note also that

(=)
f@)< <

1
am(cos(d)) *

A second expansion for f (z ) when z >0 Is glven by

[ @)= b, (z)Bx (z),

J=l1
Wwhere
(-1)/7'T(aj +1)sin(j (-Qg-.m))
bj(z) = — ,
) 1z +1
| B 1(z)| < B,,,(z) = T(a(n +1)+1) ’

m(n +1)(z cos(&))a(n +1)+1

with aazmax(o,g-+-1—(fy——72r-)). The expanslon Is convergent for 0<a<1, and Is a
o

dlvergent asymptotic expansion at |x |-—>oo when a>1, le. for fixed n,
B, (z)—0as |z | —»oco. Furthermore, for all «,
T'{a+1
fe) g et
m(z cos(f))
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Proof of Theorem 6.1.

The proof Is based upon a formula of Darboux (1876), which when applied to
e? with complex z leads to
n-1 zj z"
= Xt
j=oJt n!

where M, = Xe%, X\ belng a complex constant with | X | <1, and 6 belng a real
constant In the range 0<60<1. In partlcular, for Re(2)>0, | M, | < |e?|. For
HE+4)
Re(2)<0, | M, | <1. Apply this result with z =-tze 2 In the Inverslon for-
mula for f, and note that Re(z )<0. Take the Integrals, and observe that the
remainder term can be bounded as follows:
o0 .

‘11 +1(z) | ":1' tn ‘

g i (¥ ‘
mn !

dt

n

f " —t %cos(at)—) dt

™!
r‘(ﬁil)xn
_ 1 o
T oar n+1

n (cos(ap—y)) ¢

The angle 9 can be chosen within the restrictions put on 1t, to make the upper

2

bound as small as possible. This leads to the cholce — when <0, and O when
o

~4>0. It is easy to verlfy that for 1<a<2, the expanslon Is convergent. Flnally,
the upper bound Is obtalned by noting that [ (z)<A (z).

The second expansion Is obtalned by applylng Darboux’s formula to
e-t%e’ and Integrating. Repeating the arguments used for the first expansion,
we obtain the second expansion. Using Stirllng's formula, 1t Is easy to verlfy that
for 0<a<1, the expansion Is convergent. Furthermore, for fixed n, B, (z )—0 as
| z | =00, and f (z)<B(z). |}

The convergent serles expansion for a«>1 requlres an Increasing number of
terms to reach a glven truncation error as | x | Increases. The asymptotlc serles
Increases In accuracy and needs fewer terms as |z | Increases. As polnted out by
Bartels (1981), the convergent serles generally tends to Increase first, before con-
verging, and the Intermediate values may become so large that the final answer
no longer has sufficlent significant digits. This drawback occurs malnly for values
of o near 1, and large values of |~]|.
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6.4. The series method for stable random variates.

From Theorem 6.1, we deduce the followlng' useful bound for the stable (a,v)
density when > 0:

).
(z 20)

am(cos())
I'(o+1) -
n(z cos(n))**!

r(<>)

(z 20)
[(=) <

(z <0)

I'(a+1)
m(~z cos(§))*+?

(z <0)

where 0=max(0,-7—r+l(—f7-—7r-)) and n=max(0,-7-r-+i('7~lr-)). The bounds are
2 o 2 2 o 2

valld for all values of «. The domlnating curve will be used In the rejection algo-
rithm to be presented below. Taklng the minimum of the bounds glves basically
two constant pleces near the center and two polynomially decreasing talls. There
Is no problem whatsoever with the generation of random varlates with density
proportional to the dominating curve. Unfortunately, the bounds ‘provided by
Theorem 8.1 are not very useful for asymmetric stable random varlates because
tlﬁ mode 1s located away from the orlgin. For example, for the positlve stable
density, we even have f (0)==0. Thus, a constant/polynomlal domlnating curve
does not cap the density very well In the reglon between the origin and the mode.
For a good fit, we would have needed an expanslon around the mode instead of
two expansions, one around the origin, and one around co. The 1nefficlency of the
bound Is easily born out in the Integral under the dominating curve. We will con-
sider four cases:

~==0,a>1 (symmetric stable).
4=0,a<1 (symmetric stable).

7=(2—a)12r-,a>1 (positive stable).

'7=a—;r—,a§1 (positlve stable).

The upper bound glven to us Is of the form min(A4 ,Bz {1*%)) for 2 >0. For the
symmetric stable density, the dominating curve can be mirrored around the orl-
gln, while for the asymmetric cases, we need to replace A ,B by values A*,B*,
and z by -z . Recalllng that

(e o] [+3 1

fmin(A4 ,Bz~(+9)) dy = 1+ 4y tva piha
. v

A 1te pilta
[0
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1t Is easy to compute the areas under the various dominating curves. We offer
the following table for A ,B:

CASE A B
1
1 A F(i+a)
i n{sin( o))"
1
2 F(;) I'(1+a)
yixe 4 T
1
3 My I(a+1)
L (e ¢
afr(sln((a—l)-;-r-)) @ n(cos(%)) *
1
4 " T(a+1)
an(eos(T) m(-cos(-==))**!

For example, In case 1, we see that the area under the dominating curve is

o _

) | e 1
2a+1 o I'(i1+a) a+1
Y To

w(sln(—z’{;»”l

— 1

< k) ™ (rara)

_<_—1r3 2

where we used the following Inequalitles: (1) (a+1)/a®/(TN<g (a>1); (1)
sin(m/(20))21/06 () T(u)S2 @<u<8) (W) T(w)ST(H)=v7 (7<u <1).

Some of the Inequalities are rather loose, so that the actual fit Is probably much
better than what Is predicted by the upper bound. For a=2, the normal denslty,
we obtaln 321/8772/3, The \mportance of the good fit Is clear: we can now use the
dominating curve quite confldently In any rejection type algorithm for symmetric -
stable random varlate generation when a>1. The story Is not so rosy for the
three other cases, because the integral of the dominating curve Is not uniformly
bounded over the specifled parameter ranges. The actual verificatlon of this state-
ment Is left as an exerclse, but we conclude that 1t 1s not worth to use the
Bergstrom-Feller serles for asymmetric stable random varlates. For thils reason,
we will Just concentrate on the symmetric case. The notatlon a,,b,, A,, B, Is
taken from Theorem 6.1. Furthermore, we deflne a density ¢ and a normallization
constant ¢ by
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”7})

am
I'a+1)
(| = | sin(g))*t1

¢g (r) = min

where ¢==0 for o<1, and ¢=7/(2a) otherwise. The algorithm 1s of the following
form:

Series method for symmetric stable density; case of parameter > 1

REPEAT
Generate X with density ¢ .
Generate a uniform [0,1] random variate U.
T «Uecg (X)
S «+0, n «0 (Get ready for series method.)
REPEAT
nen+1,5+8 +a,(X)
UNTIL | §-T | 2A (X))
UNTIL T <S8
RETURN X

Because of the convergent nature of the serles }ja,, thls algorlthm stops with
probability one. Note that the dlvergent asymptotic expansion is only used In the
deflnltlon of c¢g. It could of course also be used for introduclng quick acceptance
and rejection steps. But because of the dlvergent nature of the expansion it Is
useless In the defilnition of a stopplng rule. One posslble use Is as Indicated In the
modlfled algorithm shown below.
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Series method for symmetric stable density; case of parameter > 1

REPEAT
Generate X with density g .
Generate a uniform [0,1] random variate U.
T+—Ucg(X)
S5 +0, n —0 (Get ready for series method.)
VeBy(X), Weby(X)
FrFT<W-V
THEN RETURN X
ELSEIF W-V<T<W+V
THEN
REPEAT
n—n+1,5 S +a,(X)
UNTIL | §-T | 2A,4,(X)
UNTIL T<S§S AND T<W+V
RETURN X

Good speed Is obtalnable If we can set up some constam;s for a fixed value of a.
In particular, an array of the first m coefficlents of z77! In the serles expansion
can be computed beforehand. Note that for o<1, both algorithms shown above

can be used agaln, provided that the roles of a, and b, are interchanged. For
the modifled version, we have:
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Series method for symmetric stable density; case of parameter less than or equal
to one

REPEAT
Generate X with density g.
Generate a uniform {0,1] random variate U.
T«Ueg(X)
8§ +0, n 0 (Get ready for series method.)
VA (X), Weay(X)
FTL<W-V
THEN RETURN X
EBLSEIF W-V<T<W+V
TI—}EN
REPEAT
nen+1,5«5+b,(X)
UNTIL | $-T | 2By 41(X)
UNTIL T <$ AND T<W+V
RETURN X

~ 8.5. Exercises.

1.

Prove that a symmetric stable random variate with parameter —;— can be

obtalned as ¢ (V,2-N,%) where N,,N, are 1ld normal random varlates, and
¢ >0 1Is a constant. Determlne ¢ too0.

The expected number of iterations In the serles method for symmetric stable
random varlates with parameter « ,based upon the lnequallties glven In the
text (based upon the Bergstrom-Feller serles), Is asymptotic to

2
me o?

as a}0.

Conslder the serles method for stable random varlates glven In the text,
without qulck acceptance and relection steps. For all values of «, determlne
E (N), where N 1s the number of computations of some term a, or b, (note
that since a, or b, are computed In the Inner loop of two nested loops, It s
an appropriate measure of the time needed to generate a random varlate).
For which values, If any, is £ (N ) finlte ?
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Some approximate methods for stable random varlate generatlon are based
upon the following limlt law, which you are asked to prove. Assume that
X ,... are 11d random varlables with common distribution functlon F satisfy-
ing

1-F (z) ~ (—fg—)a (z —00)

ch*
z |

F-z)~(

¥ (z—-00),

for some constants O0<a<2, b,b* >0, b +b* >0. Show that there exist nor-
mallzing constants ¢, such that

1 n
1 2 Xj —Cy
= j=1
n o

tends In distribution to the stable (a,83) distribution with parameter
b-bx<

pOotp#e )

(Feller, 1971).

This Is a continuation of the previous exercise. Glve an example of a distri-
butlon with a density satisfylng the tall conditlons mentioned In the exercise,
and show how you can generate a random varlate. Furthermore, suggest for
your example how ¢, can be chosen.

Prove the first statement of Lemma 8.1.

Find a simple dominating curve with uniformly bounded integral for all posi-
tlve stable densltles with parameter a>1. Mention how you would proceed
with the generatlon of a random varlate with density proportlonal to this
curve,

In the splrit of the previous exercise, ind a simple dominating curve with
uniformly bounded Integral for all symmetric stable densitles; o can take all
values In (0,2].

7. NONSTANDARD DISTRIBUTIONS.

7.1. Bessel function distributions.

sity

The Polya-Aeppli distribution 1s a three-parameter distribution with den-

A1

—

J(@)=Cz ? eI, (VT ) (2>0)
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where §>0, A\>0, #>0 are the parameters and I, (z) Is the modifled Bessel func-
tlon of the first kind, formally defined by

I ( ) (e ¢] 1 (.7: 2j+d
g) = — =
¢ ,JEOJ!F(] +a+1) 2

The normalization constant C Is glven by

The name Polya-Aeppll Is used In many texts such as Ord (1972, p. 125-126).
Others prefer the name "type I Bessel functlion distributlon” (Feller, 1971, p. 57).
By using the expanslon of the Bessel function, It 1s not difficult to see that If Z 1s

Polsson (%) distributed, and G 1s gamma (A+Z ) distributed, then —;i has the
Polya-Aeppll distribution. We summarize:

Polya-Aeppli random variate generator

Generate a Poisson (—f;—) random variate Z .
Generate a gamma (A+Z ) random variate G .

RETURN X 4—-—;—;-

The Polya-Aeppll famlly contalns as a speclal case the gamma famlly ( set =0,
=1 ). Other distributlons can be derlved from It without much trouble: for

example, If X 1s Polya-Aeppll (ﬁ,k,-g-), then X2 1s a type II Bessel function distri-
butlon with parameters (4,),6), l.e. X 2 has denslty

z? .

f(z)=Dzre 2I5 (Bz) (c2>0),

where D =@ @' e #/29  Speclal cases here Include the folded normal distribu-
tlon and the Raylelgh distribution. For more about the propertles of type I and II
Bessel functlon distributions, see for example Kotz and Srinivasan (1969), Lukacs
and Labha (1964) and Laha (1954).

Bessel functlons of the second kind appear in other contexts. For example,
the product of two 11d normal random varlables has density

1
";KO(-'”)

where Ko Is the Bessel functlon of the second kind wlith purely lmaginary argu-
ment of order O (Springer, 1979, p. 160).
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In the study of random walks, the followlng denslty appears naturally:

[@)=Le*L(@) (2>0),

where r >0 Is a parameter (see Feller (1971, pp. 59-60,4786)). For Integer r, thls Is
the density of the time before level r Is crossed for the first tlme In a symmetric
random walk, when the time between epochs Is exponentially distributed:

X «0,L «+~0

REPEAT
Generate a uniform [-1,1] random variate U .
'L «L +sign(U)
X«X-log(| U |)

UNTIL L =r

RETURN X

Unfortunately, the expected number of Iterations is oo, and the number of itera-

tlons Is bounded from below by r, so this algorithm is not uniformly fast In any
sense. We have however:

Theorem 7.1.
Let r >0 be a real number. If G ,B are Independent gamma (r ) and beta
(%,’r +%) random variables, then

G
2B
has denslity

[@)=—e*L(z) (2>0).

Proof of Theorem 7.1.

We use an Integral representation of the Bessel function I, ‘which can be
found for example in Magnus et al. (1866, p. 84):

[(@)=Le* I ()
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1

1 r 1 ,z.7 ro
= Lo 2=(L) fe= (127 2 d
F(T+%) ar fle B z
1
1 r-—
= £y 22’[6‘2””@(1 -y)) dy .
rr+d) G

The result follows directly from this. .

The algorithm suggested by Theorem 7.1 Is uniformly fast over all r >0 If
unlformly fast gamma and beta generators are used. Of course, we can also use
direct relectlon. Bounds for f can for example be obtalned starting from the
Integral representation for f given In the proof of Theorem 7.1. The acceptance
or rejectlon has to be declded based upon the serles method 1n that case.

7.2. The logistic and hyperbolic secant distributions.

A random varlable has the logistic distribution when 1t has distribution

function
F(z) = 1
1+e~*

on the real line. The correspondling density Is

1
f@)= —F—.
2+e% 4e7®
For random varlate generation, we can obviously proceed by inversion: when U
U) Is loglstlc. To ‘beat this

Is uniformly distributed on [0,1], then X «log( I

method, one needs elther an extremely efflclent rejection or acceptance-
complement algorithm, or a table method. Rejectlon could be based upon one of
the following Inequalities:

A. f(z)<e !#|: this 1s rejection from the Laplace density. The rejection con-
stant 1Is 2.

B. f(2)<

1 > : this Is rejection from the density of 2C where C 1s a Cauchy
44z

T
random varlate. The rejection constant 1s 3—%1.57.

A distributlon related to the logistlc distribution Is the hyperbolic secant
distribution (Talacko, 1958). The density Is given by

2
T
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Both the logistic and hyperbollc secant distrlbutions are members of the fam!ly of
Perks distributlons (Talacko, 1958), with densltles of the form ¢ /(a +e? +e~7),
where ¢ >0 I1s a parameter and ¢ Is a normalization constant. For thils famlily,
relectlon from the Cauchy density can always be used slnce the density Is
bounded from above by ¢ /(a +2+x2), and the resultlng relection algorlthm has
uniformly bounded relectlon constant for a¢ >0. For the hyperbolic secant distri-
bution In particular, there are other possibilitles. One can easlly see that It has
distribution function

F(z)= -?T—arc tan(e®) .

Thus, X «-log(tan(lzr-U )) 1s a hyperbolic secant random variate whenever U 1s a

uniform [0,1} random variate. We can also use rejectlon from the Laplace density,
2

based upon the inequality f (:r)_<_—e“’c |. This ylelds a qulte acceptable rejec-
T

4
tlon constant of —. The rejectlon condlition can be considerably simplified:
™

Rejection algorithm for the hyperbolic secant distribution

REPEAT
Generate U uniformly on (0,1} and V uniformly on [-1,1].
X «—sign(Vitog( | V |)

UNTIL U(| V |+1)<1

RETURN X

Both the logistic and hyperbollc secant distributions are Intimately related to a
host of other dlstributlons. Most of the relations can be deduced from the inver-
sion method. For example, by the properties of unlform spacings, we observe that

Is distributed as E,/F,, the ratlo of two Independent exponentlal random

varlates. Thus, log(F ,)-log(E,) Is loglstic. This in turn implies that the difference
between two 11d extreme-value random varlables (l.e., random varlables with dis-

tribution function e ¢~ ) Is loglstic. Also, tan(-;r—U ) Is distributed as the absolute

value of a Cauchy random variable. Thus, If C 1Is a Cauchy random varlable, and
N, ,N, are 1d normal random varlables, then log(|C |) and
log( | N, | )-log( | N,|) are both hyperbolic secant.

Many properties of the logistic distribution are reviewed In Olusegun George
and Mudholkar (1981).
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7.3. The von Mises distribution.

The von Mises distribution for polnts on a circle has become Important In
the statlstical theory of directional data. For lts propertles, see for example the
survey paper by Mardla (1975). The distribution Is completely determined by the
distributlon of the random angle © on [-w,m]. There Is one shape parameter,
k>0, and the denslty 1s glven by

f (0) e Kcos(d)

o T(n) (|o]<m.

Here I, Is the modified Bessel function of the first kind of order O:

0 N
I@) = 33 —(Z) .
’ j=0J! 2
Unfortunately, the distribution function does not have a slmple closed form, and
there Is no silmple relatlonshlp between von Mises (k) random varlables and von
Mises (1) random varlables which would have allowed us to eliminate in effect the
shape parameter. Also, no useful characterlzations are as yet avallable. It seems
that the only vlable method Is the rejection method. Several relectlon methods
have been suggested In the llterature, e.g. the method of Selgerstetter (1974) (see
also Rlpley (1983)), based upon the obvious Inequality

[0 £ 10

which leads to a relectlon constant 27 f (0).which tends quickly to oo as K—oo.
We could use the unlversal bounding methods of chapter 7 for bounded mono-
tone densities since f Is bounded, U-shaped (with modes at m and -m) and sym-
metric about 0. Fortunately, there are much better alternatives. The leading
work on thls subject 1s by Best and Fisher (1979), who, after consldering a
varlety of domlnating curves, suggest using the wrapped Cauchy denslity as a
domlnating curve. We wlll Just content ourselves with a reproduction of the
Best-Fisher algorithm.

‘We begin with the wrapped Cauchy distribution functlon with parameter p:

(1+p%)cos(z )-2p

G'(x)=-1—arccos (lz | <m).
2w 1+p?—2pcos(z )
For later reference, the density ¢ for G ls:
1 1-p2
g(z)=— £ (|z | <m).

27 1+4p2-2pcos(z )

A random varlate with this distribution can easltly be generated via the inverslon
method:
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Wrapped Cauchy generator; inversion method

[SET-UP]

2
s Lo

2p
(GENERATOR]
Generate a uniform [-1,1} random variate U.
Z —cos(nU)
RETURN 6 ~282U)
cos(i-_*-.s_z)
8+2

If the wrapped Cauchy distrlbution Is to be used for rejectlon, we need to fine
tune the distributlion, l.e. choose p as a function of k.

Theorem 7.2. (Best and Fisher, 1979)
Let f be the von Mlses density with parameter x>0, and let g be the
wrapped Cauchy density with parameter p>0. Then
f(@)<eg(z) (= |<m

where ¢ 1s a constant depending upon £ and p only. The constant is minimized
wlith respect to p for the value

rVar

="k

where
r o= 1+V 1+4K% .

The expected number of iterations in the rejection algorithm ls

142
2 K -1
4 e 20
K

(1-p*) o(k)

Furthermore, lm ¢ =00 and lim ¢ = 2
Kklo K—00 €
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Proof of Theorem 7.2.
Conslder the ratlo
hz) = L&) _ (+p’-2pcos(z))e =)
g(z) Io(k)(1-p?)

The derlvative of h s zero for sln(z )=0 and for cos(z )=(1+p2—2£-)/(2p). By
K
verlfylng the second derivative of A, we find a local maximum value
M, = (1-p)e”
at sin(z )=0 when

2
”2<m,
(1-p)

and a local maximum value

PR C
M2 — 2p e 2p
K

1

at cos(z )=(1+p2—-2—:-)/(2p) when

2
2p2<m< L
(1+p) (1-p)

2p 2=fc and 2p

(1-p) (1+p)?
two Intervals for p deflned by the the two sets of lnequalities are nonoverlapplng.

The two intervals are (0,p,) and (po,min(1,p,)) respectively. The maximum M s
defined as M, on (0,p,) and as M, on (py,min(1,p,)).

To find the best value of p, 1t suffices to find p for which M as a function of
p 1s minimal. First, M, consldered as a functlon of p Is minimal for p=p,. Next,
M, considered as a functlon of p 1s minimal at the solutlon of

-k p*+2p34+2kp%+2p-K=0 ,

Let pg and p, be the roots In (0,1) of ==k respectlvely. The

le. at p=p*=(r —Vor )/(2r) where r=1+v1+4k% It can be verifled that
p* €(pomin(1,p,)). But because M (po)=M,(pe)>M(p*), 1t 1s clear that the
overall minimum s attained at p*. The remalnder of the statements of Theorem
7.2 are left as an exerclse. [Jj

The relectlon algorithm based upon the Inequallty of Theorem 7.2 Is glven
below:
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von Mises generator (Best and Fisher, 1979)

[SET-UP)
1-+p°
T2p
[GENERATOR)
REPEAT
Generate iid uniform [-1,1] random variates U,V .
Z +—cos(nlU)
1+82
8§ +2
Y —k(s-W)
Accept (W (2-W)-V >0] (Quick acceptance step)

8

—

IF NOT Accept THEN Accept <—[log(—¥)+ 1-W >0]

UNTIL Accept
sign(U)

RN € cos(W)

Two flnal computational remarks. The cosine in the definltion of Z can be
avolded by using an appropriate polar method. The coslne In the last statement
of the algorithm cannot be avolded.

7.4. The Burr distribution.

In a serles of papers, Burr (1942, 19868, 1973) has proposed a versatile family
of denslties. For the sake of completeness, his orlginal list is reproduced here. The
parameters r,k,c are positlve real numbers. The fact that k£ could take non-
Integer values Is bound to be confusing, but at this polnt It Is undoubtedly better
to stlck to the standard notation. Note that a list of distribution functions, not
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densltles, s provided In the table.

NAME F(z) RANGE FOR =
Burr I z [0,1]
Burr II (1+e™* )" (=00,00)
Burr III (1+z7* )" [0,00)
c-T % —r '
Burr IV (1+( - ) [0.¢]
Burr V (14-ketan@@))y-r [—-;L,—;r-
Burr VI (14 ke #mBE)r (—c0,00)
Burr VII 27" (1+tanh(z))" (—00,00)
Burr VIII (-g-arcl:an(c o\ (—00,00)
s
Burr IX - 2 (—00,00)
2+k ((1+c2’ ) -1)
Burr X (1+e2)" [0,00)
Burr XI (z —--};sin(%’z N’ [0,1]
Burr XII 1-(1+2°)* [0,00)

Most of the densities In the Burr famlly are unimodal. In all cases, we can gen-
erate random varlates dlrectly via the Inverslon method. By far the most Impor-
tant of these distributlions is the Burr XII distribution. The corresponding den-
sity,

(1+z°)*
with parameters ¢,k >0 can take a varlety of shapes. Thus, f 1s particularly
useful as a flexlble dominating curve in random variate generation (see e.g. Cheng
(1977)). As pointed out by Tadlkamalla (1980), the Burr III density s even more
flexible. It Is called the reciprocal Burr distribution because the reciprocal of a
Burr XII with parameters ¢ ,k has the Burr III distributlon function

(z 20)

F(z) = ;k
a+z°)
The density 1s
kex ck -1

f(z)= ——7.
It should be noted that a myriad of relatlonshlips exist between all the Burr dis-
tributions, because of the fact that all are dlrectly related to the uniform distri-
butlon via the probabllity Integral transform.
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7.5. The generalized inverse gaussian distribution.
The generalized inverse gaussian, or GIG, distribution Is a three-
parameter distribution with density
A
(22

s X A1
ey N R

1,x
~—(X+yz)
2z (z >0).

Here N\€ER, x>0, and >0 are the parameters of the distribution, and K is the
modifled Bessel function of the third kind, defined by

o0
Ky(u)= -;—-fcosh()\u)e“z.wsn(“) du .

=00

A random varlable with the denslity glven above will be called a GIG (\,%,X) ran-
dom varlable. The GIG famlily was Introduced by Barndorff-Nlelsen and Halgreen
(1977), and 1ts propertles are reviewed by Blaesild (1978) and Jorgensen (1982).
The indlvidual denslties are gamma-shaped, and the family has had quite a bit of
success recently because of Its applicablllty In modellng. Furthermore, many
well-known distributions are but speclal cases of GIG distrlbutions. To clte a few:

A. x==0: the gamma density,
B. ==0: the density of the inverse of a gamma random varlable.

C. >\=——;-: the Inverse gaussian distribution (see section IV.4.3).

Furthermore, the GIG distribution Is closely related to the generallzed hyperbolic
distribution (Barndorfi-Nielsen (1977, 1978), Blaesild (1978), Barndorff-Nlelsen
and Blaesild (1980)), which Is of interest in itself. For the relatlonship, we refer to
the exerclses.

‘We begin with a partial list of propertles, which show that there are really
only two shape parameters, and that for random varlate generatlon purposes, we
need only conslder the cases of xy==1 and \>0.
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Lemma 7.4.

Let GIG (.,.,.) and Gamma (.) denote GIG and gamma distributed random
variables with the glven parameters, and let all random varlables be Independent.
Then, we have the following distributional equivalences:

A. GIG (\,x) = Lcic (X,i,xc ) for all ¢ >0. In particular,
c ¢

GIGO\,¥,x) = \/%GIG(X,\/W,\/W) :

B.

GIGO\ ) = GIG(-\,1,9) + -Z-Gamma(x) .
C.

GIG()\,’!I),X) = m .

For random varlate generation purposes, we will thus assume that x==% and
that A>0. All the other cases can be taken care of via the equivalences shown In

Lemma 7.4. By considering log(f ), 1t 1s not hard to verify that the distribution Is
unlmodal with mode m at

In additlon, the density Is log concave for A>1. In view of the analysis of section
VIL.2, we know that thls 1s good news. Log concave densitles can be dealt with
quite efficlently In a number of ways. Flrst of all, one could employ the unlversal
algorithm for log concave denslties given In sectlon VIIL.2. This has two dlsadvan-
tages: first, the value of f (m ) has to be computed at least once for every cholce
of the parameters (recall that this Involves computing the modified Bessel func-
tlon of the third kind); second, the expected number of iterations In the rejection
algorithm Is large (but not more than 4). The advantages are that the user does
not have to do any error-prone computations, and that he has the guarantee that
the expected time Is unlformly bounded over all ¥>0, A>1. The expected
number of iteratlons can further be reduced by using the non-unlversal rejectlon
method of sectlon VIL.2.8, which uses rejectlon from a denslty with a flat part
around m, and two exponentlal talls. In Theorem 2.8, a simple formula 1s glven
for the locatlon of the polnts where the exponentlal talls should touch f : place

1
these polnts such that the value of f at the polnts Is " f (m). Note that to

solve thls equatlon, the normalization constant in f cancels out convenlently.
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Because f (0)==0, the equation has two well-defined solutions, one on each slde of
the mode. In some cases, the numerlcal solutlon of the equation 1s well worth the
trouble. If one Just cannot afford the time to solve the equatlon numerlcally,
there Is always the possibllity of placing the polnts symmetrically at dlstance
e /((e-1)f (m) from m (see section VIL.2.6), but this would agaln involve com-
puting f (m ). Atkinson (1979,1982) also uses two exponential talls, both with
and without flat center parts, and to optimize the dominating curve, he suggests
a crude step search. In any case, the generation process for / can be automated
for the case A\>1.

When 0<A<1, f Is log concave for z <% /(1-)\), and s log convex other-
wlse. Note that thls cut-off polnt 1s always greater than the mode m, so that for
the part of the density to the left of m, we can use the standard
exponential/constant dominating curve as described above for the case A>1. The
right tall of the GIG denslty can be bounded by the gamma density (by omitting
the 1/z term In the exponent). For most cholces of A<1 and ¥>0, this Is satls-
factory.

7.6. Exercises.
1. The generalized logistic distribution. When X s beta (a,b), then

log( %
1970; Olusegun George and OJo, 1980). Give a uniformly fast relectlon algo-
rithm for the generation of such random variates when ¢ =b >1. Do not use
the transformation of a beta method glven above.

) 1s generallzed logistic with parameters (a,b) (Johnson and Kotz,

. oo L;
2. Show that if L,,L,,... are 1id Laplace random varlates, then ¥ -i2- Is logts-
J=11
tic. Hint: show first that the loglistic distribution has characteristic functlon
it . . .
m—)-=l‘(1—zt M'(1+1t ). Then use a key property of the gamma function.
n(m
3. Complete the proof of Theorem 7.2 by proving that for the von Mises gen-
erator of Best and Fisher, llm ¢ =\/—2—-%.
K00 €

4. The Pearson system. In the beginning of this century, Karl Pearson
developed his well-known famlly of distrlbutions. The Pearson system was,
and still Is, very popular because the famlly encompasses nearly all well-
known distributions, and because every allowable combination of skewness
and kurtosls Is covered by at least one member of the famlly. The famlily
has 12 member distributlons, and is described in great detall in Johnson and
Kotz (1970). In 1973, McGrath and Irving polnted out that random varlates
for 11 member distributions can be generated by simple transformations of
one or two beta or gamma random varlates. The exception 1s the Pearson
IV distribution. Fortunately, the Pearson IV density Is log-concave, and can
be dealt with qulite efficiently using the methods of sectlon VIL.2 (see exercise
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VII.2.1). The Pearson densltles are listed in the table below. In the table,
a,b,c,d are shape parameters, and C s a normalization constant. Verlfy
the correctness of the generators, and In dolng so, determine the normallza-
tlon constants C.

PEARSON DENSITIES
Pearson f (z) PARAMETERS SUPPORT GENERATOR
(a+ec )X—a
X+Y
1 O(1+—z-)" (1—1)4 b,d >-1;a,c >0 [-a,e] X gamma(b)
a ¢ Y egammal(d)
a(X-Y)
X+Y
II 0(1_(ﬁ)2)b b >-1;¢a >0 [~a,a] X gamma(b +1)
¢ Ygamma(b +1)
X
T—a
I O(1+%)"“ e ba >-1;6 >0 [-a 0] X gamma(ba +1)
-¢ arctal (i)
v | oarEpyte e ¢ >0 >
a
N
L X
A4 Czle * b>1;c >0 [0,00) X gammalb -1)
aX+Y
X
h'2! - C(z-a)z~° ¢ >b+1>0;a >0 [a ,00) X gamma(c -b -1)
Ygamma(b +1)
aN
7X/2
Vil C’(1+(—z-)2)'b b >-;—;a_ >0 N normal
' X gamma(b —-12-) .
1
. a(U *1-1)
VI C1+=)" 0<b <10 >0 [~a 0] U uniform[0,1]
1
. a (U b+1_1)
X C(+=)’ b >0;a >0 [-a .0l U uniform(0, 1]
L 2 : aE
X 7e ¢ a >0 (0,00) F exponential
1
QU 1
a
X1 C(‘;)b e >0;b>1 [a,00) U uniform[0,1]
.tz (e +0)X~a
X11 C'(—g—:;)c 0<b <e;0<c <1 [~a.b] Xbeta(c +1,1-¢)

5. The arcsine distribution. A random varlable X on [-1,1] Is sald to have
an arcsine distribution If 1ts denslty 1s of the form f (z )=(mV 1-z%)"!. Show
first that when U,V are itd uniform [0,1] random varlables, then
sin(wU ),sin(2nU ), —cos(2rU ), sin(n(U +V')), and sin(n(U-V')) are all have
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the arcsine distributlon. This Immedlately suggests several polar methods for
generating such random varlates: prove, for example, that If (X,Y) Is uni-
formly distributed In C,, then (X2-Y?2)/(X2+Y?) has the arcsine distribu-
tlon. Using the polar method, show further the following properties for iid
arcsine random varlables X ,Y:

(1) XY 1s distributed as -;—(X+Y) (Norton, 1978).
1+X

(1)

(1) X is distributed as 2X V' 1-X2 (Arnold and Groeneveld, 1980).
(1v) X2-Y?1s distributed as XY (Arnold and Groeneveld, 1980).
6. Ferreri’s system. Ferrerl (1964) suggests the following family of densitles:
Vb
f (.'L') = b 2.
C(c+eth (=40

where a,b,c ,4 are parameters, and
1

=T(1) 3 (e)itese 2
2 j=1

1s distributed as X2 (Arnold and Groeneveld, 1980).

1s a normalization constant. The parameter ¢ takes only the values +1. As
a —00, the denslty approaches the normal density. Develop an efficlent unl-
formly fast generator for this famlly.

7. The family of distributions of the form aX +bY where a,b ER are parame-
ters, and X,Y are iid gamma random varlables was proposed by McKay
(1832) and studled by Bhattacharyya (1942). This famlly has basically two
shape parameters. Derlve its density, and note that Its form Is a product of a
gamma density multiplled with a modlfied Bessel function of the second kind
when a ,b >0.

8. Toranzos’s system. Show how you can generate random varlates from
Toranzos's class (Toranzos, 1952) of bell-shaped densltles of the form
Cz¢e8+2¥ (3 50) (C 1s a normallzation constant) in expected time unl-
formly bounded over all allowable values of the parameters. Do not use C In
the generator, and do not compute C for the proof of the uniform bounded-
ness of the expected time.

9. Tukey’s lambda distribution. In 1960, Tukey proposed a versatile fam-
11y of symmetrlic densities in terms of the inverse distributlon function:

FY(U) = %(U*-(l-v)ﬁ ,

where AER 1Is a shape parameter. Clearly, If U is a unlform [0,1] random
varlate, then F~}(U) has the glven distrlbution. Note that the density is not
known In closed form. Tukey's distribution was later generallzed In several
directions, first by Ramberg and Schmelser (1972) who added a location and
a scale parameter. The most significant generallzatlon was by Ramberg and
Schmelser (1974), who deflned
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10.

11,

FUUY = N+~ (UN-(1=U ™) .
oA
For yet another generallzatlon, see Ramberg (1975). In the Ramberg-
Schmelser form, X\, Is a locatlon parameter, and \, Is a scale parameter. The
merlt of thls famlly of distributlons is 1ts versatility with respect to Its use In
modellng data. Furthermore, random varlate generation 1s trivial. It 1s there-
fore Important to understand which shapes the density can take. Prove all

the statements glven below.
A. As A\z3=\,—0, the denslty tends to the loglstic density.
B. The denslty Is J-shaped when \z=0.

C. When \;=X\3=0, and A\,=\,—0, the density tends to the exponentlal
density. ‘

D. The density 1s U-shaped when 1< 2,2, <2.

E. Glve necessary and sufficlent conditions for the dlstribution to be trun-
cated on the left (right).

F. No positlve moments exlst when A\;<-1 and \,>1, or vice versa.

G. The denslty f (z) can be found by computing 1/F~Y(u), where u Is
related to £ vla the equallty z=F"'(u). Thus, by lettlng u vary
between O and 1, we can compute pairs (z,f (z)), and thus plot the
denstty.

H. Show that for A\;==0, X\,==0.1975, A;==X,=0.1349, the distrlbution func-
tlon thus obtalned differs from the normal distribution function by at
most 0.002.

For a general description of the famlily, and a more complete blbllography,
see Ramberg, Tadikamalla, Dudewicz and Mykytka (1979).

The hyperbolic distribution. The hyperbolic distribution, Introduced by
Barndorff-Nlelsen (1977, 1978) has density

R -aV/1+2%+fz
f(z) AN :

Here a> | B | are the parameters, ¢=V o?-(, and K, Is the modified Bessel
functlon of the third kind. For =0, the density is symmetric. Show the fol-
lowing:

A. The distribution Is log-concave.

B. If N s normally distributed, and X s GIG (1,a’-f%1), then
BX +N vX has the glven density.

C. The parameters for the optlmal non-unlversal rejectlon algorithm for
log-concave densitles are expllcitly computable. ( Compute them, and
obtaln an expression for the expected number of lterations. Hint: apply
Theorem VII.2.6.)

The hyperbola distribution. The hyperbola distribution, Introduced by
Barndorff-Nlelsen (1978) has density
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_ 1 W W
f(z)= € .
2K o()V 1412

Here a> | #| are the parameters, ¢=V o?-f?, and K, Is the modified Bessel
functlon of the third kind. For f==0, the denslty Is symmetric. Show the fol-
lowing:

A. The distribution Is not log-concave.

B. If N s normally distributed, and X s GIG (0,02-f%1), then
BFX +N VX has the glven denslty.

12. Johnson’s system. Every possible comblnation of skewness and kurtosls
corresponds to one and only one distribution In the Pearson system. Other
systems have been designed to have the same property too. For example,
Johnson (1949) Introduced a system deflned by the densities of sultably
transformed normal (u,0) random varlables N: his system consists of the
Sy, or lognormal, densities (of eN), of the Sp densitles (of eN/(1+eN)),

and the Sy densitles (of sinh(N )=%(3.N —eN)). This system has the

advantage that fitting of parameters by the method of percentiles 1s simple.
Also, random varlate generation s slmple. In Johnson (1954), a simllar sys-
tem In which N Is replaced by a Laplace random varlate with center at u
and varlance o2 1s described. Give an algorithm for the generatlon of a John-
son system random variable when the skewness and kurtosis are given (recall
that after normallzation to zero mean and unit variance, the skewness Is the
third moment, and kurtosis Is the fourth moment). Note that thls forces you
In effect to determine the different reglons In the skewness-kurtosis plane.
You should be able to test very qulckly which reglon you are in. However,
your maln problem ls that the equations linklng 4 and o to the skewness and
kurtosls are not easlly solved. Provide fast-convergent algorithms for thelr
numerical solutlon.



