
Chapter Nine 
CONTINUOUS UNIVARIATE DENSITIES 

Chapters IX and X are lncluded for the convenlence of a large sub- 
populatlon of users, the statlstlclans. The maln prlnclples In random varlate gen- 
eratlon were developed In the flrst elght chapters. Most partlcular dlstrlbutlons 
found here are members of speclal classes of densltles for whlch unlversal 
methods are avallable. For example, a short algorlthm for log-concave densltles 
was developed In sectlon VII.2. When speed 1s at a premlum, then one of the 
table methods of the prevlous chapter could be used. Thls chapter 1s purely com- 
plementary. We are not ln the least lnterested In a hlstorlcal revlew of the 
dlfferent methods proposed over the years for the popular densltles. Some 
lnterestlng developments whlch glve us new lnslght or lllustrate certain general 
prlnclples wlll be reported. The llst of dlstrlbutlons corresponds roughly speaklng 
to  the llst of dlstrlbutlons In the three volumes of Johnson and Kotz. 

1. THE NORMAL DENSITY. 

1.1. Definition. 
A random varlable X 1s normally distributed If I t  has density 

2 2  
1 -- 2 

! ( X I = -  d G e  
When x 1s normally dlstrlbuted, then ,%+ax 1s sald to be normal (,%,a2). The 
mean ,u and the varlance a2 are unlnterestlng from a random varlate generatlon 
polnt of vlew. 

Comparatlve studles of normal generators were publlshed by Muller (1959), 
Ahrens and Dleter (1972), Atklnson and Pearce (1976), Klnderman and Ramage 
(1970), Payne (1979) and Best (1979). In the  table below, we glve a general out- 
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Marsaglia's method for the tail-of-the-normal density (Marsaglia, 19 64) 

REPEAT 
Generate iid uniform [0,1] random variates U ,  V .  
x +\ /a  2-210g( u ) 

UNTIL Wsa 
RETURN x 

Marsaglla's method 1s based upon the trlvlal lnequallty 
2 2  2 2  

x -7 
a 

-- 
e 2 < - e  - ( e a ) .  

a 2-z - 
But xe (x 2 a ) 1s a denslty havliig dlstrlbutlon functlon 

a 2-z - 
( e a ) ,  2 F (x) = 1-e 

whlch 1s the tall part of the Raylelgh dlstrlbutlon functlon. Thus, by lnverslon, 
da2-210g( U )  has dlstrlbutlon functlon F , whlch explalns the algorlthm. The 
probablllty of acceptance In the reJectlon algorlthm 1s 

as a -00. Thus, the reJectlon algorlthm 1s asymptotlcally optlmal. Even for small 
values of a ,  the probablllty of acceptance 1s qulte hlgh: I t  1s about 66% for a =1 
and about 88% for a=3. Note that Marsaglla's method can be sped up some- 
what by postponlng the square root untll after the acceptance: 

REPEAT 
Generate iid uniform [OJ] random variates u , b'. 
X + c  -log(U) (where c = a 2 / 2 )  

UNTIL v2xsc 
RETURN 

An algorlthm whlch does not requlre any square roots can be obtalned by reJec- 
tlon from an exponentlal denslty. We begln wlth the lnequallty 
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a 2  -- az 22 -- 
e 2 < e 2  - ( e a > ,  

which follows from the observatlon that (x -a )220. The upper bound 1s propor- 

tloiial to the denslty of a +- where E 1s exponentlally dlstrlbuted. Thls ylelds 

wlthout further work the followlng algorlthm: 

E 
U 

REPEAT 
Generate iid exponential random variates E ,E*. 

UNTIL E '5 2 a 2E* 
E 

RETURN X + U  f- 
a 

The probablllty of acceptance 

P (E* > E 2 / ( 2 , 2 ) )  = 

1s preclsely as for Marsaglla's method: 

If a fast  exponentlal random varlate generator 1s avallable, the second reJectlon 
algorlthm 1s probably faster than Marsaglla's. 

1.3. Composition/rejection methods. 
The prlnclple underlying all good composltlon/reJectlon methods 1s the fol- 

lowing: decompose the denslty of f lnto two parts, f (x )=pg  (a )+(l-p )h  (x ) 
where p E(0,l) 1s a mlxture parameter, g 1s an easy denslty, and h 1s a resldual 
denslty not very often needed when p 1s close to 1. We rarely stumble upon a 
good cholce for g by accldent. But we can always And the optlmal g e  In a famlly 
of suitable candldates parametrlzed by 6. The welght of go In the mlxture 1s 
denoted by p (8): 

The candldates g e should preferably be densltles of slmple transformatlons of 
lndependent unlform [O,l] random varlables. Among the slmple transformatlons 
one mlght conslder, we clte: 

i 
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(1) 
(2) 

(4) 61V1+02(V1)3 . 

O(V,+ * . . +Vn); 
8 median( V,,  . . . , Vn ); 

(3) 61 V 1+02 V2; 

Here v1,v2, ... are lld unlform [-1,1] random varlates, and 8,8,,8, are parameters 
t o  be selected. Marsaglla and Bray (1964) used the flrst cholce wlth n = 3  and 
wlth the dellberately suboptlmal value 8=1 (because a tlme-consumlng multlpll- 
catlon 1s avolded for thls value). Klnderman and Ramage (1976) optlmlzed 8 for 
cholce (1) when n =2. And Ahrens and Dleter (1972) proposed to use cholce (3). 
Because the shape of g e  1s trapezoldal, thls method 1s known as the trapezoidal 
method. All three approaches lead to  algoflthms of about equal length and 
speed. We wlll look at cholces (1) and (2) In more detall below, and provlde 
enough detall for t h e  reader to be able to reconstruct the algorlthms of Marsaglla 
and Bray (1964) and Klnderman and Ramage (1976). 

Theorem 1.1. 
The denslty of 6 medlan( V,, . . . , V 2 , + , )  for n posltlve and 8>0 1s 

(2n +I)! where c = . The maxlmal value of p (8) 1s reached for 6==, and 
2 2 n  +In !28 I takes the value 

I We have 
I 

Proof of Theorem 1.1. 

2n +1 lld unlform [O,l] random varlables has a symmetrlc beta denslty glven by 
The denslty can be derlved very easlly after recalllng that the medlan of 

(2n +I)! 

n !2 
(a:(l-z))fl (OLa: 51) 

Deflne ge(x)  = c ( 1 - ( ~ ~ / 6 ~ ) ) *  ( l a :  I 56), and note that log(f /go) attalns an 
extremum at some polnt a: for whlch the derlvatlve of the logarithm Is 0. Thls 
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y le1 ds the equation 
2x 12 -a:+-- = 0 ,  
e2 x 2  

x = O  ; x 2 = e 2 - 2 n  . 
When e2<2?2, f / g e  attalns only one mlnlmum, at x =O. When O2>2n, the 
functlon f /go 1s symmetrlc around 0: l t  has a local peak at 0, dlps to  a mlm- 
lmum, and lncreases rnonotonlcally agaln t o  03 as x t8. Thus, we have 

A2 

We stlll have to maxlmlze thls functlon wlth respect to 8. The functton p ( 8 )  
lncrezises llnearly from 0 up to  e=&. Then, I t  lncreases some more , peaks, 
and decreases In a bell-shaped fashlon. The maxlmum 1s attalntd for some value 
8> 6. Since In that reglon, p (8) 1s a constant tlmes 02n +'e -e2/2, the maxlmum 
1s attalned for 8 = d E .  Thls glves the deslred result. 

Had we consldered the Taylor serles expanslon of f about 0, given by 

1 9  f ( X I =  - 1 x 2  (I--+--- x4 x 6  + . . .  
J2n 2 a 4 8  

whlch 1s known t o  glve partlal sums that alternately overestlmate and underestl- 

mate f , then we would have been tempted to choose g (5)  = - 3 4& (1-71, X 2  

because of 

4 where p =- -0.7522528 1s the welght of g In the mixture. Thls lllustrates 

usefulness and the shortcomlngs of Taylor's serles. Slmple polynomlal bounds 
very easy to  obtain, but the cholce could be suboptlmal. From Theorem 1.1 

3J;; 
the 

are 
for 

example, we recall that  the optlmal g of the lnverted parabollc form 1s a con- 

stant tlmes (1--) ( I x 1 56). Sometlmes a suboptlmal cholce of O 1s prefer- X 2  
3 

able because the resldual denslty h 1s easler to handle. Thls Is the case for n= l  
In Theorem 1.1. The suboptlmal cholce e=&, whlch 1s the cholce lmgllclt In 
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Taylor’s serles expanslon, ylelds a much cleaner resldual denslty. For n =2, we 
need 5 random varlates lnstead of 3, an lncrease of 669’6, whlle the galn In 
efflclency (In value of p )  1s only of the order of 10%. For thls reason, the case 
n >1 1s less lmportant In practlce. Let us brlefly descrlbe the entlre algorlthm for 
the case n =1, e==&. We can decompose f as follows: 

where 

p =- 0.7522528; 
3J;; 

e-22/2 dx 0.15729921; S 7 z  r =  
l Z l > &  

X Z  ) dx % 0.09044801 . J -(e-Z2/2-(1-- 1 
G 2 9 =  

I z  Iifi 
Sampllng from the tall denslty t has been dlscussed In the prevlous sub-sectlon. 
Sampllng from g 1s slmySle: Just generate three lld unlform [-1,1] random varl- 
ates, and take 6 tlmes the medlan. Sampllng from the resldual denslty h can 
be done as follows: 

REPEAT 
Generate v uniformly on [-1,1], and u uniformly on [0,6]. 

Accept -[ u >x2] 
IF NOT Accept THEN 

X t f i V / I  v 

X2 IF U >_x2(1--) THEN 
8 

U N T i  Accept 
RETURN x 

Thls 1s a slmple reJectlon algorlthm wlth squeezlng based upon the lnequalltles 
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The reader can easlly work out the detalls. The probablllty of lmmedlate accep- 
tance In the flrst lteratlon 1s 

5 - 
6 

3 7  7 7 
- - -  - 2 2 6 2  - -+- 

4&32 

The same smooth performance for a resldual denslty could not have been 
obtalned had we not based our decomposltlon upon the Taylor serles expanslon. 

Let us next look at the denslty g e  of 8(V,+Vz+V3) where the Vi's are Ild 
unlform [-1,1] random varlables. For the denslty of e( VI+ V2), the trlangular 
denslty, we refer to the exerclses where among other thlngs I t  1s shown that  the 
optlmal 8 1s 1.1080179... , and that the correspondlng value p (8) 1s 0.8840704... . 

~ ~ _ _  

Theorem 1.2. 
The optlmal value for 8 In the decomposltlon of the normal denslty into 

p (8)g& ) plus a resldual denslty (where g o  1s the denslty of e( V l + V 2 + v 3 )  and 
the vi 'S are lld unlform [-1,1] random varlables), 1s 

e = 0.956668451229... . 

The corresponding optlmal value for p (8) 1s 0.962365327... . 

Proof of Theorem 1.2. 
The d,enslty g e  of e( Vl+V2+V3) 1s 
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0 

b 

e 
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2 ea< - 
- 3  

86' 

11= J 

b 2  

$=';;T 48s 1>@2 
2R 3 

e=1 

C 2  -- 

The functlon h,=f /go can be wrltten as 

I -- 

when x >O. We need to And the value of 8 for whlch mln h,(a:) 1s maxlmal. 
0 < ~ 1 3 e  I 

By settlng the derlvatlve of log(h0) wlth respect to x equal to 0, and by analyz- 
lng the shape of he ,  we see that the mlnlmum of he  belongs to the followlng set 
of values: 0, 8, b , c , where 

The followlng table glves all the local mlnlma together with the values for 
~-~ 

Local minimum I Value of h ,  at minimum I Local minimum exists when: 

The general shape of he  1s as follows: when 02>1, there 1s no local mlnlmum on 
(O,e), and he decreases monotonlcally to reach a global mlnlmum at a: = c  equal 
to 4, after whlch I t  lncreases agaln. When d2=1, the same shape 1s observed, but 
a zero derlvatlve occurs at x=8, although thls does not correspond to a local 
mlnlmum. When -<02<1, there are two local mlnlma, one on (0,O) (at b ,  of 8 

9 
2 8 
3 9 

value $), and one on (e,38) (at c , of value 4). For -<e2<-,  the local mlnlmum 

at c ceases to exlst. We have agaln a functlon wlth one mlnlmum, thls tlme at 
6 <8, of value $. Flnally, for d 2 < - ,  the functlon lncreases monotonlcally, and 

Its global mlnlmum occurs at x = O  and has value 77. 

2 
3 
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Conslder now the behavlor of q and $J as a functlon of 8. Clearly, q 
Increases llnearly wlth 8. Furthermore, $ 1s gamma shaped wlth global peak at 
8=1, and q=$ for 02=-. The value of q!~ on the other hand decreases monotonl- 

cally on the set e2z-. We verlfy easlly that d and $J cross each other on the seg- 

2 
3 

8 
9 

8 ment - < d2< 1. It 1s at thls polnt that mln h e(X ) 1s maxlmal. Thls cross-over 
9 O < Z  <3e 

polnt 1s preclsely the value glven in the statement of the theorem. 

Theorem 1.2 can be used In the deslgn of a fast composltlon/reJectlon algo- 
rlthm. In partlcular, the tall beyond the optlmal 38 1s very small, havlng proba- 
blllty 0.004104648 ... . The resldual denslty on [-38,38] has probablllty 
0.033530022... , but has unfortunately .enough flve peaks, the largest of whlch 
occurs at the orlgln. It 1s clear once agaln that the maxlmlzatlon crlterlon does 
not take the complexlty of the resldual denslty lnto account. A suboptlmal value 
for 8 sometlmes leads to better resldual densltles. For example, when 8=1, we 
save one multlpllcatlon and end up wlth a more manageable resldual density. 
Thls cholce was flrst suggested by Marsaglla and Bray (1964). We conclude thls 
sectlon by glvlng thelr algorlthm In its entirety. 

From the proof of Theorem 1.2, we see that (In the notatlon of that proof), 

- 0.86385546. .. . 16 p(e)  = 4 = - - G 
The normal denslty f can be decomposed as follows: 

4 

f ( z ) =  C P i f i ( z ) ,  
i =1  

where (p l,p 2tp31p4) 1s a probablllty vector, and the f i ' s  are densltles deflned as 
follows: 

(1) 1s the denslty of vl+v,+V,, where the Vi's are lld 

(11) p4=0.002699796063 ...= J f : f 1s the tall-of-the-normal denslty res- 

p1=0.86385546 ... , f 
unlform [-1,1] random varlables. 

1 2  123 
trlcted to I x I 2 3 .  

1 3 
9 2 

(111) f 2 ( 5 )  = -(6-4 5 I ) ( I 2 I s-); p2=0.1108179673 ... . 
1 

P 3  
(1V) p3=l-p ,-P,-P2= 0.02262677245... ; f 3=-(f -P 1 f 1-P 2f  2-P4 f 4). 

In the deslgn, Marsaglla and Bray declded upon the trlangular form of f flrst, 
because random varlates wlth thls denslty can be generated slmgly as -( V,+ V,) 
where the Vi's are agaln lld unlform [-1,1] random varlates. After havlng plclced 
thls slmple f 2, I t  1s necessary to choose the best (largest) welght p z  , glven by 

3 
4 
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Thls lnflmum 1s found a s  follows. The derlvatlve of the ratlo 1s 0 at I z I =2 and 
at I z I =0.87386312884 ... . Only the latter I z I corresponds to a mlnlmum, 
and the correspondlng value for p 1s p 2=0.1108179673 ... . Havlng determlned 
random varlate generatlon methods for all parts except f 3, I t  remalns to estab- 
llsh Just thls for f 3. Flrst, note that f has supremum 0.3181471173... . If we 
use rejectlon from a rectangular denslty wlth support on [-3,3], then the expected 
number of lteratlons 1s 

6 X0.3181471173 ... 
P 3  

= 1.9088827038 ... 

Comblnlng all of thls lnto one algorlthm, we have: 
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Normal generator of Marsaglia and Bray (1964) 

[NOTE: This algorithm follows the implementation suggested by Kinderman and Ramage 
(1977).] 
Generate a uniform [O,l] random variate U .  
CASE 

05 u 50.8638: 
Generate two iid uniform [-1.11 random variates V, W. 
RETURN xt2.3153508 ... u-1+ v+ w 

0.8638< u 50.9745: 
Generate a uniform [0,1] random variate V. 

3 
2 

RETURN Xt-( v-1+9.0334237 ...( u-0.8638)) 

0.9973002 ... < u51: 
REPEAT 

Generate iid uniform [0,1] random variates v , W , 
9 
2 

x t --log( w ) 
UNTIL m25E 

2 
RETURN x + m  sign( U-O.9986501 ...) 

0.9745< u 50.9973002 ... : 
REPEAT 

Generate a uniform [-3,3] random variate X and a uniform [OJ] ran- 
dom variate u. 
V t l X l  
w +6.6313339...(3- v)2 
Sum e 0  
IF v<- 3 THEN Sum +6.0432809...(--v) 3 

2 2 
IF V <1 THEN Sum t Sum +13.2636678...(3-v2)-w 

V* -- 
UNTIL u 549.0024445 ... e 
RETURN x 

-Sum-W 
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1.4. Exercises. 

391 

1. 

2. 

3. 

4. 

5. 

0. 

In the trapezoldal method of Ahrens and Dleter (1972), the largest sym- 
metric trapezold under the normal denslty 1s used as the maln component In 
the mlxture. Show that thls trapezold 1s deflned by the vertlces 
( -&o) , (~ ,O) , (q ,p ) , ( -q ,p )  where t=2.1140280833 ... ,q= 0.2897295736... , 
p=0.3825445560.,. . (Note: the area under the trapezold 1s 0.9195444057... .) 
A random varlate wlth such a trapezoldal denslty can be generated as 
aV,+bV,  for some constants a ,b > O  where V, ,V ,  are lld unlform [-l,l] 
random varlates. Determlne a , b  In thls case. 
Show that as a too, 

X 2  a2 
1 -2 O3 -- 

J e  - - e  
U a 

The optlmal probablllty p In Theorem 1.1 depends upon n .  Use Stlrllng’s 
formula to determlne a constant c such that p >1--, valld for all n 2 3 .  

n 
If we want to generate a normal random varlate by reJectlon from the 
exponentlal density -ee’ I I , the smallest reJectlon constant 1s obtalned 

when x=1. The constant 1s &. Show thls. Note that the correspondlng 

reJectlon algorlthm 1s: 

C 

x 
2 

REPEAT 
Generate two iid exponential random variates, X , E .  

UNTLL 2E <(X-1)” 
RETURN SX where S is a random sign. 

Thls algorlthm 1s mentloned In Abramowltz and Stegun (1970), where von 
Neumann 1s credlted. Butcher (1961) attrlbutes I t  to Kahn. Others have 
redlscovered I t  later. 
Teichroew’s distribution. Telchroew (1957) has shown that the functlons 

m )  = are valld characterlstlc functlons for all values a > O  of the 
( l + t  

parameter. Show that random varlates from thls famlly can be generated as 
(1) G ,-G,, where the Gi ‘s are lld gamma ( a  ) random varlables; 
(11) N m  where N ,G are lndependent random varlables wlth a normal 

and gamma ( a  ) dlstrlbutlon respectlvely. 
Thls questlon 1s related to  the algorlthm of Klnderman and Ramage (1970) 
(programs glven In Klnderman and Ramage (1977)). Conslder the lsosceles 
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trlangular denslty g 6 of the random varlable 8( V V,) where V 1, V 2  are lld 
unlform [-l,l] random varlates. Show that the largest trlangle to A t  under 
the normal denslty f touches f at the orlgln. Show next that the sldes of 
the largest trlangle touch f somewhere else. Conclude that the optlmal 8 1s 
glven by 8=1.1080179 ... , and that the correspondlng optlmal welght of the 
trlangle Is p =0.88407040 ... . 
The lognormal density. When N 1s normally dlstrlbuted, then 8+ec+aN 
1s lognormal wlth parameters B,(,a, all real numbers. The lognormal dlstrlbu- 
tlon has a denslty wlth support on (8,m) glven by 

7. 

(log(2 -6)-cY 

Random varlate generatlon requires the exponentlatlon of a normal random 
varlate, and can be beaten speedwlse by the Judlclous use of a 
composltlon/reJectlon algorlthm, or a reJectlon algorlthm wlth a good 
squeeze step. Develop Just such an algorlthm. To help you flnd a solutlon, I t  
Is lnstructlve to draw several lognormal densltles. Conslder only the case 
8=0 slnce 8 ls2 a translatlon parameter. Show also that In that case, the 
mode 1s at e sa , the inedlan Is at e 5, and that the T -th moment is e s+r2g2/2 

when T >O. 

In the composltlon/reJectlon algorithm of Marsaglla and Bray (1964), we 
return the sum of three lndependent unlform [-1,1] random varlates about 
86% of the tlme. Schuster (1983) has shown that by conslderlng sums of the 
form a V,+a,V,+a,V,, where the Vi 's  are lid unlform [-1,1] random varl- 
ates, I t  1s posslble to flnd coemclents a 2 , a 3  such that we can return the 
sald sum about 97% of the tlme (note however that the multlpllcatlons 
could actually cause a slowdown). Flnd these coefflclents, and glve the 
e nt Ire algor1 t hm. 

8. 

2. THE EXPONENTIAL DENSITY. 

2.1. Overview. 
We hardly have to convlnce the reader of the cruclal role played by the 

exponentlal dlstrlbutlon In probablllty and statlstlcs and In random varlate gen- 
eratlon. We have dlscussed varlous generators In the early chapters of thls book. 
No method 1s shorter than the lnverslon method, whlch returns -log( U )  where U 
1s a unlform [0,1] random varlate. For most users, thls method Is satlsfactory for 
thelr needs. In a hlgh level language, the lnverslon method Is dlmcult to beat. A 
varlety of algorlthms should be consldered when the computer does not have a 
log operatlon In hardware and one wants to obtaln a faster method. These 
Include: 
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1. 

2 .  

3 .  

4. 

5 .  
6. Table methods. 
The methods llsted under points 4 and 5 wlll not be dlscussed agaln In thls 
chapter. Methods 2, 3 and 6 are all based upon the memoryless property of the 
exponentlal dlstrlbutlon, whlch states that glven that an exponentlal random 
varlable E exceeds s >0, E - s  Is agaln exponentlally dlstrlbuted. Thls 1s at the 
basis of Lemma N . 2 . 1 ,  repeated here for the sake of readablllty: 

The unlform spaclngs method (sectlon V.3.5). 

von Neumann’s method (sectlon N . 2 . 2 ) .  

Marsaglla’s exponentlal generator, or Its modlflcatlons (dlscussed below). 
The ratlo-of-unlforms method (sectlon N . 7 . 2 ) .  

The serles method (sectlon lV.5.3). 

Lemma IV.2.1. 

are lndependent random varlables and p>O 1s an arbltrary posltlve number: 
geornetrlcally dlstrlbuted wlth 

An exponentlal random varlable E 1s dlstrlbuted as (Z - l )p+Y where Z,Y 
1s 

i P  

( i  -1)P 
P ( Z = i )  = J e - Z  (js = & w P - e - i P  (i 21) ? 

and Y 1s a truncated exponentlal random varlable wlth denslty 

Slnce 2, Y are lndependent, exponentlal random varlate generatlon can 
truly be consldered as the problem of the generatlon of a dlscrete random varlate 
plus a contlnuous random varlate wlth compact support. And because the con- 
tlnuous random varlate has compact support, any fa s t  table method can be used . 

The unlform spaclngs method 1s based upon the fact that GS,, . . . , GS, 
are lld exponentlal random varlables when G 1s gamma (n), and SI, . , . , S, 
are spaclngs deflned by a unlform sample of slze n -1.  For n = 2  thls 1s sometlmes 
faster than stralghtforward lnverslon: 
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Generate iid uniform [0,1] random variates u , v , w . 
Y +-log( w ) 
RETURN WY,(l-W)Y 

Notlce that three unlform random varlates and one logarlthm are needed per cou- 
ple of exponentlal random varlates. The overhead for the case n =3 1s sometlmes 
a drawback. We summarlze nevertheless: 

Generate iid uniform [0,1] random variates u , , U , ,  u,, u,, u,. 

V+min( U,, U J ,  W + m a (  U,, U,) 
Y t - l O g (  U, USU,) 

RETURN VY,(W-V)Y,(l-W)Y 

2.2. Marsaglia’s exponential generator. 
Marsaglla (1961) proved the followlng theorem: 
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Theorem 2.1. (Marsaglia, 1961) 

Polsson random varlate wlth probablllty vector 
Let u1,u2, ... be lld unlform [0,1] random varlables. Let Z be a truncated 

where p>O 1s a constant. Let M be a geometrlc random vector wlth probablllty 
vector 

(i LO) . P ( M = i )  = (1-e+)e-p' 

Then X+p(M+mln(U,, . . . , Uz)) 1s exponentlally dlstrlbuted. Also, 
1 E ( M )  = - , 

E ( Z ) =  - .  

e p-1 

p e  
e p-1 

Proof of Theorem 2.1. 
We note that for p>a: >0, 

O0 1 pt 2 :  = --(1-(1--) ) 
i = 1  e p-1 2 !  IJ 

Thus, p mln(U,, . , . , Uz) has the exponentlal dlstrlbutlon truncated to [O,p ] .  
The flrst part of the theorem now follows dlrectly from Lemma W.2.1. For the 
second part, use the fact that M+1 1s geometrlcally dlstrlbuted, so that 

E(M+l)=- . Furthermore, 
1-e -1 

- -- p e p  .I 
e p-1 
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Mre can now suggest an algorlthm based upon Theorem 2.1: 

Marsaglia’s exponential generator 

Generate a geometric random variate M deflned by P(M=”=(i-e-’)e-’’ ( i  20). 
2 -1 
Generate iid uniform [OJ] random variates u , v , 
Y + V  
WHILE True Do 

i 
IF U < F ( Z )  (Note: F(i)=- T.) 

e ”1 j,l 

THEN RETURN x + p ( A d +  Y) 
ELSE 

2 +z +1 
Generate a uniform [ O , l ]  random variate v . 
Y+min(Y,V) . 

For the geometrlc random varlate, the lnverslon method based upon sequentlal 
search seems the obvlous cholce. Thls can be sped up by storlng the cumulatlve 
probabllltles, or by mlxlng sequentlal search wlth the allas method. Slmllarly, the 
cumulatlve dlstrlbutlon functlon F of can be partlally stored to speed up the 
second part of the algorlthm. The deslgn parameter p must be found by 
compromlse. Note that lf sequentlal search based lnverslon 1s used for the 

1 geometrlc random varlate kf, then - comparlsons are needed on the aver- 

age: thls decreaSes from 00 t o  1 as p varles from 0 to 00. Also, the expected 
number of accesses of F In the second part of the algorlthm 1s equal to 

1-e -fi 

E(Z)=- , and thls lncreases from 1 to  00 as p varles from 0 t o  00. Further- 
1-e + 

more, the algorlthm In Its entirety requlres on the average 2 + E ( Z )  unlform [0,1] 
random variates. The two effects have to be properly balanced. For most lmple- 
mentatlons, a value p In the range 0.40 ... 0.80 seems to be optlmal. Thls point 
was addressed In more detall by Slbuya (1861). Speclal advantages are offered by 
the cholces p=1 and p=log(2). 

The speclal case p=log(2) allows one to generate the deslred geoinetrlc ran- 
dom varlate by analyzlng the random blts In a unlform [O,l] random varlate, 
whlch can be done convenlently In assembly language by t h e  logical shift opera- 
tlon. Thls algorlthm was proposed by Ahrens and Dleter (1972), where the reader 
can also And an excellent survey of exponentlal random varlate generatlon. 
Agaln, a table of F ( i  ) values 1s needed. 

I 
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Exponential generator of Ahrens and Dieter (1972) 

i 
[NOTE: a table of values F ( i  )= 

M t o  
Generate a uniform [O,l] random variate u . 
WHILE u<$ DO U-2U , M t M f l o g ( 2 )  

(‘0g(2))i is required.] 
j - 1  j !  

(M is now correctly distributed. It is equal to the number of 0’s before the flrst 1 in 
the binary expansion of U. Note that U-2u is implementable by a shift opera- 
tion.) 

U t 2 u - 1  (u  is again uniform [0,1] and independent of M . )  
IF u <log(2) 

THEN RETURN x +-M + U 
ELSE 

2 4-2 
Generate a uniform [O,l] random variate v. 
Y t V  
WHILE True Do 

Generate a uniform [O,l] random variate v. 
Y +-min( Y, V )  
IF U < F ( Z )  

THEN RETURN x +-hf + Y log( 2) 

ELSE Z+Z+l 
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. I  

Ahrens and Dleter squeeze the flrst uniform [0,1] random varlate U dry. Because 
of thls, the algorlthm requires very few unlform random variates on the average: 
the expected number Is l+log(2), which is about 1.69315. 

2.3. The rectangle-wedge-tail method. 
One of the fastest table methods for the exponentlal dlstrlbutlon W a s  flrst 

Published by Maclaren, Marsaglia and Bray (1964). It is ideally sulted for Imple- 
mentatlon In machlne language, but even In a hlgh level language i t  Is faster than 
most other methods described in thls sectlon. The extra speed Is obtalned by 
Prlnciples related to the table method. Flrst, the tall of the denslty Is cut off at 
Some point n p where n 1s a deslgn integer and p>O Is a small deslgn constant. 
T h e  remainder of the graph of f Is then dlvided into n equal strlps of width p. 
And on Interval [ ( i - i )p , ipJ ,  we dlvide the graph lnto a rectangular Piece of 
height e - i p ,  and a wedge f ( ~ ) - e - ~ p .  Thus, the denslty ls decomposed lnto 

I 

I -  
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2n +1 

These 
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pleces of the followlng welghts: 

.one tall of welght e p; 
n rectangles wlth welghts 
n wedges of welghts e - i p (  e p-l-p) ,15 2 5 n . 

,1< - i 5 n ; 

numbers can be used to set up a table for dlscrete random varlate genera- 
tlon. The algorlthm then proceeds as follows: 

The rectangle-wedge-tail method 

[NOTE: we refer to the 2n +1 probabilities defined above.] 
x+o 
REPEAT 

Generate a random integer 2 with values in 1, . . . , 2n +1 having the given proba- 
bility vector. 
CASE 

Rectangle i chosen: RETURN x + X + ( i - l + u ) p  where u is a uniform [0,1] 
random variate. 

Wedge i chosen: RETURN X-x+(i-l)p+Y where Y is a random variate 
e fi-= -1 

having the wedge density g (z )=- , o I z  S p .  
e fi-1-p 

Tail is chosen: x -x + n p 

UNTIL False 

Note that when the tall 1s plcked, we do In fact reJect the cholce, but keep at the 
same tlme track of the number of reJectlons. Equivalently, we could have 
returned n p-log( U )  but thls would have been less elegant slnce we would In 
effect rely o n .  a logarlthm. The recurslve approach followed here seems cleaner. 
Random varlates from the wedge denslty can be obtalned In a number of ways. 
We could proceed by reJectlon from the trlangular denslty: note that 

and 

so that the followlng reJectlon algorlthm 1s valld: 
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Wedge generator 

399 

REPEAT 
Generate two iid uniform (0,1] random variates x, u . 
IF x > u THEN (x, u)+( u ,x) ((x, u) is now uniformly distributed under the tri- 
angle with unit sides.) 

UNTIL False 

The wedge generator requlres on the average 

- 1 p ( e p - - 1 )  

2 ep-1-p 

lteratlons. It 1s easy to see that thls tends to 1 as p10. The expected number of 
unlform random varlates needed 1s thus twlce thls number. But note that thls 
can be bounded as follows: 

Here we used an lnequallty based upon the truncated Taylor serles expanslon. In 
vlew of the squeeze step, the expected number of evaluatlons of the exponentlal 
functlon 1s of course much less than the expected number of lteratlons. Havlng 
establlshed thls, we can summarlze the performance of the algorithm by repeated 
use of Wald’s equatlon: 

. 

Theorem 2.2. 

shown above. 
Thls theorem 1s about the analysls of the rectangle-wedge-tall algorlthm 

1 
l - e - n p  

(1) The expected number of global lteratlons Is A = 

I (11) The expected number of unlform [0,1] random varlates needed (excludlng the 

I 
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Proof of Theorem 2.2. 
Theorem 2.2 1s establlshed as follows: we have 1 unlform random varlate Der - -  

n e +-e -(n + 1 ) ~  
rectangle (the probablllty of thls 1s pee'" =p In the flrst ltera- 

i = 1  1-e -P 
e P-1 

e '1-1-1.1 
tlon). We have p per wedge (the probablllty of thls Is 

(ep-1-p) In the flrst Iteration). Thus, by estab- 
i-1 1-e -P 
llshlng the correctness of statement (I), and applylng Wald's equatlon, we observe 
that the expected number of unlform random varlates needed 1s 

n e -"-e 4 n  +I)P 
e -i p( e ~-1-p)= 

e-P-e-(n+l)P e p-1 e - ~ - e  -(n +I)P 

f P  ( e  P-l-P)) 
1-e -P eP-1-p 1-e+ 

A (11 

= A ( p e p  1 
e -P-e 4 n  +lk 

1-e -P 

The number of lntervals n does not affect the expected number of unlform 
random varlates needed In the algorlthm. Of course, the expected number of 
dlscrete random varlates needed depends very much on n , slnce I t  1s . It 

1-e --ff P 

1s clear that p should be made very small because as p l 0 ,  the expected number of 
unlform random varlates 1s I+-+o (1.1). But when p 1s small, we have t o  choose 

n large to keep the expected number of lteratlons down. For example, If we want 
the expected number of lteratlons to  be - , which 1s entlrely reasonable, then 

c1 
2 

1-e -4 

. When p=- 
4 we should choose n =- , the table slze 1s 2n +1=161. 
c1 20 

The algorlthm given here may dlffer sllghtly from the algorlthms found else- 
where. The ldea remalns baslcally the same: by plcklng certaln deslgn constants, 
we can practlcally guarantee that one exponentlal random varlate can be 
obtalned at the expense of one dlscrete random varlate and one unlform random 
varlate. The dlscrete random varlate In turn can be obtalned extremely qulckly 
by the allas method or the allas-urn method at the cost of one other unlform ran- 
dom varlate and elther one or two table look-ups. 
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2.4. Exercises. 
1. It 1s lmportant to have a fast generator for the truncated exponentlal denslty 

f ($)=e-’ /(l-e-p), O<sc <p .  From Theorem 2.1, we recall that a random 
varlate wlth thls denslty can be generated as p mln(U,, . : . , Uz) where the 
Vi’s are lld unlform [0,1] random varlates and z 1s a truncated Polsson varl- 
ate wlth probablllty vector 

The purpose of thls exerclse 1s to explore alternatlve methods. In particular, 
compare wlth a strlp table method based upon n equl-slzed lntervals and 
wlth a grld table method based upon n equl-slzed lntervals. Compare also 
wlth reJectlon from a trapezoldal domlnatlng functlon, comblned wlth clever 
squeeze steps. 

The Laplace density. The Laplace denslty 1s f ( x ) = - e - I  ’ I .  Show that 

a random varlate X wlth thls denslty can be generated as sa or as E, -E2  
where E ,E,,E, are lld exponentlal random varlates, and s 1s a random 
slgn. 
Flnd the denslty of the sum of two lld Laplace random varlables, and verlfy 

1 
2 

2. 

3. 
Its bell shape. Prove that such a random varlate can be generated as 

r r  rr  

) where the Ui’s are lld unlform [0,1] random varlates. Develop a u 1 u 2  
log( - 

U3U4 
reJectlon algorlthm for normal random varlates wlth qulck acceptance and 
rejectlon steps based upon the lnequalltles: 

Prove these lnequalltles by uslng Taylor’s serles expanslon truncated at the 
thlrd term. 

3. THE GAMMA DENSITY. 

3.1. The gamma family. 
A random varlable X 1s gamma ( a  ,b ) dlstrlbuted when I t  has denslty 
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Here a >O 1s the shape parameter and 6 > O  1s the scale parameter. We say that 
X is gamma ( a  ) dlstrlbuted when I t  1s gamma ( a  ,1). Before revlewlng random 
varlate generatlon technlques for th!s famlly, we wlll look at some key propertles 
that are relevant to us and that could ald In the deslgn of an algorlthm. 

The density 1s unlniodal wlth mode at ( a  -1)b when a 2 1. When a < 1, I t  is 
monotone wlth an lnAnlte peak at 0. The moments are easlly computed. For 
example, we have 

co 

= ab ; 
E(X) = J x j  ( z )  dx = r ( a  +1)6 

0 r ( a  ) b  a 
00 

= u ( a  +1)b2 . r( a +2)b  a +2 E ( X 2 )  = J x 2 J  ( a : )  dx = 
0 r ( a  ) b  a 

Thus, Var (X) = ab '. 
The gamma famlly 1s closed under many operatlons. For example, when x' 1s 

gamma ( a  ,b ), then cX 1s gamma ( a  ,bc ) when c >O. Also, summlng gamma ran- 
dom varlables yields another gamma random varlable. Thls 1s perhaps best seen 
by conslderlng the characterlstlc functlon d ( t )  of a gamma ( a  , b )  random varl- 
able: 

-2 (--it 1 ) 
b 

dx e co 
d ( t >  = E ( e i t x )  = J 

0 r ( a ) b a  

I - - 
(I-it6 )" 

Thus, If X,, . . . , Xn are lndependent gamma ( a , ) ,  . . . , gamma (a,) random 

varlables, then X = 
n 

i=i 
Xi has charactertstlc functlon 

1 - - 1 n w 1 = J-J 
j=1 ( 1 4  6'3 ' 

( 1 4  )' -1 

n 

j=1  

and 1s therefore gamma ( a j , l )  dlstrlbuted. The famlly 1s also closed under 

more cornpllcated transformatlons. To lllustrate thls, we conslder Kullback's 
result (Kullback, 1934) wblch states that when x, ,Xz are lndependent gamma 
( a  ) and gamma ( a  +-) random varlables, then 2,/= 1s gamma (2a  ). 

The gamma dlstrlbutloii Is related In lnnumerable ways to other well-known 
dlstrlbutlons. The exponentlal density 1s a gamma denslty wlth parameters (1,l). 

And when X 1s normally dlstrlbuted, then X 2  1s gamma (-,2) dlstrlbuted. Thls 

1 
2 

1 
2 
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ax, a x 1  
dy dz 

a x 2  a x 2  
dy dz 

-- 

-- 

1s called the chi-square dlstrlbutlon wlth one degree of freedom. In general, a 
gamma (-,2) random varlable 1s called a chl-square random varlable wlth T 

degrees of freedom. We wlll not use the chl-square termlnology In thls sectlon. 
Perhaps the most lmportant property of the gamma denslty 1s Its relatlonshlp 
wlth the beta denslty. Thls 1s summarlzed In the followlng theorem: 

T 

2 

- /I - 
-z 1-y 

Theorem 3.1. 
If X X 2  are lndependent gamma ( a 1 )  and gamma ( a 2 )  random varlables, 

and X1+X2 are lndependent beta ( a  , ,a2)  and gamma ( a  l+a2)  then 

random varlables. Furthermore, If Y 1s gamma ( a  ) and Z 1s beta ( b  ,a -b  ) for 
some b > a  >0, then YZ and Y(1-2) are lndependent gamma ( b  ) and gamma 
( a  -b ) random varlables. 

31 
x,+x, 

Proof of Theorem 3.1. 
We wlll only prove the flrst part of the theorem, and leave the second part 

to the reader (see exerclses). Consider flrst the transformatlon y =s J(z ,+s .J, 
z =x , + x 2 ,  whlch has an lnverse x ,=yz ,s2=(l-y )z . The Jacoblan of the 
transformatlon 1s 

= I z I  . 

whlch was to be shown. 1 

The observatlon that for large values of a ,  the gamma denslty 1s close to the 
normal denslty could ald In the cholce of a domlnatlng curve for the reJectlon 
method. Thls fact follows of course from the observatlon that sums of gamma 
random varlables are agaln gamma random varlables, and from the central llmlt 
theorem. However, sliice the central llmlt theorem 1s concerned wlth the conver- 
gence of dlstrlbutlon functlons, and slnce we are Interested In a local central llmlt 
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theorem, convergence of a deiislty to a denslty, I t  1s perhaps lnstructlve to glve a 
dlrect proof of thls result. We have: 

If X', 1s gamma ( a  ) dlstrlbuted and If f a  1s the denslty of the normallzed 
gamma random variable (xu -a )/& , then 

Proof of Theorem 3.2. 
The denslty of (Xu -a )/6 evaluated at 5 1s 

\- I V2n(a  
e 

( U - l ) X  (U--1)2* 
1 1  1 a-1 x 6 +  *T-za +o(+ 

(I+-) e N -- 
& e  a -1 

Here we used Stlrllng's approxlmatlon, and the Taylor serles expansion for 
log(i+u ) when o<u < I .  

3.2. Gamma variate generators. 
Features we could appreclate In good gamma generators lnclude 

(1) Unlform speed: the expected tline 1s unlforinly bounded over all values of a ,  
the shape parameter. 

(11) SlmPllCltY: short easy programs are more lllcely to  become wldely used. 
(111) Small or nonexlstent set-up tlmes: deslgn parameters whlch depend upon a 

need to be recalculated every tlme a changes. These recalculatlons take 
often more tlme than the generator. 

No famlly has recelved more attentlon In the llterature than the gamma famlly. 
Many experlinental comparlsons are avallable In the general Ilterature: see e.g. 
Atklnson and Pearce (1070), Vaduva (1977), or Tadllcamalla and Johnson 
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(1980,1981). 

For speclal cases, there are some good recipes: for example, when a =1, we 
return an exponential random varlate. When a Is a small Integer, we can return 
elther 

5 Ei 
i =I  

where the Ei ’s are lld exponential random variates, or 
a 

-log( vi 1 
t =1 

1 where the vi’s are lld unlform [0,1] random variates. When a equals -+k  for 
2 

some small integer k , I t  is possible to return 
k 

i=1 

1 -N2+ Ei 
2 

where N 1s a normal random variate independent of the E; ’s. In older texts one 
wlll often And the recommendation that a gamma ( a  ) random variate should be 
generated as the sum of a gamma ( l a ]  ) and a gamma ( a  - La J ) random varlate. 
The former random varlate Is to be obtalned as a sum of independent exponential 
random variates. The parameter of the second gamma variate Is less than 1. All 
these strategies take time llnearly increasing wlth a ;  none lead to good gamma 
generators In general. 

There are several successful approaches In the design of good gamma genera- 
tors: flrst and foremost are the reJectlon algorithms. The rejection algorithms can 
be classifled accordlng to the family of domlnatlng curves used. The dlfferences In 
tlmlngs are usually minor: they often depend upon the efflclency of some quick 
acceptance step, and upon the way the rejection constant varles with a as a too. 
Because of Theorem 3.2, we see that for the rejection constant to converge to 1 
as a too I t  Is necessary for the domlnatlng curve to approach the normal denslty. 
Thus, some reJectlon algorithms are suboptimal from the start. Curiously, this 1s 
sometlmes not a big drawback provided that the rejection constant remains rea- 
sonably close to  l. To dlscuss algorlthms, we wlll inherlt the names avallable In 
the llterature for otherwise our cllscusslon would be too verbose. Some successful 
reJectlon algorithms Include: 
GB. (Cheng, 1977): rejectlon from the Burr X I  dlstrlbutlon. To be discussed 

GO. (Ahrens and Dleter, 1974): reJectlon from a comblnatlon of normal and 

GC. (Ahrens and Dleter, 1074): reJectlon froin the Cauchy denslty. 
S G .  (Best, 1978): rejectlon from the t dlstrlbution with 2 degrees of freedom. 
TAD2. 

below. 

exponential densities. 

(Tadllcamalla, 1078): reJectlon froin the Laplace denslty. 
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Of these approaches, algorlthm GO has the best asymptotic value for the reJec- 
tlon constant. Thls by ltself does not make it the fastest and certalnly not the 
shortest algorlthm. The real reason why there are so many reJectlon algorlthms 
around 1s that the normallzed gamma denslty cannot be fltted under the normal 
denslty because Its tall decreases much slower than the tall of the normal denslty. 
We can of course apply the almost exact lnverslon prlnclple and And a nonlinear 
transformatlon whlch would transform the gamma denslty lnto a denslty whlch is 
very nearly normal, and whlch among other thlngs would enable us to tuck the 
new denslty under a normal curve. Such normallzlng transformatlons lnclude a 
quadratic transformatlon (Flsher's transformatlon) and a cublc transformatlon 
(the Wilson-Hllferty transformatlon): the resultlng algorlthms are extremely fast 
because of the good At .  A prototype algorlthm of thls klnd was developed and 
analyzed In detail In section IV.3.4, Marsagiia's algorlthm RGAMA (Marsaglla 
(1977), Greenwood (1974)). In sectlon IV.7.2, we presented some gamma genera- 
tors based upon the ratlo-of-unlforms method, whlch lmprove sllghtly over slml- 
lar algorlthms published by Klnderman and Monahan (1977, 1978, 1979) (algo- 
rlthm GRUB) and Cheng and Feast (1979, 1979) (algorlthm GBH). Desplte the 
fact that no ratlo-of-uniforms algorithm can have an asyinptotlcally optlmal 
reJectlon constant, they are typlcally comparable to the best reJectlon algorlthms 
because of the slmpllclty of the domlnatlng denslty. Most useful algorlthms fall 
into one of the categorles descrlbed above. The unlversal method for log-concave 
densltles (sectlon VII.2.3) (Devroye, 1984) is of course not competltlve wlth spe- 
clally deslgned algorlthms. 

There are no algorlthms of the types described above whlch are unlformly 
fast for all a because the deslgn 1s usually geared towards good performance for 
large values of a ,  Thus, for most algorlthms, we have unlform speed on some 
interval [a* ,m) where a* Is typlcally near 1. For small values of a , the algo- 
rithms are often not valld - this 1s due to  the fact that  the gamma denslty has an 
lnflnlte peak at 0 when ct <1, wlille domlnatlng curves are often taken from a 
famlly of bounded denslties. We wlll devote a speclal sectlon to the problem of 
gamma generators for values a <1. 

Sometlmes, there 1s a need for a very fast algorlthm whlch would be applled 
for a Axed value of a .  What one should do In such case 1s cut off the tall, and use 
a strlp-based table method (sectlon V111.2) on the body. Slnce these table 
methods can be automated, I t  1s not worth spendlng extra tlme on thls Issue. It Is 
nevertheless worth notlng that some automated table methods have table slzes 
that In the case of the gamma denslty lncrease unboundedly as ct+m If the 
expected tlme per random varlate 1s to remaln bounded, unless one applles a spe- 
clally deslgned technlque slmllar to  what was done for the exponentlal denslty In 
the rectangle-wedge-tall method. In an lnterestlng paper, Schmelser and La1 
(1980) have developed a seml-table method: the graph of the denslty 1s partl- 
tloned lnto about 10 pleces, all rectangular, trlangular or exponentlal In shape, 
and the set-up tlme, about flve tlmes the time needed to generate one random 
varlate, 1s reasonable. Moreover, the table slze (number of pleces) remalns Axed 
for all values of a .  When speed per random varlate 1s at a premlum, one should 
certalnly use some sort of table method. When speed is Important, and a varles 
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I 2 \ - 
1 6 G ( x ) =  - 1+ 
2 

\ I 

Theorem 3.3. 
A. 

B. 

C. 

A random varlate wltli thls dlstrlbutlon can be generated as 

A( U-L) 
d q i T j  

2 

where U 1s a unlforin [0,1] random varlate. 
Let f be the amma ( a )  denslty, and let g, be the denslty of 

( a  -l)+ Y d e  where Y has denslty g . Then 

1 
3 '  f ( 2  1 5 c ,  sa. (z)  = 

2 -  
2 

where the reJectlon constant 1s glven by 

3 3a -- 
4 a-1  ,-I 

e (--> - c ,  = 
r ( a  > 

I I 

We have sup c, 5 e and Ilm c, = 
a 21 a too 

Proof of Theorem 3.3. 
The clalm about the dlstrlbutlon functlon G 1s qulclcly verlfied. When U 1s 

unlformly dlstrlbuted on [0,1], then the solutlon X of G (X)= U 1s preclsely 
1 A( U -,> 
z Thls proves part A. diT(iTj' X= 

Let Y have denslty g . Then ( a  -l)+ Y dT-: has denslty 

3 
2 -- 1 x - (a  - 1 )  2 

2 8  



IX.3.THE GAMMA DENSITY 407 

wlth each call, the almost-exact-lnverslon method seems to be the wlnner In most 
experlmental comparlsons, and certalnly when fast  exponentlal and normal ran- 
dom varlate generators are avallable. The best ratlo-of-unlforms methods and the 
best reJectlon methods (XG,GO,GB) are next In llne, well ahead of all table 
met hods. 

Flnally, we wlll dlscuss random varlate generatlon for closely related dlstrl- 
butlons such as the Welbull dlstrlbutlon and the exponentlal power dlstrlbutlon. 

3.3. Uniformly fast rejection algorithms for a 21. 

1s based upon reJectlon from the t denslty wlth 2 degrees of freedom: 
We begln wlth one of the shortest algorlthms for the gamma denslty, whlch 

3 

Thls denslty decreases as x - ~ ,  and 1s symmetrlc bout 0. Thus, I t  can be used as a 
domlnatlng curve of a properly rescaled and translated gamma denslty. Best’s 
algorlthm XG (Best, 1978) 1s based upon the followlng facts: 
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To prove statement B, we need only show that For x >0, 

1 a-1 a-1 
a -1 e+’ < e-) 

3 ’  - 
f? 
I 

2 -  2 x - (a  -1) [l+qd-] 1 
or, after resubstltutlon y =x - (a  -1), that For y ?-(a -1), 

3 a -1 

e-y  [ I+- < - [ 1+ y2; 
3 a  -- 

Taklng logarlthms, we see that we must show that 

h (y ) = -y + ( a  -l)log(l+-)+~1og 1+ Y 2  
a -1 I 3 a - 3  

I 4 

Clearly, h (O)=O. It sufflces to show that h’(y ) L O  For y 50 and that h’(y )<0 For 
y >O. - But 

a -1 3 2Y 1 h’(y ) = -1+ +- 
(a-l)(1+-) Y 2 3 a - -  3 1+ Y 2  

4 
3 a  -- 

4 
a- 1 

= -  y +  Y 
a-l+y 1 Y 2  a --+- 

4 3  

3 Y 2 )  Y (Y ---3 
4 

1 Y 2  ( a  -l+y >(a  --+-) 
4 3  

1 
4 

The denominator 1s 20 For a 2-. The numerator 1s 20 For y SO, and 1s 50 For 

Y 3  y 20 (this can be seen by rewrltlng I t  a s  --(Y--)~. Thls concludes the proof OF 
3 2 

part B. 
For part C, we apply Stlrllng’s approxlmatlon, and observe that 
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The flrst - 1s also an upper bound, so tha t  

when a 21. Thls proves part C .  

Based upon Theorem 3.3, we can now state Best's reJectlon algorlthm: 

Best's rejection algorithm XG for gamma random variates (Best, 1978) 

[SET-UP] 
3 b +a - 1 , ~  4-3~ -- 
4 

[GENERATOR] 
REPEAT 

Generate iid uniform [OJ] random variates U , V .  

W + U ( i - U ) , Y  +A( U-+),X+b +Y 

IFXZO 
THEN 

t 6 4  w3 v2 
2 Ya 
X Accept +[Z 5 I--] 

IF NOT Accept 
THEN Accept -[log(Z ) 5 2 (  b log( 5)- X Y ) ]  

UNTIL Accept 
RETURN X 

The randoin varlate X generated at the outset of the REPEAT loop has denslty 
ga . The acceptance condltlon 1s 

3 -- y a - 1  
e-Y(i+-) 

a -1 

Thls can be rewrltten In a number of ways: for example, In the notatlon of the 
algorlt hm, 
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Thls explalns the acceptance condltlon used ln the algorlthm. The squeeze step 1s 
derlved from the acceptance condltlon, by notlng that 
(1) log(2) 5 2-1; 

Y Y 2Y2 
X 

(11) 2(6 iog(i+T)-Y) 2 2Y(--) = --. 
The last lnequallty 1s obtalned by notlng that the left hand slde as a functlon of 

Therefore, by the Taylor serles Y 1s 0 at Y=O, and has derlvatlve -- 

expanslon truncated at the flrst term, we see that for YZO,  the left hand slde 1s 

Y 
6 +Y'  

V 
1 at least equal to 2(0+Y(-- )). For Y<O, the same bound 1s valid. Thus, 

b c Y  
when 2-15-2Y2/X,  we are able to conclude that the acceptance condltlon 1s 
satlsfled. It should be noted that In vlew of the rather large reJectlon constant, 
the squeeze step 1s probably not very effectlve, and could be omltted wlthout a 
blg tlrne penalty. 

We wlll now move on to Cheng's algorlthm GB whlch 1s based upon tejec- 
tlon from the Burr XI1 denslty 

1-1 

g(x> = x P  
(P+xx>2 

for parameters p , x > O  to be determlned as a functlon of a .  Random varlates 
wlth thls denslty can be obtalned as 

1 

where u 1s uniformly dlstrlbuted on [0,1]. Thls follows from the fact that the dls- 
trlbutlon functlon correspondlng to g 1s xx/(p+xx),x 20. We have to choose 
and p .  Unfortunately, mlnlmlzatlon of the area under the dominatlng curve does 
not glve expllcltly solvable equatlons. It 1s useful to match the curves of f and 
g , whlch are both unlmodsl. Slnce f peaks at a -1, I t  makes sense to match 
thls peak. The peak of g occurs at 

1 
(X-l)p T 

x = (  1 .  x+1 
If we choose X large, 1.e. lncreaslng wlth a ,  then thls peak wlll approxlmately 
match the other peak when p=aX.  Conslder now log(-). The derlvatlve of thls 

functlon 1s 

f 
9 

a -x-x , 2xxx-1 



412 M.3.THE GAMMA DENSITY 

Thls derlvatlve attalns the value 0 when ( a  +A-s )zx+(a -A-s )a  '=O. By analyz- 
lng the derlvatlve, we can see that I t  has a unlque solutlon at z -  -0 when 
A==. Thus, we have 

f (Z 1 L cg (. 1 
where 

(2a '1' a a -1 e -a 
c =  

r ( a  > X U  

Resubstltutlon of the value of A ylelds the asymptotic value of 

fact, we have 

4 6  

unlformly over a 21. Thus, the reJectlon algorlthm suggested by Cheng has a 
good reJectlon constant. In the deslgn, we notlce that If X 1s a random varlate 
wlth denslty g ,  and U 1s a uniform (0,1] random varlate, then the acceptance 
condltlon 1s 

Equlvalently, sliice v = X X / ( a  '+X') 1s unlformly dlstrlbuted on [0,1], the accep- 
tance condltlon can be rewrltten as 

4 (21a  ~ X V ~ U  5 X X + ~  e-x , 
e 

or 

lOg(4)+(X+a )log(a )-a +log( U V 2 )  5 ( X + U  )log(S)-X , 

or 

log( uv2) 5 a -log(4)+(X+a )log(-)-X X . 
U 

A qulck acceptance step can be lntroduced whlch uses the lnequallty 

log( U V 2 )  5 d ( ul<2)-log(d )-1 

whlch 1s valid for all d . The value d =- 9 was suggested by Cheng. Comblnlng all 
2 

of thls, we obtaln: 
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Cheng’s rejection algorithm GB for gamma random variates (Cheng, 1977) 

[SET-UP] 
b +a-log(4) , e +a +fi 
[GENERATOR] 
REPEAT 

Generate iid uniform [OJ] random variates U ,  V .  
V Y t a  log(-) , X t a e  

1- v 
2 tuv2 
R t b  +cY-X 

9 9 9 Accept +-[R 2 -Z-(l+log(-))] (note that (l+log(-))=2.5040774 ...) 
2 2 2 

IF NOT Accept THEN Accept +[R >log(z)] 

UNTIL Accept 
RETURN x 

We wlll close thls sectlon wlth a word about the hlstorlcally lmportant algo- 
rlthm GO of Ahrens and Dleter (1974), which was the flrst unlformly fast  gamma 
generator. I t  also has a very good asyrnptotlc rejectlon constant, sllghtly larger 
than 1. The authors got around the problem of the tall of the gamma denslty by 
notlng that most of the gamma denslty can be tucked under a normal curve, and 
that the rlght tall can be tucked under an exponentlal curve. The breakpolnt 
must of course be to the rlght of the peak a-1. Ahrens and Dleter suggest the 

value ( a  -I)+ d q .  We recall that If X 1s gamma ( a )  dlstrlbuted, 

(X-a)  tends In dlstrlbutlon to a normal denslty. Thus, wlth the break- then 

polnt of Ahrens and Dleter, we cannot hope to construct a domlnatlng curve wlth 
Integral tendlng t o  1 as a Too (for thls, the breakpolnt must be at a -1 plus a 
term lncreaslng faster than 6 ). It Is true however that we are In practlce very 
close. The almost-exact lnverslon method for normal random varlates ylelds 
asymptotlcally optlinal rejectlon constants wlthout great dlmculty. For thls rea- 
son, we wlll delegate the treatment of algorlthm GO to the exerclses. 

6 
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3.4. The Weibull density. 

when I t  has denslty 
A random varlable has the standard Weibull density wlth parameter a >o 

1 (x) = a x a - l e - z o  (3 20) . 
1 - 

In thls, we recognlze the denslty of E a where E 1s an exponentlal random varl- 
able. Thls fact can also be deduced from the form of Its dlstrlbutlon functlon, 

F ( X I  = l - e - ’ @  (5 20) * 
Because of thls, I t  seems hardly worthwhlle to deslgn rejection algorlthms for thls 
denslty. But, turnlng the tables around for the moment, the Welbull denslty 1s 
very useful as an auxlllaiy denslty in generators for other densltles. 

Example 3.1. Gumbel’s extreme value distribution. 
When X 1s Welbull ( a  ), then Y=-a log(x)  has the extreme value denslty 

1 (5) = e-’ fp-* ( x E R ) .  
1 - 

By the fact that x 1s dlstrlbuted as E ’, we see of course that the parameter a 
1 
u plays no speclal role: thus, -log(E) and -log(log(-)) are both extreme value ran- 

dom varlables when E 1s exponentlally dlstrlbuted, and E 1s exponentlally dlstrl- 
buted. 

Example 3.2. A compound Weibull distribution. 
1 - 

Dubey (1968) has polnted out that the ratlo WU /Gb has the Pareto-llke 
denslty 

Here W, 1s a Welbull ( a  ) random varlable, and Gb 1s a gamma ( b  ) random varl- 
able. As a speclal case, we note that the ratlo of two independent exponentlal 

on [ o , ~ ) .  1 random varlables has denslty 
(1+x l2 
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Example 3.3. Gamma variates by rejection from the Weibull density. 
Conslder the gamma ( a  ) denslty f wlth parameter O c a  51. For thls den- 

slty, random varlates can be generated by reJectlon from the Welbull ( a  ) denslty 
(whlch wlll be called g ). Thls 1s based upon the lnequallty 

e x 4 - x  e b - b 4  < 
1 - 

-- - f (x) 
g ( z )  a r w  - r(a+i) 

where 

A reJectlon algorlthm based upon thls lnequallty has rejectlon constant 

r(i+a) . 

The rejectlon constant has the followlng propertles: 
1. 

2. 

It tends to 1 as a 40, or a tl. 

It 1s not greater than for any value of a E(O,l]. Thls can be seen by 

notlng that (1-a )6 51-a 51 and that r(l+a )20.8856031944 ... (the gamma 
functlon at l+a 1s absolutely bounded from below by Its value at 
l+a =1.4616321449 ...; see e.g. Abramowltz and Stegun (1970, pp. 259)). 

e 
0.88560 

Thls leads to a modlfled verslon of an algorlthm of Vaduva's (1977): 

Gamma generator for parameter smaller than 1 

[SET-UP] 
a - 

c +- , d t u  '-a(I-a ) 
U 

[GENERATOR] 
REPEAT 

Generate iid exponential random variates Z ,E .  Set X + Z C  (X is Weibull ( a  )). 

UNTIL Z + E s d + X  
RETURNX 

1 

I 
I _. 
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- 
Theorem 3.5. (Berman, 1971) 

Let a , b  > O  be glven constants, and let U , V  be lld unlform (0,1] random - 1 -  1 

varlables. Then, condltloned on u + v 5 1, the random varlable 
1 - 

3.5. Johnk’s theorem and its implications. 
Random varlate geiieratloii for the case a <1 can be based upon a speclal 

property of the beta and gamma dlstrlbutlons. Thls property Is usually attrlbuted 
to Johnk (1964), and bas later been redlscovered by others (Newman and Odell, 
1971; Whlttaker, 1974). We have: 

Theorem 3.4. (Johnk, 1964) 
Let a ,b > O  be glven constants, and let U ,V be lld unlform [O,l] random 

1 - 1 - 
varlables. Then, condltloned on u + v 5 1, the random varlable 

1 - 
U a  

1 -  1 

UQ+V 
1s beta ( a  ,b ) dlstrlbuted. 

U U  I 
1s beta ( a  , b  +1) dlstrlbuted. I 
Proof of Theorems 3.4 and 3.5. 

I - 
Note that  X = u  has dlstrlbutlon functlon x u  on [O,l]. The denslty 1s 

1 - 
ax ‘-’. Thus, the Jolnt denslty of x and Y = v Is 

(o_<x,y 51) . U - 1  b - 1  f (X,Y) =bx Y 
X 

Consider the transformatlon z =x + y  ,t =- wlth Inverse x =tz ,y =(1-t ) z .  
X +Y 

Thls transforinatlon has 

ax ax 
at a z  

ay ay 
at a x  

- -  
- - - -  

Jacoblan 
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X The Jolnt denslty of (z ,T )=(x + Y ,- 
X + Y )  Is 

I z I f ( tz , ( l - t )z )  = z ~ b ( t z ) ~ - ' ( ( l - t ) z ) ~ - ~  (05 tz ,(l-t )z <1) - 
= abt -l(i-t ) b  -lz (05 tz ,(I-t )Z 5 1) . 

The reglon In the ( z , t )  plane on whlch thls denslty 1s nonzero 1s 
1 1  
t 1-t 

A = { ( z  , t  ) : t  >O,O<z <mln(-,-)}. Let A,  be the collectlon of values z for 
1 1  
t 1-t 

whlch O<z cmln(-,-). Then, wrltlng 9 ( z  , t )  for the Jolnt denslty of (2 , T )  
at ( z  , t  ), we see that the denslty of T condltlonal on 51 1s glven by 

J s ( z 9 t ) d z  
I l , Z  €4 

J g ( z , t ) d z  dt 
A 

= 1 -- ab t U - l ( l - t ) b - l  
c a + b  

where c =Jg ( x  ,t )dz dt 1s a normallzatlon constant. Clearly, 
A 

This concludes the proof of Theorem 3.4. 
For Berman's theorem, conslder the transformatlon x =x ,z =x +y wlth 

lnverse x =x ,y =z -x . The Jolnt denslty of ( X . 2 )  Is 
f (x ,z -x )=abx ' - l ( z  -x ) b  -'IB (x ,z ) where B 1s the set of ( z  ,x ) satlsfylng 
O<x <l,O<x < z  <x+1.  Thls 1s a parallellepld In the ( z  , x )  plane. The denslty 
of X condltlonal on 2 <1 Is equal to  a constant tlmes 

J U ~ X ~ - ' ( ~ - X ) ' - '  dz = axa-l(l-x)b . 
2 < z  <1 

Thls concludes the proof of Theorem 3.5. 

These theorems provlde us wlth reclpes for generatlng gamma and beta varl- 
ates. For gamma random varlates , we observe that YZ Is gamma ( a  ) dlstrlbuted 
when Y 1s beta ( a  ,1-a ) and Z 1s gamma (1) (1.e. exponentlal), or when Y 1s 
beta ( a  ,2-a ) and Z Is gamma (2). Summarlzlng all of thls, we have: 
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Johnk's beta generator 

REPEAT 
Generate iid uniform [OJ] random variates U t  V 

1 1 - x t u " ,  Y- v 
UNTIL X + Y  <i 

X + Y  
RETURN - (x is beta ( a  , b ) distributed) 

Berman's beta generator 

REPEAT 
Generate iid uniform [0,1) random variates U t  V. 

1 1 

X+-U~,Y+-VT 
UNTIL X + Y < 1  
RETURN X (X is beta ( a  , b  +1) distributed) 

Johnk's gamma generator 

REPEAT 
Generate iid uniform [OJ] random variates U t  V. 

1 1 - x t  U T ,  y t  v 1-a 

UNTIL x + Y < 1  
Generate an exponential random variate E .  

RETURN - Ex (X is gamma ( a  ) distributed) 
X + Y  
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Berman's gamma generator 

419 

REPEAT 
Generate iid uniform [OJ] random variates U t  V. 

1 - 1 

x + u", y c v 1-a 

UNTIL x + Y s 1  

Generate a gamma (2) random variate Z (either as the sum of two iid exponential random 
variates or as -log( u*v* ) where u* , v* are iid uniform [0,1] random variates). 
RETURN zx (x is gamma ( a  ) distributed) 

Both beta generators requlre on the average 
1 +b +I) - 

P ( X + Y  si) r ( a  +i)r(6 +I) 

lteratlons, and thls lncreases rapldly wlth a and 6 .  It 1s however unlformly 
bounded over all a ,b wlth O<a ,6 51. The two gamma generators should only 
be used for a 5 1 .  The expected number of lteratlons 1s In both cases 

1 
r ( i + a  )r(2-~ ) ' 

I t  1s known that r ( a ) I ' ( l - a >  = n/sln(ra).  Thus, the expected number of ltera- 
tlons 1s 

slnna 

whlch 1s a symmet.rlc functlon of a 

polnts ( a  10, a =1), and peaklng at 
4 does not exceed - for any a E(O,l]. 
n 

1 
2 

around - taklng the value 1 near both end- 
I the polnt a =-: thus, the reJectlon constant 
2 

3.6. Gamma variate generators when a 51. 
We can now suminarlze the avalalble algorlthms for gamma ( a )  random 

varlate generatlon when the parameter 1s less than one. The fact that  there 1s an 
lnflnlte peak ellmlnates other tlme-honored approaches (such as the ratlo-of- 
unlforms method) from contentlon. We have: 
1. ReJectlon from the Welbull denslty (Vaduva, 1977): see sectlon IX.3.7. 
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2. The Johnlc and Berinan algorlthnis (Johnk, 1971; Berman, 1971): see sectlon 
IX.3.8. 

The generator based upon Stuart’s theorem ( see sectlon rV.6.4): G,+,U a is 
gamma ( a  ) dlstrlbuted when G, +]. 1s gamma ( a  f l )  dlstrlbuted, and U 1s 
unlformly dlstrlbuted on [0,1]. For G,+l  use an efflclent gamma generator 
wlth parameter greater than unlty. 
The Forsythe-von Neumann method (see sectlon W.2.4). 

The composltlon/reJectlon method, wlth reJectlon from an exponentlal den- 
slty on [l,m), and from a polynomlal denslty on [0,1]. See sectlons N . 2 . 5  
and 11.3.3 for varlous pleces of the algorlthm malnly due to  Vaduva (1977). 
See also algorlthm GS of Ahrens and Dleter (1974) and Its modlflcatlon by 
Best (1983) developed In the exerclse sectlon. 

6. The transformatlon of an EPD varlate obtalned by the reJectlon method of 
sectlon VII.2.6. 

All of these algorlthms are unlformly fast  over the parameter range. Compara- 
tlve tlmlngs vary froin experlineiit to experlment. Tadlkamalla and Johnson 
(1981) report good results wlth algorlthm GS but fall to  lnclude some of the other 
algorlthms in their comparlson. The algorlthms of Johnk and Berman are prob- 
ably better sulted for beta random varlate generatlon because two expensive 
powers of unlform random varlates are needed In every lteratlon. The Forsythe- 
von Neumann method seems also less efflclent tlme-wlse. Thls leaves us wlth 
approaches 1,3,5 and 6. If a very emclent gamma generator 1s avallable for a >1, 
then method 3 could be as fast  as algorlthm GS, or Vaduva’s Welbull-based 
reJectlon method. Methods 1 and 6 are probably comparable In all respects, 
although the reJectlon constant of method 6 certalnly 1s superlor. 

1 - 
3. 

4. 

5. 

3.7, The tail of the gamma density. 
A s  for the normal denslty, I t  1s worthwhlle to have a good generator for the 

tall gamma ( a  ) denslty truncated at t . It 1s only natural to look at domlnatfng 
densltles of the form b e  b ( t - z )  (x >t ). The parameter 6 has to be plcked as a 
functlon of a and t .  Note that a random varlate wlth thls denslty can be gen- 
erated as t+- where E 1s an exponentlal random varlate. We conslder the cases 

a <1 and a 21 separately. We can take 6 =1 because the gamma denslty 
decreases faster than e 

E 
6 

. Therefore, reJectloii can be based upon the lnequallty 

( x  I t )  * x a - l e - z  < t a - i e - z  - 
It 1s easlly seen that the correspondlng algorlthm 1s 
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REPEAT 
Generate a uniform random variate u and an exponential random variate E .  Set 
X t t  +E 

1 

UNTIL XU"< a 
RETURN x (x has the gamma density restricted to  [ t  ,m)) 

The efflclency of the algorithm 1s glven by the ratlo of the lntegrals of the two 
functlons. Thls glves 

t a - l e - t  

co 

Sxa-'e-' dx 
t 

co a - 1  
J(--) et-' dx 

0 

1-a = 1+- 
t 

+1 a s t  --too. 

When a 21, the exponentlal wlth parameter 1 does not sufflce because of the 
polynomlal portlon In the gamma denslty. It 1s necessary to take a sllghtly slower 
decreaslng exponentlal denslty. The lnequallty that we wlll use 1s 

2 
a-1 ( a  -I)( --I) t (7) < e  - 

~vhlch 1s easlly establlshed by standard optlmlzatlon methods. Thls suggests the 

cholce 6 =I--- In the exponentlal curve. Thus, we have 
a -1 

t 
( a  - I ) ( ~ - I ) - Z  

x a - l e - x  < ta - le  t - 
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Based on thls, the reJectlon algorlthm becomes 

REPEAT 
Generate two iid exponential random variates E ,E* , 
X t t  +- E 

a -1 
1-- 

t 
t E* 

-) 5 - x a - 1  
UNTIL --l+lOg( X t 
RETURN x’ (X has the gamma ( a  ) density restricted to [ t  ,m).) 

The algorlthm 1s valld for all a > 1  and all t > a  -1 (the latter condltlon states 
that the tall should not lnclude the mode of the gamma denslty). A squeeze step 
can be lncluded by notlng that 

. Here we used the lnequallty 

log(l+u )>2u / ( u  +2).  Thus, the qulck acceptance step to be lnserted In the algo- 
rlthm 1s 

X X - t  )>2-= X - t  2E l o g ( t ) = l o g ( l + t  - X + t  
(1-- a-1 ) ( X + t )  t 

E* THENRETURNX IF I- a -1 
E= 

(1-- a ;t (X+t  ) 
t 

We conclude thls section by showlng that the reJectlon constant 1s asymptotically 
optlmal as t too: the ratlo of the lntegrals of the two functlons lnvolved 1s 

ta-le-t 
03 

dx a -1 (l--)Jz 
t t  

whlch once agaln tends to 1 as t 400 .  We note here that the algorlthms glven In 
thls sectlon are due to Devroye (1980). The algorlthm for the case a > 1  can be 
sllghtly Improved at the expense of more cornpllcated deslgn parameters. Thls 

I 
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posslblllty 1s explored In the exerclses. 

423 

3.8. Stacy's generalized gamma distribution. 

parameters, c ,a >0: the denslty 1s 
Stacy (1962) lntroduced the generallzed gamma dlstrlbutlon wlth two shape 

Thls famlly of densltles lncludes the gamma densltles (c =l), the halfnormal den- 
slty ( a  =- ,c  =2) and the Welbull densltles ( a  =1). Because of the flexlblllty of 

havlng two shape parameters, thls dlstrlbutlon has been used qulte often In 
modellng stochastlc Inputs. Random varlate generatlon 1s no problem because we 

observe that G, has the sald dlstrlbutlon where G, 1s a gamma ( a  ) random 
varlable. 

Tadlkamalla (1979) has developed a reJectlon algorlthm for the case a >1 
whlch uses as a domlnatlng denslty the Burr XI1 denslty used by Cheng In hls 
algorlthm GB. The parameters p,A of the Burr XI1 denslty are A=c fi, 
p=a=. The reJectlon constant 1s a functlon of a only. The algorlthm 1s vlr- 

tually equlvalent to generatlng G, by Cheng's algorlthm GB and returning G, 
(whlch explalns why the reJectlon constant does not depend upon c ). 

1 
2 

1 - 

1 - 

3.9. Exercises. 
1. Show Kullback's result (Kullback, 1934) whlch states that when X , , X ,  are 

lndependent gamma ( a )  and gamma ( a + - )  random varlables, then 

2 d a  IS gamma (2a 1. 
2. Prove Stuart's theorem (the second statement of Theorem 3.1): If Y 1s 

gamma ( a )  and Z 1s beta ( 6  , a - b  ) for some 6 > a  >0, then YZ and 
Y (1-2 ) are lndependent gamma ( 6  ) and gamma ( a  -6  ) random varlables. 

3. Algorithm GO (Ahrens and Dieter, 1974). Deflne the breakpolnt 

6 =a  -1+ d q .  Flnd the smallest exponentlally decreaslng 

functlon domlnatlng the gamma ( a  ) denslty to the rlght of 6 . Flnd a normal 
curve centered at a-1 domlnatlng the gamma denslty to the left of 6 ,  whlch 
has the property that the area under the domlnatlng curve dlvlded by the 
area under the leftmost plece of the gamma denslty tends to a constant as 
a too. Also, And the slmllarly deflned asymptotlc ratlo for the rlghtmost 

1 
2 

i 
_. 
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4. 

5. 

6. 

piece, and establish that I t  1s greater than 1. By comblnlng thls, obtaln an 
expression for the llmlt value of the reJectlon constant. Havlng establlshed 
the bounds, glve a reJectlon method for generatlng a random varlate with 
the gamma denslty. Flnd emclent squeeze steps If posslble. 
The Weibull density. Prove the followlng propertles of the Welbull ( a )  
dlstrlbutlon: 

A. 
1 

For a 21, the denslty 1s unlmodal wlth mode at (l--)’. 1 -  The posltlon 
U 

or the mode tends to 1 as a loo. 
The value of the dlstrlbutlon functlon at s=1 is 1,” for all values of 

a .  

The r - th  moment 1s r(l+-). 

B. 
e 

1’ 

U 
C. 

D. The mlnlmum of n lld Welbull random varlables 1s dlstrlbuted as a 
constant tlmes a Welbull random varlable. Determlne the constant and 
the parameter of the latter random varlable. 

E. ks a tm, the first moment of the Welbull dlstrlbutlon varles as 
l--+o (-) where 7=0.57722 ... 1s Euler’s constant. Also, the varlance 7 1 

U U 
-?/sa ’. 

Obtaln a good uniform upper bound for the reJectlon constant In Vaduva’s 
algorlthm for gamma random varlates when a 51 whlch 1s based upon reJec- 
tlon from the Welbull denslty. 
Algorithm GS (Ahrens and Dieter, 1974). The followlng algorlthm was 
proposed by Ahrens and Dleter (1974) for generatlng gamma ( a )  random 
varlates when the parameter a 1s 51: 
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Rejection algorithm GS for gamma variates (Ahrens and Dieter, 1974) 

[SET-UP] 

b e -  1 , e-- 
e a 

e + a  

[GENERATOR] 
REPEAT 

Generate iid uniform [0,1] random variates U ,  W . Set V t b U  . 
IF V S l  

THEN 
x t v c  
Accept - [ w l e - X ]  

ELSE 
X t - l o g ( c  ( 6  -V)) 
Accept --[ w <x"-'] 

UNTIL Accept 
RETURN X 

The algorlthm 1s based upon the lnequall tles: 
U 

( O ~ z ~ l )  and f (a:)< 
e + a  

e-' (z 21). Show that  

. Show that the reJectlon constant 

U 

f ("5 r ( i + a  r(i+a 
the reJectlon constant 1s 

e r(i+a ) _  
1 approaches 1 as a io, tha t  I t  1s 1+- at a =1, and that I t  1s unlformly 
e 

bounded over aE(0,1] by a number not exceedlng 5. Show that In sam- 
pllng from the composlte domlnatlng denslty, we have probablllty welghts 

2 

e U - for axa-' (O<z Sl), and - for e '-' (z 2 1 )  respectlvely. 
e +a  e + a  

7. Show that the exponentlal functlon of the form ce-" (z 2 t )  of smallest 
lntegral domlnatlng the gamma ( a )  denslty on [ t  ,m) (for a >1, t >0) has 
parameter b glven by 

t -a +4- b =  
2 t  

Hlnt: show flrst that  the ratlo of the gamma denslty over e-b' reaches a 
a -1 a -1 peak at x=- (whlch 1s to the rlght of t when 6 >1--). Then com- 

pute the optlmal b and verlfy that b ?I--- . Glve the algorlthm for the 

tall of the gamma denslty that  corresponds to thls optlinal lnequallty. Show 

furthermore that as t 100, 6 =1--+o ($), whlch proves that the cholce 

1-b t 
a -1 

t 

a -1 
t 

I 

. I  
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of b In the text 1s asymptotlcally optlmal (Dagpunar, 1978). 
Algorithm RGS (Best, 1983). Algorlthm GS (of exerclse 6) can be optlm- 
lzed by two devlces: A r s t ,  the gamma denslty f wlth parameter a can be 
maxlmlzed by a functlon whlch 1s z a - ' / r ( a  ) on [ O , t ]  and t a - l e - z  /r(a ) on 
[t  ,m), where t 1s a breakpolnt. In algorlthm GS, the breakpolnt was chosen 
as t =l. Secondly, a squeeze step can be added. 
A. Show that the optlmal breakpolnt (In terms of mlnlmlzatlon of the area 

under the domlnatlng curve) 1s glven by the solutlon of the transcen- 
dental equatlon t = e - t  (1-a +t  ). (Best approxlmates thls solutlon by 
0.07f0.756 .) 

B. Prove the lnequalltles e-' 32-z) / (2+s)  (s  20) and 
( I+S) -~  >l/(l+cz) (z >O,l>c L O ) .  (These are needed for the squeeze 
steps.) 
Show that the algorlthm glven below 1s valld: 

8. 

C. 

Algorithm RGS for gamma variates (Best, 1983) 

[SET-UP] 
e-' a 1 t + 0 . 0 7 + 0 . 7 5 6  , b  +I+- , e +- t U 

[GENERATOR] 
REPEAT 

Generate iid uniform [0,1] random variates u ,  w. Set V + b U .  
IF v<l 

THEN 
X + t V C  

2-x 
2+x 

Accept --[ kk' 5 -1 
IF NOT Accept THEN Accept -[W 5e-X] 

ELSE 
X X +-log( c t  ( b  - V )), Y t- t 

Accept - [w(a+Y-aY)<l]  
IF NOT Accept THEN Accept --[ W 5 Y''-'] 

UNTIL Accept 
RETURN x 

9. Algorithm G4PE (Schmeiser and Lal, 1980). The graph of the gamma 
denslty can be covered by a collectlon of rectangles, trlangles and exponen- 
tlal curves havlng the propertles that (1) all parameters lnvolved are easy to 
compute: and (11) the total area under the domlnatlng curve 1s unlformly 
bounded over a 21. One such proposal 1s due to Schmelser and La1 (1980): 
deflne flve breakpolnts, 

I 
.-. 
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t3=a -1 
t 4=t 3+& 

.lo. 

Ll. 

where t 3  1s the mode, and t 2 , t 4  are the polnts of lnflectlon of the gamma 
denslty. Furthermore, t ,,t are the polnts at whlch the tangents of f at t 
and t ,  cross the x-axls. The domlnatlng curve has flve pleces: an exponentlal 
tall on (-w,t,] wlth parameter l - t3/ t ,  and touchlng f at t , .  On [t5,w) we 
have a slmllar exponentlal domlnatlng curve wlth parameter 1-t,/t 5. On 
[ t l , t 2 ]  and [ t 4 , t 5 ] ,  we have a llnear domlnatlng curve touchlng the denslty at 
the brealcpolnts. Flnally, we have a constant plece of helght f ( t 3 )  on [ t 2 , t 4 ] .  
All the strlps except the two tall sectlons are partltloned lnto a rectangle 
(the largest rectangle fltted under the curve of f ) and a leftover plece. Thls 
glves ten pleces, of whlch four are rectangles totally tucked under the 
gamma denslty. For the slx remalnlng pleces, we can construct very slmple 
llnear acceptance steps. 
A. Develop the algorlthm. 
B. Compute the area under the domlnatlng curve, and determlne Its 

asymptotlc value. 
C. Determlne the asymptotlc probablllty that we need only one unlform 

random varlate (the random varlate needed to select one of the four rec- 
tangles 1s recycled). Thls 1s equlvalent to computlng the asymptotlc area 
under the four rectangles. 

D. Wlth all the squeeze steps deflned above In place, compute the asymp- 
totlc value of the expected number of evaluatlons of f . 

Hlnt: obtaln the values for an approprlately transformed normal denslty and 
use the convergence of the gamma denslty to the normal denslty. 
The t -distribution. Show that when G G, /, are lndependent gamma 
random varlables, then ,/- 1s dlstrlbuted as the absolute value of 
a random varlable havlng the t dlstrlbutlon wlth a degrees of freedom. 
(Recall that the t denslty 1s 

- . -  
n -  

In partlcular, 1f G ,G* are lld gamma (L) random varlables, then 

1s Cauchy dlstrlbuted. 
The Pearson VI distribution. Show that Ga /Gb has denslty 

2 
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when G, ,Gb are lndependent gamma random variables wlth parameters a 
and 6 respectively. Here B, , b  =r(a ) r(b )/r(a +b ) 1s a normalizatlon coii- 
stant. The density In question is the Pearson VI density. It is also called the 
beta denslty of the second klnd wlth parameters a and b .  6 / a  times the 
random varlable in question 1s also called an F distrlbuted random varlable 
with 2 a  and 26 degrees of freedom. 

4. THE BETA DENSITY. 

4.1. Properties of the beta density. 

when I t  has denslty 
We say that a random varlable X on [0,1] is beta ( a  ,b ) distributed 

where a ,b >O are shape parameters, and 
_, .-,. . 1 

1s a normalization constant. The density can take a number of lnteresting 
shapes: 
1. 

2. 

3. 

4. 

5 .  

When O c a  ,6  <1, the density is U-shaped wlth lnflnlte peaks at 0 and 
1. 

When O<a <lSb, the denslty is sald to be J-shaped: I t  has an inflnite 
peak at 0 and decreases inonotoiiically to  a posltive constant (when 
b =I) or to  0 (when 6 >I). 
When a =1< 6 , the denslty is bounded and decreases monotonlcally to  
0. 
When a = 6  =1, we have the uniform [0,1] density. 
When l < a  ,b , the density is unimodal, and takes the value 0 at the 
endpoints. 

The fact that there are two shape parameters makes the beta denslty a solld 
candidate for illustratlng the various technlques of nonuniform random vari- 
ate generatlon. I t  1s lmportant for the deslgn t o  understand the baslc proper- 
tles. For example, when a ,b >1, the mode 1s located at . It 1s also 

qulte trivlal to show that for 1' > - a ,  

a -1 
u +6 -2 

Bu+-r,b E ( X ' )  = 
. b  
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U a6 In partlcular, E ( X )  = - and Var (X) = . There are 
a number of relatlonshlps wlth other dlstrlbutlons. These are summarlzed In 
Theorem 4.1: 

a + 6  ( a  + b  )2(a +b +I) 
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Theorem 4.1. 

other densltles. 
Thls 1s about the relatlonshlps between the beta ( a  , b )  density and 

A. 

B. 

C. 

D. 

E. 

Relatlonshlp wlth the gamma density: If G, ,G6 are lndependent 
/* 

gamma ( a  ), gamma ( b  ) random varlables, then 
b a  

Ga+Gh 
1s beta ( a  ,b ) 

dlstrlbuted. 

Relatlonshlp wlth the Pearson VI (or p2 ) density: If X 1s beta ( a  ,b ), 
1s p2(a ,6 ), that  is, Y 1s a beta of the second lclnd, wlth X 

then Y=- 1-x 
I a -1 
5 ~ 

denslty f ( z )  = (5 20) ’ 
B, ,* (l+z +6 

Relatlonshlp wlth the (Student’s) t dlstrlbutlon: If X 1s beta (-,-), l a  
2 2  

and S 1s a random slgn, then S ds 1s t-dlstrlbuted wlth a 

degrees of freedom, Le. I t  has denslty 

a +1 r ( 2 )  
f ( X I =  a +1 

By the prevlous property, note that 1s t-dlstrlbuted wlth parame- 
ter a when Y 1s p2(a ,b ). Furthermore, If X denotes a beta ( a  ,a ) ran- 
dom varlable, and T denotes a t random varlable wlth 2a degrees of 
freedom, then we have the followlng equallty In dlstrlbutlon: 

. In partlcular, when U 1s 1 1  T G (2X-1) 
2 d 5  

I=-+- 

dZ(U-,) 1 

unlform on [O,l], then 

Relatlonshlp wlth the F (Snedecor) dlstrlbutlon: when X 1s beta 

1s F-dlstrlbuted wlth a and 6 degrees of free- ( a , 6 ) ,  then 

dom, 1.e. I t  has denslty -f a (-) ax (z >O), where f 1s the p2(-,-) a b  den- 

slty. 

Relatlonshlp wlth the Cauchy denslty: when X 1s beta (- -) dlstrl- 

Is t wlth 2 degrees of freedom. dEiF 
6X 

a (1-X) 

b 6  2 2  

1 1  

/+ 
buted (thls 1s called the arc slne dlstrlbutlon), then 5 1s dlstrl- 

buted as the absolute value of a Cauchy random varlable. 
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Proof of Theorem 4.1. 
All the propertles can be obtalned by ap 

431 

lylng the methods for computlng 
densltles of transformed random varlables explalned for example In sectlon 1.4.1. 

We should also mentlon the lmportant connectlon between the beta dlstrlbu- 
tlon and order statlstlcs. When O <  U(l)< < U ( n  are the order statlstlcs of a 
unlform [0,1] random sample, then U ( k )  1s beta (k ,n -k +1) dlstrlbuted. See sec- 
tlon 1.4.3. 

* 

4.2. Overview of beta generators. 
Beta varlates can be generated by exp.Atlng speclal propertles of the dlstrl- 

butlon. The order statlstlcs method, appllcable only when both a and b are 
Integer, proceeds as follows: 

Order statistics method for beta variates 

Generate a + b  -1 iid uniform [O,l] random variates. 
Find the a -th order statistic x( u -th smallest) among these variates. 
RETURN x 

Thls method, mentloned as early as 1Q63 by Fox, requlres tlme at least propor- 
tlonal to a +b -1. If standard sortlng routlnes are used to obtaln the a -th smal- 
lest element, then the tlme complexlty ls even worse, posslbly 
n ( ( a  +b -l)log(a +b -1)). There are obvlous lmprovements: I t  1s wasteful to sort a 
sample Just to obtaln the a - th  smallest number. Flrst of all, vla llnear selectlon 
algorlthms we can And the a -th smallest In worst case tlme 0 (a +b -1) (see e.g. 
Blum, Floyd, Pratt ,  Rlvest and TarJan (1973) or Schonhage, Paterson and Plp- 
penger (1976) ). But In fact, there 1s no need to generate the entlre sample. The 
unlform sample can be generated dlrectly from left to rlght or rlght to left, as 
shown In sectlon V.3. Thls would reduce the tlme to 0 (mln(a ,b )). Except In spe- 
clal appllcatlons, not requlrlng non-lnteger or large parameters, t1i.h method 1s 
not recommended. 

When property A of Theorem 4.1 1s used, the tlme needed for one beta varl- 
ate 1s about equal to the tlme requlred to generate two gamma varlates. Thls 
method 1s usually very competltlve because there are many fast gamma genera- 
tors. In any case, If the gamma generator ls unlformly fa s t ,  so wlll be the beta 
generator. Formally we have: 
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Beta variates via gamma variates 

Generate two independent gamma random variates, G, and Gb . 

RETURN Ga 
Ga -k Gb 

Roughly speaklng, we wlll be able to  lmprove over thls generator by at most 
50%. There 1s no need to  dlscuss beta varlate generators whlch are not tlme 
emclent. A survey of pre-1972 methods can be found In Arnason (1972). None of 
the methods glven there has unlformly bounded expected tlme. Among the com- 
petltlve approaches, we mentlon: 
A. 

B. 

C. 

D. 

E. 

Standard rejectlon methods. For example, we have: 
ReJectlon from the Burr XI1 denslty (Cheng, 1978). 
ReJectlon from the normal denslty (Ahrens and Dleter, 1974). 
ReJectlon from polynomlal densltles (Atklnson and Whlttaker, 
1976, 1979; Atltlnson, 1979). 
ReJectlon and composltlon wlth trlangles, rectangles, and exponen- 
tlal curves (Schmelser and Babu, 1980). 

The best of these methods wlll be developed below. In partlcular, we wlll 
highlight Cheng’s unlformly fa s t  algorlthms. The algorlthm of Schmelser and 
Babu (1980), whlch 1s unlformly fast over a ,b 2 1 ,  1s dlscussed In sectlon 
VII.2.6. 
Forsythe’s method, as applled for example by Atklnson and Pearce (1976). 
Thls method requlres a lot of code and the set-up tlme 1s conslderable. In 
cornparlson wlth thls Investment, the speed obtalnable vla thls approach 1s 
dlsappolntlng. 
Johnk’s method (Johnk, 1964) and Its modlflcatlons. Thls too should be con- 
sldered as a method based upon speclal propertles of the beta denslty. The 
expected tlme 1s not unlformly bounded In the parameters. It should be 
used only when both parameters are less than one. See sectlon IX.3.5. 
Unlversal algorlthms. The beta denslty 1s unlmodal when both parameters 
are at least one, and I t  1s monotone when one parameter 1s less than one and 
one 1s at least equal to  one. Thus, the universal methods of sectlon VII.3.2 
are appllcable. At the very least, the lnequalltles derlved In that  sectlon can 
be used t o  deslgn good (albelt not superb) bounds for the beta denslty. In 
any case, the expected tlme 1s provably unlform over all parameters a , b  
wlth max(a ,b )>I.  
Strlp table methods, as  developed In sectlon VI11.2.2. We wlll study below 
how many strlps should he selected as a functlon of a and b In order to  
have unlformly bounded expected generatlon tlmes. 
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The bottom llne 1s that the cholce of a method depends upon the user: If he 1s 
not wllllng to lnvest a lot of tlme, he should use the ratlo of gamma varlates. If 
he does not mlnd podlng short programs, and a and/or b vary frequently, one of 
the reJectlon methods based upon analysls of the beta denslty or upon universal 
lnequalltles can be used, The method of Cheng 1s very robust. For speclal cases, 
such as symrnetrlc beta densltles, reJectlon from the normal denslty 1s very com- 
petltlve. If the user does not foresee frequent changes In a and b ,  a strlp table 
method or the algorlthm of Schmelser and Babu (1980) are recommended. 
Flnally, when both parameters are smaller than one, l t  1s posslble to use reJectlon 
from polynomlal densltles or to apply Johnk’s method. 

4.3. The symmetric beta density. 

the symrnetrlc beta denslty wlth parameter a : 
In thls sectlon, we wlll take a close look at one of the slmplest speclal cases, 

For large values of a ,  thls 

thls, conslder y =x--*, and 1 
2 

denslty 1s qulte close to the normal denslty. To see 

log(/ (X )) = lOg(C)+(U -l)lOg(1+21J )+(a -l)IOg(l-2y )-(a - l ) l O g 4  

= log( c )-(a -l)log4+( a -1)log( 1-4y 2) . 

The last term on the rlght hand slde 1s not greater than -4(a -1)y 2, and I t  1s at 
)) tends least equal to -4(a -$)y2-1f3(a -l)y4/(1-4y2). Thus, log(/ (-+ 

to -log(&)-- as a --too for all 2 ER . Here we used Stlrllng’s formula to prove 

that log(C)-(a-l)log4 tends to -log(&). Thus, If X 1s beta ( a  , a ) ,  then the 

X 1 
2 d i 7 Z i - j  

X 2  
2 

1 
2 

denslty of m ( x - - )  tends to the standard normal denslty as a - m .  The 
only hope for an asyrnptotlcally optlmal rejectlon constant In a reJectlon algo- 
rlthm 1s to use a domlnatlng denslty whlch 1s elther normal or tends polntwlse to 
the normal denslty as a --too. The questlon 1s whether we should use the normall- 
zatlon suggested by the llmlt theorem stated above. It turns out that the best 
reJectlon constant 1s obtalned not by taklng 8( a -1) In the formula for the normal 
denslty, but 8(a--). We state the algorlthm flrst, then announce Its propertles 

In a theorem: 

1 
2 
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Symmetric beta generator via rejection from the normal density 

1 1  
2 a - 2  2 

[NOTE: 6 =(a -l)log(l+-)--.] 

[GENERATOR] 
REPEAT 

REPEAT 
Generate a normal random variate N and an exponential random variate E .  

x t -  +&-,Z+N2 

UNTIL, Z < 2 a  -1 (now, x€[O,l]) 

Accept +-[E +-- ( a  + b  Lo] 2 2a-1 -2  

) + b  Lo1 IF NOT Accept THEN Accept -[E +?+(a z -l)log(l-- z 
2a -1 

UNTIL Accept 
RETURN x 

~ 

Theorem 4.2, 
Let f be the beta ( a )  density wlth parameter a 21. Then let a>O be a 

constant and let c be the smallest constant such that for all z , 

Then c 1s mlnlmal for a2= 

8( u -1) 
4e (8a -4) c u =  [ 

- , and the mlnlmal value 1s 
8a  4 

In the reJectlon algorlthm --iown above, the rejection constant is c u .  

tlon constant 1s unlformly bounded for a €[l,m): selected values are 

a =2, d% at a =3. We have 

llm c Q =  1 ,  
a +m 

I - +- 
and In fact, c (T 5 e 24a 2 a - 1  . 

I 
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Proof of Theorem 4.2. 
Let us wrlte g (a:) for the normal denslty wlth mean - 1 and varlance u2. We 

2 

flrst determlne the supremum of f /g  by settlng the derlvatlve of log(-) f equal 
to zero. Thls ylelds the equatlon 

9 

1 2( a -1) 
2 x(l-x) (5 --)(CY+- ) = O .  

One can easlly see from thls that f /g has a local mlnlmum at x=- and two 

local maxlma symmetrlcaliy located on elther slde of L at LkLd-. 
The value of f / g  at the maxlma 1s 

2 

2 2 2  

1 - 
Thls depends upon CY as follows: 02'-'e 8a2. Thls has a unlque mlnlmum at 
o = l / d G .  Resubstitution of thls value glves 

- 
e 2 .  a -1 d2n 

4U -2 m B a  ,a 

By well-known bounds on the gamma functlon (Whlttaker ans Watson, 1927, p. 
253), we have 

1 - 1  

as a - m .  Thus, 

a - 1  

1 1 -  
a e  / ( a  --)e 24a(1-- 

2 2 a  -1 
I 1  a -1 

1 

1+- 
2a  -1 



436 M.4.THE BETA DENSITY 

The algorlthm shown above 1s appllcable for all a 21. For large values of a ,  
we need about one normal random varlate per beta random varlate, and the pro- 
bablllty that the long acceptance condltlon has to be verlfled at all tends to 0 as 
a 4 0 0  (exerclse 4.1). There 1s another school of thought, In wlilch normal random 
varlates are avolded altogether, and the algorlthms are phrased In terms of unl- 
form random varlates. After all, normal random varlates are also bullt from unl- 
form random varlates. In the search for a good domlnatlng curve, help can be 
obtalned from other symrnetrlc unlmodal long-talled dlstrlbutlons. There are two 
examples that have been expllcltly mentloned In the llterature, one by Best 
(1978), and one by Ulrlch (1984): 

Theorem 4.3. 
When Y 1s a t dlstrlbuted random varlable wlth parameter 2 a .  then 

1s beta ( a  ,a ) dlstrlbuted (Best, 1978). 
1 1  Y X+-+- 
2 2 d z - 3  
When U , V  are lndependent unlform [0,1] random varlables, then 

1s beta ( a  ,a ) dlstrlbuted (Ulrlch, 1984). 

Proof of Theorem 4.3. 
The proof 1s left as an exerclse on transformatlons of random varlables. 

If we follow Best, then we need a fast  t generator, and we refer to sectlon 
IX.5 for such algorlthms. Ulrlch's suggestlon 1s lntrlgulng because i t  1s remlnlscent 
of the polar method. Recall that when x , Y  1s unlformly dlstrlbuted In the unlt 
clrcle wlth s =x2+ Y2, then (- -) and s are lndependent, and S 1s unl- 

formly dlstrlbuted on [0,1]. Also, swltchlng to polar coordlnates (A ,e), we see 
that XY /s =cos(O)sln(O)=2sln(2~). Thus, slnce 2 0  1s unlformly dlstrlbuted on 
[0,47~], we see that the random varlable 

X Y  
d F ' 6  

-+- 1 X . Y J Z  
2 s  

has a beta ( a  ,a ) dlstrlbutlon. We summarlze: 
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Ulrich’s polar method for symmetric beta random variates 

REPEAT 
Generate U uniformly on [0,1] and V uniformly on [-1,1]. 

s + u2+ v2 
UNTIL 5 1  

It should be stressed that Ulrlcli’s method 1s valld for all a >0, provlded that for 
the case a =1/2, we obtaln x as 1/2 + U V / S ,  that  Is, x 1s dlstrlbuted as a 
llnearly transformed arc sln random varlable. Desplte the power and the square 
root needed In the algorlthm for general a ,  Its elegance and generallty make I t  a 
formldable candldate for lncluslon In computer llbrarles. 

4.4. Uniformly fast rejection algorithms. 
The beta ( a  ,b ) denslty has two shape parameters. If we are to construct a 

uniformly fast  rejectlon algorlthm, I t  seems unlikely that we can just conslder 
reJectlon from a denslty wlth no shape parameter such as the normal denslty. 
Thls 1s generally speaklng only feaslble when there 1s one shape parameter as In 
the case of the gamma or symrnetrlc beta famllles. The trlck wlli then be to And 
a flexlble famlly of easy domlnatlng densltles. In hls work, Cheng has repeatedly 
used the Burr XI1 denslty wlth one scale parameter and one shape parameter 
wlth a great deal of success. Thls denslty 1s constructed as follows. If U Is unl- 

rv u formly distributed on [0,1], then - has denslty ( 1 + ~ ) - ~  on [O,m). For p,x>O, 
1- u 

the denslty of 

1s 

Thls 1s an lnflnlte-talled denslty, of llttle dlrect use for the beta denslty. For- 
tunately, beta and b,, random varlables are closely related (see Theorem 4.1), so 
that we need only conslder the lnflnlte-talled denslty wlth parameters ( a  ,b ): 

,.. a -1 
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The values of p and h suggested by Cheng (1978) for good reJectlon constants are 

mln(u ,b ) (mln(a ,b )SI) 
(mln(a ,b )> I )  

Wlth these choices, I t  1s not dlfflcult t o  verlfy that f /g 1s maxlmal at 2 =a / b  , 
and that f s c g  where 

4 a a  b b  
c =  

ABa,* (a  +b ) a + b  

Note that cg (z )/f (2 ) can be slmpllfled qulte a blt. The unadorned algorlthm 1s: 

Cheng’s rejection algorithm BA for beta random variates (Cheng, 1978) 

[SET-UP] 
s + a + b  
IF min(a , b  )SI 

THEN X+min( a , b ) 

ELSE h+dE s -2 

u +a +X 
[GENERATOR] 
REPEAT 

Generate two iid uniform [0,1] random variates U,,U,. 
1 Ul 
x 1-4, V+--, Y t a e ’  

8 
UNTIL 8 log(-)+~V-l0g(4)~10g( U12U,) 

RETURN X t -  
b +Y 

Y 
b+Y 

The fundamental property of Cheng’s algorlthm 1s that 
4 

a . b  > O  a , b  21 e 
sup c = 4 ; sup c = - X 1.47 . 

For Axed a ,  c 1s mlnlmal when b =a and lncreases when b 10 or b too. The 
detalls of the proofs of the varlous statements about thls algorlthm are left as an 
exerclse. There exlsts an lmproved verslon of the algorlthm for the case that both 
parameters are greater than 1 whlch 1s based upon the squeeze method (Cheng’s 
algorlthm BB). Cheng’s algorlthm 1s slowest when mln(a ,b )<1. In that reglon of 
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the parameter space, I t  1s worthwhlle to deslgn speclal algorlthms that may or 
may not be unlformly, fas t  over the entlre parameter space. 

4.6. Generators when min(a,b)< - 1. 
Cheng's algorlthm BA Is robust and can be used for all values of a ,b . How- 

ever, when both a ,b are smaller than one, and a +b - <1.5, Johnk's method ls 
typically more efllclent. When mln(a ,b ) 1s very small, and max(a ,b ) 1s rather 
large, nelther Johnk's method nor algorlthm BA are partlcularly fast. To All thls 
gap, several algorlthms were proposed by Atklnson and Whlttaker (1976, 1979) 
and Atklnson (1979). In addltlon, Cheng (1977) developed an algorlthm of hls 
own, called algorlthm BC. 

Atklnson and Whlttaker (1976,1979) spllt [0,1] lnto [O,t] and [ t  ,1], and con- 
struct a domlnatlng curve for use In the rejectlon method based upon the lne- 
qualltles: 

The areas under the two pleces of the domlnatlng curve are, respectlvely, 

(l-t)'-'L and tu - '  (l-t)b . Thus, the followlng rejectlon algorlthm can be 
U 

U b 
used: 
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First algorithm of Atkinson and Whittaker (1976, 1979) 

[SET-UP] 
Choose t E[O,l]. 

b t  
b t  + a  (1-t ) 

[GENERATOR] 
REPEAT 

Generate a uniform [0,1] random variate U and an exponential random variate E .  
IF V < P  

THEN 
1 U -  

P 
X+t(-)"  

Accept + [ ( l - b  ) log(-)<E] 1-x 
1-t 

ELSE 

1-u 
1-P 

x el-( 1-t )( -) 

UNTL Accept 
RETURN X 

Accept -[( 1-a )log( - ) s E  X ] t 

Desplte Its slmpllclty, thls algorlthm performs remarkably well when both param- 
eters are less than one, although for a + b  <1, Johnk's algorlthm 1s still to  be pre- 
ferred. The expianation for thls 1s glven In the next theorem. At  the same tlme, 
the best cholce for t 1s derlved In the theorem. 
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Theorem 4.4. 

rlthm 1s 
Assume that a 5 1 , b  5 1 .  The expected number of lteratlons In Johnk's algo- 

r ( a  +b +I)  
r ( a  +i)r(b +I) 

c =  

The expected number of lteratlons ( E ( N ) )  In the flrst algorlthm of Atklnson and 
Whlttaker 1s 

b t  +a (I-t  ) 
C 

( a  +b ) P a  (1-t y - 6  
When a +b <1, - then for all values of t , E ( N ) L c .  In any case, E ( N )  1s mlnlm- 
lzed for the value 

1 
Wlth t= top t ,  we have E ( N ) < c  whenever a+b >l. For a + b  >1, t=-, I t  1s 1 2 
also true that E ( N ) < c  . 

1 
2 

Flnally, E ( N )  1s unlformly bounded over a , b  5 1  when t =- (and I t  1s 

therefore unlformly bounded when t =topt ). 

Proof of Theorem 4.4. 
We begln wlth the fundamental lnequallty: 

+ t (l-t . The area under the The area under the top curve 1s (l-t)'-'- 

bottom curve 1s of course r(a )r(b )/r(a + b  ). The ratlo glves us the expresslon 
for E ( N ) .  8 ( N )  1s mlnlmal for the solutlon t of 

b a 

( I - t ) ' ~  (a-1)-t2b ( 6  -1) = O , 

whlch glves us t=t,,, . For the performance of Johnk's algorlthm, we refer to 
Theorem 3.4. To compare performances for a + b  51, we have to  show that for 
all t , 

BY the arlthmetlc-geometrlc mean lnequallty, the left hand slde 1s In fact not 
greater than 
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1 b a  < --(--+T) - a + b  I-t 
because a + b  5 1 ,  and the argument of the power 1s a number at least equal to 1. 

When a + b  >1,  I t  1s easy to  check that E ( N ) < c  for t =-. The statement 

about the unlform boundedness of E ( N )  when t =- follows slmply from 

1 
2 

2 
E ( N )  = 2'-"-b C 

and the fact that c 1s unlformly bounded over a ,b 5 1 .  

Generally speaklng, the flrst algorlthm of Atklnson and Whlttaker should be 
used lnstead of Johnk's when a ,b 5 1  and a + b  2 1 .  The computatlon of t o p t ,  
which lnvolves one square root, 1s only Justlfled when many random varlates are 

1 needed for the same values of a and b . Otherwlse, one should choose t =- 
2' 

When a 5 1  and b 2 1 ,  the performance of the flrst algorlthm of Atklnson 
and Whlttaker deterlorates wlth lncreaslng values of b : for Axed a <1,  
llm E(N)=oo. The lnequalltles used to develop the algorlthm are altered 

sllghtly: 
b 400 

t u  The areas under the two pleces of the domlnatlng curve are, respectlvely, - 
and t 

U 

(lVt )* . The followlng reJectlon algorlthm can be used: 
b 

1 
I 

I 
1 

-- 
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Second algorithm' of Atkinson and Whittaker (1976, 1979) 

[SET-UP] 
Choose t E [ O , l ] .  

b t  
b t  + a  ( ~ - t ) ~  

[GENERATOR] 
REPEAT 

Generate a'uniform [0,1] random variate U and an exponential random variate E .  
U I P  

THEN 

U' X+-t(-)" 
P 

Accept - - [ (1-b ) log( l -X)<E]  

ELSE 

1-u .L 
X+1-(1--t)(-) 

1-P 
X 

Accept +[(l-a )log(-i-)<E] 

UNTIL Accept 
RETURN x 

Slmple calculatlons show that 

b t  a + a  (1- t  )" t a-1 

a +b 
E ( N )  = c 

where c 1s the expected number of lteratlons In Johnk's algorlthm (see Theorems 
3.4 and 4.4). The optlmum value of t 1s the solutlon of 

b t  + ( a  -1)(1-t  )" -bt ( I - t  )b-l = o . 
Although thls can be solved numerlcally, most of the tlme we can not afford a 
numerlcal solutlon Just to generate one random varlate. We have, however, the 
followlng reassurlng performance analysls for a choke for t suggested by Atkln- 
son and Whlttaker (1076):  
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Theorem 4.5. 
1-a For the second algorlthm of Atklnson and Whlttalcer wlth t = 

b +I-U ' 

I 

sup E ( N )  < 0 0 ,  
a < l , b  21 

llm E ( N )  = 00 
b -+co 

(all a >I )  . 

4.6. Exercises. 
1. 

2. 

3. 

4. 

5. 

0. 

For the syrnmetrlc beta algorlthm studled In Theorem 4.2, show that the 
qulck acceptance step 1s valld, and that with the qulck acceptance step ln 
place, the expected number of evaluatlons of the full acceptance step tends 
to  0 as a+m.  

Prove Ulrlch's part of Theorem 4.3. 

Let X be a P2(a ,b ) random variable. Show that 1 
1s P 2 ( b  ,a ), and that 

1 

( b  >2). U a ( a  +b -1) E (Y)=- ( b  >1), and Var ( Y ) =  
b -1 ( b  b -2) 

In the table below, some densltles are llsted wlth one parameter a >O or two 
parameters a ,b >O. Let c be the shorthand notatlon for 1/B (a ,b ). Show 
for each denslty how a random varlate can be generated by a sultable 
transformatlon of a beta random varlate. 

2es2"-'( l-z2)b -1 (0 < 5 < 1) 
2c sin2a-'(s )cos2'-1(z) (055 5;) 

Prove Theorem 4.5. 

Grassia's distribution. Grassla (1977) lntroduced a dlstrlbutlon whlch 1s 
close to the beta dlstrlbutlon, and can be consldered to  be as flexlble, If not 
more flexlble, than the beta dlstrlbutlon. When x' 1s gamma (a , b ) ,  then 
e-x 1s Grassla I, and l-e-X 1s Grassla 11. Prove that for every posslble 
comblnatlon of skewness and lturtosls achlevable by the beta denslty, there 
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exlsts a Grassla dlstrlbutlon wlth the same skewness and lcurtosls (Tadl- 
kamalla, 1081). 

7.  A contlnuatlon of exerclse 6. Use the Grassla dlstrlbutlon to obtaln an 
emclent algorlthm for the generatlon of random varlates wlth denslty 

1 
8~ a -'log( -) m 

.L f ( X I =  (o<x <1)  , 
n2( 1-x ) 

where a > O  1s a parameter. 

5. THE t DISTRIBUTION. 

5.1. Overview. 

symrnetrlc denslty wlth one shape parameter a >0: 
The t distribution plays a key role In statlstlcs. The dlstrlbutlon has a 

Thls 1s a bell-shaped denslty whlch can be dealt wlth In a number of ways. As 
speclal members, we note the Cauchy density ( a  =1), and the t, denslty 
( a = 3 ) .  When a 1s Integer-valued, I t  1s sometlmes referred to as the number of . 
degrees of freedom of the dlstrlbutlon. Random varlate generatlon methods for 
thls dlstrlbutlon Include: 
1. The lnverslon method. Expllclt forms of the dlstrlbutlon functlon are only 

avallable In speclal cases: for the Cauchy denslty ( a  =l ) ,  see sectlon 11.2.1. 
For the t ,  denslty ( a  =2), see Theorem IX.3.3 In sectlon IX.3.3. For the t ,  
denslty ( a  =3), see exerclse 11.2.4. In general, the lnverslon method 1s not 
competltlve because the dlstrlbutlon functlon 1s only avallable as an Integral, . 
and not as a slmple explicit functlon of Its argument. 
Transformatlon of gamma varlates. When N 1s a normal random varlate, 
and G,,, 1s a gamma (-) random varlate lndependent of N ,  

2.  
a 

2 

1s tu dlstrlbuted. Equlvalently, If G 
varlables, then 

G, /, are lndependent gamma random 
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3. 

4. 

5. 

6. 

7. 

8. 

9. 

1s tu dlstrlbuted where 1s a random slgn. See example 1.4.6 for the derlva- 
tlon of thls property. Somewhat less useful, but stlll noteworthy, 1s the pro- 
perty that If G, /2, G *, l 2  are lld gamma random varlates, then 

6 Ga /2-G *a /z - 
d-- 

1s t ,  dlstrlbuted (Cacoullos, 1965). 

Transformatlon of a symmetrlc beta random varlate. It 1s known that If X 
1s symmetrlc beta (-,-), then a a  

2 2  
1 X--  
2 &- 

Is tu dlstrlbuted. Symmetrlc beta random varlate generatlon was studled ln 
sectlon IX.4.3. The comblnatlon of a normal reJectlon method for symmetrlc 
random varlates, and the present transformatlon was proposed by Marsaglla 

Transformatlon of an F random varlate. When S 1s a random slgn and X 1s 
F (1,a )dlstrlbuted, then S fl Is tu dlstrlbuted (see exerclse 1.4.6). Also, 
when X 1s symmetrlc F wlth parameters a and a ,  then 

(1980). 

1s t ,  dlstrlbuted. 
The ratlo-of-unlforms method. See sectlon IV.7.2. 
The ordlnary reJectlon method. Slnce the t denslty cannot be dominated by 
densltles wlth exponentlally decreaslng talls, one needs to  And a polynoml- 
ally decreasing domlnatlng functlon. Typlcal candldates for the domlnating 
curve include the Cauchy denslty and the t ,  denslty. The correspondlng 
algorlthms are qulte short, and do not rely on fast  normal or exponentlal 
generators. See below for more detalls. 
The composltlon/reJectlon method, slmllar to the method used for normal 
random varlate generatlon. The algorlthms are generally speaking longer, 
more deslgn constants need to be computed for each cholce of a ,  and the 
speed 1s usually a blt better than for the ordlnary reJectlon method. See for 
example Klnderman, Monahan and Ramage (1977) for such methods. 
The acceptance-complement method (Stadlober, 1981). 

Table methods. 
One of the transformatlons of gamma or beta random varlates 1s recommended If 
one wants to save tlme wrltlng programs. I t  1s rare that addltlonal speed 1s 
requlred beyond these transformatlon methods. For dlrect methods, good speed 
can be obtalned wltb the ratlo-of-unlforms method and wlth the ordlnary reJec- 
tloii methods. Typlcally, the expected tlme per random varlate 1s unlformly 

I 
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bounded over a subset of the parameter range, such as [l,oo) or [3,oo). Not unex- 
pectedly, the small values of a are the troublemakers, because these densltles 
decrease as x-(' +I), so that no Axed exponent polynomlal domlnatlng denslty 
exlsts. The large values of a glve least problems because i t  1s easy t o  see that for 
every x , 

2 2  
1 -- llm f ( 5 )  = - 

a 4 c o  d G e  2 *  

The problem of small a 1s not lmportant enough to warrant a speclal sectlon. See 
however the exerclses. 

5.2. Ordinary rejection methods. 

example, when a 21, the followlng lnequallty 1s trlvlally true: 
Let us flrst start wlth the development of slmple upper bounds for f , For 

1 1 

The top bound ls proportlonal t o  the denslty of dzC where C 1s a Cau- 

chy random varlate. If we want to verlfy Just how good thls lnequallty is, we note 

that the area under the domlnatlng curve 1s T 2 a  . The area under the 

6 r(s) 
i5 curve on the left hand slde of the lnequallty 1s . By the convergence 

a +1 U y - 1  
to the normal denslty, we deduce wlthout computations that thls quantlty tends 
to 6. Thus, the ratlo of the areas, our rejectlon constant, tends t o  6 as 
a+oo. The A t  1s not very good, except perhaps for a close to 1: for a=1, the 
rejectlon constant 1s obvlously 1. The detalls of the rejectlon algorlthm are left to 
the reader. 

Conslder next rejectlon from the t ,  denslty 

Best (1978) has shown the followlng: 
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Theorem 5.1. 
Let f be the tu denslty wlth a 23, and let g be the t ,  denslty. Then 

f (5 I cg (x 
where 

then 
1 2 2  2 [ l+$) 9 --- 

16 
T ( x )  2 - - e 2  2 

Flnally, 

Proof of Theorem 5.1. 

X 2  
l+a 

l+; 

- 
1 

Verlfy that  f /g 1s maxlmal for x =fl. The lower bound for T (x ) follows 
from the lnequallty 

I 

Flnally, the statement about c follows from Stlrllng's formula and bounds 
related to Stlrllng's formula. For example, the upper bound 1s obtalned as 
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follows: 

449 

A slmllar lower bound 1s valld, whlch establlshes the asyrnptotlc result. 

The A t  with the t ,  domlnatlng denslty 1s much better than wlth the Cauchy 
density. Also, recalling the ratlo-of-unlforms method for generatlng t , random 
variates ln a, form convenlent to us (see sectlon N.7 .2 ) ,  

t3 generator based upon the ratio-of-uniforms method 

REPEAT 
1 
2 

Generate lid uniform (0,1] random variates U , V .  Set V+V--. 

UNTIL Ua+ vas  U 
V RETURN x+&- U 

We can summarlze Best’s algorlthm as follows: 

I 
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t generator based upon rejection from a t3 density (Best, 1978) 

REPEAT 
Generate a t ,  random variate x by the ratio-of-uniforms method (see above). 
Generate a uniform [0,1] random variate u. 

z z+-x2,  W+l+- 
3 

Y-2 log [ - +vw2] 

Accept -[YLl-z] 
IF NOT Accept THEN Accept --[ Y ?( a +l)log( -)] a fl 

u +z 
UNTIL Accept 
RETURN x 

The algorlthm glven above differs sllghtly from that glven In Best (1978). Best 
adds another squeeze step before the flrst logarlthm. 

5.3. The Cauchy density. 
The Cauchy density 

1 f ( X I =  
n(l+x2) 

plays another key role In statlstlcs. It has no shape parameters, and the mean 
does not exlst. Just as for the exponentlal dlstrlbutlon, I t  1s easlly seen that this 
denslty causes no problems whatsoever. To start  wlth, the lnverslon method 1s 
appllcable because the dlstrlbutlon functlon is 

1 1  
2 n  

F (x ) = -+-arc tan x . 

Thls leads to the generator tan(?rU) where U 1s a unlform random varlate. The 
tangent belng a relatlvely slow operatlon, there 1s hope for Improvement. The 
maln property of the Cauchy denslty 1s that whenever ( X ,  Y )  1s a radlally dlstrl- 
buted random vector In R 2  wlthout an atom at the orlgln, then - Is Cauchy 

dlstrlbuted. The proof uses the fact that If ( R  ,0) are the polar coordlnates for 
Y ( x , Y ) ,  then -=tan(Q), and 0 1s dtstrlbuted as 27rU where U 1s a unlform [0,1] 
X 

randoin varlate. Thls leads to two stralglitforward algorlthms for generatlng 

X 
Y 
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Cauchy random varlates: 

Polar method I for Cauchy random variates 

Generate iid normal random variates N , , N 2 .  
Nl 
N2 

RETURN x +- 

Polar method 11 for Cauchy random variates 

REPEAT 
Generate iid uniform [-1,1] random variates vl,v,. 

UNTIL VI2+ v/a2 5 1 
RETURN x 
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Even though the expected number of unlform random varlates needed In the 
8 second algorlthm 1s -, I t  seems unllkely that the expected. tlme of the second 

algorlthm wlll be smaller than the expected tlme of the algorlthm based upon the 
ratlo of two normal random varlates. Other algorlthms have been proposed In the 
literature, see for example the acceptance-complement method (sectlon 11.5.4 and 
exerclse II.5.1) and the artlcle by Kronmal and Peterson (1981). 

?r 

5.4. Exercises. 
1. Laha's density (Laha, 1958). The ratlo of two lndependent normal ran- 

dom varlates 1s Cauchy dlstrlbuted. Thls property 1s shared by other densl- 
ties as well, In the sense that the term "normal" can be replaced by the 
name of some other dlstrlbutlons. Show flrst that the ratlo of two lndepen- 
dent random varlables wlth Laha's denslty 

dz 
r(1+x4) 

f ( X I =  

1s Cauchy dlstrlbuted. Give a good algorlthm for generatlng random varlates 
wlth Laha's denslty. 
Let ( X ,  Y )  be unlformly distrlbuted on the clrcle wlth center ( a  ,6 ). Descrlbe 
the denslty of - Note that when ( a , b ) = ( O , O ) ,  you should obtaln the 

2. 
X 
Y '  
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3. 

4. 

5. 

6. 

7. 

8.  

Cauchy denslty. 

Conslder the class of generallzed Cauchy densltles 

71 a sln( -) 
a f ( X I =  

2T(1+ I x I " )  ? 

where a > 1  1s a parameter. The densltles In thls class are domlnated by the 
Cauchy denslty tlmes a constant when a z 2 .  Use thls fact to develop a gen- 
erator whlch 1s unlformly fast on [ 2 , ~ ) .  Can you also suggest an algorlthm 
whlch 1s unlformly fast  on ( 1 , ~ )  ? 

The denslty 
, 

possesses both a heavy tall and a sharp peak at 0. Suggest a good and short 
algorlthm for the generatlon of random varlates wlth thls denslty. 

Cacoullos's theorem (Cacoullos, 1965). Prove that  when G ,G* are lld 

gamma (-) random varlates, then U 

2 
6 G-G* X + -  
2 m  

1s tu dlstrlbuted. In partlcular, note that when N , , N 2  are lld normal ran- 
dom varlates, then (N  , - N 2 ) / ( 2 4 m - )  1s Cauchy dlstrlbuted. 

The followlng famlly of densltles has heavler talls than any member of the t 
famlly: 

a -1 I ( X I =  ( x > e ) .  
t (log(x )IU 

Here a >1 1s a parameter. Propose a slmple algorlthm for generatlng random 
varlates from thls famlly, and verify that l t  1s unlformly fast  over all values 
a >I. 
In thls exerclse, let c,,c,,c, be lld Cauchy random varlables, and let U be 
a unlform [0,1] randoin varlable. Prove the followlng dlstrlbutlonal proper- 
tles: 

A. 
B. C,C2C, has denslty (7~~+(log(s~))~)/(27r~(l+z~)) .  

C,C2 has denslty (log(x2))/(7r2(x2-1)) (Feller, 1971, p. 64). 

) / (2n) .  
1+x2 

X 2  
C. UC has denslty log( - 

2 Show that when X , Y  are lld random varlables wlth denslty 

then Xf Y has denslty 
n ( e  z +e-' ' 

2 - - 42 
S(X) = 

r 2 ( e  ' -e+ x 2  x 4  
n2(1+-+-+ . . ) 

3! 5! 
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whlch 1s proportlonal to the t denslty wlth parameter u 2 1 .  The lnequalltles 
have been used by Klnderinan, Monahan and Rainage (1977)  In the develop- 
ment of several rejectlon algorlthms wlth squeeze steps: 

A. f a  (5) - < m l n ( 1 , F )  . Uslng thls lnequallty In the reJectlon method 

corresponds to uslng the ratio-of-unlforms method. 

M. The trlangular lower bound 1s the largest such 

1 

5 

2 B- f a ( x )  2 1- 

lower bound not dependlng upon a that 1s valld for all a 2 1 .  
a +l -- 

If thls lnequallty Is 2 <- C 1 2  where c =2(1+-) 
a - Je' c. f a W  I - 

1 + x 2  
used& the reJectlon method, then the reJectlon constant tends to 

as a+w. The bound can also be used as a quick reJectlon e 
step. 

12. A unlformly fast rejection method for the t famlly can be obtalned by uslng 
a comblnatlon of a constant bound (f (0)) and a polynomlal tall bound: for 

where c , b  the functlon (l+-) 

are chosen to keep the area under the cornblned upper bound unlformly 
bounded over a >O. 

a +1 
-7 

C , flnd an upper bound of the form x 2  2 

X U 

6. THE STABLE DISTRIBUTION. 

6.1. Definition and properties. 
It 1s well known that the sum of lld random varlables wlth finlte varlance 

tends In dlstrlbutlon to the normal law. When the varlance 1s not flnlte, the sum 
tends In dlstrlbutlon to one of the stable laws, see e.g. Feller (1971). Stable laws 
have thicker talls than the normal dlstrlbutlon, and are well sulted for modellng 
economlc data, see e.g. Mandelbrot (1963), Press (1975). Unfortunately, stable 
laws are not easy to work wlth because wlth a few exceptions no slmple expres- 
slons are known for the denslty or dlstrlbutlon functlon of the stable dlstrlbu- 
tlons. The stable dlstrlbutlons are most easlly deflned in terms of thelr charac- 
terlstlc functlons. Wltliout translatlon and scale parameters, the characterlstlc 
functlon 4 1s usually deflned by 

- I t I " ( 1 - i~  sgn(t )tan(%)) 

- I t I (l+iP-sgn(t)log( I t I )) 

(a#l) 2 
2 9 

(a=l) i 7r 

log(4U 1) = 

where - 1 < p i l  and O<a<2 are the parameters of the dlstrlbutlon, and sgn(t)  
1s the slgn of t .  Thls wlll be called Levy's representatlon. There 1s another 
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parametrlzatlon and representatlon, whlch we wlll call the polar form (Zolotarev, 
1959; Feller, 1971): 

log(4(t )) = - I t I cue-r 7 sgn(t) , 

Here, O < a < 2  and 17 I 5 2 m l n ( a , 2 - a )  are the parameters. Note however that 

one should not equate the two forms to  deduce the relatlonshlp between the 
parameters because the representatlons have dlfferent scale factors. After throw- 
lng In a scale factor, one qulckly notlces that the a’s are ldentlcal, and that ,6’ and 
7 are related vla the equatlon p=tan(r)/tan(an/2). Because 7 has a range whlch 
depends upon a, l t  1s more convenlent to  replace 7 by -mln(a,2-a)6, where 6 Is 
now allowed to  vary in [-1,1]. Thus, we rewrlte the polar form as follows: 

2 

7r 

2 

-i-min(a,z-a)6 7r sgn(t ) 
2 log($(t)) = - I t I & e  

When we say that a random varlable 1s stable (1.3,0.4), we are referrlng to 
the last polar form wlth a=1.3 and 6=0.4. The parameters p, 7 and 6 are called 
the skewness parameters. For P=O (y=O, 6=0), we obtaln the symrnetrlc stable 
dlstrlbutlon, whlch 1s by far the most lmportant sub-class of stable dlstrlbutlons. 
For all forms, the symrnetrlc stable characterlstlc functlon 1s 

QW = e - I t  l a  

By uslng the product of characterlstlc functlons, i t  1s easy to see that If 
X,, . . . , X n  are lld symmetrlc stable (a), then 

1 -- n 
n “ E X i  

i =I 

Is agaln symrnetrlc stable (a). The followlng partlcular cases are lmportant: the 
symrnetrlc stable (1) law colncldes wlth the Cauchy law, and the symrnetrlc 
stable (2) dlstrlbutlon 1s normal wlth zero mean and varlance 2. These two 
representatlves are typlcal: all symrnetrlc stable densltles are unlmodal (Ibragl- 
mov and Chernln, 1959; Kanter, 1975) and In fact bell-shaped wlth two lnflnlte 
talls. All moments exlst when a=2. For a<2, all moments of order < a  exlst, 
and the a-th moment 1s 00. 

The asyrnmetrlc stable laws have a nonzero skewness parameter, but In all 
cases, a 1s lndlcatlve of the slze of the tall(s) of the denslty. Roughly speaklng, 
the tall or talk drop off as 12 I -(l+a) as 12 I --too. All densltles are unlmodal, 
and the exlstence or nonexlstence of moments 1s as for the symrnetrlc stable den- 
sltles wlth the same value of a. There are two lnflnlte talk when 16 I #l or 
when all, and there 1s one lnflnlte tall othenvlse. When O<a<l, the mode has 
the same slgn as 6. Thus, for acl, a stable (a.1) random varlable 1s posltive, and 
a Stable (a,-1) random varlable Is negatlve. Both are shaped as the gamma den- 
shy. 

There are a few relatlonshlps between stable random varlates that wlll be 
useful In the sequel. It 1s not necessary to treat negatlve-valued skewness 
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parameters slnce mlnus a stable (a,@ random varlable 1s stable (a,-6) dlstrlbuted. 
Next, we have the followlng baslc relatlonshlp: ’ 

Lemma 6.1. 
Let Y be a stable ( a ’ , l )  random varlable wlth a’<l, and let X be an 

lndependent stable (a,@ random varlable wlth a#l. Then X Y 1 / a  1s stable 

(aa‘,S ). Furthermore, the followlng 1s true: afm1n(a,2-a) 
mln( aa’ ,2-aa’) 

A. 

B. 

C. 

D. 

E. 

If N 1s a normal random varlable, and Y 1s an lndependent stable (&,I) 
random varlable wlth a‘ < 1, then N 1s stable (2a’,O). 

A stable (’,1) random varlable 1s dlstrlbuted as 1 / ( 2 N 2 )  where N Is a nor- 

mal random varlable. In other words, I t  1s Pearson V dlstrlbuted. 
If N l , N 2 ,  ... are lld normal random varlables, then for integer IC 21, 

2 

k - 1  1 

j =o (2Nj 2)2’ 
n 

1s stable (2-k ,1). 
For N l , N 2 ,  ... , lld normal random varlables, and lnteger k 21, 

1s stable (21-k ,O). 
For N 1 , N 2 ,  ... , ild normal random varlables , and lnteger k 20, 

1 
1s stable (- 90). 2k +1 

Proof of Lemma 6.1. 
The flrst statement 1s left as an exerclse. If In It, we take a=2, 6=0, we 

obtaln part A. It 1s also seen that a symrnetrlc stable (1) 1s dlstrlbuted as a sym- 
metrlc stable (2) random varlable tlmes f l  where X 1s stable ( - , l ) .  But by the 

property that stable (1) random varlables are nothlng but Cauchy random varl- 
ables, 1.e. ratlos of two lndependent normal random varlables, we conclude that 

1 
2 
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X must be dlstrlbuted as i / (2N2) where N 1s normally dlstrlbuted. Thls proves 
part B. Next, agaln by the maln property, If X 1s as above, and Y 1s stable 
(a',l),  then X Y 2  1s stable (-,1), at least when d< l .  If thls 1s applled succes- 

slvely for a'=-,-,-, ..., we obtaln statement C. Statement D follows from 

statements A and C. Finally, uslng the fact that  a symmetrlc stable (1/2k+') 1s 

see that a stable (1/2k"',0) 1s dlstrlbuted as a Cauchy random varlable tlmes 

a' 
2 

1 1 1  
2 4 8  

dlstrlbuted as a symmetrlc stable (1/2k)  tlmes X 2 * ,  where X 1s stable (-,l), 1 we 
2 

Thls concludes the proof of part E. 

Properties A-E In Lemma 6.1 are all corollarles of the maln property glven 
there. The maln property 1s due to  Feller (1971). Property A tells us that all sym- 
metric stable random varlables can be obtalned If we can obtaln all posltlve 
(6=1) stable random varlables wlth parameter a<l. Property B 1s due to  Levy 
(1940). Property C goes back to Brown and Tukey (1946). Property D 1s but a 
slmple corollary of property C, and finally, property E Is a representatlon of 
Mltra's (1981). For other slmllar representatlons, see Mltra (1982). 

There Is another property worthy of mentlon. It states that all stable (a,&) 
random varlables can be wrltten as welghted sums of two lld stable ( a , l )  random 
varlables. It was mentloned In chapter IV (Lemma 6.l), but we reproduce I t  here 
for the sake of completeness. 

Lemma 6.2. 

I If X and Y are lld stable(a,l), then 2 t p X - q Y  1s stable(a,&) where 

sln( 
p "  = 

q a  = 

sln(7r mln(a,2-a)) 9 

1 T mln(a,2-a)(1-6) 
2 

sln( 

s h ( n  mln(a,2-a)) 
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Proof of Lemma 6.2. 
The characterlstlc functlon of 2 1s 

d( t  = E ( e  i t ~ x  )E ( e  -itqY ) 

= ? l (P t  1 
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where $ Is the characterlstlc functlon of the stable ( a , l )  law: 
-Ilnln(u.2-a) S P ( f )  

- I t  I u e  

Note next that for u >0, 

?lW= e 

+ q a e  " 1s equal to  

cos(u ) ( p  *+q ")-isln(u ) ( p  *-q ") 

7r 7r 

2 2 
i sln(u )cos(-m~n(aI2-a))s~n((-6m~n(a,2-a))) ) . 

7r 

2 
After replaclng u by Its value, -mln(cr,2-a), we see that we have 

Resubstltutlon glves us our result. 

6.2. Overview of generators. 
The dlfflculty wlth most stable densltles and dlstrlbutlon functlons 1s that no 

slmple analytlcal expresslon for Its computatlon 1s avallable. The exceptions are 
spelled out In the prevlous sectlon. Baslcally, stable random varlates wlth param- 
eter a equal to 2-k for k 2 0  , and wlth arbltrary value for 6, can be generated 
qulte easlly by the methods outllned in Lemmas 0.1 and 6.2. One Just needs to 
comblne an approprlate number of lld normal random varlates. For general a,& 
methods requlrlng accurate values of the denslty or dlstrlbutlon functlon are thus 
doomed, because these cannot be obtalned ln Anlte tlme. Approxlmate lnverslons 
of the dlstrlbutlon functlon are reported In Fama and Roll (1968), Dumouchel 
(1971) and Paulson, Holcomb and Leltch (1975). Paulauskas (1982) suggests 
another approxlmate method In whlch enough lld random varlables are summed. 
Candldates for summlng lnclude the Pareto densltles. For symmetrlc stable densl- 
tles, Bartels (1978) also presents approxlmate methods. Bondesson (1982) pro- 
poses yet another approxlmate method In whlch a stable random variable 1s wrlt- 
ten as an lnflnlte sum of powers of the event tlmes In a homogeneous Polsson 
process on [Otoo). The sum 1s truncated, and the tall sum 1s replaced by an 
appropriately plcked normal random varlate. 

Fortunately, exact methods do exlst. First of all, the stable denslty can be 
wrltten as an lntegral whlch In turn leads to a slmple formula for generatlng 
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stable random varlates as a comblnatlon of one unlform and one exponentlal ran- 
dom varlate. These generators were developed In sectlon N . 6 . 6 ,  and are based 
upon lntegral representatlons of Ibraglmov and Chernln (1959) and Zolotarev 
(1966). The generators themselves were proposed by Kanter (1975) and 

Chambers, Mallows and Stuck (1976), and are all of the form g ( U ) E  cy where 
E 1s exponentlally dlstrlbuted, and g (U) Is a functlon of a unlform (0,1] random 
varlate U. The sheer slmpllclty of the representatlon makes thls method very 
attractlve, even though g Is a rather compllcated functlon of Its argument 
lnvolvlng several trlgonometrlc and exponentlal/logarlthmlc operatlons. Unless 
speed 1s absolutely at a premlum, thls method 1s hlghly recommended. 

For symmetrlc stable random varlates wlth a l l ,  there 1s another represen- 
tatlon: such random varlates are dlstrlbuted as 

l-a -- 

Y 

where Y has the FeJer-de la Vallee Poussln denslty, and ,!?,,E, are lld exponen- 
tlal random varlates. Thls representatlon 1s based upon propertles of Polya 
characterlstlc functlons, see sectlon rV.6.7, Theorems rV.6.8, rV.6.9, and Example 
N.6.7 .  Slnce the FeJer-de la Vallee Poussln denslty does not vary wlth a, ran- 
dom varlates wlth thls denslty can be generated qulte qufckly (remark rV.S.1). 
Thls can lead to speeds whlch are superlor to the speed of the method of Kanter 
and Chambers, Mallows and Stuck. 

In the rest of thls sectlon we outllne how the serles method (sectlon W.5) 
can be used to generate stable random varlates. Recall that the serles method 1s 
based upon reJectlon, and that I t  Is deslgned for densltles that are glven as a con- 
vergent serles. For stable densltles, such convergent serles were obtalned by 
Bergstrom (1952) and Feller (1971). In addltlon, we wlll need good domlnatlng 
curves for the stable densltles, and sharp estlmates for the tall sums of the con- 
vergent serles. In the next sectlon, the Bergstrom-Feller serles wlll be presented, 
together wlth estlmates of the tall sums due to Bartels (1981). Inequalltles for the 
stable dlstrlbutlon whlch lead to practlcal lmplementatlons of the serles method 
are obtalned In the last sectlon. At the same tlme, we wlll obtaln estlmates of the 
expected tlme performance as a functlon of the parameters of the dlstrlbutlon. 
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6.3. The Bergstrom-Feller series. 
The purpose of thls sectlon Is to get ready for the next section, where the 

serles method for stable random varlates Is developed. The form of the charac- 
terlstlc functlon most convenlent to us Is the first polar form, wlth parameters Q 

and 7. To obtaln serles expanslons for the stable denslty functlon, we conslder 
the Fourler Inverse of 4, whlch takes a slmple form slnce I q5 I 1s absolutely 
integrable: 

00 

-00 
Y I 1  

7r 7r provlded that I a$-? I sL and that I -+$ I 5- wlth at least one of these 
2 2 2 

belng a strlct lnequallty. We have used the fact that changlng the sign of 7 Is 
equlvalent t o  mlrrorlng the denslty about the orlgln, and we have consldered a 
contour In the complex plane. The last expresslon for f wlll be our startlng 
polnt. Recall that we need not only a convergent serles, but also good bounds for 
f and for the tall sums. Bergstrom (1952) replaces each of the exponents In the 
last expresslon In turn by lts Maclaurln serles, and lntegrates (see also Feller 
(1971)). Bartels (1981) uses Darboux’s formula (1876) for the remainder term In 
the serles expanslon to obtaln good truncatlon bounds. In Theorem 6.1 below, we 
present the two Bergstrom-Feller serles together wlth Bartels’s bounds. The proof 
follows Bartels (1981). 
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Theorem 6.1. 
The stable ( a ! , ~ )  denslty f can be expanded for values a: 2 0  as follows: 

n 

j=i  
f ( a : )  = a,(a:>+A*,+,(a:) 

where 

r(-)a: j .  ]-%In( j (T+-)) “ 7  
U j ( 2 )  = -(-1)i-1 1 a! a! 

a!R j -I! 9 

n!(cos(O)) * I 
where 
slty Is 
verges 
15 I )  

6=0 If 750 and B=? If ~ > 0 .  For a: C O ,  note that the value of the den- 
equal to f ( -a : )  provlded that ? 1s replaced by -?. The expanslon con- 
for 1 < a ! s 2 .  For O < a < l ,  we have a divergent asymptotic serles for small 
l.e., for flxed n , A, (a: )-to as I a: I --to. Note also that 

n 1  R 
2 a !  2 

wlth 8.-max(O,-+-(~--)). The expanslon 1s convergent for O < a ! < l ,  and Is a 

dlvergent asymptotic expanslon at 
B, (a:)+O as I a: I 400. Furthermore, for all a!, 

l a :  I --too when a>l ,  1.e. for flxed n ,  

r(a!+i) 
n(a: cos(6)>*+1 * 

f 
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Proof of Theorem 6.1. 

e' wlth complex x leads to  
n-1 ,j z n  

e' = T + y M n  , 

The proof 1s based upon a formula of Darboux (1876), whlch when applled to 

j = o  .7. 7 2 .  

where M, = l e  *', I 5 1, and 8 belng a real 
constant In the range O g < l .  In partlcular, for Re(z))>O, I Mn I < - I e' I . For 

Re(z)<O, I M, I 51. Apply thls result wlth z --txe - In the lnverslon for- 
mula for f , and note that Re(z)LO. Take the Integrals, and observe that the 
remainder term can be bounded as follows: 

belng a complex constant wlth I 

j(++q) 

n +1 r(-)a: 
1 cy =- 

n +1 an. __. 

n !(cos(a+q)) a 

The angle $ can be chosen wlthln the restrlctlons put on It, to make the upper 
bound as small as posslble. Thls leads to  the cholce - when 750, and 0 when 

y>O. It 1s easy to verlfy that for l<cy52,  the expanslon 1s convergent. Flnally, 
the upper bound 1s obtalned by notlng that f ( a : ) s A  

The second expanslon 1s obtalned by applylng Darboux's formula to  
and lntegratlng. Repeatlng the arguments used for the flrst expanslon, 

we obtaln the second expanslon. Uslng Stlrllng's formula, I t  1s easy to verlfy that 
for O<cy<l, the expanslon 1s convergent. Furthermore, for Axed n , B, ( x ) - + O  as 

7 
cy 

e -toe J (967) 

I 2 I +oo, and f (a: ) s B , ( s ) .  

The convergent serles expanslon for a> l  requlres an lncreaslng number of 
terms t o  reach a glven truncatlon error as I x I Increases. The asymptotlc serles 
lncreases In accuracy and needs fewer terms as I x I Increases. As polnted out by 
Bartels (1981), the convergent serles generally tends to  lncrease flrst, before con- 
verglng, and the lntermedlate values may become so large that the Anal answer 
no longer has sufflclent slgnlflcant dlglts. Thls drawback occurs malnly for values 
of cy near 1, and large values of I 7 I . 
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6.4. The series method for stable random variates. 

denslty when 720: 
From Theorem 6.1, we deduce the followlng useful bound for the stable (a,?) 

CY 
1 (x Lo) 

n 1  n n 1  n 
2 C Y  2 C Y  2 

where ~=maX(O,-+-(-y----)) and q=max(O,-+-(?--)). The bounds are 
valld for all values of CY. The domlnatlng curve wlll be used In the reJectlon algo- 
rlthm to be presented below. Taklng the mlnlmum of the bounds glves basically 
two constant pleces near the center and two polynomlally decreaslng talls. There 
1s no problem whatsoever wlth the generatlon of random varlates wlth denslty 
proportlonal to  the domlnatlng curve. Unfortunately, the bounds provlded by 
Theorem 6.1 are not very useful for asymmetrlc stable random varlates because 
t& mode 1s located away from the orlgln. For example, for the posltlve stable 
denslty, we even have f (O)=O. Thus, a constant/polynomlal domlnatlng curve 
does not cap the denslty very well In the reglon between the orlgln and the mode. 
For a good At, we would have needed an expanslon around the mode lnstead of 
two expanslons, one around the orlgln, and one around 00. The lnefflclency of the 
bound 1s easlly born out In the lntegral under the domlnatlng curve. We wlll con- 
slder four cases: 

?=O,a> 1 (symmetrlc stable). 
~ = O , C Y <  1 (symmetrlc stable). 
7=(2-a)-,a> 1 (posltlve stable). 7r 

2 
?r 
2 

r=cr-,a< 1 (posltlve stable). 

The upper bound glven to us 
symmetrlc stable denslty, the 
gln, whlle for the asymrnetrlc 
and x by -x . Recalllng that 

00 

Jmln(A ,BZ-( '+~)) dx 
0 

1s of the form mln(A ,Bx-( '+~))  for 2 >O. For the 
domlnatlng curve can be mlrrored around the orl- 
cases, we need to replace A ,B by values A * ,B*, 



464 M.6 .S TABLE DISTRIBUTION 

CASE I A 

I t  1s easy to  compute the areas under the varlous domlnatlng curves. We offer 
the followlng table for A ,B : 

B 

r(;) 
1 

3 
7r 0 an(sin( (a-l)-)) 

r($) 

an(cos( -)) 2 

1 
4 

an - 

r(a+l) 
7r(cOs(+)Q+l 

r(a+i) 
n(-cos( -))Q+l 

2a 

n 
2a 

For example, In case 1, we see that the area under the domlnatlng curve 1s 

where we used the followlng lnequalltles: (1) ( a + l ) / ~ " / ( ~ + " ) 5 2  (a> 1); (11) 

sln(7r/(2a))>i/a; (111) r ( u  1 5 2  ( 2 5 u  53); (iv) r ( u  )<r($)=fi ($521 51). 
Some of the lnequalltles are rather loose, so that the actua! A t  1s probably much 
better than what 1s predlcted by the upper bound. For a=2, the normal denslty, 
we obtaln 321/6f2/3. The lmportance of the good A t  1s clear: we can now use the 
domlnatlng curve qulte confidently In any rejectlon type algorlthm for symmetrlc 
stable random varlate generatlon when a>l. The story 1s not so rosy for the 
three other cases, because the lntegral of the domlnatlng curve 1s not unlformly 
bounded over the speclfied parameter ranges. The actual verlflcatlon of thls state- 
ment 1s left as an exerclse, but we conclude that I t  1s not worth to  use the 
Bergstrom-Feller serles for asymrnetrlc stable random varlates. For thls reason, 
we wlll Just concentrate on the symrnetrlc case. The notatlon a, , b , ,  A , ,  B, 1s 
taken from Theorem 6.1. Furthermore, we define a denslty g and a normallzatlon 
constant c by 
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where p=O for a<l,  and $==n/(2a) otherwlse. The algorlthm 1s of the following 
form: 

Series method for symmetric stable density; case of parameter > 1 

REPEAT 
Generate x with density g . 
Generate a uniform [0,1) random variate U. 
T +Ucg ( X )  
S t O ,  n -0 (Get ready for series method.) 
REPEAT 

n +n +1,s +s f a ,  ( X )  
UNTIL I S-T I >A,+I(X) 

UNTIL T <s 
RETURN x 

Because of the convergent nature of the serles Ea,, thls algorlthm stops wlth 
probability one. Note that the dlvergent asymptotic expanslon 1s only used In the 
deflnltlon of c g .  It could of course also be used for lntroduclng qulck acceptance 
and reJectfon steps. But because of the dlvergent nature of the expanslon I t  1s 
useless In the deflnltlon of a stopping rule. One posslble use 1s as lndlcated in the 
modlfled algorlthm shown below. 
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Series method for symmetric stable density; caae of parameter > 1 

REPEAT 
Generate x with density g . 
Generate a uniform [0,1] random variate U . 
T +Ucg ( X )  
s -0, n +O (Get ready for series method.) 

V+-B,(X), W+b ,(X) 
IF  T S W - V  

THEN RETURN x 
ELSE IF W-V < T 5 W + V 

THEN 
REPEAT 

n+n+1,S+-S+n,(X) 
UNTIL I S-T I L A , + , ( X )  

UNTIL T I S  A N D  T 5 W+V 
RETURN x 

Good speed 1s obtalnable If we can set up some constants for a Axed value of a. 
In partlcular, an array of the flrst m coefflclents of x j - l  In the serles expanslon 
can be computed beforehand. Note that for a<l, both algorlthms shown above 
can be used agaln, provlded that the roles of a, and b,  are Interchanged. For 
the modlfled verslon, we have: 
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Series method for symmetric stable density; case of parameter less than or equal 
to one 

REPEAT 
Generate x with density g . 
Generate a uniform [O,l] random variate U. 

s +O, n -0 (Get ready for series method.) 
T tucg (X) 

V + A  a(X),  W+U l ( X )  
IF T S W - V  

THEN RETURN X 
ELSE IF' W-V < T 5 W + V 

T F N  
REPEAT 

n +-n +1,S +S +6, (X) 
UNTIL I S-T I >B,+I(X) 

UNTIL T < S  A N D  T < W + V  
RETURN x 

6.5. Exercises. 

1. 

2.  

3. 

1 
2 

Prove that a symmetrlc stable random varlate wlth parameter - can be 

obtalned as c (N1-2-N2-2) where N l , N ,  are lld normal random varlates, and 
c >O 1s a constant. Determlne c too. 
The expected number of lteratlons In the serles method for sy'mmetrlc stable 
random varlates wlth parameter cy ,based upon the lnequalltles glven In the 
text (based upon the Bergstrom-Feller serles), Is asymptotlc to 

2 

r e  a2 

as (240. 
Conslder the serles method for stable random varlates glven In the text, 
without qulck acceptance and reJectlon steps. For all values of cy, determlne 
E ( N ) ,  where N 1s the number of computatlons of some term a, or 6, (note 
that slnce a, or 6, are computed In the lnner loop of two nested loops, I t  1s 
an approprlate measure of the tlme needed to generate a random varlate). 
For whlch values, If any, 1s E ( N )  flnlte ? 
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4. 

5. 

6. 

7. 

8.  

7. 

Some approxlmate methods for stable random varlate generatlon are based 
upon the followlng llmlt law, whlch you are asked to prove. Assume that 
Xl, ... are lld random varlables wlth common dlstrlbutlon functlon F satlsfy- 

b 1-F (5 > - (->" (5 -00) , 
5 

cb*  F (-5 ) - (-)>" (a: +-m) , 
15 I 

for some constants O<a<2 ,  b ,b* L O ,  b +b* >O. Show that there exlst nor- 
mallzlng constants c, such that 

1 ,  
C Xj-Cn 

- 
1 - j = 1  

n "  

tends In dlstrlbutlon to  the stable (a$) dlstrlbutlon wlth parameter 
b "-b *a 

P =  b a + b * a  
(Feller, 1971). 

Thls 1s a contlnuatlon of the prevlous exerclse. Glve an example of a dlstrl- 
butlon wlth a denslty satlsf'ylng the tall condltlons mentloned In the exerclse, 
and show how you can generate a random varlate. Furthermore, suggest for 
your example how c, can be chosen. 
Prove the flrst statement of Lemma 6.1. 

Flnd a slmple domlnatlng curve with unlformly bounded lntegral for all posl- 
tlve stable densltles with parameter a>l. Mentlon how you would proceed 
wlth the generatlon of a random varlate wlth denslty proportlonal to  thls 
curve. 
In the splrlt of the prevlous exerclse, And a slmple domlnatlng curve wlth 
unlformly bounded lntegral for all symmetric stable densltles; Q can take all 
values In (0,2]. 

NONSTANDARD DISTRIBUTIONS. 

7.1. Bessel function distributions. 

sl ty 
The Polya-Aeppli dlstrlbutlon Is a three-parameter distrlbutlon wlth den- 
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where e>O, x>O, @ L O  are the parameters and la ( 2 )  1s the modlfled Bessel func- 
tlon of the Arst klnd, formally defined by 

The normallzatlon constant C Is glven by 

The name Polya-Aeppll Is used In many texts such as Ord (1972, p. 125-126). 
Others prefer the name ”type I Bessel functlon dlstrlbutlon” (Feller, 1971, p. 57). 
By uslng the expanslon of the Bessel functlon, I t  1s not dlmcult to see that  If 2 is 

Polsson (-) dlstrlbuted, and G Is gamma (x+Z) dlstrlbuted, then - has the 

Polya-Aeppll dlstrlbutlon. We summarlze: 

p” G 
49 e 

Polys-Aeppli random variate generator 

p” 
4e 

Generate a Poisson (-) random variate 2 ,  

Generate a gamma (X+Z) random variate G . 
G RETURN X+- e 

The Polya-Aeppll famlly contalns as a speclal case the gamma famlly ( set @=O, 
8 4  ). Other dlstrlbutlons can be derlved from I t  wlthout much trouble: for 
example, If X 1s Polya-Aeppll (P,x,->, then X 2  1s a type I1 Bessel functlon dlstrl- 

butlon wlth parameters (@,A,@, 1.e. X 2  has denslty 
22 -0- 

e 
2 

f ( 2 )  = DxXe IA-l(Pz> (z 20) , 
where D=9 P e -P2/(2e). Speclal cases here lnclude the folded normal dlstrlbu- 
tlon and the Raylelgh dlstrlbutlon. For more about the propertles of type I and I1 
Bessel functlon dlstrlbutlons, see for example Kotz and Srlnlvasan (lSSQ), Lukacs 
and Laha (1964) and Laha (1954). 

Bessel functlons of the second klnd appear In other contexts. For example, 
the product of two lld normal random varlables has denslty 

where ICo 1s the Bessel functlon of the second klnd wlth purely lmaglnary argu- 
ment of order 0 (Sprlnger, 1979, p. 160). 
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In the study of random walks, the followlng denslty appears naturally: 

I r < x >  ( x > O )  9 
{ ( x ) = - e  r -2 

X 

where r >O 1s a parameter (see Feller (1971, pp. 59-60,476)). For lnteger r , thls 1s 
the denslty of the tlme before level r 1s crossed for the flrst tlme In a symrnetrlc 
random walk, when the tlme between epochs 1s exponentlally dlstrlbuted: 

Xt0 ,L  t o  
REPEAT 

Generate a uniform [-1,1] random variate U . 
L t L  +sign( U )  
x t x - l o g (  I u I ) 

UNTIL L =r 

RETURN x 

Unfortunately, the expected number of lteratlons 1s 00, and the number of itera- 
tlons 1s bounded from below by r , so thls algorlthm 1s not unlformly fast  In any 
sense. We have however: 

Theorem 7.1. 
Let T >O be a real number. If G ,B are Independent gamma ( T  ) and beta 

1 1 
2 2 

( - ,T  +-) random varfables, then 

G 

has denslty 

Proof of Theorem 7.1. 

found for example In Magnus et  al. (lQ66, p. 84): 
We use an lntegral representatlon of the Bessel functlon I,. whlch can be 
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r(r+$-) * 

1 r 1 . x .  1 r 1  r -- 

The result follows dlrectly from thls. 

The algorithm suggested by Theorem 7.1 Is unlformly fast  over all T > O  if 
unlformly fast gamma and beta generators are used. Of course, we can also use 
dlrect rejectlon. Bounds for f can for example be obtalned startlng from the 
lntegral representatlon for f glven In the proof of Theorem 7.1. The acceptance 
or reJectlon has to be declded based upon the serles method In that case. 

7.2. The logistic and hyperbolic secant distributions. 

functfon 
A random varlable has the logistic distribution when I t  has dlstrlbutlon 

1 F ( x )  = 
1+e+ 

on the real Ilne. The corresponding denslty 1s 
1 

2 + e Z  +e-2 
f ( X I =  

For random varlate generatlon, we can obvlously proceed by lnverslon: when U 
1s unlformly dlstrlbuted on [0,1], then X t l o g ( -  U ) 1s loglstlc. To beat thls 

method, one needs either an extremely efflclent reJectlon or acceptance- 
complement algorlthm, or a table method. ReJectlon could be based upon one of 
the followlng lnequalltles: 
A. I : thls 1s reJectlon from the Laplace denslty. The reJectlon con- 

1- u 

f ( x  )s e-1 
stant 1s 2 .  

1 B. f (a:)s-* . thls 1s reJectlon from the denslty of 2 C  where c 1s a Cauchy 
4+x2 

random varlate. The reJectlon constant 1s L=1.57. 

A dlstrlbutlon related to the loglstlc dlstrlbutlon 1s the hyperbolic secant 
2 

dlstrlbutlon (Talacko, 1958). The denslty 1s glven by 

2 

?r(e + e - 2  ) 
f ( X I =  
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Both the loglstlc and hyperbollc secant dlstrlbutlons are members of the famlly of 
Perks dlstrlbutlons (Talacko, lQSS), wlth densltles of the form c / ( a  +e ' + e  -' ), 
where a >O - 1s a parameter and c 1s a normallzatlon constant. For thls famlly, 
rejection from the Cauchy denslty can always be used slnce the denslty IS 

bounded from above by c / ( a  +2+z2), and the resultlng reJectlon algorlthm has 
unlformly bounded rejectlon constant for a LO. For the hyperbollc secant dlstrl- 
butlon In partlcular, there are other posslbllltles. One can easlly see that I t  has 
dlstrlbutlon functlon 

2 F ( z )  = -arc tan(e ) . 
7r 

7r 

2 
Thus, X t log( tan( -  U)) 1s a hyperbollc secant random varlate whenever U 1s a 

unlform [0,1] random varlate. We can also use reJectlon from the Laplace denslty, 
based upon the lnequallty f ($)<Le-\ ' 1 . Thls ylelds a qulte acceptable reJec- 

tlon constant of -. The reJectlon condltlon can be conslderably slmpllfled: 
7r 

4 

7r 

Rejection algorithm for the hyperbolic secant distribution 

REPEAT 
Generate U uniformly on [OJ] and v uniformly on [-1,1]. 

X-ign(V)log( I V I ) 
UNTIL u( I v I +1)<1 
RETURN x 

Both the loglstlc and hyperbollc secant dlstrlbutlons are lntlmately related to  a 
host of other dlstrlbutlons. Most of the relatlons can be deduced from the lnver- 
slon method. For example, by the propertles of unlform spaclngs, we observe that 
U - 1s dlstrlbuted as E,/E, ,  the ratlo of two lndependent exponentlal random 

1- U 
varlates. Thus, log(E l)-log(E,) 1s loglstlc. Thls In turn lmplles that the dlfference 
between two lld extreme-value random varlables (l.e., random varlables wlth dls- 

trlbutlon functlon e - e " )  1s loglstlc. Also, t an( -u)  1s dlstrlbuted as the absolute 

value of a Cauchy random varlable. Thus, If C 1s a Cauchy random varlable, and 
Nl,N, are lld normal random varlables, then log( 1 C I ) and 
log( I N ,  I )-log( I N ,  I ) are both hyperbollc secant. 

Many propertles of the loglstlc dlstrlbutlon are reviewed In Olusegun George 
and Mudholkar (lQ81). 

7r 

2 
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7.3. The von Mises distribution. 
The von Mises distribution for polnts on a clrcle has become lmportant In 

the statlstlcal theory of dlrectlonal data. For Its propertles, see for example the 
survey paper by Mardla (1975). The dlstrlbutlon 1s completely determlned by the 
dlstrlbutlon of the random angle 0 on [-7r,7r]. There 1s one shape parameter, 
rc>O, and the denslty 1s glven by 

Here I ,  1s the modlfled Bessel functlon of the flrst klnd of order 0: 

O 0 l z  I o ( $ )  = - ( - )2j  
j = o  .7 *!2 2 

Unfortunately, the dlstrlbutlon functlon does not have a slmple closed form, and 
there 1s no slmple relatlonshlp between von Mlses ( I C )  random varlables and von 
Mlses (1) random varlables whlch would have allowed us to  ellmlnate In effect the 
shape parameter. Also, no useful characterlzatlons are as yet avallable. It seems 
that the only vlable method 1s the reJectlon method. Several reJectlon methods 
have been suggested In the llterature, e.g. the method of Selgerstetter (1974) (see 
also Rlpley (1983)), based upon the obvlous lnequallty 

f (8) I f (0) 
whlch leads to a rejectlon constant 27r f (O).whlch tends qulckly to 00 as IC+OO. 

We could use the unlversal boundlng methods of chapter 7 for bounded mono- 
tone densltles slnce f 1s bounded, U-shaped (wlth modes at 7r and -7r) and sym- 
metric about 0. Fortunately, there are much better alternatlves. The leadlng 
work on thls subject 1s by Best and Flsher (1979), who, after conslderlng a 
varlety of domlnatlng curves, suggest uslng the wrapped Cauchy denslty as a 
domlnatlng curve. We wlll Just content ourselves wlth a reproductlon of the 
Best-Flsher algorlthm. 

We begln wlth the wrapped Cauchy dlstrlbutlon functlon wlth parameter p:  

(1+p2)c0s(s )-2p 

2n 1 +p2-2pcos( 5 ) 
G ( x ) =  - arccos 

For later reference, the denslty g for G 1s: 

1 1-p2 

2n 1+p2-2pcos(z ) 
s ( a : > =  - ( 1 .  IL.->. 

A random varlate wlth thls dlstrlbutlon can easlly be generated via the lnverslon 
method: 
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Wrapped Cauchy generator; inversion method 

(SET-UP] 
1+p2 a e- 

2P 
[GENERATOR] 
Generate a uniform [-l,l] random variate u 
z +cOs(7rV) 
RETURN e t  sign( U 1 

1 l+SZ 
cos( - 

a +z 

If the wrapped Cauchy dlstrlbutlon 1s to be used for rejection, we need to flne 
tune the dlstrlbutlon, 1.e. choose p as a functlon of IC. 

Theorem 7.2. (Best and Fisher, 1979) 

wrapped Cauchy denslty wlth parameter p>O. Then 
Let f be the von Mlses denslty wlth parameter n>O, and let g be the 

f ( 4 5 c g ( z >  ( 1 .  I I n >  
where c 1s a constant dependlng upon tc and p only. The constant 1s mlnlmlzed 
wlth respect to p for the value 

r -G 
P =  

2tG 

where 

T =1+d1+4rc2. 

The expected number of lteratlons In the reJectlon algorlthm 1s 
1+P2 K-- 

2pe 2P 

Furthermore, llm c =oo and llm c = 
K.10 K 4 0 3  
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Proof of Theorem 7.2. 
Conslder the ratlo 

475 

The derlvatlve of h 1s zero for sln(z)=O and for cos(s)=(l+p2--)/(2p). 2P By 
IC 

verlfylng the second derlvatlve of h , we And a local maxlmum value 

M I  = (1-p)2e" 

at sln(a: )=0 when 

and a local maxlmum value 
l+P2 IC-- 

M , = X ,  2P 
IC 

at cos(z )=(l+p2--)/(2p) 2P when 
IC 

2P < I C < y .  2P 

(1+Pl2 (1-PI 

Let po and p,  be the roots In (0,l) of -- 2p -IC and 2p =IC respectlvely. The 

two lntervals for p deflned by the the two sets of lnequalltles are nonoverlapplng. 
The two lntervals are (O,po) and (po,mln(l,p,)) respectlvely. The maxlmum M 1s 
deflned as M ,  on (O,po)  and as M ,  on (po,mln(l,p,)). 

To  flnd the best value of p,  I t  sumces to And p for whlch M as a functlon of 
p 1s mlnlmal. Flrst, M ,  consldered a s  a functlon of p 1s mlnlmal for p=po. Next, 
M ,  consldered as a functlon of p 1s mlnlmal at the solutlon of 

(1-Pl2 (1+d2 

-ICp4+2p3+2ICp2+2p-IC=O , 

1.e. at p=p*=(r-&)/(2r)  where r = l + d S .  It can be verlfled that 
p * E(po,mln(l,p,)). But because M , ( p o ) = M 2 ( p O ) > M 2 ( p  * ), I t  1s clear that the 
overall mlnlmum 1s attained at p *. The remalnder of the statements of Theorem 
7.2 are left as an exerclse. I 

The reJectlon algorlthm based upon the lnequallty of Theorem 7.2 1s glven 
below: 
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vop Mise8 generator (Best and Fisher, 1979) 

[SET-UP] 

6 -- 
[GESEFMTOR] 
REPEAT 

1-p2 

2P 

Generate iid 
z tcos(7rU) 

l+SZ wt- 
5 +z 

uniform [-1,l] random variates U t  V .  

Y t K ( 6  - W )  
Accept --[ W(2-w)-v 201 (Quick acceptance step) 

IF NOT Accept THEN Accept +[ log(T)+l -W 201 
W 

Uh'TIL Accept 

Two Anal computatlonal remarks. The coslne In the deflnltlon of 2 can be 
avolded by uslng an appropriate Polar method. The coslne In the last statement 
of the algorlthm cannot be avolded. 

7.4. The Burr distribution. 
In a serles of papers, Burr (1942, 1968, 1973) has proposed a versatlle famlly 

of densltles. For the sake of completeness, hls orlglnal llst 1s reproduced here. The 
parameters T ,k: ,c  are posltlve real numbers. The fact that k could take non- 
lnteger values 1s bound to  be confuslng, but at thls polnt I t  1s undoubtedly better 
to stlck to the standard notatlon. Note that a llst of dlstrlbutlon functlons, not 
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densltles, 1s provlded In the table. 

Burr XI 

Burr XI1 

477 

1 
2n 

(x --sin(27rx ))r [OJI 

1-(1+sC )-k (0,m) 

Most of the densltles In the Burr famlly are unlmodal. In all cases, we can gen- 
erate random varlates dlrectly vla the lnverslon method. By far the most lmpor- 
tant of these dlstrlbutlons 1s the Burr XI1 dlstrlbutlon. The correspondlng den- 
SltY, 

wlth parameters c , k  >O can take a varlety of shapes. Thus, f 1s partlcularly 
useful a s  a flexlble domlnatlng curve In random varlate generatlon (see e.g. Cheng 
(1077)). As polnted out by Tadlkamalla (1080), the Burr III denslty 1s even more 
flexlble. It 1s called the reclprocal Burr dlstrlbutlon because the reciprocal of a 
Burr XI1 wlth parameters c ,k  has the Burr I11 dlstrlbutlon functlon 

The denslty 1s 
kcx ck -l 

( l f x  Ik +l 
f ( X I =  

I t  should be noted that a myrlad of relatlonshlps exlst between all the Burr dls- 
trlbutlons, because of the fact that  all are dlrectly related to the unlform dlstrl- 
butlon vla the probablllty lntegral transform. 
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7.5. The generalized inverse gaussian distribution. 

parameter dlstrlbutlon wlth denslty 
The generalized inverse gaussian, or GIG, dlstrlbutlon 1s a three- 

x 

Here XER , x > O ,  and $>O are the parameters of the dlstrlbutlon, and K ,  1s the 
modlfled Bessel functlon of the thlrd klnd, deflned by 

03 
1 

K x ( u )  = - cosh(Xu)e-ZCoSh(U) du . 
2 -w 

A random varlable wlth the denslty glven above wlll be called a GIG (X,$,x) ran- 
dom varlable. The GIG famlly was introduced by Barndorff-Nlelsen and Halgreen 
(1977), and Its propertles are revlewed by Blaeslld (1978) and Jorgensen (1982). 
The lndlvldual densltles are gamma-shaped, and the famlly has had qulte a bit of 
success recently because of Its appllcablllty In modellng. Furthermore, many 
well-known dlstrlbutlons are but speclal cases of GIG dlstrlbutlons. To clte a few: 
A. x = O :  the gamma denslty. 
B. $=O: the denslty of the lnverse of a gamma random varlable. 

1 

2 
c. 
Furthermore, the GIG dlstrlbutlon 1s closely related t o  the generallzed hyperbollc 
dlstrlbutlon (Barndorff-Nlelsen (1977, 1978), Blaeslld (1978), Barndorff-Nlelsen 
and Blaeslld ( lQSO)) ,  whlch 1s of lnterest In Itself. For the relatlonshlp, we refer to 
the exerclses. 

We begln wlth a partlal llst of propertles, whlch show that there are really 
only two shape parameters, and that  for random varlate generatlon purposes, we 
need only conslder the cases of x=$ and X>O. 

A=---. . the lnverse gausslan dlstrlbutlon (see sectlon W.4.3). 
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Lemma 7.4. 
Let GIG (.,.,.) and Gamma (.) denote GIG and gamma dlstrlbuted random 

varlables wlth the glven parameters, and let all random varlables be Independent. 
Then, we have the followlng dlstrlbutlonal equlvalences: 
A. GIG (h,+,x) = -GIG 1 (X,-,xc + ) for all c >O. In partlcular, 

C C 

B. 

 GIG(^,$,+) =  GIG(-^,$,+) + -Gamma(h) 2 . 
$ 

C. 

For random variate generatlon purposes, we wlll thus assume that x=$ and 
that h>O. All the other cases can be taken care of vla the equlvalences shown In 
Lemma 7.4. By conslderlng log(f ), I t  1s not hard to  verlfy that the dlstrlbutlon 1s 
unlmodal wlth a o d e  m at 

In addltion, the denslty 1s log concave for Xzl. In view of the analysis of section 
VII.2, we know that thls 1s good news. Log concave densltles can be dealt wlth 
qulte efflclently In a number of ways. Flrst of all, one could employ the unlversal 
algorlthm for log concave densltles glven In sectlon VII.2. Thls has two dlsadvan- 
tages: flrst, the value of f (m ) has to be computed at least once for every choke 
of the parameters (recall that  thls lnvolves computlng the modlfled Bessel func- 
tlon of the thlrd klnd); second, the expected number of lteratlons In the rejectlon 
algorlthm 1s large (but not more than 4). The advantages are that the user does 
not have to do any error-prone computations, and that he has the guarantee that 
the expected tlme 1s unlformly bounded over all $>O, 121. The expected 
number of lterarlons can further be reduced by uslng the non-unlversal rejectlon 
method of sectlon VII.2.6, whlch uses reJectlon from a denslty wlth a flat part 
around m , and two exponentlal talls. In Theorem 2.6, a slmple formula Is glven 
for the locatlon of the polnts where the exponentlal talls should touch f : place 
these polnts such that the value of f at the polnts 1s -f (m ). Note that $0 

solve thls equaflon, the normallzatlon constant In f cancels out convenlently. 

1 
e 
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Because f (O)=O, the equatlon has two well-deflned solutlons, one on each slde of 
the mode. In some cases, the numerlcal solutlon of the equatlon 1s well worth the 
trouble. If one just cannot afford the tlme to solve the equatlon numerlcally, 
there 1s always the posslblllty of placlng the points symrnetrlcally at dlstance 
e / ( (e  -1)f ( m  ) from m (see sectlon VII.2.6), but thls would agaln lnvolve com- 
putlng f ( m ) .  Atklnson (1979,1982) also uses two exponentlal talls, both wlth 
and wlthout flat center parts, and to  optlmlze the domlnatlng curve, he suggests 
a crude step search. In any case, the generatlon process for f can be automated 
for the case X > l .  

When O < X < l ,  f 1s log concave for z <@/(l-X), and 1s log convex other- 
wlse. Note that thls cut-off polnt 1s always greater than the mode m , so that for 
the part of the denslty t o  the left of n ,  we can use the standard 
exponentlal/constant domlnatlng curve as descrlbed above for the case A l l .  The 
rlght tall of the GIG denslty can be bounded by the gamma denslty (by omlttlng 
the l/s term In the exponent). For most cholces of X<1 and $>O, thls 1s satls- 
factory. 

7.6. Exercises. 
1. The generalized logistic distribution. When X 1s beta ( a  , b ) ,  then 

v 
A log(-) 1s generallzed loglstlc wlth parameters ( a  , b  ) (Johnson and Kotz, 

1 - x  
1970; Olusegun George and OJo, 1980). Glve a unlformly fast reJectlon algo- 
rlthm for the generatlon of such random varlates when a =b 2 1 .  Do not use 
the transformatlon of a beta method glven above. 

03 L j  
2. Show that If L l , L  2,... are lid Laplace random varlates, then 7 1s logls- 

j = 1  3 
tlc. Hlnt: show flrst that the loglstlc dlstrlbutlon has characterlstlc functlon 

nit 
sin(nit ) 

=r(l-it )r(l+d ). Then use a key property of the gamma functlon. 

3. Complete the proof of Theorem 7.2 by rovlng that for the von Mlses gen- 

erator of Best and Flsher, llm c = &. 
IC-Nxl 

4. The Pearson system. In the beglnnlng of thls century, Karl Pearson 
developed hls well-known famlly of dlstrlbutlons. The Pearson system was, 
and stlll Is, very popular because the famlly encompasses nearly all well- 
known dlstrlbutlons, and because every allowable comblnatlon of skewness 
and kurtosls 1s covered by at least one member of the famlly. The famlly 
has 12 member dlstrlbutlons, and is descrlbed In great detall In Johnson and 
Kotz (1970). In 1973, McGrath and Irvlng polnted out that random varlates 
for 11 member dlstrlbutlons can be generated by slmple transformatlons of 
one or two beta or gamma random varlates. The exceptlon 1s the Pearson 
W dlstrlbutlon. Fortunately, the Pearson N denslty 1s log-concave, and can 
be dealt wlth qulte efflclently uslng the methods of sectlon VII.2 (see exerclse 
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-e aretan(+) c (I+($)')-' e 

5. 

1 
a >O;b  >- 

VII.2.1). The Pearson densltles are llsted in the table below. In the table, 
a ,b ,c ,d are shape parameters, and C 1s a normallzatlon constant. Verlfy 
the correctness of the generators, and In dolng so, determlne the normaliza- 
tion constants C .  

c(l+Z)-' 

'earson 

I 

o<b < l ; a  >O [-a ,o] 

I1 

I11 

rv 

V 

VI 

w 

VI11 

X 

XI 

XI1 

PEARSON DENSITIES 

f Is) I PARAMETERS I SUPPORT 

C(1+2)'"e-'' I ba > - l ; b  >o I [ -a ,co]  

c -- 
CX-' e * 1 c >b+1>0;a >o [ a  m) c (x -a  )' x - c  

I I 
I 

GENERATOR 

-a  ( a  + c  )X 
X+Y 

X gamma( b ) 
Y aammal d ) 

a ( X - Y )  
X + Y  

Xgamma( b +I) 
Yrramma(b +I) 

X 
b 

a -- 

X gamma( ba +I) 

1 
cx 

Xnamma(b -1) 
X + Y  

X 

- 

a- 

Xgamma(c -b -1) 
Yrramma(b +I) 

aN 
75% 

Xgamma( b --) 1 
N normal 

1 -_. 

a ( u ' -1 -1) 
U uniform[O,l] 

1 - 
a ( U b + ' - l )  

UuniformlO.11 
aE 

E exponential 
1 -- 

aU '-l 

Xbeta(  c +l,l-c ) I 
The arcsine distribution. A random varlable X on [-1,1] 1s said to have 
an arcslne dlstrlbutlon if Its density is of the form f (z )=(TI/=)-'. Show 
flrst that when U , V  are lid unlform [0,1] random varlables, then 
sln(nU),sln(2nU), -cos(2nU), sln(.rr( U +  V ) ) ,  and sin(r( U - V ) )  are all have 
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0. 

7. 

8. 

9. 

the arcslne dlstrlbutlon. Thls lmmedlately suggests several polar methods for 
generatlng such random varlates: prove, for example, that If (X,Y) is unl- 
formly dlstrlbuted In e,, then (x2-Y2)/(x2+ Y2) has the arcslne dlstrlbu- 
tlon. Uslng the polar method, show further the followlng propertles for lld 
arcslne random varlables x , Y : 

1 
(1) 

(11) 2 l+x 1s dlstrlbuted as x2 (Arnold and Groeneveld, 1980). 

(111) X 1s dlstrlbuted as 2 x f i  (Arnold and Groeneveld, 1980). 

(lv) X2-Y2 1s dlstrlbuted as XY (Arnold and Groeneveld, 1980). 

Ferreri’s system. Ferrerl (1964) suggests the followlng famlly of densltles: 

XY 1s dlstrlbuted as -(x+Y) (Norton, 1978). 
2 

6 
f ( X I =  c(c +ea+b(Z-pI2) ’ 

where a ,b ,c ,p are parameters, and 

Is a normallzatlon constant. The parameter c takes only. the values fl .  ks 
a +eo, the denslty approaches the normal denslty. Develop an efflclent unl- 
formly fast generator for thls famlly. 
The famlly of dlstrlbutlons of the form uX+bY where a ,b ER are parame- 
ters, and X,Y are Ild gamma random varlables was proposed by McKay 
(1932) and studled by Bhattacharyya (1942). Thls famlly has basically two 
shape parameters. Derlve Its denslty, and note that Its form 1s a product of a 
gamma denslty multlplled wlth a modlfled Bessel functlon of the second kind 
when a , b  >O. 

Toranzos’s system. Show how you can generate random varlates from 
Toranzos’s class (Toranzos, 1952) of bell-shaped densltles of the form 
Cx e e )* (x >0) ( C  1s a normallzatlon constant) In expected tlme unl- 
formly bounded over all allowable values of the parameters. Do not use C In 
the generator, and do not compute c for the proof of the unlform bounded- 
ness of the expected tlme. 
Tukey’s lambda distribution. In 1960, Tukey proposed a versatlle fam- 
lly of symrnetrlc densltles ln terms of the lnverse dlstrlbutlon functlon: 

1 
x P ( U )  = - ( U ~ - ( l - U ) ~ ) ,  

where XER 1s a shape parameter. Clearly, If u 1s a unlform [ O , l ]  random 
varlate, then F-l( U )  has the glven dlstrlbutlon. Note tha t  the denslty 1s not 
known In closed form. Tukey’s dlstrlbutlon was later generallzed in several 
dlrectlons, flrst by Ramberg and Schmelser (1972) who added a locatlon and 
a scale parameter. The most slgnlflcant generallzatlon was by Ramberg and 
Schmelser (1974), who deflned 
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10. 

11. 

F-l(  U )  = A,+-( 1 UXJ-(l-U) x ’) . 
A 2  

For yet another generallzatlon, see Ramberg (1975). In the Ramberg- 
Schmeiser form, A, 1s a locatlon parameter, and 1, 1s a scale parameter. The 
merlt of thls famlly of dlstrlbutlons 1s Its versatlllty wlth respect to Its use In 
modellng data. Furthermore, random varlate generatlon 1s trlvlal. It 1s there- 
fore lmportant to understand whlch shapes the denslty can take. Prove all 
the statements glven below. 
A. 

B. 
C. 

D. 
E. 

F. 
G. 

H. 

As &=A4*0, the denslty tends to  the loglstlc density. 
The denslty 1s J-shaped when A3=0. 

When A1=A3=0, and A2=A4-+0, the denslty tends to  the exponentlal 
de nsl ty . 
The denslty 1s U-shaped when l<A,,A,s2. 

Glve necessary and sumclent condltlons for the dlstrlbutlon to  be trun- 
cated on the left (rlght). 
No posltlve moments exlst when A 3 < - l  and A4>1, or vlce versa. 
The denslty f ( a : )  can be found by computlng l / F - ” ( u ) ,  where u 1s 
related to a: vla the equallty z=F- l (u) .  Thus, by lettlng u vary 
between 0 and 1, we can compute palrs (a : , !  ( a : ) ) ,  and thus plot the 
denslty. 
Show that for A1=O, A2=0.1975, A3=A,=0.1349, the dlstrlbutlon func- 
tlon thus obtalned dlffers from the normal dlstrlbutlon functlon by at 
most 0.002. 

For a general descrlptlon of the family, and a more complete blbllography, 
see Ramberg, Tadlkamalla, Dudewlcz and Mykytka (1979). 

The hyperbolic distribution. The hyperbollc dlstrlbutlon, lntroduced by 
Barndorff-Nlelsen (1977, 1978) has denslty 

‘ e  - c 7 w + p z  
= 2aK,(g) 

Here a> I ,8 I are the parameters, s,da2-$, and IC, 1s the modlfled Bessel 
functlon of the thlrd klnd. For p=O, the denslty 1s symrnetrlc. Show the fol- 
lowlng: 
A. The dlstrlbutlon 1s log-concave. 
B. If N 1s normally dlstrlbuted, and X 1s GIG (l,a2-$,1), then 

p x + N  d!? has the glven denslty. 
C. The parameters for the optlmal non-unlversal reJectlon algorlthm for 

log-concave densltles are expllcltly computable. ( Compute them, and 
obtaln an expresslon for the expected number of lteratlons. Hlnt: apply 
Theorem VII.2.0.) 

The hyperbola distribution. The hyperbola dlstrlbutlon, lntroduced by 
Barndorff-Nlelsen (1978) has denslty 
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1 - a m + p z  

2 K o ( g ) m  e 
f ( X I =  

Here a> I p I are the parameters, +=, and K O  1s the modlfled Bessel 
functlon of the thlrd klnd. For p=O, the denslty 1s symmetric. Show the fol- 
lowlng: 
A. 
B. If N 1s normally dlstrlbuted, and X 1s GIG (0,a2-p,1), then 

12. Johnson’s system. Every posslble comblnatlon of skewness and kurtosls 
corresponds to one and only one dlstrlbutlon In the Pearson system. Other 
systems have been deslgned to  have the same property too. For example, 
Johnson (1949) lntroduced a system deflned by the densltles of sultably 
transformed normal (p,a) random varlables N :  hls system conslsts of the 
S,, or lognormal, densltles (of e N ) ,  of the S, densltles (of e N / ( l + e N ) ) ,  
and the Su densltles (of slnh(N)=-(e/-eeN)). Thls system has the 

advantage that flttlng of parameters by the method of percentlles 1s slmple. 
Also, random varlate generatlon is slmple. In Johnson (1954), a slmllar sys- 
tem In whlch N 1s replaced by a Laplace random varlate with center at p 
and varlance a2 1s descrlbed. Give an algorlthm for the generatlon of a John- 
son system random varlable when the skewness and kurtosls are glven (recall 
that af%er normallzatlon to zero mean and unlt varlance, the skewness is the 
thlrd moment, and kurtosls 1s the fourth moment). Note that thls forces you 
In effect to determlne the dlfferent reglons In the skewness-kurtosls plane. 
You should be able to test very qulckly whlch reglon you are In. However, 
your maln problem 1s that the equatlons llnklng p and o t o  the skewness and 
kurtosls are not easlly solved. Provlde fast-convergent algorlthms for thelr 
numerlcal solutlon. 

The dlstrlbutlon 1s not log-concave. 

@X+N f i  has the glven denslty. 

1 
2 


