Chapter Nine CONTINUOUS UNIVARIATE DENSITIES

Chapters IX and X are included for the convenience of a large subpopulation of users, the statisticlans. The main principles in random varlate generation were developed in the first elght chapters. Most partlcular distributions found here are members of special classes of densttles for which unlversal methods are avallable. For example, a short algorlthm for log-concave densitles was developed in section VII.2. When speed is at a premium, then one of the table methods of the prevlous chapter could be used. This chapter is purely complementary. We are not in the least interested in a historical review of the different methods proposed over the years for the popular densitles. Some Interesting developments which give us new insight or lllustrate certaln general princlples will be reported. The llst of distributions corresponds roughly speaking to the list of distrlbutions in the three volumes of Johnson and Kotz.

1. THE NORMAL DENSITY.

1.1. Definition.

A random variable X is normally distributed if it has density

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

When X is normally distributed, then $\mu+\sigma X$ is sald to be normal (μ, σ^{2}). The mean μ and the varlance σ^{2} are uninteresting from a random varlate generation polnt of vlew.

Comparative studles of normal generators were publlshed by Muller (1958), Ahrens and Dleter (1972), Atkinson and Pearce (1976), Kinderman and Ramage (1978), Payne (1979) and Best (1978). In the table below, we glve a general out-
llne of how the avallable algorithms are related.

Method	References	Speed	Size of code	Sectio.
Inversion	Muller (1959)	Slow	Moderate	Il.2.3
Polar method	Box and Muller (1958)	Moderate	Small	V.4.4
	Bell (1968)			
Rejection	Von Neumann (1951)	Moderate	Small	II.3.2
	Sibuya (1962)			
Ratio-of-uniforms	Kinderman and Monahan (1977)	Fast	Small to moderate	IV.7.2
Composition/rejection	Marsaglia and Bray (1964)	Fast	Small to moderate	
	Ahrens and Dieter (1972)			
	Kinderman and Ramage (1976)			
	Sakasegawa (1978)			
Series method		Fast	Small to moderate	IV.5.3
Almost-exact inversion	Wallace (1976)	Moderate	Small	IV.3.3
Table methods	Marsaglia, Maclaren and Bray (1964)	Very fast	Large	
Forsythe's method	Forsythe (1972)	Fast	Moderate	IV.2.1
	Ahrens and Dieter (1973)			
	Brent (1974)			

The list glven here is not exhaustlve. Many references are missing. What matters are the general trends. We know that table methods are fast, and the rectangle-wedge-tall method of Marsaglla, Maclaren and Bray (1964) Is no exception. At the other end of the scale are the small programs of moderate speed, such as the programs for the polar method and some rejection methods. In between are moderate-slzed programs that have good speed, such as the ratlo-of-unlforms method, the serles method, Forsythe's method and the composition/rejection method. Only the inversion method is Inadmissible because it is slower and less space efflclent than all of the other methods, the table methods excepted. Below, we will mainly focus on the composition/refection methods which have not been described in earller chapters. Because we will cut off the tall of the normal density, it seems important to show how random variates with a density proportional to the tall can be generated.

1.2. The tail of the normal density.

In this section, we consider generators for the family of tall densities

$$
f(x)=\frac{e^{-\frac{x^{2}}{2}}}{\Phi(a)} \quad(x>a)
$$

where $\Phi(a)=\int_{a}^{\infty} e^{-\frac{x^{2}}{2}}$ is a normallzation constant and $a>0$ is a parameter. Two algorlthms will be described:

Marsaglia's method for the tail-of-the-normal density (Marsaglia, 1964)

REPEAT

Generate iid uniform $[0,1]$ random variates U, V.

$$
X \leftarrow \sqrt{a^{2}-2 \log (U)}
$$

UNTIL $V X \leq a$
RETURN X

Marsaglia's method is based upon the trivial inequallty

$$
e^{-\frac{x^{2}}{2}} \leq \frac{x}{a} e^{-\frac{x^{2}}{2}} \quad(x \geq a)
$$

But $x e^{\frac{a^{2}-x^{2}}{2}}(x \geq a)$ Is a density having distribution function

$$
F(x)=1-e^{\frac{a^{2}-x^{2}}{2}} \quad(x \geq a)
$$

which is the tall part of the Raylelgh distribution function. Thus, by inversion, $\sqrt{a^{2}-2 \log (U)}$ has distribution function F, which explains the algorlthm. The probabllity of acceptance in the rejection algorlthm is

$$
P(V X \leq a)=E\left(\frac{a}{X}\right)=\int_{a}^{\infty} a e^{\frac{a^{2}-x^{2}}{2}} d x=a e^{\frac{a^{2}}{2}} \Phi(a) \rightarrow 1
$$

as $a \rightarrow \infty$. Thus, the rejection algorlthm is asymptotlcally optimal. Even for small values of a, the probabllity of acceptance is quite high: It is about 66% for $a=1$ and about 88% for $a=3$. Note that Marsaglia's method can be sped up somewhat by postponing the square root untll after the acceptance:

REPEAT

Generate iid uniform $[0,1]$ random variates U, V.

$$
X \leftarrow c-\log (U)\left(\text { where } c=a^{2} / 2\right)
$$

UNTIL $V^{2} X \leq c$
RETURN $\sqrt{2 X}$

An algorlthm which does not require any square roots can be obtalned by rejectlon from an exponential density. We begin with the Inequallty

$$
e^{-\frac{x^{2}}{2}} \leq e^{\frac{a^{2}}{2}-a x} \quad(x \geq a)
$$

which follows from the observation that $(x-a)^{2} \geq 0$. The upper bound is proportlonal to the density of $a+\frac{E}{a}$ where E is exponentlally distributed. This ylelds without further work the following algorithm:

REPEAT

Generate id exponential random variates $E, E *$.
UNTIL $E^{2} \leq 2 a^{2} E *$
RETURN $X \leftarrow a+\frac{E}{a}$

The probabillty of acceptance is precisely as for Marsaglia's method:

$$
P\left(E * \geq E^{2} /\left(2 a^{2}\right)\right)=\int_{0}^{\infty} e^{-\frac{x^{2}}{2 a^{2}}} d x=a e^{\frac{a^{2}}{2}} \Phi(a) \rightarrow 1 \quad(a \rightarrow \infty)
$$

If a fast exponentlal random variate generator is avallable, the second rejection algorithm is probably faster than Marsaglla's.

1.3. Composition/rejection methods.

The principle underlying all good composition/rejection methods is the following: decompose the density of f into two parts, $f(x)=p g(x)+(1-p) h(x)$ where $p \in(0,1)$ is a mixture parameter, g is an easy density, and h is a residual density not very often needed when p is close to 1 . We rarely stumble upon a good cholce for g by accident. But we can always find the optimal g_{θ} in a family of sultable candidates parametrized by θ. The welght of g_{θ} in the mixture is denoted by $p(\theta)$:

$$
p(\theta)=\operatorname{lnp}_{x} \frac{f(x)}{g_{\theta}(x)} .
$$

The candldates g_{θ} should preferably be densttles of simple transformations of independent uniform $[0,1]$ random varlables. Among the slmple transformations one might conslder, we clte:
(1) $\quad \theta\left(V_{1}+\cdots+V_{n}\right)$;
(2) $\quad \theta \operatorname{median}\left(V_{1}, \ldots, V_{n}\right)$;
(3) $\theta_{1} V_{1}+\theta_{2} V_{2}$;
(4) $\quad \theta_{1} V_{1}+\theta_{2}\left(V_{1}\right)^{3}$.

Here V_{1}, V_{2}, \ldots are lld unlform $[-1,1]$ random varlates, and $\theta, \theta_{1}, \theta_{2}$ are parameters to be selected. Marsaglla and Bray (1984) used the first choice with $n=3$ and with the dellberately suboptimal value $\theta=1$ (because a time-consuming multipllcation is avolded for this value). Kinderman and Ramage (1978) optimized θ for cholce (1) when $n=2$. And Ahrens and Dieter (1972) proposed to use cholce (3). Because the shape of g_{θ} is trapezoidal, this method is known as the trapezoidal method. All three approaches lead to algorlthms of about equal length and speed. We will look at cholces (1) and (2) in more detall below, and provide enough detall for the reader to be able to reconstruct the algorithms of Marsaglla and Bray (1964) and Klnderman and Ramage (1976).

Theorem 1.1.

The density of θ median $\left(V_{1}, \ldots, V_{2 n+1}\right)$ for n positive and $\theta>0$ is

$$
c\left(1-\frac{x^{2}}{\theta^{2}}\right)^{n} \quad(|x| \leq \theta)
$$

where $c=\frac{(2 n+1)!}{2^{2 n+1} n!^{2} \theta}$. The maximal value of $p(\theta)$ is reached for $\theta=\sqrt{2 n+1}$, and takes the value

$$
p=\frac{2^{2 n+1} n!^{2} \sqrt{n}}{\sqrt{\pi e}(2 n+1)!}\left(1+\frac{1}{2 n}\right)^{n+\frac{1}{2}}
$$

We have

Proof of Theorem 1.1.

The denslty can be derlved very easlly after recalling that the median of $2 n+1$ lld unlform [0,1$]$ random varlables has a symmetrlc beta density glven by

$$
\frac{(2 n+1)!}{n!^{2}}(x(1-x))^{n} \quad(0 \leq x \leq 1)
$$

Deflne $g_{\theta}(x)=c\left(1-\left(x^{2} / \theta^{2}\right)\right)^{n} \quad(|x| \leq \theta)$, and note that $\log \left(f / g_{\theta}\right)$ attains an extremum at some polnt x for which the derlvative of the logarithm is 0 . This
ylelds the equation

$$
-x+\frac{2 x}{\theta^{2}} \frac{n}{1-\frac{x^{2}}{\theta^{2}}}=0
$$

or,

$$
x=0 ; x^{2}=\theta^{2}-2 n
$$

When $\theta^{2}<2 n, f / g_{\theta}$ attains only one minimum, at $x=0$. When $\theta^{2}>2 n$, the function f / g_{θ} is symmetric around 0 : it has a local peak at 0 , dips to a mimimum, and increases monotonically again to ∞ as $x \uparrow \theta$. Thus, we have

$$
p(\theta)=\operatorname{lnf}_{x} \frac{f(x)}{g_{\theta}(x)}=\left\{\begin{array}{l}
\frac{1}{\sqrt{2 \pi} c}=\frac{2^{2 n+1} n!^{2} \theta}{(2 n+1)!\sqrt{2 \pi}} \quad\left(\theta^{2}<2 n\right) \\
\frac{1}{\sqrt{2 \pi} c}\left(\frac{e}{2 n}\right)^{n} \theta^{2 n} e^{-\frac{\theta^{2}}{2}} \quad\left(\theta^{2}>2 n\right) .
\end{array}\right.
$$

We still have to maximize this function with respect to θ. The function $p(\theta)$ Increases llnearly from 0 up to $\theta=\sqrt{2 n}$. Then, it increases some more, peaks, and decreases in a bell-shaped fashon. The maximum is attalned for some value $\theta>\sqrt{2 n}$. Since in that region, $p(\theta)$ is a constant times $\theta^{2 n+1} e^{-\theta^{2} / 2}$, the maximum is attalned for $\theta=\sqrt{2 n+1}$. This gives the desired result.

Had we consldered the Taylor serles expansion of f about 0 , given by

$$
f(x)=\frac{1}{\sqrt{2 \pi}}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{8}-\frac{x^{6}}{48}+\cdots\right),
$$

which is known to give partial sums that alternately overestimate and underestimate f, then we would have been tempted to choose $g(x)=\frac{3}{4 \sqrt{2}}\left(1-\frac{x^{2}}{2}\right)$, because of

$$
f(x) \geq \frac{1}{\sqrt{2 \pi}}\left(1-\frac{x^{2}}{2}\right)=p g(x) \quad(|x| \leq \sqrt{2})
$$

where $p=\frac{4}{3 \sqrt{\pi}} \approx 0.7522528$ is the welght of $g \ln$ the mixture. This illustrates the usefulness and the shortcomings of Taylor's serles. Simple polynomlal bounds are very easy to obtaln, but the cholce could be suboptimal. From Theorem 1.1 for example, we recall that the optimal g of the inverted parabolic form is a constant times $\left(1-\frac{x^{2}}{3}\right)(|x| \leq \sqrt{3})$. Sometimes a suboptimal choice of θ is preferable because the residual density h is easter to handle. This is the case for $n=1$ in Theorem 1.1. The suboptimal cholce $\theta=\sqrt{2 n}$, which is the cholce implicit in

Taylor's serles expansion, ylelds a much cleaner residual density. For $n=2$, we need 5 random varlates instead of 3, an increase of 66%, while the galn in efflclency (in value of p) Is only of the order of 10%. For this reason, the case $n>1$ is less Important in practice. Let us briefly describe the entire algorithm for the case $n=1, \theta=\sqrt{2}$. We can decompose f as follows:

$$
f(x)=p g(x)+q h(x)+r t(x)
$$

where
(1) $g(x)=\frac{3}{4 \sqrt{2}}\left(1-\frac{x^{2}}{2}\right)$;
$p=\frac{4}{3 \sqrt{\pi}} \approx 0.7522528 ;$
(i1) $\quad t(x)=\frac{1}{r} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \quad(|x|>\sqrt{2})$;

$$
r=\int_{|x|>\sqrt{2}} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \approx 0.15729921
$$

(111) $h(x)=\frac{1}{q} \frac{1}{\sqrt{2 \pi}}\left(e^{-x^{2} / 2}-\left(1-\frac{x^{2}}{2}\right)\right) \quad(|x| \leq \sqrt{2})$;
$q=\int_{\mid x \backslash \leq \sqrt{2}} \frac{1}{\sqrt{2 \pi}}\left(e^{-x^{2} / 2}-\left(1-\frac{x^{2}}{2}\right) d x \approx 0.09044801\right.$.
Sampling from the tall density t has been discussed in the prevlous sub-section. Sampling from g is slmple: just generate three ild uniform $[-1,1]$ random varlates, and take $\sqrt{2}$ times the median. Sampling from the residual density h can be done as follows:

REPEAT

Generate V uniformly on $[-1,1]$, and U uniformly on [0,6].
$X \leftarrow \sqrt{2} V /|V|^{4 / 5}$
Accept $\leftarrow\left[U>X^{2}\right]$
IF NOT Accept THEN

$$
\text { IF } \begin{aligned}
U \geq & X^{2}\left(1-\frac{X^{2}}{8}\right) \text { THEN } \\
& \text { Accept } \leftarrow\left[\left(1-\frac{U}{6}\right) X^{4} \leq 8\left(e^{-\frac{X^{2}}{2}}-\left(1-\frac{X^{2}}{2}\right)\right)\right]
\end{aligned}
$$

UNTIL Accept
RETURN X

This is a simple rejection algorithm with squeezing based upon the inequalltles

$$
e^{-\frac{x^{2}}{2}}-\left(1-\frac{x^{2}}{2}\right) \leq \frac{x^{4}}{8} \quad(|x| \leq \sqrt{2})
$$

$$
\frac{x^{4}}{8}-\frac{x^{6}}{48} \leq e^{-\frac{x^{2}}{2}}-\left(1-\frac{x^{2}}{2}\right) \leq \frac{x^{4}}{8}-\frac{x^{6}}{48}+\frac{x^{8}}{384}
$$

The reader can easily work out the detalls. The probabllity of immediate acceptance In the flrst iteration is.

$$
\begin{aligned}
& P\left(X^{2}<U\right)=\int_{0}^{1} P\left(X^{2}<6 x\right) d x=\int_{0}^{1} P(|X|<\sqrt{8 x}) d x \\
& =\int_{0}^{\frac{1}{3}} \frac{5}{4 \sqrt{2}} \frac{(\sqrt{6 x})^{5}}{5} d x+\int_{\frac{1}{3}}^{1} d x \\
& =\frac{2}{3}+\frac{2}{7} \frac{6^{\frac{5}{2}}}{4 \sqrt{23^{\frac{7}{2}}}}=\frac{6}{7}
\end{aligned}
$$

The same smooth performance for a residual density could not have been obtalned had we not based our decomposition upon the Taylor serles expansion.

Let us next look at the density g_{θ} of $\theta\left(V_{1}+V_{2}+V_{3}\right)$ where the V_{i} 's are Ind unlform $[-1,1]$ random varlables. For the denslty of $\theta\left(V_{1}+V_{2}\right)$, the trlangular density, we refer to the exercises where among other things it is shown that the optimal θ is $1.1080179 \ldots$, and that the corresponding value $p(\theta)$ is $0.8840704 \ldots$.

Theorem 1.2.

The optimal value for θ In the decomposition of the normal density into $p(\theta) g_{\theta}(x)$ plus a resldual density (where g_{θ} is the density of $\theta\left(V_{1}+V_{2}+V_{3}\right)$ and the V_{i} 's are Ild unlform $[-1,1]$ random variables), is

$$
\theta=0.956668451229 \ldots
$$

The corresponding optimal value for $p(\theta)$ is $0.962365327 \ldots$.

Proof of Theorem 1.2.

The density g_{θ} of $\theta\left(V_{1}+V_{2}+V_{3}\right)$ is

$$
g_{\theta}(x)= \begin{cases}\frac{1}{8 \theta}\left(3-\left(\frac{x}{\theta}\right)^{2}\right) & (|x| \leq \theta) \\ \frac{1}{18 \theta}\left(3-\left|\frac{x}{\theta}\right|\right)^{2} & (\theta \leq|x| \leq 3 \theta) \\ 0 \quad(|x|>3 \theta) . & \end{cases}
$$

The function $h_{\theta}=f / g_{\theta}$ can be written as

$$
h_{\theta}(x)= \begin{cases}\frac{8 \theta}{\sqrt{2 \pi}} \frac{e^{-\frac{x^{2}}{2}}}{3-\frac{x^{2}}{\theta^{2}}} & (0<x \leq \theta) \\ \frac{18 \theta}{\sqrt{2 \pi}} \frac{e^{-\frac{x^{2}}{2}}}{\left(3-\frac{x}{\theta}\right)^{2}} & (\theta \leq x \leq 3 \theta)\end{cases}
$$

when $x>0$. We need to find the value of θ for which $\min _{0<x \leq 3 \theta} h_{\theta}(x)$ is maximal. By setting the derivative of $\log \left(h_{\theta}\right)$ with respect to x equal to 0 , and by analyzIng the shape of h_{θ}, we see that the minimum of h_{θ} belongs to the following set of values: $0, \theta, b, c$, where

$$
\begin{aligned}
& b=\theta \sqrt{3-\frac{2}{\theta^{2}}} \\
& c=\frac{3 \theta}{2}+\frac{\theta}{2} \sqrt{9-\frac{8}{\theta^{2}}} .
\end{aligned}
$$

The following table gives all the local minima together with the values for h_{θ}.

Local minimum	Value of h_{θ} at minimum	Local minimum exists when:
0	$\eta=\frac{8 \theta}{3 \sqrt{2 \pi}}$	$\theta^{2} \leq \frac{2}{3}$
b	$\psi=\frac{4 \theta^{3}}{\sqrt{2 \pi}} e^{-\frac{b^{2}}{2}}$	$1 \geq \theta^{2} \geq \frac{2}{3}$
θ	$\xi=\frac{4 \theta}{\sqrt{2 \pi}} e^{-\frac{a^{2}}{2}}$	$\theta=1$
c	$\phi=\frac{16 \theta}{\sqrt{2 \pi}} \frac{e^{-\frac{c^{2}}{2}}}{\left(3-\frac{c}{\theta}\right)^{2}}$	$\theta^{2} \geq \frac{8}{9}$

The general shape of h_{θ} is as follows: when $\theta^{2} \geq 1$, there is no local minimum on $(0, \theta)$, and h_{θ} decreases monotonically to reach a global minimum at $x=c$ equal to ϕ, after which it increases agaln. When $\theta^{2}=1$, the same shape is observed, but a zero derivative occurs at $x=\theta$, although this does not correspond to a local minimum. When $\frac{8}{9}<\theta^{2}<1$, there are two local minima, one on $(0, \theta)$ (at b, of value ψ), and one on ($\theta, 3 \theta$) (at c, of value ϕ). For $\frac{2}{3}<\theta^{2}<\frac{8}{9}$, the local minimum at c ceases to exist. We have again a function with one minimum, thls time at $b<\theta$, of value ψ. Finally, for $\theta^{2} \leq \frac{2}{3}$, the function increases monotonically, and its global minimum occurs at $x=0$ and has value η.

Consider now the behavior of η and ψ as a function of θ. Clearly, η increases linearly with θ. Furthermore, ψ is gamma shaped with global peak at $\theta=1$, and $\eta=\psi$ for $\theta^{2}=\frac{2}{3}$. The value of ϕ on the other hand decreases monotonlcally on the set $\theta^{2} \geq \frac{8}{8}$. We verify easily that ϕ and ψ cross each other on the segment $\frac{8}{\theta}<\theta^{2}<1$. It is at this polnt that $\min _{0<x<3 \theta} h_{\theta}(x)$ is maximal. This cross-over point is precisely the value given in the statement of the theorem.

Theorem 1.2 can be used In the design of a fast composition/rejection algorithm. In particular, the tall beyond the optimal 3θ is very small, having probabllity $0.004104648 \ldots$. The residual density on $[-3 \theta, 3 \theta]$ has probabllity $0.033530022 . .$. , but has unfortunately enough flive peaks, the largest of which occurs at the origin. It is clear once again that the maximization criterion does not take the complexity of the residual density into account. A suboptimal value for θ sometlmes leads to better residual densities. For example, when $\theta=1$, we save one multiplication and end up with a more manageable residual density. This cholce was first suggested by Marsaglla and Bray (1904). We conclude thls section by glving their algorithm in its entirety.

From the proof of Theorem 1.2, we see that (In the notation of that proof),

$$
p(\theta)=\phi=\frac{18}{\sqrt{2 \pi e}}=0.86385546 \ldots
$$

The normal density f can be decomposed as follows:

$$
f(x)=\sum_{i=1}^{4} p_{i} f_{i}(x)
$$

where $\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ is a probability vector, and the f_{i} 's are densities defined as follows:
(1) $p_{1}=0.86385546 \ldots, f_{1}$ is the density of $V_{1}+V_{2}+V_{3}$, where the V_{i} s are 11d unlform $[-1,1]$ random varlables.
(i1) $p_{4}=0.002689798063 \ldots=\int_{|x| \geq 3} f ; f_{4}$ is the tall-of-the-normal density restricted to $|x| \geq 3$.
(III) $f_{2}(x)=\frac{1}{9}(8-4|x|)\left(|x| \leq \frac{3}{2}\right) ; p_{2}=0.1108179673 \ldots$.
(iv) $p_{3}=1-p_{1}-p_{4}-p_{2}=0.02262677245 \ldots ; f_{3}=\frac{1}{p_{3}}\left(f-p_{1} f_{1}-p_{2} f_{2}-p_{4} f_{4}\right)$.

In the design, Marsaglia and Bray decided upon the triangular form of f_{2} first, because random variates with this density can be generated simply as $\frac{3}{4}\left(V_{4}+V_{5}\right)$ where the V_{i} 's are again ild unlform [-1,1] random varlates. After having plcked this simple f_{2}, it is necessary to choose the best (largest) welght p_{2}, given by

$$
p_{2}=\operatorname{lnf}_{x} \frac{f(x)-p_{1} f_{1}(x)}{. f_{2}(x)} .
$$

This inflmum is found as follows. The derivative of the ratio is 0 at $|x|=2$ and at $|x|=0.87386312884 \ldots$. Only the latter $|x|$ corresponds to a minimum, and the corresponding value for p_{2} is $p_{2}=0.1108179873 \ldots$. Having determined random varlate generation methods for all parts except f_{3}, it remalns to establish just thls for f_{3}. First, note that f_{3} has supremum $0.3181471173 . .$. . If we use rejection from a rectangular density with support on $[-3,3]$, then the expected number of lteratlons is

$$
\frac{8 \times 0.3181471173 \ldots}{p_{3}}=1.9088827038 \ldots
$$

Combining all of this into one algorlthm, we have:

Normal generator of Marsaglia and Bray (1964)

[NOTE: This algorithm follows the implementation suggested by Kinderman and Ramage (1977).]

Generate a uniform $[0,1]$ random variate U.

CASE

 $0 \leq U \leq 0.8638$:Generate two iid uniform $[-1,1]$ random variates V, W. RETURN $X \leftarrow 2.3153508 \ldots U-1+V+W$
$0.8638<U \leq 0.9745$:
Generate a uniform [0,1] random variate V.
RETURN $X \leftarrow \frac{3}{2}(V-1+9.0334237 \ldots(U-0.8638))$
$0.9973002 \ldots<U \leq 1$:
REPEAT
Generate iid uniform $[0,1]$ random variates V, W.
$X \leftarrow \frac{9}{2}-\log (W)$
UNTIL $X V^{2} \leq \frac{9}{2}$
RETURN $X \leftarrow \sqrt{2 X} \operatorname{sign}(U-0.9986501 \ldots)$
$0.9745<U \leq 0.9973002 \ldots$:
REPEAT
Generate a uniform $[-3,3]$ random variate X and a uniform $[0,1]$ random variate U.
$V \leftarrow|X|$
$W \leftarrow 6.6313339 . . .(3-V)^{2}$
Sum ↔0
IF $V<\frac{3}{2}$ THEN Sum $\leftarrow 6.0432809 \ldots\left(\frac{3}{2}-V\right)$
IF $V<1$ THEN Sum \leftarrow Sum $+13.2626678 \ldots\left(3-V^{2}\right)-W$
UNTIL $U \leq 49.0024445 \ldots e^{-\frac{V^{2}}{2}}-$ Sum- W
RETURN X

1.4. Exercises.

1. In the trapezoldal method of Ahrens and Dleter (1972), the largest symmetric trapezold under the normal density is used as the maln component in the mixture. Show that thls trapezold is deflned by the vertices $(-\xi, 0),(\xi, 0),(\eta, \rho),(-\eta, \rho) \quad$ where $\quad \xi=2.1140280833 \ldots, \eta=0.2897295736 \ldots$, $\rho=0.3825445560 \ldots$. (Note: the area under the trapezoid is $0.9195444057 \ldots$.) A random varlate with such a trapezoldal denslty can be generated as $a V_{1}+b V_{2}$ for some constants $a, b>0$ where V_{1}, V_{2} are ild unlform $[-1,1]$ random varlates. Determine a, b in thls case.
2. Show that as $a \uparrow \infty$,

$$
\int_{a}^{\infty} e^{-\frac{x^{2}}{2}} \sim \frac{1}{a} e^{-\frac{a^{2}}{2}}
$$

3. The optimal probabillty p in Theorem 1.1 depends upon n. Use Stirling's formula to determine a constant c such that $p \geq 1-\frac{c}{n}$, valld for all $n \geq 3$.
4. If we want to generate a normal random varlate by rejection from the exponentlal density $\frac{\lambda}{2} e^{-\lambda|x|}$, the smallest rejection constant is obtained when $\lambda=1$. The constant is $\sqrt{\frac{2 e}{\pi}}$. Show this. Note that the corresponding rejection algorlthm is:

REPEAT

Generate two iid exponential random variates, X, E.
UNTIL $2 E \leq(X-1)^{2}$
RETURN $S X$ where S is a random sign.

This algorlthm is mentioned in Abramowltz and Stegun (1970), where von Neumann is credlted. Butcher (1981) attrlbutes it to Kahn. Others have rediscovered it later.
5. Teichroew's distribution. Telchroew (1957) has shown that the functions $\phi(t)=\frac{1}{\left(1+t^{2}\right)^{a}}$ are valld characteristlc functions for all values $a>0$ of the parameter. Show that random varlates from thls famlly can be generated as
(1) $G_{1}-G_{2}$, where the G_{i} 's are Ild gamma (a) random varlables;
(11) $N \sqrt{2 G}$ where N, G are independent random variables with a normal and gamma (a) distribution respectlvely.
6. This question is related to the algorithm of Kinderman and Ramage (1978) (programs glven In Kinderman and Ramage (1977)). Consider the Isosceles
trlangular density g_{θ} of the random varlable $\theta\left(V_{1}+V_{2}\right)$ where V_{1}, V_{2} are lld uniform $[-1,1]$ random varlates. Show that the largest triangle to fit under the normal denslty f touches f at the origin. Show next that the sides of the largest triangle touch f somewhere else. Conclude that the optimal θ is glven by $\theta=1.1080179 \ldots$, and that the corresponding optimal welght of the triangle is $p=0.88407040 \ldots$.
7. The lognormal density. When N is normally distributed, then $\theta+e^{\varsigma+\sigma N}$ is lognormal with parameters $\theta, \varsigma, \sigma$, all real numbers. The lognormal distribution has a density with support on (θ, ∞) given by

$$
f(x)=\frac{1}{(x-\theta) \sigma \sqrt{2 \pi}} e^{-\frac{(\log (x-\theta)-5)^{2}}{2 \sigma^{2}}} \quad(x>\theta)
$$

Random varlate generation requires the exponentlation of a normal random varlate, and can be beaten speedwise by the judiclous use of a composition/rejection algorithm, or a rejection algorlthm with a good squeeze step. Develop Just such an algorlthm. To help you find a solution, it is Instructive to draw several lognormal densitles. Consider only the case $\theta=0$ since θ is a translation parameter. Show also that in that case, the mode is at $e^{s-\sigma^{2}}$, the median is at e^{s}, and that the r-th moment is $e^{r s+r^{2} \sigma^{2} / 2}$ when $r>0$.
8. In the composition/rejection algorithm of Marsaglla and Bray (1964), we return the sum of three independent unlform $[-1,1]$ random varlates about 86% of the time. Schuster (1983) has shown that by considering sums of the form $a_{1} V_{1}+a_{2} V_{2}+a_{3} V_{3}$, where the V_{i} 's are lld unlform $[-1,1]$ random varlates, it is possible to find coefflclents a_{1}, a_{2}, a_{3} such that we can return the sald sum about 97% of the time (note however that the multiplications could actually cause a slowdown). Find these coefflclents, and glve the entlre algorlthm.

2. THE EXPONENTIAL DENSITY.

2.1. Overview.

We hardly have to convince the reader of the cruclal role played by the exponentlal distribution in probabllity and statistics and in random variate generation. We have discussed varlous generators in the early chapters of this book. No method is shorter than the inversion method, which returns $-\log (U)$ where U Is a uniform $[0,1]$ random varlate. For most users, this method is satisfactory for their needs. In a high level language, the Inversion method is difficult to beat. A varlety of algorlthms should be considered when the computer does not have a \log operation in hardware and one wants to obtain a faster method. These Include:

1. The unlform spacings method (section V.3.5).
2. von Neumann's method (section IV.2.2).
3. Marsaglla's exponentlal generator, or its modifications (dlscussed below).
4. The ratio-of-unlforms method (section IV.7.2).
5. The serles method (section IV.5.3).
6. Table methods.

The methods listed under polnts 4 and 5 will not be discussed again in this chapter. Methods 2, 3 and 6 are all based upon the memoryless property of the exponentlal distribution, which states that given that an exponential random varlable E exceeds $x>0, E-x$ is again exponentlally distributed. This is at the basls of Lemma IV.2.1, repeated here for the sake of readabllity:

Lemma IV.2.1.

An exponential random variable E is distributed as $(Z-1) \mu+Y$ where Z, Y are independent random variables and $\mu>0$ is an arbitrary positive number: Z is geometrically distributed with

$$
P(Z=i)=\int_{(i-1) \mu}^{i \mu} e^{-x} d x=e^{-(i-1) \mu_{-} e^{-i \mu} \quad(i \geq 1), ~}
$$

and Y is a truncated exponential random variable with density

$$
f(x)=\frac{e^{-x}}{1-e^{-\mu}} \quad(0 \leq x \leq \mu)
$$

Since Z, Y are independent, exponentlal random varlate generation can truly be considered as the problem of the generation of a discrete random varlate plus a contlnuous random varlate with compact support. And because the contlnuous random varlate has compact support, any fast table method can be used.

The unlform spacings method is based upon the fact that $G S_{1}, \ldots, G S_{n}$ are ild exponential random vartables when G is gamma (n), and S_{1}, \ldots, S_{n} are spacings defined by a uniform sample of size $n-1$. For $n=2$ thls is sometimes faster than stralghtforward inversion:

Generate iid uniform $[0,1]$ random variates U, V, W.
$Y \leftarrow-\log (U V)$
RETURN $W Y,(1-W) Y$

Notice that three unlform random varlates and one logarlthm are needed per couple of exponentlal random varlates. The overhead for the case $n=3$ is sometimes a drawback. We summarlze nevertheless:

```
Generate ild uniform \([0,1]\) random variates \(U_{1}, U_{2}, U_{3}, U_{4}, U_{5}\). \(Y \leftarrow-\log \left(U_{1} U_{2} U_{3}\right)\)
\(V \leftarrow \min \left(U_{4}, U_{5}\right), W \leftarrow \max \left(U_{4}, U_{5}\right)\)
RETURN \(V Y,(W-V) Y,(1-W) Y\)
```

2.2. Marsaglia's exponential generator.

Marsaglla (1981) proved the following theorem:

Theorem 2.1. (Marsaglia, 1961)

Let U_{1}, U_{2}, \ldots be lld uniform $[0,1]$ random variables. Let Z be a truncated Polsson random varlate with probabillty vector

$$
P(Z=i)=\frac{1}{e^{\mu}-1} \frac{\mu^{i}}{i!} \quad(i \geq 1)
$$

where $\mu>0$ is a constant. Let M be a geometric random vector with probabillty vector

$$
P(M=i)=\left(1-e^{-\mu}\right) e^{-\mu i} \quad(i \geq 0) .
$$

Then $X \leftarrow \mu\left(M+\min \left(U_{1}, \ldots, U_{Z}\right)\right)$ is exponentlally distributed. Also,

$$
\begin{aligned}
& E(M)=\frac{1}{e^{\mu}-1}, \\
& E(Z)=\frac{\mu e^{\mu}}{e^{\mu}-1} .
\end{aligned}
$$

Proof of Theorem 2.1.

We note that for $\mu \geq x>0$,

$$
\begin{aligned}
& P\left(\mu \min \left(U_{1}, \ldots, U_{Z}\right) \leq x\right)=\sum_{i=1}^{\infty} P(Z=i) P\left(\mu \min \left(U_{1}, \ldots, U_{i}\right) \leq x\right) \\
& =\sum_{i=1}^{\infty} \frac{1}{e^{\mu}-1} \frac{\mu^{i}}{i!}\left(1-\left(1-\frac{x}{\mu}\right)^{i}\right) \\
& =1-\sum_{i=1}^{\infty} \frac{1}{e^{\mu}-1} \frac{\left(\mu\left(1-\frac{x}{\mu}\right)\right)^{i}}{i!} \\
& =1-\frac{e^{\mu-x}-1}{e^{\mu}-1} \\
& =\frac{1-e^{-x}}{1-e^{-\mu}}
\end{aligned}
$$

Thus, $\mu \mathrm{mln}\left(U_{1}, \ldots, U_{Z}\right)$ has the exponential distribution truncated to $[0, \mu]$. The first part of the theorem now follows directly from Lemma IV.2.1. For the second part, use the fact that $M+1$ is geometrically distributed, so that $E(M+1)=\frac{1}{1-e^{-\mu}}$. Furthermore,

$$
\begin{aligned}
& E(Z)=\frac{1}{e^{\mu}-1}\left(\frac{\mu^{1}}{0!}+\frac{\mu^{2}}{1!}+\frac{\mu^{3}}{2!}+\cdots\right) \\
& =\frac{\mu e^{\mu}}{e^{\mu}-1} .
\end{aligned}
$$

We can now suggest an algorithm based upon Theorem 2.1:

Marsaglia's exponential generator
Generate a geometric random variate M defined by $P(M=i)=\left(1-e^{-\mu}\right) e^{-\mu i} \quad(i \geq 0)$.
$Z-1$
Generate iid uniform $[0,1]$ random variates U, V.
$Y-V$
WHLE True Do

$$
\begin{aligned}
& \text { IF } U \leq F(Z)\left(\text { Note: } F(i)=\frac{1}{e^{\mu}-1} \sum_{j=1}^{i} \frac{\mu^{j}}{j!} \cdot\right) \\
& \text { THEN RETURN } X \leftarrow \mu(M+Y) \\
& \text { ELSE } \\
& \quad Z \leftarrow Z+1 \\
& \quad \\
& \quad \text { Generate a uniform }[0,1] \text { random variate } V . \\
& \\
& Y \leftarrow \min (Y, V)
\end{aligned}
$$

For the geometric random varlate, the inversion method based upon sequential search seems the obvlous cholce. This can be sped up by storing the cumulative probabilitles, or by mixing sequentlal search with the allas method. Simllarly, the cumulative distribution function F of Z can be partially stored to speed up the second part of the algorithm. The design parameter μ must be found by compromise. Note that if sequential search based Inversion is used for the geometric random varlate M, then $\frac{1}{1-e^{-\mu}}$ comparlsons are needed on the average: this decreases from ∞ to 1 as μ varles from 0 to ∞. Also, the expected number of accesses of F in the second part of the algorithm is equal to $E(Z)=\frac{\mu}{1-e^{-\mu}}$, and this increases from 1 to ∞ as μ varles from 0 to ∞. Furthermore, the algorithm in its entirety requires on the average $2+E(Z)$ unlform $[0,1]$ random varlates. The two effects have to be properly balanced. For most implementations, a value μ in the range $0.40 \ldots 0.80$ seems to be optimal. This polnt was addressed in more detall by Sibuya (1981). Special advantages are offered by the cholces $\mu=1$ and $\mu=\log (2)$.

The spectal case $\mu=\log (2)$ allows one to generate the desired geometric random varlate by analyzing the random bits in a unlform $[0,1]$ random varlate, which can be done convenlently in assembly language by the logical shift operatlon. Thls algorlthm was proposed by Ahrens and Dleter (1972), where the reader can also find an excellent survey of exponential random varlate generation. Again, a table of $F(i)$ values is needed.

Exponential generator of Ahrens and Dieter (1972)

[NOTE: a table of values $F(i)=\sum_{j=1}^{i} \frac{(\log (2))^{j}}{j!}$ is required.]
$M \multimap 0$
Generate a uniform $[0,1]$ random variate U.
WHILE $U<\frac{1}{2}$ DO $U \leftrightarrows 2 U, M \leftrightarrows M+\log (2)$
(M is now correctly distributed. It is equal to the number of 0 's before the first 1 in the binary expansion of U. Note that $U \leftrightarrows 2 U$ is implementable by a shift operation.)
$U \leftarrow 2 U-1$ (U is again uniform $[0,1]$ and independent of M.)
IF $U<\log (2)$
THEN RETURN $X \leftarrow M+U$
ELSE
$Z \leftarrow 2$
Generate a uniform $[0,1]$ random variate V.
$Y \leftarrow V$
While True Do
Generate a uniform $[0,1]$ random variate V.
$Y \leftarrow \min (Y, V)$
IF $U \leq F(Z)$
THEN RETURN $X \leftarrow M+Y \log (2)$
ELSE $Z \leftarrow Z+1$

Ahrens and Dieter squeeze the first unlform [0,1] random variate U dry. Because of this, the algorithm requires very few unlform random varlates on the average: the expected number is $1+\log (2)$, which is about 1.69315 .

2.3. The rectangle-wedge-tail method.

One of the fastest table methods for the exponential distribution was first publlshed by Maclaren, Marsaglia and Bray (1984). It is Ideally sulted for implementation in machine language, but even in a high level language it is faster than most other methods described in this section. The extra speed is obtalned by princlples related to the table method. First, the tall of the density is cut off at some point $n \mu$ where n is a design integer and $\mu>0$ is a small design constant. The remalnder of the graph of \int is then divided Into n equal strips of width μ. And on interval $[(i-1) \mu, i \mu$], we divide the graph into a rectangular plece of helght $e^{-i \mu}$, and a wedge $f(x)-e^{-i \mu}$. Thus, the density is decomposed into
$2 n+1$ pleces of the following welghts:
one tall of welght $e^{-n \mu}$;
n rectangles with welghts $\mu e^{-i \mu}, 1 \leq i \leq n$;
n wedges of welghts $e^{-i \mu}\left(e^{\mu}-1-\mu\right), \overline{1} \leq i \leq n$.
These numbers can be used to set up a table for dlscrete random varlate generatlon. The algorlthm then proceeds as follows:

The rectangle-wedge-tail method

[NOTE: we refer to the $2 n+1$ probabilities defined above.]
$X \leftarrow 0$
REPEAT
Generate a random integer Z with values in $1, \ldots, 2 n+1$ having the given probability vector.
CASE
Rectangle i chosen: RETURN $X \leftarrow X+(i-1+U) \mu$ where U is a uniform $[0,1]$ random variate.

Wedge i chosen: RETURN $X \leftarrow X+(i-1) \mu+Y$ where Y is a random variate having the wedge density $g(x)=\frac{e^{\mu-x}-1}{e^{\mu}-1-\mu} \quad 0 \leq x \leq \mu$.

Tall is chosen: $X \leftarrow X+n \mu$
UNTIL False

Note that when the tall is plcked, we do in fact reject the cholce, but keep at the same time track of the number of rejections. Equivalently, we could have returned $n \mu-\log (U)$ but this would have been less elegant since we would in effect rely on a logarlthm. The recursive approach followed here seems cleaner. Random varlates from the wedge density can be obtalned in a number of ways. We could proceed by rejection from the trlangular density: note that

$$
g(x)=\frac{e^{\mu-x}-1}{e^{\mu}-1-\mu} \leq \frac{\mu-x}{\mu} \frac{e^{\mu}-1}{e^{\mu}-1-\mu}
$$

and

$$
g(x) \geq \frac{e^{\mu}-x e^{\mu}-1}{e^{\mu}-1-\mu}
$$

so that the following rejection algorithm is valld:

Wedge generator

REPEAT

Generate two id uniform $[0,1]$ random variates X, U.
IF $X>U$ THEN $(X, U) \leftarrow(U, X)((X, U)$ is now uniformly distributed under the triangle with unit sides.)
IF $U \leq 1-X \frac{\mu e^{\mu}}{e^{\mu}-1}$
THEN RETURN μX
ELSE IF $U \leq \frac{e^{\mu-\mu X}-1}{e^{\mu}-1}$ THEN RETURN μX
UNTIL False

The wedge generator requires on the average

$$
\frac{1}{2} \frac{\mu\left(e^{\mu}-1\right)}{e^{\mu}-1-\mu}
$$

Iteratlons. It is easy to see that this tends to 1 as $\mu \downarrow 0$. The expected number of uniform random varlates needed is thus twice this number. But note that this can be bounded as follows:

$$
\mu \frac{e^{\mu}-1}{e^{\mu}-1-\mu}=\mu\left(1+\frac{\mu}{e^{\mu}-1-\mu}\right) \leq \mu\left(1+\frac{2}{\mu}\right)=\mu+2
$$

Here we used an Inequallty based upon the truncated Taylor serles expansion. In vlew of the squeeze step, the expected number of evaluations of the exponential function is of course much less than the expected number of iterations. Having establlshed thls, we can summarize the performance of the algorlthm by repeated use of Wald's equation:

Theorem 2.2.

This theorem is about the analysis of the rectangle-wedge-tall algorithm shown above.
(1) The expected number of global Iterations is $A=\frac{1}{1-e^{-n \mu}}$.
(11) The expected number of uniform $[0,1]$ random varlates needed (excluding the discrete random variate generation portion) is $\frac{\mu}{1-e^{-\mu}}$.

Proof of Theorem 2.2.

Theorem 2.2 is establlshed as follows: we have 1 unlform random varlate per rectangle (the probability of this is $\sum_{i=1}^{n} \mu e^{-i \mu}=\mu \frac{e^{-\mu_{-}-(n+1) \mu}}{1-e^{-\mu}}$ in the first iteratlon). We have $\mu \frac{e^{\mu}-1}{e^{\mu}-1-\mu}$ per wedge (the probabillty of this is $\sum_{i=1}^{n} e^{-i \mu}\left(e^{\mu}-1-\mu\right)=\frac{e^{-\mu}-e^{-(n+1) \mu}}{1-e^{-\mu}}\left(e^{\mu}-1-\mu\right)$ In the first Iteration). Thus, by estabIlshing the correctness of statement (1), and applying Wald's equation, we observe that the expected number of unlform random variates needed is

$$
\begin{aligned}
& A\left(\mu \frac{e^{-\mu}-e^{-(n+1) \mu}}{1-e^{-\mu}}+\mu \frac{e^{\mu}-1}{e^{\mu}-1-\mu} \frac{e^{-\mu}-e^{-(n+1) \mu}}{1-e^{-\mu}}\left(e^{\left.\left.\mu_{-1}-\mu\right)\right)}\right.\right. \\
& =A\left(\mu e^{\mu} \frac{e^{-\mu}-e^{-(n+1) \mu}}{1-e^{-\mu}}\right) \\
& =A\left(\mu \frac{1-e^{-n \mu}}{1-e^{-\mu}}\right) \\
& =\frac{\mu}{1-e^{-\mu}} .
\end{aligned}
$$

The number of intervals n does not affect the expected number of unlform random variates needed in the algorlthm. Of course, the expected number of discrete random varlates needed depends very much on n, slnce it is $\frac{1}{1-e^{-n \mu}}$. It is clear that μ should be made very small because as $\mu \downarrow 0$, the expected number of unlform random varlates is $1+\frac{\mu}{2}+o(\mu)$. But when μ is small, we have to choose n large to keep the expected number of iterations down. For example, if we want the expected number of iterations to be $\frac{1}{1-e^{-4}}$, which is entirely reasonable, then we should choose $n=\frac{4}{\mu}$. When $\mu=\frac{1}{20}$, the table size is $2 n+1=161$.

The algorithm given here may differ sllghtly from the algorithms found elsewhere. The idea remalns basically the same: by picking certaln design constants, we can practlcally guarantee that one exponentlal random varlate can be obtalned at the expense of one discrete random variate and one uniform random varlate. The discrete random varlate in turn can be obtalned extremely quickly by the allas method or the allas-urn method at the cost of one other unlform random varlate and elther one or two table look-ups.

2.4. Exercises.

1. It is Important to have a fast generator for the truncated exponential density $f(x)=e^{-x} /\left(1-e^{-\mu}\right), 0 \leq x \leq \mu$. From Theorem 2.1, we recall that a random varlate with thls density can be generated as $\mu \min \left(U_{1}, .: ., U_{Z}\right)$ where the U_{i} 's are lld unlform $[0,1]$ random variates and Z is a truncated Polsson variate with probabllity vector

$$
P(Z=i)=\frac{1}{e^{\mu}-1} \frac{\mu^{i}}{i!} \quad(i \geq 1)
$$

The purpose of thls exercise is to explore alternative methods. In particular, compare with a strip table method based upon n equl-sized intervals and with a grld table method based upon n equl-slzed Intervals. Compare also with rejection from a trapezoldal dominating function, comblned with clever squeeze steps.
2. The Laplace density. The Laplace density is $f(x)=\frac{1}{2} e^{-|x|}$. Show that a random varlate X with thls density can be generated as $S E$ or as $E_{1}-E_{2}$ where E, E_{1}, E_{2} are ild exponential random varlates, and S is a random slgn.
3. Find the density of the sum of two 11d Laplace random varlables, and verify its bell shape. Prove that such a random varlate can be generated as $\log \left(\frac{U_{1} U_{2}}{U_{3} U_{4}}\right)$ where the U_{i} 's are Ild uniform [0,1] random varlates. Develop a rejection algorithm for normal random varlates with quick acceptance and rejection steps based upon the inequalities:

$$
1-\frac{x^{3}}{3} \leq \frac{e^{-\frac{x^{2}}{2}}}{(1+x) e^{-x}} \leq\left\{\begin{array}{l}
1 \quad, x>0 \\
1-\frac{x^{3}}{3}\left(\frac{23}{27}\right)\left(1-\frac{x^{2}}{6}\right) \quad, x>0
\end{array}\right.
$$

Prove these Inequalltles by using Taylor's serles expansion truncated at the third term.

3. THE GAMMA DENSITY.

3.1. The gamma family.

A random varlable X is gamma (a, b) distributed when it has density

$$
f(x)=\frac{x^{a-1} e^{-\frac{x}{b}}}{\Gamma(a) b^{a}} \quad(x \geq 0)
$$

Here $a>0$ is the shape parameter and $b>0$ is the scale parameter. We say that X is gamma (a) distributed when it is gamma ($a, 1$). Before reviewing random variate generation techniques for this famlly, we will look at some key propertles that are relevant to us and that could ald in the deslgn of an algorithm.

The density is unimodal with mode at $(a-1) b$ when $a \geq 1$. When $a<1$, it is monotone with an Infinlte peak at 0 . The moments are easlly computed. For example, we have

$$
\begin{aligned}
& E(X)=\int_{0}^{\infty} x f(x) d x=\frac{\Gamma(a+1) b^{a+1}}{\Gamma(a) b^{a}}=a b ; \\
& E\left(X^{2}\right)=\int_{0}^{\infty} x^{2} f(x) d x=\frac{\Gamma(a+2) b^{a+2}}{\Gamma(a) b^{a}}=a(a+1) b^{2} .
\end{aligned}
$$

Thus, $\operatorname{Var}(X)=a b^{2}$.
The gamma famlly is closed under many operations. For example, when X is gamma (a, b), then $c X$ is gamma ($a, b c$) when $c>0$. Also, summing gamma random variables yields another gamma random varlable. This is perhaps best seen by considering the characterlstic function $\phi(t)$ of a gamma (a, b) random varlable:

$$
\begin{aligned}
& \phi(t)=E\left(e^{i t X}\right)=\int_{0}^{\infty} \frac{x^{a-1} e^{-x\left(\frac{1}{b}-i t\right)}}{\Gamma(a) b^{a}} d x \\
& =\frac{\left(\frac{b}{1-i t b}\right)^{a}}{b^{a}} \int_{0}^{\infty} \frac{x^{a-1} e^{-x\left(\frac{1}{b}-i t\right)}}{\Gamma(a)\left(\frac{b}{1-i t b}\right)^{a}} d x \\
& =\frac{1}{(1-i t b)^{a}} .
\end{aligned}
$$

Thus, if X_{1}, \ldots, X_{n} are independent gamma (a_{1}), .., gamma (a_{n}) random varlables, then $X=\sum_{i=1} X_{i}$ has characteristic function

$$
\phi(t)=\prod_{j=1}^{n} \frac{1}{(1-i t)^{a_{j}}}=\frac{1}{(1-i t)^{\sum_{i=1}^{n} a_{j}}},
$$

and is therefore gamma ($\sum_{j=1}^{n} a_{j}, 1$) distributed. The family is also closed under more complicated transformations. To Mllustrate thls, we consider Kullback's result (Kullback, 1934) which states that when X_{1}, X_{2} are Independent gamma (a) and gamma ($a+\frac{1}{2}$) random variables, then $2 \sqrt{X_{1} X_{2}}$ is gamma ($2 a$).

The gamma distribution is related in innumerable ways to other well-known distributions. The exponential density is a gamma density with parameters (1,1). And when X is normally distributed, then X^{2} is gamma $\left(\frac{1}{2}, 2\right)$ distributed. This

Is called the chi-square distribution with one degree of freedom. In general, a gamma $\left(\frac{r}{2}, 2\right)$ random varlable is called a chl-square random variable with r degrees of freedom. We will not use the chl-square terminology in this section. Perhaps the most important property of the gamma density is its relationship with the beta density. This is summarized in the following theorem:

Theorem 3.1.

If X_{1}, X_{2} are Independent gamma $\left(a_{1}\right)$ and gamma $\left(a_{2}\right)$ random variables,
then $\frac{X_{1}}{X_{1}+X_{2}}$ and $X_{1}+X_{2}$ are independent beta $\left(a_{1}, a_{2}\right)$ and gamma $\left(a_{1}+a_{2}\right)$ random variables. Furthermore, if Y is gamma (a) and Z is beta ($b, a-b$) for some $b>a>0$, then $Y Z$ and $Y(1-Z)$ are independent gamma (b) and gamma ($a-b$) random varlables.

Proof of Theorem 3.1.

We will only prove the first part of the theorem, and leave the second part to the reader (see exerclses). Consider first the transformation $y=x_{1} /\left(x_{1}+x_{2}\right)$, $z=x_{1}+x_{2}$, which has an inverse $x_{1}=y z, x_{2}=(1-y) z$. The Jacoblan of the transformation is

$$
\left|\begin{array}{ll}
\frac{\partial x_{1}}{\partial y} & \frac{\partial x_{1}}{\partial z} \\
\frac{\partial x_{2}}{\partial y} & \frac{\partial x_{2}}{\partial z}
\end{array}\right|=\left|\begin{array}{ll}
z & y \\
-z & 1-y
\end{array}\right|=|z| .
$$

Thus, the denslty $f(y, z)$ of $(Y, Z)=\left(\frac{X_{1}}{X_{1}+X_{2}}, X_{1}+X_{2}\right)$ is

$$
\begin{aligned}
& \frac{(y z)^{a_{1}-1} e^{-y z}}{\Gamma\left(a_{1}\right)} \frac{((1-y) z)^{a_{2}-1} e^{-(1-y) z}}{\Gamma\left(a_{2}\right)} z \\
& =\frac{\Gamma\left(a_{1}+a_{2}\right) y^{a_{1}-1}(1-y)^{a_{2}-1}}{\Gamma\left(a_{1}\right) \Gamma\left(a_{2}\right)} \frac{z^{a_{1}+a_{2}-1} e^{-z}}{\Gamma\left(a_{1}+a_{2}\right)},
\end{aligned}
$$

which was to be shown.

The observation that for large values of a, the gamma density is close to the normal denslty could ald in the cholce of a dominating curve for the rejection method. Thls fact follows of course from the observation that sums of gamma random varlables are again gamma random variables, and from the central llmit theorem. However, since the central llmit theorem is concerned with the convergence of distribution functions, and since we are interested in a local central limit
theorem, convergence of a density to a density, it is perhaps instructive to glve a direct proof of thls result. We have:

Theorem 3.2.

If X_{a} is gamma (a) distributed and if f_{a} is the density of the normalized gamma random varlable $\left(X_{a}-a\right) / \sqrt{a}$, then

$$
\lim _{a \uparrow \infty} f_{a}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \quad(x \in R)
$$

Proof of Theorem 3.2.

The denslty of $\left(X_{a}-a\right) / \sqrt{a}$ evaluated at x is

$$
\begin{aligned}
& \sqrt{a} \frac{(x \sqrt{a}+a)^{a-1} e^{-(x \sqrt{a}+a)}}{\Gamma(a)} \sim \frac{\sqrt{a} a^{a-1}\left(1+\frac{x}{\sqrt{a}}\right)^{a-1} e^{-a} e^{-x \sqrt{a}}}{\left(\frac{a-1}{e}\right)^{a-1} \sqrt{2 \pi(a-1)}} \\
& \sim \frac{1}{\sqrt{2 \pi}} \frac{1}{e}\left(1+\frac{1}{a-1}\right)^{a-1} e^{x \sqrt{a}+\frac{(a-1) x}{\sqrt{a}}-\frac{(a-1) x^{2}}{2 a}+O\left(\frac{1}{\sqrt{a}}\right)} \\
& =\frac{1}{\sqrt{2 \pi}}(1+o(1)) e^{-\frac{x^{2}}{2}+O\left(\frac{1}{\sqrt{a}}\right)} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}(1+o(1)) .
\end{aligned}
$$

Here we used Stirling's approximation, and the Taylor serles expansion for $\log (1+u)$ when $0<u<1$.

3.2. Gamma variate generators.

Features we could appreclate in good gamma generators include
(1) Unlform speed: the expected time is unlformly bounded over all values of a, the shape parameter.
(II) Simplicity: short easy programs are more llkely to become widely used.
(iii) Small or nonexistent set-up times: design parameters which depend upon a need to be recalculated every time a changes. These recalculations take often more tlme than the generator.
No famlly has recelved more attention in the literature than the gamma family. Many experimental comparisons are avallable in the general ilterature: see e.g. AtkInson and Pearce (1978), Vaduva (1977), or Tadikamalla and Johnson
(1980,1981).
For speclal cases, there are some good recipes: for example, when $a=1$, we return an exponential random varlate. When a is a small integer, we can return elther

$$
\sum_{i=1}^{a} E_{i}
$$

where the E_{i} 's are lid exponentlal random varlates, or

$$
-\log \left(\prod_{i=1}^{a} U_{i}\right)
$$

where the U_{i} 's are Ild unlform $[0,1]$ random variates. When a equals $\frac{1}{2}+k$ for some small integer k, it is possible to return

$$
\frac{1}{2} N^{2}+\sum_{i=1}^{k} E_{i}
$$

where N is a normal random varlate independent of the E_{i} 's. In older texts one will often find the recommendation that a gamma (a) random varlate should be generated as the sum of a gamma ($\lfloor a\rfloor$) and a gamma ($a-\lfloor a\rfloor$) random varlate. The former random variate is to be obtalned as a sum of independent exponential random varlates. The parameter of the second gamma variate is less than 1. All these strategles take time linearly increasing with a; none lead to good gamma generators in general.

There are several successful approaches in the design of good gamma generators: first and foremost are the rejection algorithms. The rejection algorlthms can be classified according to the famlly of dominating curves used. The differences in tlmings are usually minor: they often depend upon the efflclency of some quick acceptance step, and upon the way the rejection constant varles with a as $a \uparrow \infty$. Because of Theorem 3.2, we see that for the rejection constant to converge to 1 as $a \uparrow \infty$ It is necessary for the dominating curve to approach the normal density. Thus, some rejection algorithms are suboptlmal from the start. Curlously, this is sometlmes not a blg drawback provided that the rejection constant remains reasonably close to 1 . To discuss algorithms, we will inherlt the names avallable in the literature for otherwise our dlscussion would be too verbose. Some successful rejectlon algorithms include:
GB. (Cheng, 1977): rejection from the Burr XII distribution. To be discussed below.
GO. (Ahrens and Dleter, 1974): rejection from a combination of normal and exponentlal densitles.
GC. (Ahrens and Dleter, 1974): rejection from the Cauchy denslty.
XG. (Best, 1978): rejection from the t distribution with 2 degrees of freedom.
TAD2.
(Tadikamalla, 1978): rejection from the Laplace density.

Of these approaches, algorlthm GO has the best asymptotlc value for the rejection constant. Thls by itself does not make it the fastest and certainly not the shortest algorlthm. The real reason why there are so many rejection algorithms around is that the normallzed gamma density cannot be fltted under the normal density because its tall decreases much slower than the tall of the normal denslty. We can of course apply the almost exact inversion princlple and find a nonllnear transformation which would transform the gamma density into a density which is very nearly normal, and which among other things would enable us to tuck the new denslty under a normal curve. Such normalizing transformations include a quadratic transformation (Flsher's transformation) and a cublc transformation (the Wilson-Hilferty transformation): the resulting algorithms are extremely fast because of the good fit. A prototype algorithm of thls kind was developed and analyzed in detall in section IV.3.4, Marsaglla's algorithm RGAMA (Marsaglla (1977), Greenwood (1974)). In section N.7.2, we presented some gamma generators based upon the ratlo-of-uniforms method, which lmprove slightly over simllar algorlthms publlshed by Kinderman and Monahan (1977, 1978, 1979) (algorithm GRUB) and Cheng and Feast (1979, 1979) (algorithm GBH). Desplte the fact that no ratio-of-uniforms algorlthm can have an asymptotically optimal rejection constant, they are typlcally comparable to the best rejection algorithms because of the slmplicity of the dominating density. Most useful algorithms fall into one of the categorles described above. The unlversal method for log-concave densitles (section VII.2.3) (Devroye, 1984) is of course not competitive with speclally designed algorlthms.

There are no algorithms of the types described above which are unlformly fast for all a because the design is usually geared towards good performance for large values of a. Thus, for most algorithms, we have unlform speed on some interval $[a *, \infty)$ where $a *$ is typlcally near 1 . For small values of a, the algorithms are often not valld - this is due to the fact that the gamma density has an infinite peak at 0 when $a<1$, while dominating curves are often taken from a family of bounded densitles. We will devote a special section to the problem of gamma generators for values $a<1$.

Sometimes, there is a need for a very fast algorlthm which would be applied for a flxed value of a. What one should do in such case is cut off the tall, and use a strlp-based table method (sectlon VIII.2) on the body. Since these table methods can be automated, it is not worth spending extra time on this issue. It is nevertheless worth noting that some automated table methods have table slzes that in the case of the gamma density increase unboundedly as $a \rightarrow \infty$ if the expected time per random varlate is to remaln bounded, unless one applles a speclally designed technique similar to what was done for the exponential density in the rectangle-wedge-tall method. In an interesting paper, Schmelser and Lal (1980) have developed a seml-table method: the graph of the denslty is partltioned into about 10 pleces, all rectangular, triangular or exponential in shape, and the set-up time, about flve times the time needed to generate one random varlate, is reasonable. Moreover, the table slze (number of pleces) remains flxed for all values of a. When speed per random varlate is at a premium, one should certalnly use some sort of table method. When speed is important, and a varles

Theorem 3.3.

A. The denslty g has distribution function

$$
G(x)=\frac{1}{2}\left(1+\frac{\frac{x}{\sqrt{2}}}{\sqrt{1+\frac{x^{2}}{2}}}\right)
$$

A random varlate with this distribution can be generated as

$$
\frac{\sqrt{2}\left(U-\frac{1}{2}\right)}{\sqrt{U(1-U)}}
$$

where U is a unlform $[0,1]$ random varlate.
B. Let f be the gamma (a) density, and let g_{a} be the density of $(a-1)+Y \sqrt{\frac{3 a}{2}-\frac{3}{8}}$ where Y has density g. Then

$$
f(x) \leq c_{a} g_{a}(x)=\frac{1}{\Gamma(a)\left(1+\frac{1}{2}\left(\frac{x-(a-1)}{\sqrt{\frac{3 a}{2}-\frac{3}{8}}}\right)^{2}\right)^{\frac{3}{2}}},
$$

where the rejectlon constant is given by

$$
c_{a}=\frac{2 \sqrt{3 a-\frac{3}{4}}}{\Gamma(a)}\left(\frac{a-1}{e}\right)^{a-1} .
$$

C. We have $\sup _{a \geq 1} c_{a} \leq e \sqrt{\frac{6}{\pi}}$, and $\lim _{a \uparrow \infty} c_{a}=\sqrt{\frac{6}{\pi}}$.

Proof of Theorem 3.3.

The claim about the distribution function G is quickly verified. When U is uniformly distributed on $[0,1]$, then the solution X of $G(X)=U$ is precisely $X=\frac{\sqrt{2}\left(U-\frac{1}{2}\right)}{\sqrt{U(1-U)}}$. This proves part A.

Let Y have density g. Then $(a-1)+Y \sqrt{\frac{3 a}{2}-\frac{3}{8}}$ has density

$$
\frac{1}{2 \sqrt{2} \sqrt{\frac{3 a}{2}-\frac{3}{8}}}\left(1+\frac{1}{2}\left(\frac{x-(a-1)}{\sqrt{\frac{3 a}{2}-\frac{3}{8}}}\right)^{2}\right)^{-\frac{3}{2}}
$$

with each call, the almost-exact-Inverslon method seems to be the winner in most experimental comparisons, and certainly when fast exponentlal and normal random varlate generators are avallable. The best ratio-of-unlforms methods and the best rejection methods (XG,GO,GB) are next in llne, well ahead of all table methods.

Finally, we will discuss random varlate generation for closely related distributlons such as the Welbull distribution and the exponential power distribution.

3.3. Uniformly fast rejection algorithms for $a \geq 1$.

We begin with one of the shortest algorlthms for the gamma denslty, which Is based upon rejection from the t density with 2 degrees of freedom:

$$
g(x)=\frac{1}{2 \sqrt{2}}\left(1+\frac{x^{2}}{2}\right)^{-\frac{3}{2}}
$$

This density decreases as x^{-3}, and is symmetric bout 0 . Thus, it can be used as a dominating curve of a properly rescaled and translated gamma denslty. Best's algorthm XG (Best, 1978) is based upon the following facts:

To prove statement B, we need only show that for $x>0$,

$$
x^{a-1} e^{-x} \leq\left(\frac{a-1}{e}\right)^{a-1} \frac{1}{\left(1+\frac{1}{2}\left(\frac{x-(a-1)}{\sqrt{\frac{3 a}{2}-\frac{3}{8}}}\right)^{2}\right)^{\frac{3}{2}}},
$$

or, after resubstitution $y=x-(a-1)$, that for $y \geq-(a-1)$,

$$
e^{-y}\left(1+\frac{y}{a-1}\right)^{a-1} \leq\left(1+\frac{y^{2}}{3 a-\frac{3}{4}}\right)^{-\frac{3}{2}}
$$

Taking logarlthms, we see that we must show that

$$
h(y)=-y+(a-1) \log \left(1+\frac{y}{a-1}\right)+\frac{3}{2} \log \left(1+\frac{y^{2}}{3 a-\frac{3}{4}}\right) \leq 0
$$

Clearly, $h(0)=0$. It suffces to show that $h^{\prime}(y) \geq 0$ for $y \leq 0$ and that $h^{\prime}(y) \leq 0$ for $y \geq 0$. But

$$
\begin{aligned}
& h^{\prime}(y)=-1+\frac{a-1}{(a-1)\left(1+\frac{y}{a-1}\right)}+\frac{3}{2} \frac{2 y}{3 a-\frac{3}{4}} \frac{1}{1+\frac{y^{2}}{3 a-\frac{3}{4}}} \\
& =-\frac{y}{a-1+y}+\frac{y}{a-\frac{1}{4}+\frac{y^{2}}{3}} \\
& =\frac{y\left(y-\frac{3}{4}-\frac{y^{2}}{3}\right)}{(a-1+y)\left(a-\frac{1}{4}+\frac{y^{2}}{3}\right)} .
\end{aligned}
$$

The denominator is ≥ 0 for $a \geq \frac{1}{4}$. The numerator is ≥ 0 for $y \leq 0$, and is ≤ 0 for $y \geq 0$ (thls can be seen by rewriting it as $-\frac{y}{3}\left(y-\frac{3}{2}\right)^{2}$. This concludes the proof of part B.

For part C, we apply Stlrllng's approximation, and observe that

$$
\begin{aligned}
& c_{a} \sim \frac{2 \sqrt{3 a}}{\left(\frac{a}{e}\right)^{a} \sqrt{\frac{2 \pi}{a}}}\left(\frac{a-1}{e}\right)^{a-1} \\
& =\frac{2 e \sqrt{3 a}}{\sqrt{2 \pi a}}\left(1-\frac{1}{a}\right)^{a-1} \\
& \sim \sqrt{\frac{6}{\pi}} .
\end{aligned}
$$

The first \sim is also an upper bound, so that

$$
c_{a} \leq \sqrt{\frac{6}{\pi}} e^{\frac{1}{a}}
$$

when $a \geq 1$. This proves part C.

Based upon Theorem 3.3, we can now state Best's rejection algorthm:

Best's rejection algorithm XG for gamma random variates (Best, 1978)

[SET-UP]
$b \leftarrow a-1, c \leftarrow 3 a-\frac{3}{4}$
[GENERATOR]
REPEAT
Generate ild uniform $[0,1]$ random variates U, V.

$$
W \leftarrow U(1-U), Y \leftarrow \sqrt{\frac{c}{W}}\left(U-\frac{1}{2}\right), X \leftarrow b+Y
$$

IF $X \geq 0$
THEN

$$
\begin{aligned}
& Z \leftarrow 64 W^{3} V^{2} \\
& \text { Accept } \leftarrow\left[Z \leq 1-\frac{2 Y^{2}}{X}\right]
\end{aligned}
$$

IF NOT Accept

$$
\text { THEN Accept } \leftarrow\left[\log (Z) \leq 2\left(b \log \left(\frac{X}{b}\right)-Y\right)\right]
$$

UNTLL Accept
RETURN X

The random varlate X generated at the outset of the REPEAT loop has denslty g_{a}. The acceptance condition is

$$
e^{-Y}\left(1+\frac{Y}{a-1}\right)^{a-1} \geq V\left(1+\frac{Y^{2}}{3 a-\frac{3}{4}}\right)^{-\frac{3}{2}}
$$

Thls can be rewritten in a number of ways: for example, in the notation of the algorlthm,

$$
e^{-Y}\left(\frac{X}{b}\right)^{b} \geq V(4 W)^{\frac{3}{2}}
$$

$$
\begin{aligned}
& -Y+b \log \left(\frac{X}{b}\right) \geq \frac{1}{2} \log \left(4^{3} V^{2} W^{3}\right) \\
& 2\left(-Y+b \log \left(\frac{X}{b}\right)\right) \geq \log (Z)
\end{aligned}
$$

This explains the acceptance condition used in the algorithm. The squeeze step is derived from the acceptance condition, by noting that
(1) $\log (Z) \leq Z-1$;
(11) $2\left(b \log \left(1+\frac{Y}{b}\right)-Y\right) \geq 2 Y\left(-\frac{Y}{b+Y}\right)=-\frac{2 Y^{2}}{X}$.

The last inequality is obtained by noting that the left hand side as a function of Y is 0 at $Y=0$, and has derivative $-\frac{Y}{b+Y}$. Therefore, by the Taylor serles expansion truncated at the first term, we see that for $Y \geq 0$, the left hand side is at least equal to $2\left(0+Y\left(-\frac{Y}{b+Y}\right)\right)$. For $Y \leq 0$, the same bound is valld. Thus, when $Z-1 \leq-2 Y^{2} / X$, we are able to conclude that the acceptance condition is satisfled. It should be noted that in vlew of the rather large rejection constant, the squeeze step is probably not very effective, and could be omitted without a blg tlme penalty.

We wlll now move on to Cheng's algorithm GB which is based upon rejection from the Burr XII density

$$
g(x)=\lambda \mu \frac{x^{\lambda-1}}{\left(\mu+x^{\lambda}\right)^{2}}
$$

for parameters $\mu, \lambda>0$ to be determined as a function of a. Random varlates with this density can be obtalned as

$$
\left(\frac{\mu U}{1-U}\right)^{\frac{1}{\lambda}}
$$

where U is uniformly distributed on $[0,1]$. This follows from the fact that the distribution function corresponding to g is $x^{\lambda} /\left(\mu+x^{\lambda}\right), x \geq 0$. We have to choose λ and μ. Unfortunately, minimization of the area under the dominating curve does not glve expllcitly solvable equations. It is useful to match the curves of f and g, which are both unimodal. Since f peaks at $a-1$, it makes sense to match this peak. The peak of g occurs at

$$
x=\left(\frac{(\lambda-1) \mu}{\lambda+1}\right)^{\frac{1}{\lambda}}
$$

If we choose λ large, i.e. Increasing with a, then this peak will approximately match the other peak when $\mu=a^{\lambda}$. Consider now $\log \left(\frac{f}{g}\right)$. The derlvative of this function is

$$
\frac{a-\lambda-x}{x}+\frac{2 \lambda x^{\lambda-1}}{a^{\lambda}+x^{\lambda}} .
$$

This derlvative attalns the value 0 when $(a+\lambda-x) x^{\lambda}+(a-\lambda-x) a^{\lambda}=0$. By analyz Ing the derivative, we can see that it has a unique solution at $x=0$ when $\lambda=\sqrt{2 a-1}$. Thus, we have

$$
f(x) \leq c g(x)
$$

where

$$
\begin{aligned}
& c=\frac{a^{a-1} e^{-a}\left(2 a^{\lambda}\right)^{2}}{\Gamma(a) \lambda a^{\lambda} a^{\lambda-1}} \\
& =\frac{a^{a} e^{-a} 4}{\Gamma(a) \lambda} \\
& \sim \frac{4 \sqrt{a}}{\sqrt{2 \pi} \lambda} \quad(a \uparrow \infty) .
\end{aligned}
$$

Resubstitution of the value of λ ylelds the asymptotic value of $\sqrt{\frac{4}{\pi}} \approx 1.13$. In fact, we have

$$
c \leq \frac{4 \sqrt{a}}{\sqrt{2 \pi} \lambda}=\sqrt{\frac{4}{\pi}} \sqrt{a /\left(a-\frac{1}{2}\right)} \leq \sqrt{\frac{8}{\pi}},
$$

uniformly over $a \geq 1$. Thus, the rejection algorthm suggested by Cheng has a good rejection constant. In the design, we notice that if X is a random varlate with density g, and U is a unfform $[0,1]$ random varlate, then the acceptance condition is

$$
4\left(\frac{a}{e}\right)^{a}\left(\frac{a^{\lambda}}{X^{\lambda+1}}\right) \frac{X^{2 \lambda}}{\left(a^{\lambda}+X^{\lambda}\right)^{2}} U \leq X^{a-1} e^{-X} .
$$

Equivalently, since $V=X^{\lambda} /\left(a^{\lambda}+X^{\lambda}\right)$ is unlformly distributed on [0,1], the acceptance condition can be rewritten as

$$
4\left(\frac{a}{e}\right)^{a} a^{\lambda} V^{2} U \leq X^{\lambda+a} e^{-X}
$$

or

$$
\log (4)+(\lambda+a) \log (a)-a+\log \left(U V^{2}\right) \leq(\lambda+a) \log (X)-X,
$$

or

$$
\log \left(U V^{2}\right) \leq a-\log (4)+(\lambda+a) \log \left(\frac{X}{a}\right)-X .
$$

A quick acceptance step can be introduced which uses the inequality

$$
\log \left(U V^{2}\right) \leq d\left(U V^{2}\right)-\log (d)-1
$$

which is valld for all d. The value $d=\frac{9}{2}$ was suggested by Cheng. Combining all of thls, we obtaln:

Cheng's rejection algorithm GB for gamma random variates (Cheng, 1977)
[SET-UP]
$b \leftarrow a-\log (4), c \leftarrow a+\sqrt{2 a-1}$
[GENERATOR]
REPEAT
Generate iid uniform $[0,1]$ random variates U, V.
$Y \leftarrow a \log \left(\frac{V}{1-V}\right), X \leftarrow a e^{V}$
$Z \leftarrow U V^{2}$
$R \leftarrow b+c Y-X$
Accept $\leftarrow\left[R \geq \frac{9}{2} Z-\left(1+\log \left(\frac{9}{2}\right)\right)\right]\left(\right.$ note that $\left(1+\log \left(\frac{9}{2}\right)\right)=2.5040774 \ldots$...)
IF NOT Accept THEN Accept $\leftarrow[R \geq \log (Z)]$
UNTIL Accept
RETURN X

We will close this sectlon with a word about the historically important algorithm GO of Ahrens and Dleter (1074), which was the first uniformly fast gamma generator. It also has a very good asymptotic rejection constant, sllghtly larger than 1. The authors got around the problem of the tall of the gamma density by noting that most of the gamma density can be tucked under a normal curve, and that the right tall can be tucked under an exponentlal curve. The breakpoint must of course be to the right of the peak $a-1$. Ahrens and Dleter suggest the value $(a-1)+\sqrt{8\left(a+\sqrt{\frac{8 a}{3}}\right)}$. We recall that if X is gamma (a) distributed, then $\frac{(X-a)}{\sqrt{a}}$ tends in distribution to a normal density. Thus, with the breakpoint of Ahrens and Dleter, we cannot hope to construct a dominating curve with Integral tending to 1 as $a \uparrow \infty$ (for this, the breakpoint must be at $a-1$ plus a term increasing faster than \sqrt{a}). It is true however that we are in practice very close. The almost-exact inversion method for normal random variates ylelds asymptotlcally optimal rejection constants without great diffculty. For thls reason, we will delegate the treatment of algorithm GO to the exerclses.

3.4. The Weibull density.

A random varlable has the standard Weibull density with parameter $a>0$ when it has density

$$
f(x)=a x^{a-1} e^{-x^{a}} \quad(x \geq 0)
$$

In this, we recognize the density of $E^{\frac{1}{a}}$ where E is an exponential random variable. This fact can also be deduced from the form of its distribution function,

$$
F(x)=1-e^{-x^{6}} \quad(x \geq 0)
$$

Because of thls, it seems hardly worthwhlle to design rejection algorithms for thls density. But, turning the tables around for the moment, the Welbull density is very useful as an auxiliary density in generators for other densitles.

Example 3.1. Gumbel's extreme value distribution.

When X is Welbull (a), then $Y=-a \log (X)$ has the extreme value density

$$
f(x)=e^{-x} e^{-e^{-x}} \quad(x \in R)
$$

By the fact that X is distributed as $E^{\frac{1}{a}}$, we see of course that the parameter a plays no special role: thus, $-\log (E)$ and $-\log \left(\log \left(\frac{1}{U}\right)\right)$ are both extreme value random variables when E is exponentially distributed, and E is exponentlally distributed.

Example 3.2. A compound Weibull distribution.

Dubey (1988) has pointed out that the ratio $W_{a} / G_{b}{ }^{\frac{1}{a}}$ has the Pareto-llke denslty

$$
f(x)=\frac{a b x^{a-1}}{\left(1+x^{a}\right)^{b+1}} \quad(x \geq 0)
$$

Here W_{a} is a Welbull (a) random variable, and G_{b} is a gamma (b) random varlable. As a speclal case, we note that the ratio of two independent exponential random varlables has density $\frac{1}{(1+x)^{2}}$ on $[0, \infty)$.

Example 3.3. Gamma variates by rejection from the Weibull density.
Consider the gamma (a) density f with parameter $0<a \leq 1$. For thls denslty, random varlates can be generated by rejection from the Welbull (a) density (which will be called g). Thls is based upon the Inequallty

$$
\frac{f(x)}{g(x)}=\frac{e^{x^{a}-x}}{a \Gamma(a)} \leq \frac{e^{b-b^{\frac{1}{a}}}}{\Gamma(a+1)}
$$

where

$$
b=a^{\frac{a}{1-a}}
$$

A rejection algorlthm based upon this inequality has rejection constant

$$
\frac{e^{(1-a) a^{\frac{a}{1-a}}}}{\Gamma(1+a)}
$$

The rejection constant has the following propertles:

1. It tends to 1 as $a \downarrow 0$, or $a \uparrow 1$.
2. It is not greater than $\frac{e}{0.88580}$ for any value of $a \in(0,1]$. This can be seen by noting that $(1-a) b \leq 1-a \leq 1$ and that $\Gamma(1+a) \geq 0.8856031944 \ldots$. (the gamma function at $1+a$ is absolutely bounded from below by its value at $1+a=1.4818321449 . .$. ; see e.g. Abramowltz and Stegun (1870, pp. 259)).
Thls leads to a modifled verslon of an algorithm of Vaduva's (1977):

Gamma generator for parameter smaller than 1

[SET-UP]
$c \leftarrow \frac{1}{a}, d \leftarrow a^{\frac{a}{1-a}}(1-a)$
[GENERATOR]
REPEAT
Generate iid exponential random variates Z, E. Set $X \leftarrow Z^{c}(X$ is Weibull (a)). UNTIL $Z+E \leq d+X$ RETURN X

3.5. Johnk's theorem and its implications.

Random varlate generation for the case $a<1$ can be based upon a spectal property of the beta and gamma distributions. This property is usually attributed to Johnk (1964), and has later been rediscovered by others (Newman and Odell, 1871; Whlttaker, 1874). We have:

Theorem 3.4. (Johnk, 1964)

Let $a, b>0$ be given constants, and let U, V be ild unlform $[0,1]$ random variables. Then, conditioned on $U^{\frac{1}{a}}+V^{\frac{1}{b}} \leq 1$, the random variable

$$
\frac{U^{\frac{1}{a}}}{U^{\frac{1}{a}}+V^{\frac{1}{b}}}
$$

Is beta (a, b) distributed.

Theorem 3.5. (Berman, 1971)
Let $a, b>0$ be glven constants, and let U, V be ild unlform $[0,1]$ random varlables. Then, conditioned on $U^{\frac{1}{a}}+V^{\frac{1}{b}} \leq 1$, the random vartable

$$
U^{\frac{1}{a}}
$$

is betà $(a, b+1)$ distributed.

Proof of Theorems 3.4 and 3.5.

Note that $X=U^{\frac{1}{a}}$ has distribution function x^{a} on $[0,1]$. The density is $a x^{a-1}$. Thus, the Jolnt density of X and $Y=V^{\frac{1}{b}}$ is

$$
f(x, y)=b x^{a-1} y^{b-1} \quad(0 \leq x, y \leq 1) .
$$

Consider the transformation $z=x+y, t=\frac{x}{x+y}$ with inverse $x=t z, y=(1-t) z$. Thls transformation has Jacoblan

$$
\left|\begin{array}{ll}
\frac{\partial x}{\partial t} & \frac{\partial x}{\partial z} \\
\frac{\partial y}{\partial t} & \frac{\partial y}{\partial z}
\end{array}\right|=\left|\begin{array}{cc}
z & t \\
-z & 1-t
\end{array}\right|=|z| .
$$

The joint density of $(Z, T)=\left(X+Y, \frac{X}{X+Y}\right)$ is

$$
\begin{aligned}
& |z| f(t z,(1-t) z)=z a b(t z)^{a-1}((1-t) z)^{b-1} \quad(0 \leq t z,(1-t) z \leq 1) \\
& =a b t^{a-1}(1-t)^{b-1} z^{a+b-1} \quad(0 \leq t z,(1-t) z \leq 1) .
\end{aligned}
$$

The region in the (z, t) plane on which thls density is nonzero is $A=\left\{(z, t): t>0,0<z<\min \left(\frac{1}{t}, \frac{1}{1-t}\right)\right\}$. Let A_{t} be the collection of values z for which $0<z<\min \left(\frac{1}{t}, \frac{1}{1-t}\right)$. Then, writing $g(z, t)$ for the Joint density of (Z, T) at (z, t), we see that the density of T conditional on $Z \leq 1$ is given by

$$
\begin{aligned}
& \frac{\int_{z \leq 1, z \in A_{i}} g(z, t) d z}{\int_{A} g(z, t) d z d t} \\
& =\frac{1}{c} \frac{a b}{a+b} t^{a-1}(1-t)^{b-1}
\end{aligned}
$$

where $c=\int_{A} g(z, t) d z d t$ is a normallzation constant. Clearly,

$$
c=P(X+Y \leq 1)=\frac{a b}{a+b} \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}=\frac{\Gamma(a+1) \Gamma(b+1)}{\Gamma(a+b+1)} .
$$

This concludes the proof of Theorem 3.4.
For Berman's theorem, consider the transformation $x=x, z=x+y$ with Inverse $x=x, y=z-x$. The joint density of (X, Z) is $f(x, z-x)=a b x^{a-1}(z-x)^{b-1} I_{B}(x, z)$ where B is the set of (z, x) satisfying $0<x<1,0<x<z<x+1$. This is a parallellepld in the (z, x) plane. The density of X conditional on $Z<1$ is equal to a constant times

$$
\int_{x<z<1} a b x^{a-1}(z-x)^{b-1} d z=a x^{a-1}(1-x)^{b} .
$$

This concludes the proof of Theorem 3.5.

These theorems provide us with recipes for generating gamma and beta varlates. For gamma random varlates, we observe that $Y Z$ is gamma (a) distributed when Y is beta ($a, 1-a$) and Z is gamma (1) (i.e. exponentlal), or when Y is beta ($a, 2-a$) and Z is gamma (2). Summarizing all of this, we have:

Johnk's beta generator

REPEAT

Generate iid uniform [0,1] random variates U, V.
$X \leftarrow U^{\frac{1}{a}}, Y \leftarrow V^{\frac{1}{b}}$
UNTIL $X+Y \leq 1$
RETURN $\frac{X}{X+Y}(X$ is beta (a, b) distributed $)$

Berman's beta generator

REPEAT
Generate iid uniform $[0,1]$ random variates U, V.
$X \leftarrow U^{\frac{1}{a}}, Y \leftarrow V^{\frac{1}{b}}$
UNTLL $X+Y \leq 1$
RETURN X (X is beta ($a, b+1$) distributed)

Johnk's gamma generator

REPEAT
Generate iid uniform $[0,1]$ random variates U, V.
$X \leftarrow U^{\frac{1}{a}}, Y \leftarrow V^{\frac{1}{1-a}}$
UNTLL $X+Y \leq 1$
Generate an exponential random variate E.
RETURN $\frac{E X}{X+Y}$ (X is gamma (a) distributed)

Berman's gamma generator

REPEAT

$$
\text { Generate iid uniform }[0,1] \text { random variates } U, V \text {. }
$$

$X \leftarrow U^{\frac{1}{a}}, Y \leftarrow V^{\frac{1}{1-a}}$
UNTIL $X+Y \leq 1$
Generate a gamma (2) random variate Z (either as the sum of two iid exponential random variates or as $-\log \left(U * V^{*}\right)$ where U^{*}, V^{*} are iid uniform [0,1$]$ random variates).
RETURN $Z X$ (X is gamma (a) distributed)

Both beta generators require on the average

$$
\frac{1}{P(X+Y \leq 1)}=\frac{\Gamma(a+b+1)}{\Gamma(a+1) \Gamma(b+1)}
$$

iterations, and this increases rapidly with a and b. It is however uniformly bounded over all a, b with $0<a, b \leq 1$. The two gamma generators should only be used for $a \leq 1$. The expected number of iterations is in both cases

$$
\frac{1}{\Gamma(1+a) \Gamma(2-a)} .
$$

It is known that $\Gamma(a) \Gamma(1-a)=\pi / \sin (\pi a)$. Thus, the expected number of iteratlons is

$$
\frac{\sin \pi a}{\pi a(1-a)}
$$

which is a symmetric function of a around $\frac{1}{2}$ taking the value 1 near both endpoints ($a \downarrow 0, a=1$), and peaking at the polnt $a=\frac{1}{2}$: thus, the rejection constant does not exceed $\frac{4}{\pi}$ for any $a \in(0,1]$.

3.6. Gamma variate generators when $a \leq 1$.

We can now summarlze the avalalble algorithms for gamma (a) random varlate generation when the parameter is less than one. The fact that there is an infinte peak ellminates other time-honored approaches (such as the ratio-ofunlforms method) from contentlon. We have:

1. Rejection from the Welbull density (Vaduva, 1977): see section IX.3.7.
2. The Johnk and Berman algorithms (Johnk, 1971; Berman, 1971): see section IX.3.8.
3. The generator based upon Stuart's theorem (see section IV.6.4): $G_{a+1} U^{\frac{1}{a}}$ is gamma (a) distrlbuted when G_{a+1} is gamma ($a+1$) distributed, and U is uniformly distributed on [0,1]. For G_{a+1} use an effclent gamma generator with parameter greater than unity.
4. The Forsythe-von Neumann method (see section IV.2.4).
5. The composition/rejection method, with rejection from an exponentlal density on $[1, \infty)$, and from a polynomial density on $[0,1]$. See sections $[V .2 .5$ and II.3.3 for varlous pleces of the algorithm malnly due to Vaduva (1977). See also algorithm GS of Ahrens and Dleter (1974) and Its modiflcation by Best (1983) developed in the exercise section.
6. The transformation of an EPD variate obtained by the rejection method of section VII.2.6.
All of these algorlthms are unlformly fast over the parameter range. Comparative timings vary from experiment to experiment. Tadikamalla and Johnson (1981) report good results with algorithm GS but fall to Include some of the other algorithms in their comparison. The algorithms of Johnk and Berman are probably better sulted for beta random varlate generation because two expensive powers of unlform random varlates are needed in every lteration. The Forsythevon Neumann method seems also less effclent time-wlse. This leaves us with approaches $1,3,5$ and 6 . If a very effclent gamma generator is avallable for $a>1$, then method 3 could be as fast as algorlthm GS, or Vaduva's Welbull-based rejection method. Methods 1 and 8 are probably comparable in all respects, although the rejection constant of method 8 certainly is superior.

3.7. The tail of the gamma density.

As for the normal density, it is worthwhile to have a good generator for the tall gamma (a) density truncated at t. It is only natural to look at dominating densities of the form $b e^{b(t-x)}(x \geq t)$. The parameter b has to be plcked as a function of a and t. Note that a random varlate with this density can be generated as $t+\frac{E}{b}$ where E is an exponential random varlate. We conslder the cases $a<1$ and $a \geq 1$ separately. We can take $b=1$ because the gamma density decreases faster than e^{-x}. Therefore, rejection can be based upon the inequality

$$
x^{a-1} e^{-x} \leq t^{a-1} e^{-x} \quad(x \geq t)
$$

It is easily seen that the corresponding algorithm is

REPEAT

Generate a uniform random variate U and an exponential random variate E. Set $X \leftarrow t+E$
UNTIL $X U^{\frac{1}{1-a}} \leq a$
RETURN X (X has the gamma density restricted to $[t, \infty)$)

The efflciency of the algorthm Is given by the ratio of the integrals of the two functions. This gives

$$
\begin{aligned}
& \frac{t^{a-1} e^{-t}}{\int_{t}^{\infty} x^{a-1} e^{-x} d x} \\
& =\frac{1}{\int_{t}^{\infty}\left(\frac{x}{t}\right)^{a-1} e^{t-x} d x} \\
& =\frac{1}{\int_{0}^{\infty}\left(1+\frac{x}{t}\right)^{a-1} e^{-x} d x} \\
& \leq \frac{1}{\int_{0}^{\infty} e^{x\left(\frac{a-1}{t}-1\right)} d x} \\
& =1+\frac{1-a}{t} \\
& \rightarrow 1 \text { as } t \rightarrow \infty .
\end{aligned}
$$

When $a \geq 1$, the exponentlal with parameter 1 does not suffice because of the polynomial portion in the gamma density. It is necessary to take a slightly slower decreasing exponential density. The inequallty that we will use is

$$
\left(\frac{x}{t}\right)^{a-1} \leq e^{(a-1)\left(\frac{x}{t}-1\right)}
$$

which is easily establlshed by standard optimization methods. This suggests the cholce $b=1-\frac{a-1}{t}$ in the exponential curve. Thus, we have

$$
x^{a-1} e^{-x} \leq t^{a-1} e^{(a-1)\left(\frac{x}{t}-1\right)-x}
$$

Based on this, the rejection algorlthm becomes

REPEAT

$$
\text { Generate two iid exponential random variates } E, E^{*} .
$$

$$
X \leftarrow t+\frac{E}{1-\frac{a-1}{t}}
$$

UNTIL $\frac{X}{t}-1+\log \left(\frac{t}{X}\right) \leq \frac{E *}{a-1}$
RETURN X (X has the gamma (a) density restricted to $[t, \infty$).)

The algorithm is valld for all $a>1$ and all $t>a-1$ (the latter condition states that the tall should not include the mode of the gamma density). A squeeze step $\log \left(\frac{X}{t}\right)=\log \left(1+\frac{X-t}{t}\right) \geq 2 \frac{X-t}{X+t}=\frac{2 E \quad \text { by }}{\left(1-\frac{a-1}{t}\right)(X+t)}$. Here we used the inequallty $\log (1+u) \geq 2 u /(u+2)$. Thus, the quick acceptance step to be inserted in the algorlthm Is

$$
\text { IF } \frac{E^{2}}{\left(1-\frac{a-1}{t}\right)^{2} t(X+t)} \leq \frac{E^{*}}{a-1} \text { THEN RETURN } X
$$

We conclude this section by showing that the rejection constant is asymptotically optimal as $t \dagger \infty$: the ratio of the integrals of the two functions involved is

$$
\begin{aligned}
& \frac{t^{a-1} e^{-t}}{\left(1-\frac{a-1}{t}\right) \int_{t}^{\infty} x^{a-1} e^{-x} d x} \\
& =\frac{1}{\left(1-\frac{a-1}{t}\right) \int_{0}^{\infty}\left(1+\frac{x}{t}\right)^{a-1} e^{-x} d x}
\end{aligned}
$$

which once again tends to 1 as $t \rightarrow \infty$. We note here that the algorlthms given in this section are due to Devroye (1980). The algorithm for the case $a>1$ can be slightly improved at the expense of more compllcated design parameters. This
possibllity is explored in the exercises.

3.8. Stacy's generalized gamma distribution.

Stacy (1982) introduced the generalized gamma distribution with two shape parameters, $c, a>0$: the density is

$$
f(x)=\frac{c}{\Gamma(a)} x^{c a-1} e^{-x^{c}} \quad(x \geq 0)
$$

This famlly of densitles includes the gamma densities $(c=1)$, the halfnormal density ($a=\frac{1}{2}, c=2$) and the Welbull densitles ($a=1$). Because of the flexibllity of having two shape parameters, this distribution has been used quite often in modellng stochastic Inputs. Random varlate generation is no problem because we observe that $G_{a}^{\frac{1}{c}}$ has the sald distribution where G_{a} is a gamma (a) random varlable.

- Tadikamalla (1979) has developed a rejection algorlthm for the case $a>1$ which uses as a dominating density the Burr XII density used by Cheng in his algorlthm GB. The parameters μ, λ of the Burr XII density are $\lambda=c \sqrt{2 a-1}$, $\mu=a^{\sqrt{2 a-1}}$. The rejection constant is a function of a only. The algorlthm is virtually equivalent to generating G_{a} by Cheng's algorlthm GB and returning $G_{a}{ }^{\frac{1}{c}}$ (which explains why the rejectlon constant does not depend upon c).

3.9. Exercises.

1. Show Kullback's result (Kullback, 1934) whlch states that when X_{1}, X_{2} are Independent gamma (a) and gamma $\left(a+\frac{1}{2}\right)$ random varlables, then $2 \sqrt{X_{1} X_{2}}$ is gamma (2a).
2. Prove Stuart's theorem (the second statement of Theorem 3.1): If Y is gamma (a) and Z is beta $(b, a-b)$ for some $b>a>0$, then $Y Z$ and $Y(1-Z)$ are independent gamma (b) and gamma $(a-b)$ random variables.
3. Algorithm GO (Ahrens and Dieter, 1974). Define the breakpolnt $b=a-1+\sqrt{6\left(a+\sqrt{\frac{8 a}{3}}\right) \text {. Find the smallest exponentially decreasing }}$ function dominating the gamma (a) density to the right of b. Find a normal curve centered at $a-1$ dominating the gamma denslty to the left of b, which has the property that the area under the dominating curve divided by the area under the leftmost plece of the gamma density tends to a constant as $a \uparrow \infty$. Also, find the slmllarly defined asymptotic ratio for the rlghtmost
plece, and establlsh that it is greater than 1. By combining this, obtain an expression for the 11 mit value of the rejection constant. Having established the bounds, give a rejection method for generating a random varlate with the gamma density. Find efficlent squeeze steps if possible.
4. The Weibull density. Prove the following propertles of the Welbull (a) distrlbution:
A. For $a \geq 1$, the density is unimodal with mode at $\left(1-\frac{1}{a}\right)^{\frac{1}{a}}$. The position of the mode tends to 1 as $a \uparrow \infty$.
B. The value of the distribution function at $x=1$ is $1-\frac{1}{e}$ for all values of a.
C. The r-th moment is $\Gamma\left(1+\frac{r}{a}\right)$.
D. The minlmum of n lid Welbull random varlables is distributed as a constant times a Welbull random variable. Determine the constant and the parameter of the latter random varlable.
E. As $a \nmid \infty$, the first moment of the Welbull distribution varles as $1-\frac{\gamma}{a}+o\left(\frac{1}{a}\right)$ where $\gamma=0.57722 \ldots$ Is Euler's constant. Also, the varlance $\sim \pi^{a} / 8 a^{2}$.
5. Obtain a good unlform upper bound for the rejection constant in Vaduva's algorlthm for gamma random varlates when $a \leq 1$ whlch is based upon rejectlon from the Welbull density.
6. Algorithm GS (Ahrens and Dieter, 1974). The following algorlthm was proposed by Ahrens and Dleter (1974) for generating gamma (a) random variates when the parameter a is ≤ 1 :

Rejection algorithm GS for gamma variates (Ahrens and Dieter, 1974)

[SET-UP]
$b \leftarrow \frac{e+a}{e}, c \leftarrow \frac{1}{a}$
[GENERATOR]
REPEAT
Generate id uniform $[0,1]$ random variates U, W. Set $V \leftarrow b U$. IF $V \leq 1$

THEN

$$
X \leftarrow V^{c}
$$

Accept $\leftarrow\left[W \leq e^{-X}\right]$
ELSE
$X \leftarrow-\log (c(b-V))$
Accept $\leftarrow\left[W \leq X^{a-1}\right]$

UNTIL Accept

RETURN X

The algorlthm is based upon the Inequalltles: $f(x) \leq \frac{a}{\Gamma(1+a)} x^{a-1}(0 \leq x \leq 1)$ and $f(x) \leq \frac{a}{\Gamma(1+a)} e^{-x}(x \geq 1)$. Show that the rejection constant is $\frac{e+a}{e \Gamma(1+a)}$. Show that the rejection constant approaches 1 as $a \not \downarrow 0$, that it is $1+\frac{1}{e}$ at $a=1$, and that it is unlformly bounded over $a \in(0,1]$ by a number not exceeding $\frac{3}{2}$. Show that in sampllng from the composite dominating denslty, we have probabllity weights $\frac{e}{e+a}$ for $a x^{a-1}(0<x \leq 1)$, and $\frac{a}{e+a}$ for $e^{1-x}(x \geq 1)$ respectlvely.
7. Show that the exponentlal function of the form $c e^{-b x} \quad(x \geq t)$ of smallest Integral dominating the gamma (a) density on $[t, \infty$) (for $a>1, t>0$) has parameter b given by

$$
b=\frac{t-a+\sqrt{(t-a)^{2}+4 t}}{2 t}
$$

Hint: show flrst that the ratlo of the gamma densty over $e^{-b x}$ reaches a peak at $x=\frac{a-1}{1-b}$ (which is to the right of t when $b \geq 1-\frac{a-1}{t}$). Then compute the optimal b and verify that $b \geq 1-\frac{a-1}{t}$. Glve the algorithm for the tall of the gamma density that corresponds to this optimal inequallty. Show furthermore that as $t \uparrow \infty, b=1-\frac{a-1}{t}+o\left(\frac{1}{t}\right)$, which proves that the cholce
of b in the text is asymptotically optlmal (Dagpunar, 1978).
8. Algorithm RGS (Best, 1983). Algorlthm GS (of exercise B) can be optimlzed by two devices: first, the gamma denslty f with parameter a can be maximized by a function which is $x^{a-1} / \Gamma(a)$ on $[0, t]$ and $t^{a-1} e^{-x} / \Gamma(a)$ on $[t, \infty)$, where t is a breakpoint. In algorithm GS, the breakpoint was chosen as $t=1$. Secondly, a squeeze step can be added.
A. Show that the optlmal breakpolnt (In terms of minimization of the area under the dominating curve) is given by the solution of the transcendental equation $t=e^{-t}(1-a+t)$. (Best approximates this solution by $0.07+0.75 \sqrt{1-a}$.)
B. Prove the inequalities $e^{-x} \geq(2-x) /(2+x)(x \geq 0)$ and $(1+x)^{-c} \geq 1 /(1+c x)(x \geq 0,1 \geq c \geq 0)$. (These are needed for the squeeze steps.)
C. Show that the algorithm glven below is valld:

Algorithm RGS for gamma variates (Best, 1983)

```
[SET-UP]
t\leftarrow0.07+0.75\sqrt{}{1-a},b\leftarrow1+\frac{\mp@subsup{e}{}{-t}a}{t},c\leftarrow\frac{1}{a}
[GENERATOR]
REpeat
    Generate lid uniform [0,1] random variates }U,W\mathrm{ . Set }V\leftarrowbU\mathrm{ .
    IF V \leq1
        THEN
            X\leftarrowt\mp@subsup{V}{}{c}
```



```
            IF NOT Accept THEN Accept }\leftarrow[W\leq\mp@subsup{e}{}{-X}
        ELSE
            X\leftarrow-log(ct (b-V)),Y\leftarrow-\frac{X}{t}
            Accept -[ W(a+Y-aY)\leq1]
            IF NOT Accept THEN Accept }-[W\leq\mp@subsup{Y}{}{a-1}
UNTIL Accept
RETURN X
```

9. Algorithm G4PE (Schmeiser and Lal, 1980). The graph of the gamma density can be covered by a collection of rectangles, trlangles and exponenthal curves having the propertles that (1) all parameters involved are easy to compute; and (11) the total area under the dominating curve is unlformly bounded over $a \geq 1$. One such proposal is due to Schmelser and Lal (1980): deflne five breakpoints,

$$
\begin{aligned}
& t_{3}=a-1 \\
& t_{4}=t_{3}+\sqrt{t_{3}} \\
& t_{5}=t_{4}\left(1+1 /\left(t_{4}-t_{3}\right)\right) \\
& t_{2}=\max \left(0, t_{3}-\sqrt{t_{3}}\right) \\
& t_{1}=t_{2}\left(1-1 /\left(t_{3}-t_{2}\right)\right)
\end{aligned}
$$

where t_{3} is the mode, and t_{2}, t_{4} are the polnts of inflection of the gamma density. Furthermore, t_{1}, t_{5} are the polnts at which the tangents of f at t_{2} and t_{4} cross the x-axis. The dominating curve has flve pleces: an exponential tall on $\left(-\infty, t_{1}\right]$ with parameter $1-t_{3} / t_{1}$ and touching f at t_{1}. On $\left[t_{5}, \infty\right)$ we have a similar exponentlal dominating curve with parameter $1-t_{3} / t_{5}$. On $\left[t_{1}, t_{2}\right]$ and $\left[t_{4}, t_{5}\right]$, we have a linear dominating curve touching the density at the breakpoints. Finally, we have a constant plece of helght $f\left(t_{3}\right)$ on $\left[t_{2}, t_{4}\right]$. All the strips except the two tall sections are partitioned into a rectangle (the largest rectangle fitted under the curve of f) and a leftover plece. This gives ten pleces, of which four are rectangles totally tucked under the gamma denslty. For the six remaining pleces, we can construct very simple Ilnear acceptance steps.
A. Develop the algorlthm.
B. Compute the area under the dominating curve, and determine its asymptotlc value.
C. Determine the asymptotic probabllity that we need only one unlform random varlate (the random varlate needed to select one of the four rectangles is recycled). This is equivalent to computing the asymptotic area under the four rectangles.
D. With all the squeeze steps defined above in place, compute the asymptotlc value of the expected number of evaluations of f.

Hint: obtaln the values for an appropriately transformed normal density and use the convergence of the gamma density to the normal density.
10. The t-distribution. Show that when $G_{1 / 2}, G_{a / 2}$ are independent gamma random variables, then $\sqrt{a G_{1 / 2} / G_{a / 2}}$ is distributed as the absolute value of a random varlable having the t distribution with a degrees of freedom. (Recall that the t density is

$$
\left.f(x)=\frac{\Gamma\left(\frac{a+1}{2}\right)}{\sqrt{\pi a} \Gamma\left(\frac{a}{2}\right)\left(1+\frac{x^{2}}{2}\right)^{\frac{a+1}{2}}} .\right)
$$

In particular, if $G, G *$ are IId gamma ($\frac{1}{2}$) random variables, then $\sqrt{G / G *}$ is Cauchy distributed.
11. The Pearson VI distribution. Show that G_{a} / G_{b} has density

$$
f(x)=\frac{x^{a-1}}{B_{a, b}(1+x)^{b-1}} \quad(x \geq 0)
$$

when G_{a}, G_{b} are independent gamma random variables with parameters a and b respectively. Here $B_{a, b}=\Gamma(a) \Gamma(b) / \Gamma(a+b)$ is a normalization constant. The density in question is the Pearson VI density. It is also called the beta density of the second kind with parameters a and $b . b / a$ times the random variable in question is also called an F distributed random variable with $2 a$ and $2 b$ degrees of freedom.

4. THE BETA DENSITY.

4.1. Properties of the beta density.

We say that a random varlable X on $[0,1]$ is beta (a, b) distributed when it has density

$$
f(x)=\frac{x^{a-1}(1-x)^{b-1}}{B_{a, b}} \quad(0 \leq x \leq 1)
$$

where $a, b>0$ are shape parameters, and

$$
B_{a, b}=\int_{0}^{1} x^{a-1}(1-x)^{b-1} d x=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
$$

is a normallzation constant. The density can take a number of interesting shapes:

1. When $0<a, b<1$, the density is U-shaped with infinite peaks at 0 and 1.
2. When $0<a<1 \leq b$, the density is sald to be J-shaped: it has an inflinite peak at 0 and decreases monotonically to a positive constant (when $b=1$) or to 0 (when $b>1$).
3. When $a=1<b$, the density is bounded and decreases monotonically to 0.
4. When $a=b=1$, we have the unlform $[0,1]$ density.
5. When $1<a, b$, the density is unimodal, and takes the value 0 at the endpoints.
The fact that there are two shape parameters makes the beta density a solld candidate for lllustrating the various techniques of nonunlform random variate generation. It is important for the design to understand the basic propertles. For example, when $a, b>1$, the mode is located at $\frac{a-1}{a+b-2}$. It is also quite trivial to show that for $r>-a$,

$$
E\left(X^{r}\right)=\frac{B_{a+r, b}}{B_{a, b}}
$$

In particular, $E(X)=\frac{a}{a+b}$ and $\operatorname{Var}(X)=\frac{a b}{(a+b)^{2}(a+b+1)}$. There are a number of relationshlps with other distributions. These are summarized in Theorem 4.1:

Theorem 4.1.

Thls is about the relatlonships between the beta (a, b) density and other densitles.
A. Relatlonship with the gamma density: if G_{a}, G_{b} are independent gamma (a), gamma (b) random varlables, then $\frac{G_{a}}{G_{a}+G_{b}}$ is beta (a, b) distributed.
B. Relationship with the Pearson VI (or β_{2}) density: if X is beta (a, b), then $Y=\frac{X}{1-X}$ is $\beta_{2}(a, b)$, that is, Y is a beta of the second kind, with density $f(x)=\frac{x^{a-1}}{B_{a, b}(1+x)^{a+b}} \quad(x \geq 0)$.
C. Relationshlp with the (Student's) t distribution: If X is beta $\left(\frac{1}{2}, \frac{a}{2}\right)$, and S is a random sign, then $S \sqrt{\frac{a X}{1-X}}$ is t-distributed with a degrees of freedom, l.e. It has denslty
$f(x)=\frac{\Gamma\left(\frac{a+1}{2}\right)}{\sqrt{\pi a} \Gamma\left(\frac{a}{2}\right)\left(1+\frac{x^{2}}{a}\right)^{\frac{a+1}{2}}}$.
By the prevlous property, note that $\sqrt{a Y}$ is t-distributed with parameter a when Y is $\beta_{2}(a, b)$. Furthermore, If X denotes a beta (a, a) random varlable, and T denotes a t random variable with $2 a$ degrees of freedom, then we have the following equality in distribution: $X=\frac{1}{2}+\frac{1}{2} \frac{T}{\sqrt{2 b+T^{2}}}$, or $T=\frac{\sqrt{2 a}(2 X-1)}{2 \sqrt{X-X^{2}}}$. In particular, when U is unlform on $[0,1]$, then $\frac{\sqrt{2}\left(U-\frac{1}{2}\right)}{\sqrt{U-U^{2}}}$ is t with 2 degrees of freedom.
D. Relationship with the \mathbf{F} (Snedecor) distribution: when X is beta (a, b), then $\frac{b X}{a(1-X)}$ is F-distributed with a and b degrees of freedom, 1.e. It has density $\frac{a}{b} f\left(\frac{a x}{b}\right)(x>0)$, where f is the $\beta_{2}\left(\frac{a}{2}, \frac{b}{2}\right)$ denslty.
E. Relationship with the Cauchy density: when X is beta $\left(\frac{1}{2}, \frac{1}{2}\right)$ distributed (thls is called the arc sine distribution), then $\sqrt{\frac{X}{1-X}}$ is distributed as the absolute value of a Cauchy random variable.

Proof of Theorem 4.1.

All the propertles can be obtalned by applying the methods for computing densitles of transformed random varlables explained for example in section r.4.1.

We should also mention the important connection between the beta distribution and order statistics. When $0<U_{(1)}<\cdots<U_{(n)}$ are the order statistics of a unlform $[0,1]$ random sample, then $U_{(k)}$ is beta ($k, n-k+1$) distributed. See sectlon I.4.3.

4.2. Overview of beta generators.

Beta variates can be generated by explolting special propertles of the distribution. The order statistlcs method, appllcable only when both a and b are Integer, proceeds as follows:

Order statistics method for beta variates

Generate $a+b-1$ iid uniform [0,1] random variates.
Find the a-th order statistic X (a-th smallest) among these variates.
RETURN X

Thls method, mentioned as early as 1963 by Fox, requires time at least proportlonal to $a+b-1$. If standard sorting routines are used to obtaln the a-th smallest element, then the time complexity is even worse, possibly $\Omega((a+b-1) \log (a+b-1))$. There are obvious improvements: it is wasteful to sort a sample just to obtain the a-th smallest number. First of all, via llnear selection algorithms we can find the a-th smallest in worst case time $O(a+b-1)$ (see e.g. Blum, Floyd, Pratt, Rlvest and Tarjan (1973) or Schonhage, Paterson and Plppenger (1978)). But in fact, there is no need to generate the entire sample. The unform sample can be generated directly from left to right or right to left, as shown in section V.3. This would reduce the time to $O(\min (a, b))$. Except In speclal applications, not requiring non-Integer or large parameters, this method is not recommended.

When property A of Theorem 4.1 is used, the time needed for one beta varlate is about equal to the time required to generate two gamma varlates. This method is usually very competitive because there are many fast gamma generators. In any case, if the gamma generator is uniformly fast, so will be the beta generator. Formally we have:

Beta variates via gamma variates

Generate two independent gamma random variates, G_{a} and G_{b}.
RETURN $\frac{G_{a}}{G_{a}+G_{b}}$

Roughly speaking, we will be able to improve over this generator by at most 50%. There is no need to discuss beta varlate generators which are not time efficient. A survey of pre-1972 methods can be found in Arnason (1972). None of the methods glven there has unlformly bounded expected tlme. Among the competltive approaches, we mention:
A. Standard refectlon methods. For example, we have:

Rejectlon from the Burr XII denslty (Cheng, 1878).
Rejectlon from the normal density (Ahrens and Dieter, 1974).
Rejection from polynomial densitles (Atkinson and Whittaker, 1978, 1979; Atkinson, 1979).
Rejection and composition with triangles, rectangles, and exponential curves (Schmelser and Babu, 1980).
The best of these methods will be developed below. In particular, we will highlight Cheng's uniformly fast algorithms. The algorithm of Schmelser and Babu (1980), which is unfformly fast over $a, b \geq 1$, is discussed in section VII.2.6.
B. Forsythe's method, as applled for example by Atkinson and Pearce (1978). This method requires a lot of code and the set-up time is considerable. In comparison with this investment, the speed obtalnable via this approach is disappointing.
C. Johnk's method (Johnk, 1984) and its modiffcations. This too should be consldered as a method based upon special propertles of the beta density. The expected time is not unlformly bounded in the parameters. It should be used only when both parameters are less than one. See section IX.3.5.
D. Unlversal algorithms. The beta density is unlmodal when both parameters are at least one, and it is monotone when one parameter is less than one and one is at least equal to one. Thus, the universal methods of section VII.3.2 are applicable. At the very least, the inequalltles derived in that section can be used to design good (albelt not superb) bounds for the beta density. In any case, the expected time is provably uniform over all parameters a, b with $\max (a, b) \geq 1$.
E. Strip table methods, as developed in section VIII.2.2. We will study below how many strips should be selected as a function of a and b in order to have unlformly bounded expected generation times.

The bottom llne is that the cholce of a method depends upon the user: If he is not willing to invest a lot of time, he should use the ratlo of gamma variates. If he does not mind coding short programs, and a and/or b vary frequently, one of the rejectlon methods based upon analysis of the beta density or upon universal Inequallties can be used. The method of Cheng is very robust. For speclal cases, such as symmetric beta densitles, rejection from the normal density is very competltive. If the user does not foresee frequent changes in a and b, a strip table method or the algorlthm of Schmelser and Babu (1980) are recommended. Finally, when both parameters are smaller than one, it is possible to use rejection from polynomlal densittes or to apply Johnk's method.

4.3. The symmetric beta density.

In this sectlon, we will take a close look at one of the slmplest speclal cases, the symmetric beta denslty with parameter a :

$$
f(x)=\frac{\Gamma(2 a)}{\Gamma^{2}(a)}(x(1-x))^{a-1}=C(x(1-x))^{a-1} \quad(0 \leq x \leq 1)
$$

For large values of a, this density is quite close to the normal density. To see this, consider $y=x-\frac{1}{2}$, and

$$
\begin{aligned}
& \log (f(x))=\log (C)+(a-1) \log (1+2 y)+(a-1) \log (1-2 y)-(a-1) \log 4 \\
& =\log (C)-(a-1) \log 4+(a-1) \log \left(1-4 y^{2}\right)
\end{aligned}
$$

The last term on the right hand side is not greater than $-4(a-1) y^{2}$, and it is at least equal to $-4(a-1) y^{2}-16(a-1) y^{4} /\left(1-4 y^{2}\right)$. Thus, $\log \left(f\left(\frac{1}{2}+\frac{x}{\sqrt{8(a-1)}}\right)\right)$ tends to $-\log (\sqrt{2 \pi})-\frac{x^{2}}{2}$ as $a \rightarrow \infty$ for all $x \in R$. Here we used Stirling's formula to prove that $\log (C)-(a-1) \log 4$ tends to $-\log (\sqrt{2 \pi})$. Thus, if X is beta (a, a), then the density of $\sqrt{8(a-1)}\left(X-\frac{1}{2}\right)$ tends to the standard normal density as $a \rightarrow \infty$. The only hope for an asymptotically optimal rejection constant in a rejection algorithm is to use a dominating density whlch is elther normal or tends polntwise to the normal density as $a \rightarrow \infty$. The question is whether we should use the normallzation suggested by the llmit theorem stated above. It turns out that the best rejection constant is obtalned not by taking $8(a-1)$ in the formula for the normal denslty, but $8\left(a-\frac{1}{2}\right)$. We state the algorithm first, then announce its propertles In a theorem:

Symmetric beta generator via rejection from the normal density
[NOTE: $\left.b=(a-1) \log \left(1+\frac{1}{2 a-2}\right)-\frac{1}{2}.\right]$
[GENERATOR]
REPEAT
REPEAT
Generate a normal random variate N and an exponential random variate E.
$X \leftarrow \frac{1}{2}+\frac{N}{\sqrt{8 a-4}}, Z \leftarrow N^{2}$
UNTIL $Z<2 a-1$ (now, $X \in[0,1]$)
Accept $\leftarrow\left[E+\frac{Z}{2}-\frac{(a-1) Z}{2 a-1-Z}+b \geq 0\right]$
IF NOT Accept THEN Accept $\leftarrow\left[E+\frac{Z}{2}+(a-1) \log \left(1-\frac{Z}{2 a-1}\right)+b \geq 0\right]$
UNTIL Accept
RETURN X

Theorem 4.2.

Let f be the beta (a) density with parameter $a \geq 1$. Then let $\sigma>0$ be a constant and let c_{σ} be the smallest constant such that for all x,

$$
f(x) \leq c_{\sigma} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(x-\frac{1}{2}\right)^{2}}{2 \sigma^{2}}}
$$

Then c_{σ} is minimal for $\sigma^{2}=\frac{1}{8 a-4}$, and the minimal value is

$$
c_{\sigma}=\left(\frac{8(a-1)}{4 e(8 a-4)}\right)^{a-1} \frac{\sqrt{2 \pi}}{\sqrt{8 a-4} B_{a, a}} e^{\frac{8 a-4}{8}} .
$$

In the rejection algorlthm shown above, the rejection constant is c_{σ}. The rejection constant is unlformly bounded for $a \in[1, \infty)$: selected values are $\sqrt{\frac{\pi e}{6}}$ at $a=2, \sqrt{36 \pi e}$ at $a=3$. We have

$$
\lim _{a \rightarrow \infty} c_{\sigma}=1
$$

and \ln fact, $c_{\sigma} \leq e^{\frac{1}{24 a}+\frac{1}{2 a-1}}$.

Proof of Theorem 4.2.

Let us write $g(x)$ for the normal density with mean $\frac{1}{2}$ and varlance σ^{2}. We first determine the supremum of f / g by setting the derivative of $\log \left(\frac{f}{g}\right)$ equal to zero. Thls ylelds the equation

$$
\left(x-\frac{1}{2}\right)\left(\sigma^{-2}-\frac{2(a-1)}{x(1-x)}\right)=0 .
$$

One can easlly see from this that f / g has a local minimum at $x=\frac{1}{2}$ and two local maxima symmetrically located on elther side of $\frac{1}{2}$ at $\frac{1}{2} \pm \frac{1}{2} \sqrt{1-8(a-1) \sigma^{2}}$. The value of f / g at the maxima is

$$
c_{\sigma}=\left(\frac{8(a-1) \sigma^{2}}{4 e}\right)^{a-1} \frac{\sqrt{2 \pi} \sigma}{B_{a, a}} e^{\frac{1}{8 \sigma^{2}}}
$$

This depends upon σ as follows: $\sigma^{2 a-1} e^{\frac{1}{8 \sigma^{2}}}$. This has a unique minimum at $\sigma=1 / \sqrt{8 a-4}$. Resubstitution of this value gives

$$
c_{\sigma}=\left(\frac{a-1}{4 a-2}\right)^{a-1} \frac{\sqrt{2 \pi}}{\sqrt{8 a-4} B_{a, a}} e^{\frac{1}{2}}
$$

By well-known bounds on the gamma function (Whittaker ans Watson, 1927, p. 253), we have

$$
\begin{aligned}
& \frac{1}{B_{a, a}} \leq 4^{a-\frac{1}{2}} \sqrt{\frac{a}{\pi}} e^{\frac{1}{24 a}}, \\
& \frac{1}{B_{a, a}} \sim 4^{a-\frac{1}{2}} \sqrt{\frac{a}{\pi}}
\end{aligned}
$$

as $a \rightarrow \infty$. Thus,

$$
\begin{aligned}
& c_{\sigma} \leq\left(\frac{a-1}{4 a-2}\right)^{a-1} \frac{\sqrt{2 \pi}}{\sqrt{8 a-4}} 4^{a-\frac{1}{2}} \sqrt{\frac{a}{\pi}} e^{\frac{1}{24 a}} e^{\frac{1}{2}} \\
& =\sqrt{a e /\left(a-\frac{1}{2}\right)} e^{\frac{1}{24 a}\left(1-\frac{1}{2 a-1}\right)^{a-1}} \\
& \leq \sqrt{a e /\left(a-\frac{1}{2}\right)} e^{\frac{1}{24 a}} e^{-\frac{a-1}{2 a-1}} \\
& =\sqrt{1+\frac{1}{2 a-1}} e^{\frac{1}{24 a}+\frac{1}{4 a-2}} \\
& \leq e^{\frac{1}{24 a}+\frac{1}{2 a-1}}
\end{aligned}
$$

The algorlthm shown above is appllcable for all $a \geq 1$. For large values of a, we need about one normal random varlate per beta random varlate, and the probabllity that the long acceptance condition has to be verifled at all tends to 0 as $a \rightarrow \infty$ (exercise 4.1). There is another school of thought, in which normal random variates are avolded altogether, and the algorlthms are phrased in terms of unlform random variates. After all, normal random varlates are also bullt from unlform random varlates. In the search for a good dominating curve, help can be obtalned from other symmetric unimodal long-talled distributions. There are two examples that have been expllitly mentioned in the literature, one by Best (1978), and one by Ulrich (1984):

Theorem 4.3.

$$
\begin{aligned}
& \text { When } Y \text { is a } t \text { distributed random variable with parameter } 2 a \text {, then } \\
& X \leftarrow \frac{1}{2}+\frac{1}{2} \frac{Y}{\sqrt{2 a+Y^{2}}} \text { is beta }(a, a) \text { distributed (Best, 1978). } \\
& \text { When } U, V \text { are independent uniform }[0,1] \text { random variables, then } \\
& \qquad X \leftarrow \frac{1}{2}+\frac{1}{2} \sin (2 \pi V) \sqrt{1-U^{\frac{2}{2 a-1}}}
\end{aligned}
$$

is beta (a, a) distributed (Ulrich, 1984).

Proof of Theorem 4.3.

The proof is left as an exerclse on transformations of random variables.

If we follow Best, then we need a fast t generator, and we refer to section IX. 5 for such algorithms. Ulich's suggestion is intriguing because it is reminiscent of the polar method. Recall that when X, Y is unlformly distributed in the unlt circle with $S=X^{2}+Y^{2}$, then $\left(\frac{X}{\sqrt{S}}, \frac{Y}{\sqrt{S}}\right)$ and S are independent, and S is untformly distributed on $[0,1]$. Also, switching to polar coordinates (R, Θ), we see that $X Y / S=\cos (\Theta) \sin (\Theta)=2 \sin (2 \Theta)$. Thus, since 2Θ is unlformly distributed on $[0,4 \pi]$, we see that the random varlable

$$
\frac{1}{2}+\frac{X Y}{S} \sqrt{1-S^{\frac{2}{2 a-1}}}
$$

has a beta (a, a) distribution. We summarize:

Ulrich's polar method for symmetric beta random variates

REPEAT

Generate U uniformly on $[0,1]$ and V uniformly on $[-1,1]$.
$S \leftarrow U^{2}+V^{2}$
UNTIL $S \leq 1$
RETURN $X \leftarrow \frac{1}{2}+\frac{U V}{S} \sqrt{1-S^{\frac{2}{2 a-1}}}$

It should be stressed that Ulrich's method is valid for all $a>0$, provided that for the case $a=1 / 2$, we obtaln X as $1 / 2+U V / S$, that is, X is distributed as a linearly transformed arc sin random varlable. Despite the power and the square root needed in the algorlthm for general a, its elegance and generality make it a formidable candldate for inclusion in computer librarles.

4.4. Uniformly fast rejection algorithms.

The beta (a, b) density has two shape parameters. If we are to construct a uniformly fast rejection algorithm, it seems unlikely that we can Just consider rejection from a denslty with no shape parameter such as the normal density. This is generally speaking only feasible when there is one shape parameter as in the case of the gamma or symmetric beta famlles. The trick will then be to find a flexible famlly of easy dominating densitles. In his work, Cheng has repeatedly used the Burr XII density with one scale parameter and one shape parameter with a great deal of success. This density is constructed as follows. If U is unlformly distributed on $[0,1]$, then $\frac{U}{1-U}$ has density $(1+x)^{-2}$ on $[0, \infty)$. For $\mu, \lambda>0$, the density of

$$
\left(\mu \frac{U}{1-U}\right)^{\frac{1}{\lambda}}
$$

Is

$$
g(x)=\frac{\lambda \mu x^{\lambda-1}}{\left(\mu+x^{\lambda}\right)^{2}} \quad(x>0) .
$$

This is an Infinite-talled density, of little direct use for the beta density. Fortunately, beta and β_{2} random varlables are closely related (see Theorem 4.1), so that we need only consider the infinite-talled β_{2} density with parameters (a, b):

$$
f(x)=\frac{x^{a-1}}{B_{a, b}(1+x)^{a+b}} \quad(x \geq 0)
$$

The values of μ and λ suggested by Cheng (1978) for good rejection constants are

$$
\begin{aligned}
& \mu=\left(\frac{a}{b}\right)^{\lambda} \\
& \lambda= \begin{cases}\min (a, b) \quad(\min (a, b) \leq 1) \\
\sqrt{\frac{2 a b-(a+b)}{a+b-2}} & (\min (a, b)>1)\end{cases}
\end{aligned} .
$$

With these choices, it is not difmcult to verify that f / g is maximal at $x=a / b$, and that $f \leq c g$ where

$$
c=\frac{4 a^{a} b^{b}}{\lambda B_{a, b}(a+b)^{a+b}}
$$

Note that $c g(x) / f(x)$ can be slmplifled quite a blt. The unadorned algorithm is:

Cheng's rejection algorithm BA for beta random variates (Cheng, 1978)

[SET-UP]
$s \leftarrow a+b$
IF $\min (a, b) \leq 1$
THEN $\lambda \leftarrow \min (a, b)$
ELSE $\lambda \leftarrow \sqrt{\frac{2 a b-s}{s-2}}$
$u \leftarrow a+\lambda$
[GENERATOR]
REPEAT
Generate two iid uniform $[0,1]$ random variates U_{1}, U_{2}.

$$
V \leftarrow \frac{1}{\lambda} \frac{U_{1}}{1-U_{1}}, Y \leftarrow a e^{V}
$$

UNTLI $s \log \left(\frac{s}{b+Y}\right)+u V-\log (4) \geq \log \left(U_{1}{ }^{2} U_{2}\right)$
RETURN $X \leftarrow \frac{Y}{b+Y}$

The fundamental property of Cheng's algorithm is that

$$
\sup _{a, b>0} c=4 ; \sup _{a, b \geq 1} c=\frac{4}{e} \approx 1.47
$$

For fixed a, c is minimal when $b=a$ and increases when $b \downarrow 0$ or $b \uparrow \infty$. The detalls of the proofs of the varlous statements about thls algorlthm are left as an exercise. There exists an improved version of the algorithm for the case that both parameters are greater than 1 which is based upon the squeeze method (Cheng's algorlthm BB). Cheng's algorithm is slowest when $\min (a, b)<1$. In that reglon of
the parameter space, it is worthwhlle to design speclal algorithms that may or may not be unlformly fast over the entire parameter space.

4.5. Generators when $\min (a, b) \leq 1$.

Cheng's algorithm BA is robust and can be used for all values of a, b. However, when both a, b are smaller than one, and $a+b \leq 1.5$, Johnk's method is typlcally more efficlent. When $\min (a, b)$ is very small, and $\max (a, b)$ is rather large, nelther Johnk's method nor algorlthm BA are particularly fast. To fll thls gap, several algorlthms were proposed by Atkinson and Whlttaker (1976, 1879) and Atkinson (1979). In addition, Cheng (1977) developed an algorithm of hls own, called algorlthm BC.

Atkinson and Whittaker $(1978,1979)$ split $[0,1]$ into $[0, t]$ and $[t, 1]$, and construct a dominating curve for use in the rejection method based upon the inequalitles:

$$
x^{a-1}(1-x)^{b-1} \leq \begin{cases}x^{a-1}(1-t)^{b-1} & (x \leq t) \\ t^{a-1}(1-x)^{b-1} & (x>t)\end{cases}
$$

The areas under the two pleces of the dominating curve are, respectively, $(1-t)^{b-1} \frac{t^{a}}{a}$ and $t^{a-1} \frac{(1-t)^{b}}{b}$. Thus, the following rejection algorithm can be used:

First algorithm of Atkinson and Whittaker (1976, 1979)

[SET-UP]

Choose $t \in[0,1]$.
$p \leftarrow \frac{b t}{b t+a(1-t)}$
[GENERATOR]
REPEAT
Generate a uniform $[0,1]$ random variate U and an exponential random variate E. IF $U \leq p$ THEN

$$
\begin{aligned}
& X \leftarrow t\left(\frac{U}{p}\right)^{\frac{1}{a}} \\
& \text { Accept } \leftarrow\left[(1-b) \log \left(\frac{1-X}{1-t}\right) \leq E\right]
\end{aligned}
$$

ELSE

$$
\begin{aligned}
& X \leftarrow 1-(1-t)\left(\frac{1-U}{1-p}\right)^{\frac{1}{b}} \\
& \text { Accept } \leftarrow\left[(1-a) \log \left(\frac{X}{t}\right) \leq E\right]
\end{aligned}
$$

UNTIL Accept
RETURN X

Despite its simpllcity, this algorithm performs remarkably well when both parameters are less than one, although for $a+b<1$, Johnk's algorithm is still to be preferred. The explanation for this is glven in the next theorem. At the same time, the best cholce for t is derlved in the theorem.

Theorem 4.4.

Assume that $a \leq 1, b \leq 1$. The expected number of Iterations in Johnk's algorithm Is

$$
c=\frac{\Gamma(a+b+1)}{\Gamma(a+1) \Gamma(b+1)}
$$

The expected number of Iterations $(E(N))$ in the first algorithm of Atkinson and Whittaker is

$$
c \frac{b t+a(1-t)}{(a+b) t^{1-a}(1-t)^{1-b}} .
$$

When $a+b \leq 1$, then for all values of $t, E(N) \geq c$. In any case, $E(N)$ is minimlzed for the value

$$
t_{o p t}=\frac{\sqrt{a(1-a)}}{\sqrt{a(1-a)}+\sqrt{b(1-b)}}
$$

With $t=t_{o p t}$, we have $E(N)<c$ whenever $a+b>1$. For $a+b>1, t=\frac{1}{2}$, it is also true that $E(N)<c$.

Finally, $E(N)$ is unfformly bounded over $a, b \leq 1$ when $t=\frac{1}{2}$ (and it is therefore uniformly bounded when $t=t_{\text {opt }}$).

Proof of Theorem 4.4.

We begin with the fundamental Inequality:

$$
x^{a-1}(1-x)^{b-1} \leq \begin{cases}x^{a-1}(1-t)^{b-1} & (x \leq t) \\ t^{a-1}(1-x)^{b-1} & (x>t)\end{cases}
$$

The area under the top curve is $(1-t)^{b-1} \frac{t^{a}}{a}+t^{a-1} \frac{(1-t)^{b}}{b}$. The area under the bottom curve is of course $\Gamma(a) \Gamma(b) / \Gamma(a+b)$. The ratlo glves us the expression for $E(N) . E(N)$ is minlmal for the solution t of

$$
(1-t)^{2} a(a-1)-t^{2} b(b-1)=0,
$$

which glves us $t=t_{o p t}$. For the performance of Johnk's algorlthm, we refer to Theorem 3.4. To compare performances for $a+b \leq 1$, we have to show that for all t,

$$
\left(\frac{1}{t}\right)^{a}\left(\frac{1}{1-t}\right)^{b} \leq \frac{1}{a+b}\left(\frac{b}{1-t}+\frac{a}{t}\right)
$$

By the arlthmetic-geometric mean inequallty, the left hand side is in fact not greater than

$$
\left(\frac{1}{a+b}\left(\frac{b}{1-t}+\frac{a}{t}\right)\right)^{a+b}
$$

$$
\leq \frac{1}{a+b}\left(\frac{b}{1-t}+\frac{a}{t}\right)
$$

because $a+b \leq 1$, and the argument of the power is a number at least equal to 1 . When $a+b>1$, it is easy to check that $E(N)<c$ for $t=\frac{1}{2}$. The statement about the unlform boundedness of $E(N)$ when $t=\frac{1}{2}$ follows simply from

$$
E(N)=2^{1-a-b} c
$$

and the fact that c is unlformly bounded over $a, b \leq 1$.

Generally speaking, the first algorlthm of Atkinson and Whittaker should be used Instead of Johnk's when $a, b \leq 1$ and $a+b \geq 1$. The computation of $t_{o p t}$, which Involves one square root, is only justifled when many random varlates are needed for the same values of a and b. Otherwise, one should choose $t=\frac{1}{2}$.

When $a \leq 1$ and $b \geq 1$, the performance of the first algorithm of Atkinson and Whittaker deterlorates with increasing values of b : for fixed $a<1$, $\lim _{b \rightarrow \infty} E(N)=\infty$. The inequallities used to develop the algorlthm are altered sllghtly:

$$
x^{a-1}(1-x)^{b-1} \leq\left\{\begin{array}{l}
x^{a-1} \quad(x \leq t) \\
t^{a-1}(1-x)^{b-1} \quad(x>t)
\end{array}\right.
$$

The areas under the two pleces of the dominating curve are, respectively, $\frac{t^{a}}{a}$ and $t^{a-1} \frac{(1-t)^{b}}{b}$. The following rejection algorithm can be used:

Second algorithm of Atkinson and Whittaker (1976, 1979)

[SET-UP]
Choose $t \in[0,1]$.
$p \leftarrow \frac{b t}{b t+a(1-t)^{b}}$
[GENERATOR]
REPEAT
Generate a uniform $[0,1]$ random variate U and an exponential random variate E. IF $U \leq p$ THEN

$$
\begin{aligned}
& X \leftarrow t\left(\frac{U}{p}\right)^{\frac{1}{a}} \\
& \text { Accept } \leftarrow[(1-b) \log (1-X) \leq E]
\end{aligned}
$$

ELSE

$$
\begin{aligned}
& X \leftarrow 1-(1-t)\left(\frac{1-U}{1-p}\right)^{\frac{1}{b}} \\
& \text { Accept } \leftarrow\left[(1-a) \log \left(\frac{X}{t}\right) \leq E\right]
\end{aligned}
$$

UNTUL Accept

RETURN X

Simple calculations show that

$$
E(N)=c \frac{b t^{a}+a(1-t)^{b} t^{a-1}}{a+b}
$$

where c is the expected number of Iterations in Johnk's algorithm (see Theorems 3.4 and 4.4). The optimum value of t is the solution of

$$
b t+(a-1)(1-t)^{b}-b t(1-t)^{b-1}=0
$$

Although this can be solved numerlcally, most of the time we can not afford a numerlcal solution just to generate one random varlate. We have, however, the following reassuring performance analysis for a cholce for t suggested by Atkinson and Whlttaker (1976):

Theorem 4.5.

For the second algorithm of Atkinson and Whittaker with $t=\frac{1-a}{b+1-a}$,

$$
\begin{aligned}
& \sup _{a \leq 1, b \geq 1} E(N)<\infty \\
& \lim _{b \rightarrow \infty} E(N)=\infty \quad(\text { all } a>1) .
\end{aligned}
$$

4.6. Exercises.

1. For the symmetric beta algorithm studled in Theorem 4.2, show that the quick acceptance step is valid, and that with the quick acceptance step in place, the expected number of evaluations of the full acceptance step tends to 0 as $a \rightarrow \infty$.
2. Prove Ulrich's part of Theorem 4.3.
3. Let X be a $\beta_{2}(a, b)$ random variable. Show that $\frac{1}{Y}$ is $\beta_{2}(b, a)$, and that $E(Y)=\frac{a}{b-1}(b>1)$, and $\operatorname{Var}(Y)=\frac{a(a+b-1)}{(b-1)^{2}(b-2)}(b>2)$.
4. In the table below, some densitles are listed with one parameter $a>0$ or two parameters $a, b>0$. Let c be the shorthand notation for $1 / B(a, b)$. Show for each density how a random varlate can be generated by a sultable transformation of a beta random varlate.

$2 c x^{2 a-1}\left(1-x^{2}\right)^{b-1}$	$(0 \leq x \leq 1)$
$2 c \sin ^{2 a-1}(x) \cos ^{2 b-1}(x)$	$\left(0 \leq x \leq \frac{\pi}{2}\right)$
$\frac{c x^{a-1}}{(1+x)^{a+b}}$	$(x \geq 0)$
$\frac{2 c x^{2 a-1}}{\left(1+x^{2}\right)^{a+b}}$	$(x \geq 0)$
$\frac{x^{a-1}+x^{b-1}}{(1+x)^{a+b}}$	$(0 \leq x \leq 1)$
$\frac{(1-x)^{a-1}}{2^{2 a-1} B(a, a) \sqrt{x}}$	$(0 \leq x \leq 1)$
$\frac{\left(1-x^{2}\right)^{a-1}}{2^{2 a-2} B(a, a)}$	$(0 \leq x \leq 1)$

5. Prove Theorem 4.5.
6. Grassia's distribution. Grassia (1977) Introduced a distribution which is close to the beta distribution, and can be consldered to be as flexible, if not more flexible, than the beta distribution. When X is gamma (a, b), then e^{-X} is Grassia I, and $1-e^{-X}$ is Grassia II. Prove that for every possible combination of skewness and kurtosls achlevable by the beta density, there
exists a Grassla distrlbution with the same skewness and kurtosis (Tadikamalla, 1981).
7. A contlnuation of exerclse 6. Use the Grassla distribution to obtain an efficlent algorlthm for the generation of random varlates with density

$$
f(x)=\frac{8 a^{2} x^{a-1} \log \left(\frac{1}{x}\right)}{\pi^{2}\left(1-x^{2 a}\right)} \quad(0<x<1),
$$

where $a>0$ is a parameter.

5. THE t DISTRIBUTION.

5.1. Overview.

The \mathbf{t} distribution plays a key role in statistics. The distribution has a symmetrlc denslty with one shape parameter $a>0$:

$$
f(x)=\frac{\Gamma\left(\frac{a+1}{2}\right)}{\sqrt{\pi a} \Gamma\left(\frac{a}{2}\right)\left(1+\frac{x^{2}}{a}\right)^{\frac{a+1}{2}}}
$$

This is a bell-shaped density which can be dealt with in a number of ways. As special members, we note the Cauchy density $(a=1)$, and the t_{3} density ($a=3$). When a is integer-valued, it is sometimes referred to as the number of degrees of freedom of the distribution. Random varlate generation methods for this distribution include:

1. The Inversion method. Expllcit forms of the distribution function are only avallable in spectal cases: for the Cauchy density ($a=1$), see section II.2.1. For the t_{2} density ($a=2$), see Theorem IX.3.3 \ln section IX.3.3. For the t_{3} density $(a=3)$, see exercise II.2.4. In general, the inversion method is not competitive because the distribution function is only avallable as an integral, and not as a slmple expllcit function of its argument.
2. Transformation of gamma varlates. When N is a normal random varlate, and $G_{a / 2}$ is a gamma $\left(\frac{a}{2}\right)$ random varlate Independent of N,

$$
\frac{\sqrt{2 a} N}{\sqrt{G_{a / 2}}}
$$

is t_{a} distributed. Equivalently, if $G_{1 / 2}, G_{a / 2}$ are Independent gamma random varlables, then

$$
s \sqrt{a} \sqrt{\frac{G_{1 / 2}}{G_{a / 2}}}
$$

Is t_{a} distributed where S is a random sign. See example I.4.8 for the derivatlon of this property. Somewhat less useful, but still noteworthy, is the property that if $G_{a / 2}, G *_{a / 2}$ are lid gamma random variates, then

$$
\frac{\sqrt{a}}{2} \frac{G_{a / 2}-G *_{a / 2}}{\sqrt{G_{a / 2} G *_{a / 2}}}
$$

Is t_{a} distributed (Cacoullos, 1885).
3. Transformation of a symmetric beta random variate. It is known that if X is symmetric beta $\left(\frac{a}{2}, \frac{a}{2}\right)$, then

$$
\sqrt{a} \frac{X-\frac{1}{2}}{\sqrt{X(1-X)}}
$$

Is t_{a} distributed. Symmetric beta random varlate generation was studled in section DX.4.3. The comblnation of a normal rejection method for symmetric random varlates, and the present transformation was proposed by Marsaglla (1980).
4. Transformation of an F random variate. When S is a random sign and X is $F(1, a)$ distributed, then $S \sqrt{X}$ is t_{a} distributed (see exercise I.4.8). Also, when X is symmetric F with parameters a and a, then

$$
\frac{\sqrt{a}}{2} \frac{1-X}{\sqrt{X}}
$$

Is t_{a} distributed.
5. The ratio-of-unlforms method. See section IV.7.2.
6. The ordinary rejection method. Since the t density cannot be dominated by densitles with exponentially decreasing talls, one needs to find a polynomially decreasing dominating function. Typical candidates for the dominating curve Include the Cauchy density and the t_{3} density. The corresponding algorithms are quite short, and do not rely on fast normal or exponential generators. See below for more detalls.
7. The composition/rejection method, slmilar to the method used for normal random varlate generation. The algorithms are generally speaking longer, more design constants need to be computed for each cholce of a, and the speed is usually a bit better than for the ordinary rejection method. See for example KInderman, Monahan and Ramage (1877) for such methods.
8. The acceptance-complement method (Stadlober, 1981).
9. Table methods.

One of the transformations of gamma or beta random varlates is recommended if one wants to save time writing programs. It is rare that additional speed is required beyond these transformation methods. For direct methods, good speed can be obtalned with the ratlo-of-unlforms method and with the ordinary rejection methods. Typlcally, the expected time per random variate is unlformly
bounded over a subset of the parameter range, such as $[1, \infty)$ or $[3, \infty)$. Not unexpectedly, the small values of a are the troublemakers, because these densitles decrease as $x^{-(a+1)}$, so that no flxed exponent polynomial dominating density exists. The large values of a glve least problems because it is easy to see that for every x,

$$
\lim _{a \rightarrow \infty} f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} .
$$

The problem of small a is not Important enough to warrant a special section. See however the exerclses.

5.2. Ordinary rejection methods.

Let us first start with the development of slmple upper bounds for f. For example, when $a \geq 1$, the following inequallty is trivially true:

$$
\frac{1}{\left(1+\frac{x^{2}}{a}\right)^{\frac{a+1}{2}}} \leq \frac{1}{1+\frac{a+1}{2 a} x^{2}}
$$

The top bound is proportional to the density of $\sqrt{\frac{2 a}{a+1}} C$ where C is a Cauchy random varlate. If we want to verlfy just how good this inequallty is, we note that the area under the dominating curve is $\pi \sqrt{\frac{2 a}{a+1}}$. The area under the curve on the left hand side of the Inequality is $\frac{\sqrt{\pi a} \Gamma\left(\frac{a}{2}\right)}{\Gamma\left(\frac{a+1}{2}\right)}$. By the convergence to the normal density, we deduce without computations that thls quantlty tends to $\sqrt{2 \pi}$. Thus, the ratlo of the areas, our rejection constant, tends to $\sqrt{\pi}$ as $a \rightarrow \infty$. The fit is not very good, except perhaps for a close to 1: for $a=1$, the rejection constant is obviously 1 . The detalls of the rejection algorithm are left to the reader.

Consider next rejection from the t_{3} density

$$
g(x)=\frac{1}{\sqrt{3} B\left(\frac{1}{2}, \frac{3}{2}\right)\left(1+\frac{x^{2}}{3}\right)^{2}}
$$

Best (1978) has shown the following:

Theorem 5.1.

Let f be the t_{a} density with $a \geq 3$, and let g be the t_{3} density. Then: $f(x) \leq c g(x)$
where

$$
c=\frac{8 \pi \sqrt{3}}{9 \sqrt{a} B\left(\frac{1}{2}, \frac{a}{2}\right)\left(1+\frac{1}{a}\right)^{\frac{a+1}{2}}} .
$$

Also, if

$$
T(x)=\frac{f(x)}{c g(x)}=\frac{9}{16} \frac{\left(1+\frac{x^{2}}{3}\right)^{2}}{\left(\frac{1+\frac{x^{2}}{a}}{1+\frac{1}{a}}\right)^{\frac{a+1}{2}}}
$$

then

$$
T(x) \geq \frac{9}{18} e^{\frac{1}{2}-\frac{x^{2}}{2}}\left(1+\frac{x^{2}}{3}\right)^{2}
$$

Finally,

$$
c \leq \sqrt{\frac{32 \pi}{27 e}} \sqrt{\frac{a}{a+1}} e^{\frac{1}{6 a+1}}
$$

and

$$
\lim _{a \rightarrow \infty} c=\sqrt{\frac{32 \pi}{27 e}} .
$$

Proof of Theorem 5.1.

Verlfy that f / g is maximal for $x= \pm 1$. The lower bound for $T(x)$ follows from the Inequallty

$$
\left(\frac{1+\frac{x^{2}}{a}}{1+\frac{1}{a}}\right)^{a+1}=\left(1+\frac{x^{2}-1}{a+1}\right)^{a+1} \leq e^{1-x^{2}}
$$

Finally, the statement about c follows from Stirllng's formula and bounds related to Stlrllng's formula. For example, the upper bound is obtalned as
follows:

$$
\begin{aligned}
& c=\frac{8 \pi \sqrt{3}}{9 \sqrt{a} B\left(\frac{1}{2}, \frac{a}{2}\right)\left(1+\frac{1}{a}\right)^{\frac{a+1}{2}}} \\
& \leq \frac{8 \sqrt{3 \pi}}{9 \sqrt{a}}\left(\frac{a+1}{2 e}\right)^{\frac{a+1}{2}}\left(\frac{2 e}{a}\right)^{\frac{a}{2}} \sqrt{\frac{a}{a+1} e^{\frac{1}{6(a+1)}}\left(\frac{a}{a+1}\right)^{\frac{a+1}{2}}} \\
& =\frac{8 \sqrt{3 \pi}}{9 \sqrt{2 e}} \sqrt{\frac{a}{a+1}} e^{\frac{1}{6(a+1)}} \\
& \rightarrow \sqrt{\frac{32 \pi}{27 e}}
\end{aligned}
$$

A similar lower bound is valld, which establishes the asymptotic result.

The fit with the t_{3} dominating density is much better than with the Cauchy density. Also, recalling the ratio-of-unlforms method for generating t_{3} random varlates in a form convenlent to us (see section IV.7.2),
t3 generator based upon the ratio-of-uniforms method
REPEAT
Generate lid uniform $[0,1]$ random variates U, V. Set $V \leftarrow V-\frac{1}{2}$.
UNTIL $U^{2}+V^{2} \leq U$
RETURN $X \leftarrow \sqrt{3} \frac{V}{U}$

We can summarize Best's algorithm as follows:
t generator based upon rejection from a $t 3$ density (Best, 1978)

REPEAT

Generate a t_{s} random variate X by the ratio-of-uniforms method (see above). Generate a uniform $[0,1]$ random variate U.

$$
\begin{aligned}
& Z \leftarrow X^{2}, W \leftarrow 1+\frac{Z}{3} \\
& Y \leftarrow 2 \log \left(\frac{\frac{9}{16} W^{2}}{U}\right) \\
& \text { Accept } \leftarrow(Y \geq 1-Z)
\end{aligned}
$$

IF NOT Accept THEN Accept $\leftarrow\left[Y \geq(a+1) \log \left(\frac{a+1}{a+Z}\right)\right]$
UNTLL Accept
RETURN X

The algorlthm glven above differs slightly from that glven in Best (1978). Best adds another squeeze step before the flrst logarlthm.

5.3. The Cauchy density.
 The Cauchy density

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

plays another key role in statistlcs. It has no shape parameters, and the mean does not exist. Just as for the exponentlal distribution, it is easlly seen that thls density causes no problems whatsoever. To start wlth, the inversion method is applicable because the distribution function is

$$
F(x)=\frac{1}{2}+\frac{1}{\pi} \arctan x
$$

This leads to the generator $\tan (\pi U)$ where U is a unlform random varlate. The tangent being a relatively slow operation, there is hope for improvement. The main property of the Cauchy density is that whenever (X, Y) is a radially distrlbuted random vector in R^{2} without an atom at the orlgin, then $\frac{X}{Y}$ is Cauchy distributed. The proof uses the fact that if (R, Θ) are the polar coordinates for (X, Y), then $\frac{Y}{X}=\tan (\Theta)$, and Θ is distributed as $2 \pi U$ where U is a unlform $[0,1]$ random varlate. This leads to two straightforward algorlthms for generating

Cauchy random varlates:

> Polar method I for Cauchy random variates
> Generate iid normal random variates N_{1}, N_{2}.
> RETURN $X \leftarrow \frac{N_{1}}{N_{2}}$

Polar method II for Cauchy random variates

REPEAT
Generate iid uniform $[-1,1]$ random variates V_{1}, V_{2}.
UNTIL $V_{1}{ }^{2}+V_{2}{ }^{2} \leq 1$
RETURN X

Even though the expected number of unform random variates needed in the second algorithm is $\frac{8}{\pi}$, it seems unllkely that the expected. time of the second algorlthm will be smaller than the expected time of the algorlthm based upon the ratlo of two normal random varlates. Other algorlthms have been proposed in the llterature, see for example the acceptance-complement method (section II.5.4 and exercise II.5.1) and the artlcle by Kronmal and Peterson (1981).

5.4. Exercises.

1. Laha's density (Laha, 1958). The ratio of two Independent normal random varlates is Cauchy distributed. This property is shared by other densltles as well, In the sense that the term "normal" can be replaced by the name of some other distributions. Show flrst that the ratlo of two Independent random variables with Laha's density

$$
f(x)=\frac{\sqrt{2}}{\pi\left(1+x^{4}\right)}
$$

Is Cauchy distributed. Give a good algorithm for generating random variates with Laha's density.
2. Let (X, Y) be unlformly distributed on the circle with center (a, b). Describe the density of $\frac{X}{Y}$. Note that when $(a, b)=(0,0)$, you should obtaln the

Cauchy density.
3. Consider the class of generalized Cauchy densitles

$$
f(x)=\frac{a \sin \left(\frac{\pi}{a}\right)}{2 \pi\left(1+|x|^{a}\right)},
$$

where $a>1$ is a parameter. The densities in this class are dominated by the Cauchy density times a constant when $a \geq 2$. Use thls fact to develop a generator which is unlformly fast on $[2, \infty)$. Can you also suggest an algorithm which is uniformly fast on ($1, \infty$) ?
4. The denslty

$$
f(x)=\frac{1}{\pi(1+x) \sqrt{x}} \quad(x>0)
$$

possesses both a heavy tall and a sharp peak at 0 . Suggest a good and short algorithm for the generation of random varlates with thls denslty.
5. Cacoullos's theorem (Cacoullos, 1965). Prove that when $G, G *$ are $11 d$ gamma ($\frac{a}{2}$) random varlates, then

$$
X \leftarrow \frac{\sqrt{a}}{2} \frac{G-G *}{\sqrt{G G *}}
$$

is t_{a} distributed. In particular, note that when N_{1}, N_{2} are IId normal random varlates, then $\left(N_{1}-N_{2}\right) /\left(2 \sqrt{N_{1} N_{2}}\right)$ is Cauchy distrlbuted.
6. The following famlly of densities has heavier talls than any member of the t famlly:

$$
f(x)=\frac{a-1}{x(\log (x))^{a}} \quad(x>e) .
$$

Here $a>1$ is a parameter. Propose a simple algorithm for generating random varlates from this family, and verlfy that it is unlformly fast over all values $a>1$.
7. In this exerclse, let C_{1}, C_{2}, C_{3} be lid Cauchy random varlables, and let U be a unlform $[0,1]$ random variable. Prove the following distributional propertles:
A. $\quad C_{1} C_{2}$ has density $\left(\log \left(x^{2}\right)\right) /\left(\pi^{2}\left(x^{2}-1\right)\right)$ (Feller, 1971, p. 64).
B. $\quad C_{1} C_{2} C_{3}$ has density $\left(\pi^{2}+\left(\log \left(x^{2}\right)\right)^{2}\right) /\left(2 \pi^{3}\left(1+x^{2}\right)\right)$.
C. $U C_{1}$ has denslty $\log \left(\frac{1+x^{2}}{x^{2}}\right) /(2 \pi)$.
8. Show that when X, Y are Ild random varlables with density $\frac{2}{\pi\left(e^{x}+e^{-x}\right)}$, then $X+Y$ has denslty

$$
g(x)=\frac{4 x}{\pi^{2}\left(e^{x}-e^{-x}\right)}=\frac{2}{\pi^{2}\left(1+\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+\cdots\right)}
$$

Hint: find the density of $\log (|C|)$ first, where C is a Cauchy random varlate, and use the prevlous exerclse. Show how you can generate random varlates with density g directly and efficlently by the rejection method (Feller, 1971, p. 84).
9. Develop a composition-rejection algorithm for the t distribution which is based on the inequality

$$
\frac{1}{\left(1+\frac{x^{2}}{a}\right)^{\frac{a+1}{2}}} \geq e^{-\frac{(a+1) x^{2}}{2 a}}
$$

which for large a is close to $e^{-\frac{x^{2}}{2}}$. Make sure that if the remalnder term is majorized for use in the rejection algorithm, that the area under the remalnder term is o (1) as $a \rightarrow \infty$. Note: the remalnder term must have talls which increase at least as $|x|^{-(a+1)}$. Note also that the ratlo of the areas under the normal lower bound and the area under the t density tends to 1 as $a \rightarrow \infty$.
10. The tail of the Cauchy density. We consider the family of tall densitles of the Cauchy, with the tall being deflned as the Interval $[t, \infty)$, where $t>0$ Is a parameter. Show flrst that

$$
X \leftarrow \tan \left(\arctan (t)(1-U)+\frac{\pi U}{2}\right)
$$

has such a tall density. (This is the inversion method.) By using the polar propertles of the Cauchy denslty, show that the following rejection method is also valid, and that the rejection constant tends to 1 as $t \rightarrow \infty$:

REPEAT

Generate iid uniform $[0,1]$ random variates U, V.
$X \leftarrow \frac{t}{U}$
UNTIL $V\left(1+\frac{1}{X^{2}}\right) \leq 1$
RETURN X
11. This exercise is about Inequalitles for the function

$$
f_{a}(x)=\left(1+\frac{x^{2}}{a}\right)^{-\frac{a+1}{2}}
$$

which is proportional to the t density with parameter $a \geq 1$. The inequalitles have been used by Kinderman, Monahan and Ramage (1977) In the development of several rejection algorlthms with squeeze steps:
A. $f_{a}(x) \leq \min \left(1, \frac{1}{x^{2}}\right)$. Using this inequality in the rejection method corresponds to using the ratio-of-uniforms method.
B. $\quad f_{a}(x) \geq 1-\frac{|x|}{2}$. The trlangular lower bound is the largest such lower bound not depending upon a that is valld for all $a \geq 1$.
C. $f_{a}(x) \leq \frac{c}{1+x^{2}}$ where $c=2\left(1+\frac{1}{a}\right)^{-\frac{a+1}{2}} \leq \frac{2}{\sqrt{e}}$. If this inequallty is used In the rejection method, then the rejection constant tends to $\sqrt{\frac{2 \pi}{e}}$ as $a \rightarrow \infty$. The bound can also be used as a quick rejection step.
12. A unlformly fast rejection method for the t famlly can be obtalned by using a combination of a constant bound $(f(0))$ and a polynomlal tall bound: for the function $\left(1+\frac{x^{2}}{a}\right)^{-\frac{a+1}{2}}$, find an upper bound of the form $\frac{c}{x^{b}}$ where c, b are chosen to keep the area under the combined upper bound unfformly bounded over $a>0$.

6. THE STABLE DISTRIBUTION.

6.1. Definition and properties.

It is well known that the sum of ild random varlables with finlte varlance tends in distribution to the normal law. When the varlance is not finite, the sum tends in distribution to one of the stable laws, see e.g. Feller (1971). Stable laws have thicker talls than the normal distrlbution, and are well sulted for modeling economlc data, see e.g. Mandelbrot (1983), Press (1975). Unfortunately, stable laws are not easy to work with because with a few exceptions no simple expresslons are known for the density or distribution function of the stable distributlons. The stable distributions are most easily deflned in terms of thelr characterlstic functions. Without translation and scale parameters, the characterlstlc function ϕ is usually defined by

$$
\log (\phi(t))= \begin{cases}-|t|^{\alpha}\left(1-i \beta \operatorname{sgn}(t) \tan \left(\frac{\alpha \pi}{2}\right)\right) & (\alpha \neq 1) \\ -|t|\left(1+i \beta \frac{2}{\pi} \operatorname{sgn}(t) \log (|t|)\right) & (\alpha=1)\end{cases}
$$

where $-1 \leq \beta \leq 1$ and $0<\alpha \leq 2$ are the parameters of the distribution, and $\operatorname{sgn}(t)$ is the slgn of t. This will be called Levy's representation. There is another
parametrization and representatlon, which we will call the polar form (Zolotarev, 1959; Feller, 1971):

$$
\log (\phi(t))=-|t|^{\alpha} e^{-i \gamma \operatorname{sgn}(t)}
$$

Here, $0<\alpha \leq 2$ and $|\gamma| \leq \frac{\pi}{2} \min (\alpha, 2-\alpha)$ are the parameters. Note however that one should not equate the two forms to deduce the relationshlp between the parameters because the representations have different scale factors. After throwIng in a scale factor, one quickly notices that the α 's are identical, and that β and γ are related via the equation $\beta=\tan (\gamma) / \tan (\alpha \pi / 2)$. Because γ has a range which depends upon α, lt is more conventent to replace γ by $\frac{\pi}{2} \min (\alpha, 2-\alpha) \delta$, where δ is now allowed to vary in $[-1,1]$. Thus, we rewrite the polar form as follows:

$$
\log (\phi(t))=-|t|^{\alpha} e^{-i \frac{\pi}{2} \min (\alpha, 2-\alpha) \delta \operatorname{sgn}(t)}
$$

When we say that a random varlable is stable (1.3,0.4), we are referring to the last polar form with $\alpha=1.3$ and $\delta=0.4$. The parameters β, γ and δ are called the skewness parameters. For $\beta=0(\gamma=0, \delta=0)$, we obtain the symmetric stable distribution, which is by far the most important sub-class of stable distributions. For all forms, the symmetric stable characteristic function is

$$
\phi(t)=e^{-|t|^{\alpha}}
$$

By using the product of characteristic functions, it is easy to see that if X_{1}, \ldots, X_{n} are ild symmetric stable (α), then

$$
n^{-\frac{1}{\alpha}} \sum_{i=1}^{n} X_{i}
$$

Is again symmetrlc stable (α). The following particular cases are important: the symmetric stable (1) law colncldes with the Cauchy law, and the symmetric stable (2) distribution is normal with zero mean and vartance 2. These two representatives are typlcal: all symmetric stable densitles are unimodal (Ibraglmov and Chernin, 1959; Kanter, 1975) and in fact bell-shaped with two Inflnite talls. All moments exlst when $\alpha=2$. For $\alpha<2$, all moments of order $<\alpha$ exlst, and the α-th moment is ∞.

The asymmetrlc stable laws have a nonzero skewness parameter, but in all cases, α is indicative of the slze of the tall(s) of the density. Roughly speaking, the tall or talls drop off as $|x|^{-(1+\alpha)}$ as $|x| \rightarrow \infty$. All densitles are unimodal, and the exlstence or nonexistence of moments is as for the symmetrlc stable densitles with the same value of α. There are two infinite talls when $|\delta| \neq 1$ or when $\alpha \geq 1$, and there is one infinite tall otherwise. When $0<\alpha<1$, the mode has the same sign as δ. Thus, for $\alpha<1$, a stable $(\alpha, 1)$ random varlable is positive, and a stable ($\alpha,-1$) random varlable is negative. Both are shaped as the gamma density.

There are a few relatlonshlps between stable random variates that will be useful in the sequel. It is not necessary to treat negative-valued skewness
parameters since minus a stable (α, δ) random variable is stable ($\alpha,-\delta$) distributed. Next, we have the following basic relatlonshlp:

Lemma 6.1.

Let Y be a stable ($\alpha^{\prime}, 1$) random variable with $\alpha^{\prime}<1$, and let X be an independent stable (α, δ) random variable with $\alpha \neq 1$. Then $X Y^{1 / \alpha}$ is stable $\left(\alpha \alpha^{\prime}, \delta \frac{\alpha^{\prime} \min (\alpha, 2-\alpha)}{\operatorname{m} \ln \left(\alpha \alpha^{\prime}, 2-\alpha \alpha^{\prime}\right)}\right)$. Furthermore, the following is true:
A. If N is a normal random varlable, and Y is an Independent stable ($\alpha^{\prime}, 1$) random varlable with $\alpha^{\prime}<1$, then $N \sqrt{2 Y}$ is stable ($2 \alpha^{\prime}, 0$).
B. A stable $\left(\frac{1}{2}, 1\right)$ random variable is distributed as $1 /\left(2 N^{2}\right)$ where N is a normal random varlable. In other words, it is Pearson V distributed.
C. If N_{1}, N_{2}, \ldots are Ild normal random varlables, then for integer $k \geq 1$,

$$
\begin{aligned}
& \prod_{j=0}^{k-1} \frac{1}{\left(2 N_{j}^{2}\right)^{2^{j}}} \\
& =2^{-\left(2^{k}-1\right)} \prod_{j=1}^{k} \frac{1}{N_{j}^{2 j}}
\end{aligned}
$$

is stable $\left(2^{-k}, 1\right)$.
D. For N_{1}, N_{2}, \ldots, ild normal random variables, and integer $k \geq 1$,

$$
N_{k+1} 2^{-\left(2^{k-1}-1\right)} \prod_{j=1}^{k} \frac{1}{N_{j}^{2^{j}-1}}
$$

is stable ($2^{1-k}, 0$).
E. For N_{1}, N_{2}, \ldots, lid normal random variables, and integer $k \geq 0$,

$$
\begin{aligned}
& \frac{N_{k+1}}{N_{k+2}} \prod_{j=0}^{k}\left(\frac{1}{2 N_{j}^{2}}\right)^{2 J} \\
& =\frac{N_{k+1}}{N_{k+2}} 2^{-\left(2^{k+1}-1\right)} \prod_{j=0}^{k}\left(\frac{1}{N_{j}^{2}}\right)^{2^{j}}
\end{aligned}
$$

Is stable $\left(\frac{1}{2^{k+1}}, 0\right)$.

Proof of Lemma 6.1.

The first statement is left as an exerclse. If in it, we take $\alpha=2, \delta=0$, we obtain part A. It is also seen that a symmetric stable (1) is dlstributed as a symmetric stable (2) random variable times \sqrt{X} where X is stable $\left(\frac{1}{2}, 1\right)$. But by the property that stable (1) random varlables are nothing but Cauchy random varlables, 1.e. ratlos of two independent normal random varlables, we conclude that
X must be distributed as $1 /\left(2 N^{2}\right)$ where N is normally distributed. This proves part B. Next, agaln by the maln property, if X is as above, and Y is stable $\left(\alpha^{\prime}, 1\right)$, then $X Y^{2}$ is stable $\left(\frac{\alpha^{\prime}}{2}, 1\right)$, at least when $\alpha^{\prime}<1$. If thls is applied successlvely for $\alpha^{\prime}=\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$, we obtain statement C. Statement D follows from statements A and C. Finally, using the fact that a symmetric stable ($1 / 2^{k+1}$) is distributed as a symmetric stable $\left(1 / 2^{k}\right)$ times $X^{2^{k}}$, where X is stable $\left(\frac{1}{2}, 1\right)$, we see that a stable ($1 / 2^{k+1}, 0$) is distrlbuted as a Cauchy random varlable times

$$
\prod_{j=0}^{k}\left(\frac{1}{2 N_{j}^{2}}\right)^{2}
$$

Thls concludes the proof of part E.

Propertles A-E in Lemma 8.1 are all corollarles of the maln property given there. The maln property is due to Feller (1971). Property A tells us that all symmetric stable random variables can be obtalned if we can obtaln all positive $(\delta=1)$ stable random varlables with parameter $\alpha<1$. Property B is due to Levy (1940). Property C goes back to Brown and Tukey (1948). Property D is but a simple corollary of property C, and finally, property E is a representation of Mitra's (1981). For other slmilar representations, see Mltra (1982).

There is another property worthy of mention. It states that all stable (α, δ) random varlables can be written as welghted sums of two lld stable ($\alpha, 1$) random varlables. It was mentloned in chapter IV (Lemma 8.1), but we reproduce it here for the sake of completeness.

Lemma 6.2.

If X and Y are Ild stable $(\alpha, 1)$, then $Z \leftarrow p X-q Y$ is stable (α, δ) where

$$
\begin{aligned}
& p^{\alpha}=\frac{\sin \left(\frac{\pi \min (\alpha, 2-\alpha)(1+\delta)}{2}\right)}{\sin (\pi \min (\alpha, 2-\alpha))}, \\
& q^{\alpha}=\frac{\sin \left(\frac{\pi \min (\alpha, 2-\alpha)(1-\delta)}{2}\right)}{\sin (\pi \min (\alpha, 2-\alpha))}
\end{aligned}
$$

Proof of Lemma 6.2.

The characteristic function of Z is

$$
\begin{aligned}
& \phi(t)=E\left(e^{i t p X}\right) E\left(e^{-i t q Y}\right) \\
& =\psi(p t) \psi(-q t)
\end{aligned}
$$

where ψ is the characteristic function of the stable $(\alpha, 1)$ law:

$$
\psi(t)=e^{-|t|^{\alpha^{-i}} e^{-\frac{\pi}{2} \operatorname{mn}(\alpha, \alpha-\alpha) \operatorname{sen}^{\operatorname{sg}}(t)}}
$$

Note next that for $u>0, p^{\alpha} e^{-i u}+q^{\alpha} e^{i u}$ is equal to

$$
\begin{aligned}
& \cos (u)\left(p^{\alpha}+q^{\alpha}\right)-i \sin (u)\left(p^{\alpha}-q^{\alpha}\right) \\
& =\frac{1}{\sin (\pi \min (\alpha, 2-\alpha))} 2\left(\cos (u) \sin \left(\frac{\pi}{2} \min (\alpha, 2-\alpha)\right) \cos \left(\left(\frac{\pi}{2} \delta \min (\alpha, 2-\alpha)\right)\right)-\right. \\
& \left.i \sin (u) \cos \left(\frac{\pi}{2} \min (\alpha, 2-\alpha)\right) \sin \left(\left(\frac{\pi}{2} \delta \min (\alpha, 2-\alpha)\right)\right)\right) .
\end{aligned}
$$

After replacing u by its value, $\frac{\pi}{2} \min (\alpha, 2-\alpha)$, we see that we have

$$
\frac{2 \cos (u) \sin u}{\sin (2 u)}(\cos (\delta u)-i \sin (\delta u))=e^{-i \delta u}
$$

Resubstitution glves us our result.

6.2. Overview of generators.

The difficulty with most stable densitles and distribution functions is that no simple analytical expression for its computation is avallable. The exceptions are spelled out in the previous section. Basically, stable random varlates with parameter α equal to 2^{-k} for $k \geq 0$, and with arbltrary value for δ, can be generated quite easily by the methods outlined in Lemmas 6.1 and 6.2. One just needs to combine an approprlate number of ild normal random varlates. For general α, δ, methods requiring accurate values of the density or distribution function are thus doomed, because these cannot be obtained in finite time. Approximate inversions of the distribution function are reported in Fama and Roll (1968), Dumouchel (1971) and Paulson, Holcomb and Leltch (1975). Paulauskas (1982) suggests another approximate method in which enough ild random varlables are summed. Candidates for summing include the Pareto densitles. For symmetric stable densltles, Bartels (1978) also presents approximate methods. Bondesson (1982) proposes yet another approximate method in which a stable random variable is written as an inflnite sum of powers of the event times in a homogeneous Polsson process on $[0, \infty)$. The sum is truncated, and the tall sum is replaced by an approprlately plcked normal random variate.

Fortunately, exact methods do exist. First of all, the stable density can be written as an integral which in turn leads to a slmple formula for generating
stable random varlates as a combination of one unlform and one exponentlal random variate. These generators were developed in section IV.6.6, and are based upon integral representations of Ibragimov and Chernin (1959) and Zolotarev (1986). The generators themselves were proposed by Kanter (1975) and

Chambers, Mallows and Stuck (1976), and are all of the form $g(U) E^{-\frac{1-\alpha}{\alpha}}$ where E is exponentlally distributed, and $g(U)$ is a function of a uniform $[0,1]$ random varlate U. The sheer simpllcity of the representation makes this method very attractlve, even though g is a rather complicated function of its argument Involving several trigonometric and exponential/logarlthmic operations. Unless speed is absolutely at a premlum, this method is highly recommended.

For symmetric stable random varlates with $\alpha \leq 1$, there is another representation: such random varlates are distributed as
$\frac{Y}{\left(E_{1}+E_{2} I_{[U<\alpha]}\right)^{\frac{1}{\alpha}}}$
where Y has the Fejer-de la Vallee Poussin density, and E_{1}, E_{2} are lld exponentlal random varlates. Thls representation is based upon properties of Polya characteristic functlons, see section IV.6.7, Theorems IV.6.8, TV.6.9, and Example N.6.7. Since the Fejer-de la Vallee Poussin density does not vary with α, random varlates with thls density can be generated quite quickly (remark IV.8.1). This can lead to speeds which are superlor to the speed of the method of Kanter and Chambers, Mallows and Stuck.

In the rest of this section we outline how the serles method (section IV.5) can be used to generate stable random variates. Recall that the serles method is based upon rejection, and that it is designed for densities that are given as a convergent serles. For stable densltles, such convergent serles were obtalned by Bergstrom (1952) and Feller (1971). In addition, we will need good dominating curves for the stable densitles, and sharp estimates for the tall sums of the convergent serles. In the next section, the Bergstrom-Feller serles will be presented, together with estimates of the tall sums due to Bartels (1981). Inequallties for the stable distrlbution which lead to practical implementations of the serles method are obtalned in the last sectlon. At the same tlme, we wlll obtain estlmates of the expected time performance as a function of the parameters of the distribution.

6.3. The Bergstrom-Feller series.

The purpose of this section is to get ready for the next section, where the serles method for stable random variates is developed. The form of the characteristic function most convenlent to us is the first polar form, with parameters α and γ. To obtain serles expanslons for the stable density function, we consider the Fourler inverse of ϕ, which takes a simple form since $|\phi|$ is absolutely integrable:

$$
\begin{aligned}
& f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} e^{-|t|^{\alpha} e^{-1 \gamma \delta 8 刀(t)}} d t \\
& =\operatorname{Re}\left\{\frac{1}{\pi} \int_{0}^{\infty} e^{-i t x} e^{-t^{\alpha} e^{-i \tau}} d t\right\} \\
& =\operatorname{Re}\left\{\frac{1}{\pi} \int_{0}^{\infty} e^{\left.-t x e^{i\left(\frac{\pi}{2}+\psi\right)} e^{-t^{\alpha} e^{i} \psi_{e}((\alpha \psi-\gamma)} d t\right\}}\right\}
\end{aligned}
$$

provided that $|\alpha \psi-\gamma| \leq \frac{\pi}{2}$ and that $\left|\frac{\pi}{2}+\psi\right| \leq \frac{\pi}{2}$ with at least one of these being a strict inequallty. We have used the fact that changing the sign of γ is equivalent to mirroring the density about the orlgin, and we have consldered a contour in the complex plane. The last expression for f will be our starting polnt. Recall that we need not only a convergent serles, but also good bounds for f and for the tall sums. Bergstrom (1952) replaces each of the exponents in the last expression in turn by its Maclaurin serles, and Integrates (see also Feller (1871)). Bartels (1881) uses Darboux's formula (1878) for the remalnder term in the serles expansion to obtain good truncation bounds. In Theorem 6.1 below, we present the two Bergstrom-Feller serles together with Bartels's bounds. The proof follows Bartels (1981).

Theorem 6.1.

The stable (α, γ) density f can be expanded for values $x \geq 0$ as follows:

$$
f(x)=\sum_{j=1}^{n} a_{n}(x)+A_{n+1}^{*}(x)
$$

where

$$
\begin{aligned}
& a_{j}(x)=\frac{1}{\alpha \pi}(-1)^{j-1} \frac{\Gamma\left(\frac{j}{\alpha}\right) x^{j-1} \sin \left(j\left(\frac{\pi}{2}+\frac{\gamma}{\alpha}\right)\right)}{j-1!}, \\
& \left|A_{n+1}^{*}(x)\right| \leq A_{n+1}(x)=\frac{1}{\alpha \pi} \frac{\Gamma\left(\frac{n+1}{\alpha}\right) x^{n}}{n!(\cos (\theta))^{\frac{n+1}{\alpha}}},
\end{aligned}
$$

where $\theta=0$ if $\gamma \leq 0$ and $\theta=\gamma$ if $\gamma>0$. For $x<0$, note that the value of the density is equal to $f(-x)$ provided that γ is replaced by $-\gamma$. The expansion converges for $1<\alpha \leq 2$. For $0<\alpha<1$, we have a divergent asymptotic serles for small $|x|$, l.e., for fixed $n, A_{n}(x) \rightarrow 0$ as $|x| \rightarrow 0$. Note also that

$$
f(x) \leq \frac{\Gamma\left(\frac{1}{\alpha}\right)}{\alpha \pi(\cos (\theta))^{\frac{1}{\alpha}}}
$$

A second expansion for $f(x)$ when $x>0$ is given by

$$
f(x)=\sum_{j=1}^{n} b_{n}(x)+B_{n+1}^{*}(x)
$$

where

$$
\begin{aligned}
& b_{j}(x)=\frac{(-1)^{j-1} \Gamma(\alpha j+1) \sin \left(j\left(\frac{\alpha \pi}{2}+\gamma\right)\right)}{\pi j!x^{\alpha j+1}} \\
& \left|B_{n+1}^{*}(x)\right| \leq B_{n+1}(x)=\frac{\Gamma(\alpha(n+1)+1)}{\pi(n+1)!(x \cos (\theta))^{\alpha(n+1)+1}}
\end{aligned}
$$

with $\theta=\max \left(0, \frac{\pi}{2}+\frac{1}{\alpha}\left(\gamma-\frac{\pi}{2}\right)\right)$. The expansion is convergent for $0<\alpha<1$, and is a divergent asymptotic expansion at $|x| \rightarrow \infty$ when $\alpha>1$, i.e. for fixed n, $B_{n}(x) \rightarrow 0$ as $|x| \rightarrow \infty$. Furthermore, for all α,

$$
f(x) \leq \frac{\Gamma(\alpha+1)}{\pi(x \cos (\theta))^{\alpha+1}}
$$

Proof of Theorem 6.1.

The proof is based upon a formula of Darboux (1876), which when applled to e^{z} with complex z leads to

$$
e^{z}=\sum_{j=0}^{n-1} \frac{z^{j}}{j!}+\frac{z^{n}}{n!} M_{n}
$$

where $M_{n}=\lambda e^{\theta z}, \lambda$ belng a complex constant with $|\lambda| \leq 1$, and θ being a real constant in the range $0 \leq \theta<1$. In particular, for $\operatorname{Re}(z)>0,\left|M_{n}\right| \leq\left|e^{z}\right|$. For $\operatorname{Re}(z) \leq 0,\left|M_{n}\right| \leq 1$. Apply this result with $z=-t x e^{j\left(\frac{\pi}{2}+\psi\right)}$ in the inversion formula for f, and note that $\operatorname{Re}(z) \leq 0$. Take the integrals, and observe that the remainder term can be bounded as follows:

$$
\begin{aligned}
& \left|A_{n+1}^{*}(x)\right| \leq \frac{x^{n}}{\pi n!} \int_{0}^{\infty} t^{n}\left|e^{-t^{\alpha} e^{j(\alpha)-\gamma)}}\right| d t \\
& =\frac{x^{n}}{\pi n!} \int_{0}^{\infty} t^{n} e^{-t^{\alpha} \cos (\alpha \psi-\gamma) d t} \\
& =\frac{1}{\alpha \pi} \frac{\Gamma\left(\frac{n+1}{\alpha}\right) x^{n}}{n!(\cos (\alpha \psi-\gamma))^{\frac{n+1}{\alpha}}} .
\end{aligned}
$$

The angle ψ can be chosen within the restrictions put on it, to make the upper bound as small as possible. This leads to the cholce $\frac{\gamma}{\alpha}$ when $\gamma \leq 0$, and 0 when $\gamma>0$. It is easy to verlfy that for $1<\alpha \leq 2$, the expansion is convergent. Finally, the upper bound is obtalned by noting that $f(x) \leq A_{1}(x)$.

The second expansion is obtalned by applying Darboux's formula to $e^{-t^{\left.\alpha_{e}\right)(a v-r)}}$ and integrating. Repeating the arguments used for the first expansion, we obtain the second expansion. Using Stirling's formula, it is easy to verify that for $0<\alpha<1$, the expansion is convergent. Furthermore, for flxed $n, B_{n}(x) \rightarrow 0$ as $|x| \rightarrow \infty$, and $f(x) \leq B_{1}(x)$.

The convergent series expansion for $\alpha>1$ requires an increasing number of terms to reach a glven truncation error as $|x|$ Increases. The asymptotic serles increases \ln accuracy and needs fewer terms as $|x|$ increases. As pointed out by Bartels (1981), the convergent serles generally tends to increase first, before converging, and the intermediate values may become so large that the final answer no longer has sufficient significant diglts. Thls drawback occurs malnly for values of α near 1 , and large values of $|\gamma|$.

6.4. The series method for stable random variates.

From Theorem 6.1, we deduce the following useful bound for the stable (α, γ) density when $\gamma \geq 0$:

$$
f(x) \leq \begin{cases}\frac{\Gamma\left(\frac{1}{\alpha}\right)}{\frac{\alpha \pi(\cos (\gamma))^{\frac{1}{\alpha}}}{\frac{\Gamma(\alpha+1)}{\pi(x \cos (\eta))^{\alpha+1}}}} \quad & (x \geq 0) \\ \frac{\Gamma\left(\frac{1}{\alpha}\right)}{\frac{\alpha \pi}{}} \quad(x<0) & \\ \frac{\Gamma(\alpha+1)}{\pi(-x \cos (\theta))^{\alpha+1}} & (x<0)\end{cases}
$$

where $\theta=\max \left(0, \frac{\pi}{2}+\frac{1}{\alpha}\left(-\gamma-\frac{\pi}{2}\right)\right)$ and $\eta=\max \left(0, \frac{\pi}{2}+\frac{1}{\alpha}\left(\gamma-\frac{\pi}{2}\right)\right)$. The bounds are valld for all values of α. The dominating curve will be used in the rejection algorithm to be presented below. Taking the minlmum of the bounds glves basically two constant pleces near the center and two polynomially decreasing talls. There is no problem whatsoever with the generation of random varlates with density proportlonal to the dominating curve. Unfortunately, the bounds provided by Theorem 6.1 are not very useful for asymmetric stable random varlates because the mode is located away from the orlgin. For example, for the positive stable density, we even have $f(0)=0$. Thus, a constant/polynomial dominating curve does not cap the density very well in the reglon between the origin and the mode. For a good flt, we would have needed an expansion around the mode instead of two expanslons, one around the origin, and one around ∞. The inefficlency of the bound is easily born out in the integral under the dominating curve. We will consIder four cases:
$\gamma=0, \alpha>1$ (symmetric stable).
$\gamma=0, \alpha \leq 1$ (symmetric stable).
$\gamma=(2-\alpha) \frac{\pi}{2}, \alpha>1$ (positive stable).
$\gamma=\alpha \frac{\pi}{2}, \alpha \leq 1$ (positive stable).

The upper bound given to us is of the form $\min \left(A, B x^{-(1+\alpha)}\right)$ for $x>0$. For the symmetric stable density, the dominating curve can be mirrored around the orlgin, while for the asymmetric cases, we need to replace A, B by values $A *, B *$, and x by $-x$. Recalling that

$$
\int_{0}^{\infty} \min \left(A, B x^{-(1+\alpha)}\right) d x=\frac{1+\alpha}{\alpha} A^{\frac{\alpha}{1+\alpha}} B^{\frac{1}{1+\alpha}}
$$

It is easy to compute the areas under the various dominating curves. We offer the following table for A, B :

CASE	A	B
1	$\frac{\Gamma\left(\frac{1}{\alpha}\right)}{\pi \alpha}$	$\frac{\Gamma(1+\alpha)}{\pi\left(\sin \left(\frac{\pi}{2 \alpha}\right)\right)^{\alpha+1}}$
2	$\frac{\Gamma\left(\frac{1}{\alpha}\right)}{\pi \alpha}$	$\frac{\Gamma(1+\alpha)}{\pi}$
3	$\frac{\Gamma\left(\frac{1}{\alpha}\right)}{\alpha \pi\left(\sin \left((\alpha-1) \frac{\pi}{2}\right)\right)^{\frac{1}{\alpha}}}$	$\frac{\Gamma(\alpha+1)}{\pi\left(\cos \left(\frac{\pi}{2 \alpha}\right)\right)^{\alpha+1}}$
4	$\frac{\Gamma\left(\frac{1}{\alpha}\right)}{\alpha \pi\left(\cos \left(\frac{\alpha \pi}{2}\right)\right)^{\frac{1}{\alpha}}}$	$\frac{\Gamma(\alpha+1)}{\pi\left(-\cos \left(\frac{\pi}{2 \alpha}\right)\right)^{\alpha+1}}$

For example, in case 1, we see that the area under the dominating curve is

$$
\begin{align*}
& 2 \frac{\alpha+1}{\alpha}\left(\frac{\Gamma\left(\frac{1}{\alpha}\right)}{\pi \alpha}\right)^{\frac{\alpha}{1+\alpha}}\left(\frac{\Gamma(1+\alpha)}{\pi\left(\sin \left(\frac{\pi}{2 \alpha}\right)\right)^{\alpha+1}}\right)^{\frac{1}{\alpha+1}} \\
& \leq \frac{4}{\pi}\left(\Gamma\left(\frac{1}{\alpha}\right)\right)^{\frac{\alpha}{1+\alpha}}(\Gamma(1+\alpha))^{\frac{1}{\alpha+1}} \\
& \leq \frac{4}{\pi} \pi^{\frac{1}{3}} \sqrt{2} \tag{11}
\end{align*}
$$

where we used the following inequalltles: (1) $(\alpha+1) / \alpha^{\alpha /(1+\alpha)} \leq 2(\alpha \geq 1)$;
$\sin (\pi /(2 \alpha)) \geq 1 / \alpha ;$ (III) $\Gamma(u) \leq 2(2 \leq u \leq 3) ;($ Iv $) ~ \Gamma(u) \leq \Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}\left(\frac{1}{2} \leq u \leq 1\right)$.
Some of the inequalitles are rather loose, so that the actual fit is probably much better than what is predlcted by the upper bound. For $\alpha=2$, the normal density, we obtaln $32^{1 / 6} \pi^{-2 / 3}$. The Importance of the good fit is clear: we can now use the dominating curve quite confidently in any rejection type algorithm for symmetric stable random varlate generation when $\alpha \geq 1$. The story is not so rosy for the three other cases, because the integral of the dominating curve is not unlformly bounded over the specifled parameter ranges. The actual verlfication of this statement is left as an exercise, but we conclude that it is not worth to use the Bergstrom-Feller serles for asymmetrlc stable random varlates. For this reason, we will Just concentrate on the symmetrlc case. The notation $a_{n}, b_{n}, A_{n}, B_{n}$ is taken from Theorem 6.1. Furthermore, we define a density g and a normalization constant c by

$$
c g(x)=\min \left\{\begin{array}{l}
\frac{\Gamma\left(\frac{1}{\alpha}\right)}{\alpha \pi} \\
\frac{\Gamma(\alpha+1)}{\pi(|x| \sin (\varsigma))^{\alpha+1}}
\end{array}\right.
$$

where $\varsigma=0$ for $\alpha<1$, and $\varsigma=\pi /(2 \alpha)$ otherwise. The algorithm is of the following form:

Series method for symmetric stable density; case of parameter >1
REPEAT
Generate X with density g.
Generate a uniform $[0,1]$ random variate U.
$T \leftarrow U c g(X)$
$S \longleftarrow 0, n \longleftarrow 0$ (Get ready for series method.)
REPEAT

$$
n \leftarrow n+1, S \leftarrow S+a_{n}(X)
$$

UNTIL $|S-T| \geq A_{n+1}(X)$
UNTIL $T \leq S$
RETURN X

Because of the convergent nature of the serles $\sum a_{n}$, thls algorlthm stops with probablity one. Note that the divergent asymptotic expansion is only used in the definition of $c g$. It could of course also be used for introducing quick acceptance and rejection steps. But because of the divergent nature of the expansion it is useless in the definition of a stopping rule. One possible use is as Indicated in the modifled algorithm shown below.

Series method for symmetric stable density; case of parameter >1

REPEAT

Generate X with density g.
Generate a uniform $[0,1]$ random variate U.
$T \leftarrow U \operatorname{cg}(X)$
$S \leftarrow 0, n \leftarrow 0$ (Get ready for series method.)
$V \leftarrow B_{2}(X), W \leftarrow b_{1}(X)$
IF $T \leq W-V$
THEN RETURN X
ELSE IF $W-V<T \leq W+V$
THEN
REPEAT

$$
\begin{gathered}
n \leftarrow n+1, S \leftarrow S+a_{n}(X) \\
\text { UNTIL }|S-T| \geq A_{n+1}(X)
\end{gathered}
$$

UNTH $T \leq S$ AND $T \leq W+V$
RETURN X

Good speed is obtalnable if we can set up some constants for a fixed value of α. In partlcular, an array of the flrst m coefflcients of x^{j-1} in the series expansion can be computed beforehand. Note that for $\alpha<1$, both algorlthms shown above can be used again, provided that the roles of a_{n} and b_{n} are interchanged. For the modifled version, we have:

Series method for symmetric stable density; case of parameter less than or equal to one

REPEAT

Generate X with density g.
Generate a uniform [0,1] random variate U.
$T \leftarrow U c g(X)$
$S \leftarrow 0, n \leftarrow 0$ (Get ready for series method.)
$V \leftarrow A_{2}(X), W \leftarrow a_{1}(X)$
IF $T \leq W-V$
THEN RETURN X
ELSE IF $W-V<T \leq W+V$
THEN
REPEAT

$$
n \leftarrow n+1, S \leftarrow S+b_{n}(X)
$$

UNTIL $|S-T| \geq B_{n+1}(X)$
UNTIL $T \leq S$ AND $T \leq W+V$
RETURN X

6.5. Exercises.

1. Prove that a symmetric stable random varlate with parameter $\frac{1}{2}$ can be obtalned as $c\left(N_{1}{ }^{-2}-N_{2}{ }^{-2}\right)$ where N_{1}, N_{2} are $11 d$ normal random varlates, and $c>0$ is a constant. Determine c too.
2. The expected number of iterations in the serles method for symmetric stable random varlates with parameter α, based upon the inequallties given in the text (based upon the Bergstrom-Feller serles), is asymptotic to

$$
\frac{2}{\pi e \alpha^{2}}
$$

as $\alpha \downarrow 0$.
3. Consider the serles method for stable random varlates glven in the text, without quick acceptance and rejection steps. For all values of α, determine $E(N)$, where N is the number of computations of some term a_{n} or b_{n} (note that slnce a_{n} or b_{n} are computed in the inner loop of two nested loops, it is an approprlate measure of the time needed to generate a random varlate). For which values, if any, is $E(N)$ finite?
4. Some approximate methods for stable random varlate generation are based upon the following limit law, which you are asked to prove. Assume that X_{1}, \ldots are ild random varlables with common distribution function F satisfying

$$
\begin{aligned}
& 1-F(x) \sim\left(\frac{b}{x}\right)^{\alpha} \quad(x \rightarrow \infty) \\
& F(-x) \sim\left(\frac{c b^{*}}{|x|}\right)^{\alpha} \quad(x \rightarrow-\infty)
\end{aligned}
$$

for some constants $0<\alpha<2, b, b * \geq 0, b+b *>0$. Show that there exist normallzing constants c_{n} such that

$$
\frac{1}{n^{\frac{1}{\alpha}}} \sum_{j=1}^{n} X_{j}-c_{n}
$$

tends \ln distribution to the stable (α, β) distribution with parameter

$$
\beta=\frac{b^{\alpha}-b *^{\alpha}}{b^{\alpha}+b *^{\alpha}}
$$

(Feller, 1871).
5. This is a continuation of the previous exercise. Glve an example of a distribution with a density satisfying the tall conditions mentioned in the exerclise, and show how you can generate a random varlate. Furthermore, suggest for your example how c_{n} can be chosen.
6. Prove the flrst statement of Lemma 6.1.
7. Find a simple dominating curve with uniformly bounded integral for all positive stable densitles with parameter $\alpha \geq 1$. Mention how you would proceed with the generation of a random varlate with density proportlonal to this curve.
8. In the spirit of the prevlous exercise, find a simple dominating curve with uniformly bounded integral for all symmetric stable densitles; α can take all values $\ln (0,2]$.

7. NONSTANDARD DISTRIBUTIONS.

7.1. Bessel function distributions.

The Polya-Aeppli distribution is a three-parameter distribution with denslty

$$
f(x)=C x^{\frac{\lambda-1}{2}} e^{-\theta x} I_{\lambda-1}(\beta \sqrt{x}) \quad(x \geq 0)
$$

IX.7.NONSTANDARD DISTRIBUTIONS

where $\theta>0, \lambda>0, \beta \geq 0$ are the parameters and $I_{a}(x)$ is the modifled Bessel functlon of the first kind, formally defined by

$$
I_{a}(x)=\sum_{j=0}^{\infty} \frac{1}{j!\Gamma(j+a+1)}\left(\frac{x}{2}\right)^{2 j+a} .
$$

The normallzation constant C is given by

$$
C=\left(\frac{2}{\beta}\right)^{\lambda-1} \theta^{\lambda} e^{-\frac{\beta^{2}}{4 \theta}}
$$

The name Polya-Aeppll is used in many texts such as Ord (1972, p. 125-128). Others prefer the name "type I Bessel function distribution" (Feller, 1971, p. 57). By using the expansion of the Bessel function, it is not difficult to see that if Z is Polsson $\left(\frac{\beta^{2}}{4 \theta}\right)$ distributed, and G is gamma $(\lambda+Z)$ distributed, then $\frac{G}{\theta}$ has the Polya-Aeppll distribution. We summarize:

Polya-Aeppli random variate generator

Generate a Poisson $\left(\frac{\beta^{2}}{4 \theta}\right)$ random variate Z.
Generate a gamma $(\lambda+Z)$ random variate G.
RETURN $X \leftarrow \frac{G}{\theta}$

The Polya-Aeppll famlly contalns as a spectal case the gamma family (set $\beta=0$, $\theta=1$). Other distributions can be derlved from it without much trouble: for example, if X is Polya-Aeppll ($\beta, \lambda, \frac{\theta}{2}$), then X^{2} is a type II Bessel function distribution with parameters (β, λ, θ), i.e. X^{2} has density

$$
f(x)=D x^{\lambda} e^{-\theta \frac{x^{2}}{2}} I_{\lambda-1}(\beta x) \quad(x \geq 0)
$$

where $D=\theta^{\lambda} \beta^{1-\lambda} e^{-\beta^{2} /(2 \theta)}$. Special cases here include the folded normal distributlon and the Rayletgh distribution. For more about the propertles of type I and II Bessel function distributions, see for example Kotz and Srinivasan (1989), Lukacs and Laha (1984) and Laha (1954).

Bessel functlons of the second kind appear in other contexts. For example, the product of two lid normal random variables has density

$$
\frac{1}{\pi} K_{0}(x)
$$

where K_{0} is the Bessel function of the second kind with purely Imaginary argument of order 0 (Springer, 1979, p. 180).

In the study of random walks, the following density appears naturally:

$$
f(x)=\frac{r}{x} e^{-x} I_{r}(x) \quad(x>0),
$$

where $r>0$ is a parameter (see Feller (1971, pp. 59-60,478)). For integer r, this is the denslty of the time before level r is crossed for the first time in a symmetric random walk, when the time between epochs is exponentially distributed:

$$
\begin{aligned}
& X \leftarrow 0, L \leftarrow 0 \\
& \text { REPEAT } \\
& \quad \text { Generate a uniform }[-1,1] \text { random variate } U . \\
& \quad L \leftarrow L+\operatorname{sign}(U) \\
& \quad X \leftarrow X-\log (|U|) \\
& \text { UNTIL } L=r \\
& \text { RETURN } X
\end{aligned}
$$

Unfortunately, the expected number of Iterations is ∞, and the number of Iteratlons is bounded from below by r, so this algorithm is not unlformly fast in any sense. We have however:

Theorem 7.1.

Let $r>0$ be a real number. If G, B are independent gamma (r) and beta $\left(\frac{1}{2}, r+\frac{1}{2}\right)$ random variables, then

$$
\frac{G}{2 B}
$$

has density

$$
f(x)=\frac{r}{x} e^{-x} I_{r}(x) \quad(x>0)
$$

Proof of Theorem 7.1.

We use an integral representation of the Bessel function I_{r} which can be found for example in Magnus et al. (1986, p. 84):

$$
f(x)=\frac{r}{x} e^{-x} I_{r}(x)
$$

$$
\begin{aligned}
& =\frac{1}{\Gamma\left(r+\frac{1}{2}\right)} \frac{r}{x} e^{-x} \frac{1}{\sqrt{\pi}}\left(\frac{x}{2}\right)^{r} \int_{-1}^{1} e^{-z x}\left(1-z^{2}\right)^{r-\frac{1}{2}} d z \\
& =\frac{1}{\Gamma\left(r+\frac{1}{2}\right)} \frac{r}{x} \frac{1}{\sqrt{\pi}}\left(\frac{x}{2}\right)^{T} 2^{2 r} \int_{0}^{1} e^{-2 y x}(y(1-y))^{r-\frac{1}{2}} d y .
\end{aligned}
$$

The result follows directly from this.

The algorithm suggested by Theorem 7.1 is unlformly fast over all $r>0$ if unlformly fast gamma and beta generators are used. Of course, we can also use direct rejection. Bounds for f can for example be obtalned starting from the Integral representation for f given in the proof of Theorem 7.1. The acceptance or rejection has to be declded based upon the serles method in that case.

7.2. The logistic and hyperbolic secant distributions.

A random varlable has the logistic distribution when it has distrlbution function

$$
F(x)=\frac{1}{1+e^{-x}}
$$

on the real line. The corresponding density is

$$
f(x)=\frac{1}{2+e^{x}+e^{-x}}
$$

For random varlate generation, we can obviously proceed by Inversion: when U Is unlformly distributed on $[0,1]$, then $X \leftarrow \log \left(\frac{U}{1-U}\right)$ is logistlc. To beat thls method, one needs elther an extremely efflclent rejection or acceptancecomplement algorithm, or a table method. Rejection could be based upon one of the following inequallties:
A. $\quad f(x) \leq e^{-|x|}$: this is rejection from the Laplace density. The rejection constant is 2.
B. $\quad f(x) \leq \frac{1}{4+x^{2}}$: this is rejection from the density of $2 C$ where C is a Cauchy random varlate. The rejection constant is $\frac{\pi}{2} \approx 1.57$.
A distribution related to the logistlc distribution is the hyperbolic secant distribution (Talacko, 1956). The density is given by

$$
f(x)=\frac{2}{\pi\left(e^{x}+e^{-x}\right)}
$$

Both the logistic and hyperbolic secant distributions are members of the famlly of Perks distributions (Talacko, 1958), with densities of the form $c /\left(a+e^{x}+e^{-x}\right)$, where $a \geq 0$ is a parameter and c is a normallzation constant. For thls family, rejection from the Cauchy density can always be used slnce the density is bounded from above by $c /\left(a+2+x^{2}\right)$, and the resulting rejection algorithm has unlformly bounded rejection constant for $a \geq 0$. For the hyperbolle secant distribution in particular, there are other possibilitles. One can easlly see that it has distribution function

$$
F(x)=\frac{2}{\pi} \arctan \left(e^{x}\right) .
$$

Thus, $X \leftarrow \log \left(\tan \left(\frac{\pi}{2} U\right)\right)$ is a hyperbolic secant random varlate whenever U is a unlform $[0,1]$ random varlate. We can also use rejection from the Laplace density, based upon the inequallty $f(x) \leq \frac{2}{\pi} e^{-|x|}$. Thls ylelds a quite acceptable rejectlon constant of $\frac{4}{\pi}$. The rejection condition can be considerably slmplified:

Rejection algorithm for the hyperbolic secant distribution

REPEAT

Generate U uniformly on $[0,1]$ and V uniformly on $[-1,1]$.
$X \leftarrow \operatorname{sign}(V) \log (|V|)$
UNTL $U(|V|+1) \leq 1$
RETURN X

Both the logistic and hyperbollc secant distributions are intimately related to a host of other distributlons. Most of the relations can be deduced from the inverslon method. For example, by the propertles of unlform spacings, we observe that $\frac{U}{1-U}$ is distributed as E_{1} / E_{2}, the ratio of two independent exponential random variates. Thus, $\log \left(E_{1}\right)-\log \left(E_{2}\right)$ is \log istic. This in turn implles that the difference between two ild extreme-value random varlables (i.e., random varlables with distribution function $\left.e^{-e^{-2}}\right)$ is logistic. Also, $\tan \left(\frac{\pi}{2} U\right)$ is distributed as the absolute value of a Cauchy random variable. Thus, if C is a Cauchy random variable, and N_{1}, N_{2} are ild normal random variables, then $\log (|C|)$ and $\log \left(\left|N_{1}\right|\right)-\log \left(\left|N_{2}\right|\right)$ are both hyperbollc secant.

Many propertles of the logistic distribution are reviewed in Olusegun George and Mudholkar (1981).

7.3. The von Mises distribution.

The von Mises distribution for polnts on a circle has become Important in the statistical theory of directional data. For its propertles, see for example the survey paper by Mardla (1975). The distribution is completely determined by the distribution of the random angle Θ on $[-\pi, \pi]$. There is one shape parameter, $\kappa>0$, and the density is given by

$$
f(\theta)=\frac{e^{\kappa \cos (\theta)}}{2 \pi I_{0}(\kappa)} \quad(|\theta| \leq \pi)
$$

Here I_{0} is the modified Bessel function of the flrst kind of order 0:

$$
I_{0}(x)=\sum_{j=0}^{\infty} \frac{1}{j!^{2}}\left(\frac{x}{2}\right)^{2 j}
$$

Unfortunately, the distribution function does not have a simple closed form, and there is no simple relationshlp between von Mises (κ) random variables and von Mises (1) random varlables which would have allowed us to ellminate in effect the shape parameter. Also, no useful characterizations are as yet avallable. It seems that the only vable method is the rejection method. Several rejection methods have been suggested in the literature, e.g. the method of Selgerstetter (1974) (see also Ripley (1983)), based upon the obvlous inequallty

$$
f(\theta) \leq f(0)
$$

which leads to a rejectlon constant $2 \pi f(0)$ which tends quickly to ∞ as $\kappa \rightarrow \infty$. We could use the universal bounding methods of chapter 7 for bounded monotone densitles since f is bounded, U-shaped (with modes at π and $-\pi$) and symmetrlc about 0 . Fortunately, there are much better alternatives. The leading work on this subject is by Best and Fisher (1979), who, after considering a varlety of dominating curves, suggest using the wrapped Cauchy density as a dominating curve. We will Just content ourselves with a reproduction of the Best-Flsher algorlthm.

We begin with the wrapped Cauchy distribution function with parameter ρ :

$$
G(x)=\frac{1}{2 \pi} \arccos \left(\frac{\left(1+\rho^{2}\right) \cos (x)-2 \rho}{1+\rho^{2}-2 \rho \cos (x)}\right) \quad(|x| \leq \pi)
$$

For later reference, the density g for G is:

$$
g(x)=\frac{1}{2 \pi} \frac{1-\rho^{2}}{1+\rho^{2}-2 \rho \cos (x)} \quad(|x| \leq \pi)
$$

A random varlate with this distribution can easlly be generated via the inversion method:

Wrapped Cauchy generator; inversion method
[SET-UP]
$s \leftarrow \frac{1+\rho^{2}}{2 \rho}$
[GENERATOR]
Generate a uniform $[-1,1]$ random variate U.
$Z \longleftarrow \cos (\pi U)$
RETURN $\Theta \leftarrow \frac{\operatorname{sign}(U)}{\cos \left(\frac{1+s Z}{s+Z}\right)}$

If the wrapped Cauchy distrlbution is to be used for rejection, we need to fine tune the distribution, l.e. choose ρ as a function of κ.

Theorem 7.2. (Best and Fisher, 1979)

Let f be the von Mlses density with parameter $\kappa>0$, and let g be the wrapped Cauchy density with parameter $\rho>0$. Then

$$
f(x) \leq \operatorname{cg}(x) \quad(|x| \leq \pi)
$$

where c is a constant depending upon κ and ρ only. The constant is minimized with respect to ρ for the value

$$
\rho=\frac{r-\sqrt{2 r}}{2 \kappa}
$$

where

$$
r=1+\sqrt{1+4 \kappa^{2}}
$$

The expected number of iterations in the rejection algorlthm is

$$
c=\frac{\frac{2 \rho}{\kappa} e^{\kappa \frac{1+\rho^{2}}{2 \rho}-1}}{\left(1-\rho^{2}\right) I_{0}(\kappa)}
$$

Furthermore, $\lim _{\kappa \downharpoonleft 0} c=\infty$ and $\lim _{\kappa \rightarrow \infty} c=\sqrt{\frac{2 \pi}{e}}$.

Proof of Theorem 7.2.

Conslder the ratio

$$
h(x)=\frac{f(x)}{g(x)}=\frac{\left(1+\rho^{2}-2 \rho \cos (x)\right) e^{\kappa \cos (x)}}{I_{0}(\kappa)\left(1-\rho^{2}\right)} .
$$

The derlvative of h is zero for $\sin (x)=0$ and for $\cos (x)=\left(1+\rho^{2}-\frac{2 \rho}{\kappa}\right) /(2 \rho)$. By verlfying the second derlvative of h, we find a local maximum value

$$
M_{1}=(1-\rho)^{2} e^{\kappa}
$$

at $\sin (x)=0$ when

$$
\frac{2 \rho}{(1-\rho)^{2}}<\kappa,
$$

and a local maximum value

$$
M_{2}=\frac{2 \rho}{\kappa} e^{\kappa \frac{1+\rho^{2}}{2 \rho}-1}
$$

at $\cos (x)=\left(1+\rho^{2}-\frac{2 \rho}{\kappa}\right) /(2 \rho)$ when

$$
\frac{2 \rho}{(1+\rho)^{2}}<\kappa<\frac{2 \rho}{(1-\rho)^{2}} .
$$

Let ρ_{0} and ρ_{1} be the roots $\ln (0,1)$ of $\frac{2 \rho}{(1-\rho)^{2}}=\kappa$ and $\frac{2 \rho}{(1+\rho)^{2}}=\kappa$ respectlvely. The two Intervals for ρ defined by the the two sets of Inequalitles are nonoverlapping. The two intervals are ($0, \rho_{0}$) and ($\rho_{0}, \min \left(1, \rho_{1}\right)$) respectlvely. The maximum M is deflned as M_{1} on ($0, \rho_{0}$) and as M_{2} on ($\rho_{0}, \min \left(1, \rho_{1}\right)$).

To find the best value of ρ, it suffices to find ρ for which M as a function of ρ is minimal. First, M_{1} considered as a function of ρ is minimal for $\rho=\rho_{0}$. Next, M_{2} considered as a function of ρ is minimal at the solution of

$$
-\kappa \rho^{4}+2 \rho^{3}+2 \kappa \rho^{2}+2 \rho-\kappa=0,
$$

i.e. at $\rho=\rho *=(r-\sqrt{2 r}) /(2 r)$ where $r=1+\sqrt{1+4 \kappa^{2}}$. It can be verifled that $\rho * \in\left(\rho_{0}, \min \left(1, \rho_{1}\right)\right)$. But because $M_{1}\left(\rho_{0}\right)=M_{2}\left(\rho_{0}\right) \geq M_{2}(\rho *)$, it is clear that the overall minimum is attalned at ρ^{*}. The remainder of the statements of Theorem 7.2 are left as an exerclse.

The rejection algorlthm based upon the Inequallty of Theorem 7.2 is given below:
von Mises generator (Best and Fisher, 1979)
[SET-UP]
$0-\frac{1 \div \rho^{2}}{2 \rho}$
[GENERATOR]
REPEAT
Generate iid uniform $[-1,1]$ random variates U, V.
$Z \leftarrow \cos (\pi U)$
$W-\frac{1+s Z}{s+Z}$
$Y \leftarrow \kappa(s-W)$
Accept $\leftarrow[W(2-W)-V \geq 0]$ (Quick acceptance step)
IF NOT Accept THEN Accept $\leftarrow\left[\log \left(\frac{W}{V}\right)+1-W \geq 0\right]$
UNTL Accept
RETURN $\theta-\frac{\operatorname{sign}(U)}{\cos (W)}$

Two final computational remarks. The cosine in the definltion of Z can be avolded by using an appropriate polar method. The coslne in the last statement of the algorlthm cannot be avolded.

7.4. The Burr distribution.

In a serles of papers, Burr $(1942,1988,1973)$ has proposed a versatlle family of densities. For the sake of completeness, his orlginal list is reproduced here. The parameters r, k, c are positive real numbers. The fact that k could take noninteger values is bound to be confusing, but at this point it is undoubtedly better to stlck to the standard notation. Note that a list of distribution functions, not
densitles, Is provided In the table.

NAME	$F(x)$	RANGE FOR x
Burr I	x	$[0,1]$
Burr II	$\left(1+e^{-x}\right)^{-r}$	$(-\infty, \infty)$
Burr III	$\left(1+x^{-k}\right)^{-r}$	$[0, \infty)$
Burr IV	$\left(1+\left(\frac{c-x}{x}\right)^{\frac{1}{c}}\right)^{-r}$	$[0, c]$
Burr V	$\left(1+k e^{-\tan (x)}\right)^{-r}$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Burr VI	$\left(1+k e^{-\sinh (x)}\right)^{-r}$	$(-\infty, \infty)$
Burr VII	$2^{-r}(1+\tanh (x))^{r}$	$(-\infty, \infty)$
Burr VIII	$\left(\frac{2}{\pi} \arctan \left(e^{x}\right)\right)^{r}$	$(-\infty, \infty)$
Burr XX	$1-\frac{2}{2+k\left(\left(1+e^{x}\right)^{r}-1\right)}$	$(-\infty, \infty)$
Burr X	$\left(1+e^{-x^{2}}\right)^{r}$	$[0, \infty)$
Burr XI	$\left(x-\frac{1}{2 \pi} \sin (2 \pi x)\right)^{r}$	$[0,1]$
Burr XII	$1-\left(1+x^{c}\right)^{-k}$	$[0, \infty)$

Most of the densities in the Burr famlly are unlmodal. In all cases, we can generate random varlates directly via the Inversion method. By far the most important of these distributions is the Burr XII distribution. The corresponding denslty,

$$
f(x)=\frac{k c x^{c-1}}{\left(1+x^{c}\right)^{k}} \quad(x \geq 0)
$$

with parameters $c, k>0$ can take a variety of shapes. Thus, f is partlcularly useful as a flexible dominating curve in random varlate generation (see e.g. Cheng (1977)). As pointed out by Tadikamalla (1980), the Burr III density is even more flexible. It is called the reclprocal Burr distribution because the reclprocal of a Burr XII with parameters c, k has the Burr III distribution function

$$
F(x)=\frac{1}{\left(1+x^{c}\right)^{k}}
$$

The density is

$$
f(x)=\frac{k c x^{c k-1}}{\left(1+x^{c}\right)^{k+1}}
$$

It should be noted that a myrlad of relationshlps exist between all the Burr distributions, because of the fact that all are directly related to the unlform distributlon via the probabllity integral transform.

7.5. The generalized inverse gaussian distribution.

The generalized inverse gaussian, or GIG, distribution is a threeparameter distribution with density

$$
f(x)=\frac{\left(\frac{\psi}{\chi}\right)^{\frac{\lambda}{2}}}{2 K_{\lambda}(\sqrt{\psi \chi})} x^{\lambda-1} e^{-\frac{1}{2}\left(\frac{\chi}{x}+\psi x\right)} \quad(x>0)
$$

Here $\lambda \in R, \chi>0$, and $\psi>0$ are the parameters of the distribution, and K_{λ} is the modifled Bessel function of the third kind, defined by

$$
K_{\lambda}(u)=\frac{1}{2} \int_{-\infty}^{\infty} \cosh (\lambda u) e^{-z \cosh (u)} d u
$$

A random varlable with the density given above will be called a GIG (λ, ψ, χ) random varlable. The GIG family was introduced by Barndorff-Nielsen and Halgreen (1877), and its propertles are reviewed by Blaesild (1978) and Jorgensen (1882). The individual densittes are gamma-shaped, and the famlly has had quite a bit of success recently because of its applicabllity in modeling. Furthermore, many well-known distributlons are but spectal cases of GIG distributions. To clte a few:
A. $\chi=0$: the gamma density.
B. $\psi=0$: the density of the Inverse of a gamma random varlable.
C. $\lambda=-\frac{1}{2}$: the Inverse gaussian distribution (see section IV.4.3).

Furthermore, the GIG distribution is closely related to the generallzed hyperbolic distribution (Barndorff-Nielsen (1977, 1978), Blaesild (1978), Barndorff-Nielsen and Blaesild (1980)), which is of interest in itself. For the relationship, we refer to the exerclses.

We begin with a partial list of propertles, which show that there are really only two shape parameters, and that for random variate generation purposes, we need only consider the cases of $\chi=\psi$ and $\lambda>0$.

Lemma 7.4.

Let GIG (.,.,.) and Gamma (.) denote GIG and gamma distributed random varlables with the given parameters, and let all random varlables be independent. Then, we have the following distributional equivalences:
A. GIG $(\lambda, \psi, \chi)=\frac{1}{c} \operatorname{GIG}\left(\lambda, \frac{\psi}{c}, \chi c\right)$ for all $c>0$. In particular,

$$
\operatorname{GIG}(\lambda, \psi, \chi)=\sqrt{\frac{\chi}{\psi}} \operatorname{GIG}(\lambda, \sqrt{\psi \chi}, \sqrt{\psi \chi})
$$

B.

$$
\operatorname{GIG}(\lambda, \psi, \psi)=\operatorname{GIG}(-\lambda, \psi, \psi)+\frac{2}{\psi} \operatorname{Gamma}(\lambda)
$$

C.

$$
\operatorname{GIG}(\lambda, \psi, \chi)=\frac{1}{\operatorname{GIG}(-\lambda, \chi, \psi)}
$$

For random varlate generation purposes, we will thus assume that $\chi=\psi$ and that $\lambda>0$. All the other cases can be taken care of va the equivalences shown in Lemma 7.4. By considering $\log (f)$, it is not hard to verlify that the distribution is unlmodal with mode m at

$$
m=\frac{1}{\sqrt{\left(\frac{\lambda-1}{\psi}\right)^{2}+1}}-\frac{\dot{\lambda-1}}{\psi}
$$

In addition, the density is \log concave for $\lambda \geq 1$. In view of the analysis of section VII.2, we know that thls is good news. Log concave densitles can be dealt with quite efflclently in a number of ways. First of all, one could employ the unlversal algorlthm for log concave densitles given in section VII.2. This has two dlsadvantages: first, the value of $f(m)$ has to be computed at least once for every cholce of the parameters (recall that thls involves computing the modified Bessel functlon of the third kind); second, the expected number of iterations in the rejection algorithm is large (but not more than 4). The advantages are that the user does not have to do any error-prone computations, and that he has the guarantee that the expected time is unlformly bounded over all $\psi>0, \lambda \geq 1$. The expected number of Iterations can further be reduced by using the non-universal rejection method of section VII.2.6, which uses rejection from a density with a flat part around m, and two exponential talls. In Theorem 2.6, a simple formula is given for the location of the polnts where the exponentlal talls should touch f : place these points such that the value of f at the points is $\frac{1}{e} f(m)$. Note that to solve this equation, the normallzation constant in f cancels out convenlently.

Because $f(0)=0$, the equation has two well-deffed solutions, one on each slde of the mode. In some cases, the numerical solution of the equation is well worth the trouble. If one Just cannot afford the tlme to solve the equation numerically, there is always the possibllity of placing the points symmetrically at distance $e /((e-1) f(m)$ from m (see section VII.2.6), but this would agaln involve computing $f(m)$. Atkinson $(1978,1982)$ also uses two exponential talls, both with and without flat center parts, and to optimize the dominating curve, he suggests a crude step search. In any case, the generation process for f can be automated for the case $\lambda \geq 1$.

When $0<\lambda<1, f$ is \log concave for $x \leq \psi /(1-\lambda)$, and is log convex otherwise. Note that thls cut-off polnt is always greater than the mode m, so that for the part of the density to the left of m, we can use the standard exponential/constant dominating curve as described above for the case $\lambda \geq 1$. The right tall of the GIG density can be bounded by the gamma denslty (by omitting the $1 / x$ term in the exponent). For most choices of $\lambda<1$ and $\psi>0$, this is satisfactory.

7.6. Exercises.

1. The generalized logistic distribution. When X is beta (a, b), then $\log \left(\frac{X}{1-X}\right)$ is generallzed logistic with parameters (a, b) (Johnson and Kotz, 1970; Olusegun George and Ojo, 1980). Give a unlformly fast rejection algorithm for the generation of such random varlates when $a=b \geq 1$. Do not use the transformation of a beta method given above.
2. Show that if L_{1}, L_{2}, \ldots are IId Laplace random variates, then $\sum_{j=1}^{\infty} \frac{L_{j}}{j^{2}}$ is logistic. Hint: show first that the logistic distribution has characteristic function $\frac{\pi i t}{\sin (\pi i t)}=\Gamma(1-i t) \Gamma(1+i t)$. Then use a key property of the gamma function.
3. Complete the proof of Theorem 7.2 by_proving that for the von Mises generator of Best and Fisher, $\lim _{\kappa \rightarrow \infty} c=\sqrt{\frac{2 \pi}{e}}$.
4. The Pearson system. In the beginning of this century, Karl Pearson developed his well-known famlly of distributions. The Pearson system was, and still is, very popular because the famlly encompasses nearly all wellknown distributions, and because every allowable combination of skewness and kurtosls is covered by at least one member of the famlly. The family has 12 member distributions, and is described in great detail in Johnson and Kotz (1970). In 1973, McGrath and Irving polnted out that random varlates for 11 member distributions can be generated by slmple transformations of one or two beta or gamma random varlates. The exception is the Pearson IV distribution. Fortunately, the Pearson IV density is log-concave, and can be dealt with quite efficiently using the methods of section VII. 2 (see exerclse
VII.2.1). The Pearson densities are llsted In the table below. In the table, a, b, c, d are shape parameters, and C is a normallzation constant. Verlfy the correctness of the generators, and in dolng so, determine the normallzation constants C.

PEARSON DENSITIES				
Pearson	$f(x)$	PARAMETERS	SUPPORT	GENERATOR
I	$C\left(1+\frac{x}{a}\right)^{b}\left(1-\frac{x}{c}\right)^{d}$	$b, d>-1 ; a, c>0$	$[-a, c]$	$\begin{gathered} \frac{(a+c) X}{X+Y} a \\ X \operatorname{gamma}(b) \\ Y \operatorname{gamma}(d) \end{gathered}$
II	$C\left(1-\left(\frac{x}{a}\right)^{2}\right)^{b}$	$b>-1 ; a>0$	$[-a, a]$	$\begin{gathered} \frac{a(X-Y)}{X+Y} \\ X \operatorname{gamma}(b+1) \\ Y \operatorname{gamma}(b+1) \end{gathered}$
III	$C\left(1+\frac{x}{a}\right)^{b a} e^{-b x}$	$b a>-1 ; b>0$	$[-a, \infty]$	$\begin{gathered} \frac{X}{b}-a \\ X \operatorname{gamma}(b a+1) \\ \hline \end{gathered}$
IV	$C\left(1+\left(\frac{x}{a}\right)^{2}\right)^{-b} e^{-c \arctan \left(\frac{x}{a}\right)}$	$a>0 ; b>\frac{1}{2}$		
V	$C x^{-b} e^{-\frac{c}{x}}$	$b>1 ; c>0$	$[0, \infty)$	$\frac{1}{c X}$ $X \operatorname{gamma}(b-1)$
VI	$\cdots(x-a)^{b} x^{-c}$	$c>b+1>0 ; a>0$	$[a, \infty)$	$\begin{gathered} a \frac{X+Y}{X} \\ X \operatorname{gamma}(c-b-1) \\ Y \operatorname{gamma}(b+1) \end{gathered}$
VII	$C\left(1+\left(\frac{x}{a}\right)^{2}\right)^{-b}$	$b>\frac{1}{2} ; a>0$		$\begin{gathered} \frac{a N}{\sqrt{X / 2}} \\ N \text { normal } \\ X \operatorname{gamma}\left(b-\frac{1}{2}\right) \end{gathered}$
VIII	$C\left(1+\frac{x}{a}\right)^{-b}$	$0 \leq b \leq 1 ; a>0$	$[-a, 0]$	$\begin{gathered} a\left(U^{-\frac{1}{b-1}}-1\right) \\ U \text { uniform }[0,1] \end{gathered}$
IX	$C\left(1+\frac{x}{a}\right)^{\text {b }}$	$b>0 ; a>0$	$[-a, 0]$	$\begin{gathered} a\left(U^{\frac{1}{b+1}}-1\right) \\ U \text { uniform }[0,1] \end{gathered}$
X	$\frac{1}{a} e^{-\frac{x}{a}}$	$a>0$	$[0, \infty)$	$\begin{gathered} a E \\ E \text { exponential } \end{gathered}$
XI	$C\left(\frac{a}{x}\right)^{\text {b }}$	$a>0 ; b>1$	$[a, \infty)$	$\begin{gathered} a U^{-\frac{1}{b-1}} \\ U \text { uniform }[0,1] \end{gathered}$
XII	$C\left(\frac{a+x}{b-x}\right)^{c}$	$0<b<a ; 0 \leq c<1$	$[-a, b]$	$\begin{gathered} (a+b) X-a \\ X \operatorname{beta}(c+1,1-c) \\ \hline \end{gathered}$

5. The arcsine distribution. A random variable X on $[-1,1]$ Is sald to have an arcsine distribution if its density is of the form $f(x)=\left(\pi \sqrt{1-x^{2}}\right)^{-1}$. Show first that when U, V are lid uniform $[0,1]$ random variables, then $\sin (\pi U), \sin (2 \pi U),-\cos (2 \pi U), \sin (\pi(U+V))$, and $\sin (\pi(U-V))$ are all have
the arcsine distribution. This immedlately suggests several polar methods for generating such random varlates: prove, for example, that if (X, Y) is unlformly distributed in C_{2}, then $\left(X^{2}-Y^{2}\right) /\left(X^{2}+Y^{2}\right)$ has the arcsine distributhon. Using the polar method, show further the following propertles for ild arcslne random varlables X, Y :
(1) $X Y$ is distributed as $\frac{1}{2}(X+Y)$ (Norton, 1978).
(ii) $\frac{1+X}{2}$ is distributed as X^{2} (Arnold and Groeneveld, 1980).
(iii) X is distributed as $2 X \sqrt{1-X^{2}}$ (Arnold and Groeneveld, 1980).
(iv) $X^{2}-Y^{2}$ is distributed as $X Y$ (Arnold and Groeneveld, 1980).
6. Ferreri's system. Ferrerl (1964) suggests the following family of densitles:

$$
f(x)=\frac{\sqrt{b}}{C\left(c+e^{\left.a+b(x-\mu)^{2}\right)}\right.}
$$

where a, b, c, μ are parameters, and

$$
C=\Gamma\left(\frac{1}{2}\right) \sum_{j=1}^{\infty}(-c)^{j-1} e^{-j a} j^{-\frac{1}{2}}
$$

Is a normalization constant. The parameter c takes only the values ± 1. As $a \rightarrow \infty$, the density approaches the normal density. Develop an efficient untformly fast generator for this family.
7. The famlly of distributions of the form $a X+b Y$ where $a, b \in R$ are parameters, and X, Y are id gamma random varlables was proposed by McKay (1932) and studled by Bhattacharyya (1942). Thls famlly has basically two shape parameters. Derive its density, and note that its form is a product of a gamma density multiplled with a modified Bessel function of the second kind when $a, b>0$.
8. Toranzos's system. Show how you can generate random varlates from Toranzos's class (Toranzos, 1952) of bell-shaped densltles of the form $C x^{c} e^{-(a+b x)^{2}} \quad(x>0)(C$ is a normalization constant) In expected time unlformly bounded over all allowable values of the parameters. Do not use C in the generator, and do not compute C for the proof of the unlform boundedness of the expected time.
9. Tukey's lambda distribution. In 1960, Tukey proposed a versatlle famlly of symmetric densities in terms of the inverse distribution function:

$$
F^{-1}(U)=\frac{1}{\lambda}\left(U^{\lambda}-(1-U)^{\lambda}\right)
$$

where $\lambda \in R$ is a shape parameter. Clearly, if U is a unlform $[0,1]$ random varlate, then $F^{-1}(U)$ has the given distribution. Note that the density is not known in closed form. Tukey's distribution was later generallzed in several directions, first by Ramberg and Schmelser (1972) who added a location and a scale parameter. The most significant generallzation was by Ramberg and Schmelser (1874), who deflned

$$
F^{-1}(U)=\lambda_{1}+\frac{1}{\lambda_{2}}\left(U^{\lambda_{3}}-(1-U)^{\lambda_{4}}\right) .
$$

For yet another generallzation, see Ramberg (1875). In the RambergSchmeiser form, λ_{1} is a locatlon parameter, and λ_{2} is a scale parameter. The merlt of thls family of distributions is its versatillty with respect to its use in modeling data. Furthermore, random varlate generation is trivial. It is therefore important to understand which shapes the density can take. Prove all the statements given below.
A. As $\lambda_{3}=\lambda_{4} \rightarrow 0$, the density tends to the logistic density.
B. The density is J-shaped when $\lambda_{3}=0$.
C. When $\lambda_{1}=\lambda_{3}=0$, and $\lambda_{2}=\lambda_{4} \rightarrow 0$, the density tends to the exponential density.
D. The density is U-shaped when $1 \leq \lambda_{3}, \lambda_{4} \leq 2$.
E. Glve necessary and sufficlent conditions for the distribution to be truncated on the left (right).
F. No positive moments exist when $\lambda_{3}<-1$ and $\lambda_{4}>1$, or vice versa.
G. The density $f(x)$ can be found by computing $1 / F^{-1 \prime}(u)$, where u is related to x via the equallty $x=F^{-1}(u)$. Thus, by letting u vary between 0 and 1 , we can compute pairs ($x, f(x)$), and thus plot the denslty.
H. Show that for $\lambda_{1}=0, \lambda_{2}=0.1975, \lambda_{3}=\lambda_{4}=0.1349$, the distribution functlon thus obtained differs from the normal distribution function by at most 0.002 .

For a general description of the family, and a more complete blbllography, see Ramberg, Tadikamalla, Dudewicz and Mykytka (1979).
10. The hyperbolic distribution. The hyperbolic distribution, introduced by Barndorff-Nlelsen $(1977,1978)$ has denslty

$$
f(x)=\frac{\zeta}{2 \alpha K_{1}(\varsigma)} e^{-\alpha \sqrt{1+x^{2}}+\beta x}
$$

Here $\alpha>|\beta|$ are the parameters, $\zeta=\sqrt{\alpha^{2}-\beta^{2}}$, and K_{1} is the modifled Bessel function of the third kind. For $\beta=0$, the density is symmetric. Show the following:
A. The distribution is log-concave.
B. If N is normally distributed, and X is GIG $\left(1, \alpha^{2}-\beta^{2}, 1\right)$, then $\beta X+N \sqrt{X}$ has the glven density.
C. The parameters for the optlmal non-universal rejection algorithm for log-concave densitles are explicitly computable. (Compute them, and obtaln an expression for the expected number of lterations. Hint: apply Theorem VII.2.6.)
11. The hyperbola distribution. The hyperbola distribution, introduced by Barndorff-Nielsen (1978) has density

$$
f(x)=\frac{1}{2 K_{0}(\varsigma) \sqrt{1+x^{2}}} e^{-\alpha \sqrt{1+x^{2}}+\beta x}
$$

Here $\alpha>|\beta|$ are the parameters, $\varsigma \sqrt{\alpha^{2}-\beta^{2}}$, and K_{0} is the modified Bessel function of the third kind. For $\beta=0$, the density is symmetric. Show the following:
A. The distribution is not log-concave.
B. If N is normally distributed, and X is $\operatorname{GIG}\left(0, \alpha^{2}-\beta^{2}, 1\right)$, then $\beta X+N \sqrt{X}$ has the given denslty.
12. Johnson's system. Every possible combination of skewness and kurtosis corresponds to one and only one distribution in the Pearson system. Other systems have been designed to have the same property too. For example, Johnson (1849) introduced a system defined by the densities of sultably transformed normal (μ, σ) random variables N : his system consists of the S_{L}, or lognormal, densitles (of e^{N}), of the S_{B} densitles (of $e^{N} /\left(1+e^{N}\right)$), and the S_{U} densitles (of $\sinh (N)=\frac{1}{2}\left(e_{*}^{N}-e^{-N}\right)$). This system has the advantage that fitting of parameters by the method of percentlles is simple. Also, random varlate generation is slmple. In Johnson (1954), a slmilar system \ln which N is replaced by a Laplace random varlate with center at μ and variance σ^{2} is described. Glve an algorithm for the generation of a Johnson system random varlable when the skewness and kurtosls are given (recall that after normalization to zero mean and unit varlance, the skewness is the third moment, and kurtosis is the fourth moment). Note that this forces you In effect to determine the different reglons in the skewness-kurtosls plane. You should be able to test very quickly which reglon you are in. However, your main problem is that the equations llnking μ and σ to the skewness and kurtosis are not easily solved. Provide fast-convergent algorithms for their numerical solution.

