Chapter Six
THE POISSON PROCESS

1. THE POISSON PROCESS.

1.1. Introduction.

One of the most Important processes occurring In nature Is the Polisson point
process. It 1s therefore Important to understand how such processes can be simu-
lated. The methods of simulation vary with the type of Polsson point process, l.e.
with the space In which the process occurs, and with the homogenelty or non-
homogeneity of the process. We will not be concerned with the geneslis of the
Polsson polnt process, or with important applications In various areas. To make
thls materlal come allve, the reader Is urged to read the relevant sectlons In
Feller (1965) and Cinlar (1975) for the basic theory, and some sections in Trived]
(1982) for computer sclence applications.

In a first step, we will define the homogeneous Polsson process on [0,00): the
process Is entirely determined by a collection of random events occurring at cer-
taln random tlmes 0< T ,<T,< - - ‘. These events can correspond to a varlety
of things, such as bank robberles, births of quintuplets and accidents lnvolving
Montreal tax! cabs. If N(t,t,) Is the number of events occurring In the time
Interval (¢,,¢,), then the following two conditions are often satlsfled:

(1) For disjoint Intervals (f,,t,),(t3ty), . -
N (t,,t,),N(t3t,),... are Independent.

(1) N (t,,t,) Is distributed as N (0,t,~t,), l.e. the distrlbutlon of the number of

events in a certaln time Interval Just depends upon the length of the Inter-
val.

. the random varlables

The amazing fact Is that these two conditions lmply that all random varl-
ables N (t,,t,) are Polsson distributed, and that there exlsts a constant A>0 such
that N(¢{,t+a) Is Polsson Aa for all £ >0, a >0. See e.g. Feller (1965). Thus,
the Polsson distribution occurs very naturally.

The previous concept can be generalized to R ¢, Let A be a subset of R d,
and let N be a random varlable taking only Integer values. Let Xv ..., Xy be
a sequence of random vectors taking values In A. Then we say that the X;'s
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deflne a uniform (or: homogeneous) Polisson process on A If

(A) For any finlte collectlon of finlte-volume nonoverlapping subsets of A, say
A, ..., A, the random varlables N(A,), . .., N(A;) are independent.

(B) For any Borel subset BCA, the distrlbution of N(B) depends upon
Vol (B ) only.

Agaln, these assumptlons Imply that all N(B)'s are Polsson distributed with
parameter A Vol (B) for some A>0. X\ will be called the rate , or rate parameter,
of the homogeneous Polsson process on A . Examples of such processes in multidi-
mensional Euclldean space Include bacteria on a Petrl plate and locatlons of
murders 1n Houston.

Theorem 1.1.
Let B CA be fixed sets from R ¢, and let 0< Vol (B )<oo. Then:

(1) If X, X,,... determlnes a uniform Polsson process on A with parameter X,
then for any paritlon B, . . ., By of B, we have that N(B,), ..., N(B;)
are independent Polsson distributed with parameters X Vol (B; ).

(1) Let N Dbe Polsson distributed with parameter X\ Vol(B), and let
X, ..., Xy be the first N random vectors from an 11d sequence of random
vectors uniformly distributed on B. For any partition B,, ..., By of B,
the sequence N (B,), ..., V(B ) 1s sequence of Independent Polsson ran-
dom varlables with parameters X Vol(B,), . . ., XN Vol (B;). In other words,
X, ..., Xy determines a uniform Polsson process on B with rate parame-
ter .

Proof of Theorem 1.1.

We will only show part (11). Assume that Vol(B)=1 and that B s partl-
tioned Into two sets, A 1,A o With respective volumes p and ¢ =1-p . For any two
Integers ¢,7 >0 with 1 +7 =k, we have

P(N(A)=:,N(A,)=7)

= P(N(B)=k)P (N(A)=i,N(A)=7 | N(B)=k)
Eo(k) ..

“_"(C—)“)'\ET ['i]p’q]

{ )
= (e l?;_.)(e—kq 2‘_({__) ,
1! 2!
and therefore, V(A ) and V(A ,) are Independent Polsson random varlables as

clalmed. This argument can be extended towards all finlte partitlons and all post-
tive values for Vol (B). |}
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1.2. Simulation of homogeneous Poisson processes.

If we have to slmulate a uniform.Polsson process on a set A CR 4 then we
need to generate a number of random vectors X; €A . This can be done as follows
(by Theorem 1.1):

Homogeneous Poisson process generator

Generate a Poisson random variate N with parameter A Vol (A).
Generate iid random vectors X, . . . , Xy uniformly distributed on A .
RETURN X, ..., Xy

To generate N 1t Is virtually useless to use an O (1) expected tlme algorithm
because In the remalnder of the algorithm, at least time Q(/V) Is spent. Thus, 1t
1s recommended that if the algorithm Is used, the Polsson random varlate be gen-
erated by a very simple algorithm (with expected time typlcally growing as A).
For specific sets A, other methods can be used which do not require the explliclt
generation of a Polsson random variate. There are three cases that we will use to
1llustrate this:

(1) A 1s [0,00).
(11) A is a circle.
(111) A 1s a rectangle.

To do so, we need an Interesting connectlon between Polsson processes and the
exponential distributlion.

Theorem 1.2.

Let 0<T,<T,< - - be a uniform Polsson process on [0,00) with rate
parameter A >0. Then

MT ~0)N(T =T DN T =T oo

are distributed as iid expohentlal random varlables.

Proof of Theorem 1.2.
For any k£ 20 and any z >0,
P(Ty(>Tp+a | Tp) = P(Tp €l Th Ty +2] | Ty)
= P (N o ,)=0)

0
~\z >‘_
ot

~\Z

=e

= ¢
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Thus, given Ty, T} ,,-T; Is exponential with parameter A. Generallzlng this
argument to obtaln the clalmed Independence as well, we see that for any finlte
k, and any sequence of nonnegatlve numbers 4,2, . .

R

P(Tlc+1_Tk > T ’Tk—Tk—l>xk—1) C, T2—T1>$1,T1—'0>.’L‘0)

= P(N(T/;,T/;-I-Ik):O’ ce ey N(0.$0)=0)
=P (N(o,zo+z1+ co +2,)=0)
k

AN e
=g '=0

k
= He')‘z‘ )

f =0

This concludes the proof of Theorem 1.2. |

Theorem 1.2 suggests the followlng method for simulating a uniform Polsson
process on A =[0,00): '

Uniform Poisson process generator on the real line: the exponential spacings
method

T «0 (auxiliary variable used for updating the ”time”)
k <0 (initialize the event counter)
REPEAT
Generate an exponential random variate E .
k+k+1

E
T‘—T'l“i-

Tk «~T
UNTIL False (this is an infinite loop; a stopping rule can be added if desired).

Thls algorithm is easy to lmplement because no Polsson random varlates are
needed. For other slmple sets A, there exist trlvlal generallzations of Theorem
1.2. For example, when A Is [0,t]X][0,1] where possibly ¢=00,
0<T,<T,<--- s a unlform Polsson process with rate A\ on [0,f], and
U,,U,,... 1s a sequence of 11d uniform [0,1] random varlables, then

(T U DT 5 Up)eene
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determines a unlform Polsson process with rate A on A .

Example 1.1. A uniform Poisson process on the unit circle.

If the set A 1s the circle with unit radius, then the varlous properties of uni-
form Polsson processes can be used to come up wlith several methods of genera-
tlon (these can be extended to d dimenslonal spheres). Assume that A\ 1s the
deslred rate. First, we could simply generate a Polsson A7 random varlate N, and
then return a sequence of N 11d random vectors uniformly distributed in the unit
circle. If we apply the order statistics method suggested by Theorem 1.2, then the
Polsson random varlate Is Implicitly obtalned. For example, by switching to
polar coordinates (R ,f), we note that for a unlform Polsson process, R and 0 are
Independent, and that a randomly chosen R has denslty 2r (0<r <1) and that
a randomiy chosen 6 Is uniformly distributed on [0,27]. Thus, we could proceed as
follows: generate a uniform Polsson process 0<f,<f,< - - <fy Wwith rate

parameter -3— on [0,27] by the exponentlal spacings method. ExIt with
T

LR, ..., 0N .Ry)

where the R;'s are 11d random varlates with density 2r (0<r <1) which can be
generated individually as the maxima of two Independent uniform [0,1] random
varlates. There Is no speclal reason for applying the exponential spaclngs method
to the angles. We could have plcked the radll as well. Unfortunately, the ordered
radili do not form a one-dimenslonal uniform Polsson process on [0,1]. They do
form a nonhomogeneous Polsson process however, and the generation of such
processes will be clarified in the next subsection. JJ

1.3. Nonhomogeneous Poisson processes.

There are situations In which events occur at "random tlmes” but some
times are more likely than others. This Is the case for arrlvals In Intenslve care
unlts, for job submlssions In a computer centre and for Injurles to NFL players. A
very good model for these cases is the nonhomogeneous Polsson process model,
defilned here for the sake of convenlence on [0,00). This Is the most Important
case because "tlme” Is usually the running varlable.

A nonhomogeneous Polsson process on [0,00) Is determlined by a rate func-
tlon A(t)>0 (¢t >0) , which can be consldered as a density of sorts, with the
o o]

difference that f>\(t) dt 1s not necessarlly 1 (usually, 1t 1s oo). The process Is
o]

defined by the following property: for all finite collections of disjolnt Intervals

Ay, ..., A, the numbers of events happening In these Intervals (N, ..., N;)

are Independent Polsson random variables with parameters
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axg)ydt a<i<k).
A;

Let us now revlew how such processes can be simulated. By simulation, we under-
stand that the tlmes of occurrences of events 0< T ,<T,< - - - are to be glven
In Increasing order. The major work on slmulation of nonhomogeneous Polsson
processes 1s Lewls and Shedler (1979). Thls entire section is a reworked verslon of
their paper. It 1s Interesting to observe that the general principles of continuous
random varlate generation can be extended: we will see that there are analogs of
the Inversion, rejection and compositlon methods.
The role of the distributlon functlon will be taken over by the Integrated

rate function

t

A(t) = f>\(u) du .
0

We begln by noting that given T, =t, T, .;—T, has distributlon function
F(z) = 1-e W+ )A1) (5 >0)

oo
provided that llm A(¢)==co (l.e, fk(t) dt =o0). This follows from the fact that
{—00 )
F(z)=P(Ty1-T, >z | T,=t)
= P(N(t,t+z)=0|T,=t)
= ¢ (AlL+2)-A) (5 >0).

Thus, T, ., Is distributed as T, +F(U) where U 1s a uniform [0,1] random
variate. Interestingly, writing U as 1-¢~E (where E denotes an exponential ran-
dom varlable), we see that T, ., Is also distributed as A™'(E +A(T,)). In other
words, we need to Invert A. Formally, we have (see also Cinlar (1975) or Bratley,
Fox and Schrage, 1983):
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Algorithm based on inversion of the integrated rate function

T «0 (T will be an auxiliary variable)
k «—0 (k is a counter)
REPEAT
Generate an exponential random variate E .
k+—k+1
T—T+ANE+AT))
Tk «T
UNTIL False

Example 1.2. Homogeneous Poisson process.
For the speclal case A(t )=\ , A(t)=\t, it Is easlly seen that In the algo-
rithm given above, the step T« T +A"Y(E +A(T)) reduces to T<—-—T+—€—. Thus,

we obtaln the exponential spacings method agalin. .

Example 1.3.
To model morning pre-rush hour trafflc, we can sometimes take \(¢)==t,
t2
which glves A(¢ )=-2—. The step T — T +A"Y(E +A(T)) now needs to be replaced
by

T—VT*+2E

If the rate function can be split Into a sum of rate functions, as In
n
At)= 3 2(t)
f =1

and If 0<T;;<T;,< - ,1Z¢<n are Independent reallzations of the Indivi-
dual nonhomogeneous Polsson processes, then the merged ordered sequences form
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a reallzatlon of the nonhomogeneous Polsson process with rate function \(t).
This corresponds to the composition method, but the difference now Is that we
need reallzatlons of all component processes. The decomposition can be used
when there 1s a natural decomposlition dictated by the analytical form of \(¢).
Because the basle operatlon In merglng the processes Is to take the minlmal value
from the n processes, 1t could be advantageous for large n to store the tlmes in a
heap contalnlng n elements. We summarize:

The composition method

Generate T,,, ..., T,, for the n Poisson processes, and store these values together with
the indices of the corresponding processes in a table.

T «0 (T is the running time)
k —0 REPEAT
Find the minimal element (say, T;;) in the table and delete it.
k+—Fk+1 .
Tk At T,'J'
Generate the value T; ;,, and insert it into the table.
UNTIL False

The third general principle Is that of thinning (Lewls and Shedler, 1979).
Simlilar to what we did In the relectlon method, we assume the exlstence of an
easy domlnating rate function u(t):

AE) < p(t),all t .

Then the Idea Is to generate a homogeneous Polsson process on the part of the
positive halfplane between O and u(t), then to conslder the homogeneous Pols-
son process under A, and flnally to exit with the z -components of the events in
thls process. This requires a theorem simlilar to that preceding the relection
method.
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Theorem 1.3.

Let A(¢)=>0 be a rate functlon on [0,00), and let A be the set of all (z,y)
with z >0,0<y <\(z ). The following Is true:

(1) If (X,,Y,)... (with ordered X;'s ) Is a homogeneous Polsson process with
unit rate on A, then 0<X ,<X,< :: - Is a nonhomogeneous Polsson pro-
cess with rate function \(¢).

() If 0<X,<X,< - 1s a nonhomogeneous Polsson process with rate func-
tlon X\(¢), and U,,U,,... are 11d uniform [0,1] random varlables, then
(X U MX DX 3, Ux X 5)),... 1s a homogeneous Polsson process with unit
rate on A .

(m) If BCA , and (X,,Y,),... (with ordered X;'s ) Is a homogeneous Polsson
process with unit rate on A, then the subset of polnts (X,,Y;) belonging to
B forms a homogeneous Polsson process with unit rate function on B.

Proof of Theorem 1.3. We verlfy that for nonoverlapplng Intervals
A, ..., A, the number of X;'s falling In the Intervals (which we shall denote
by N(A,), ..., N(A;)), satisty:

P(N(A1)=i1; Sy N(Ak )='ik)
= P(N(A,)=t,, ..., NA)=1%)

(J A )dt)
v f | - Af £t )dt
=1II ——————e S
=1 ] '
where A refers to the Intersection of the infinite slice with vertical projection A;
with A . This concludes the proof of part (1).

To show (11), we can use Theorem 1.1: It suffices to show that for all finite
sets A 1» the number of random vectors /N falling In A1 Is Polsson distributed
with parameter Vol (4 1)» and that every random vector in this set Is uniformly
distributed in it. The distribution of N Is Indeed Polsson with the glven parame-
ter because the X,- sequence determines a nonhomogeneous Polsson process with
the correct rate functlion. Also, by Theorem II.3.1, a random vector (X ,U XX))
is uniformly distributed in A . i U 1s uniformly distributed on [0,1] and X 1Is a
random vector with denslty proportional to A(z ) restricted to A,. Thus, 1t
suffices to show that If an X Is plcked at random from among the X;'s In A,
then X 1Is a random vector with denslty proportional to \(z ) restricted to A ,.
Let B be a Borel set contalned In A,, and let us write Agp and \4, for the

Integrals of A over B and A, respectively. Thus,
P(X€EB |X€A,)=P(X€B |N(4,)=1)
P (N (B)=1,N (A ,-B )=0)
B P(N(A)=1)
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Ap e s, -(Na~Xg)

I

M4,
1

—[\=) dz ,
>\AlB

which was to be shown.

Part 3 follows from Theorem 1.1 on homogeneous Polsson processes without
further work. JJij

Conslder now the thinning algorithm of Lewls and Shedler (1979):

The thinning method (Lewis and Shedlef)

T +o0
k+0
REPEAT

Generate Z, the first event in a nonhomogeneous Poisson process with rate function
# occurring after T . Set T 2.

Generate a uniform {0,1] random variate U.

_~N2Z)
FrU<—=
— u(2)
THEN k —k+1, X —T

UNTIL Faise

The sequence of Xk 's thus generated 1s clalmed to determine a nonhomogeneous
Polsson process with rate function A. Notice that we have taken a nonhomogene-
ous Polsson process 0< Y ,<Y,< - -+ with rate function 4 and elimlnated some
polnts. As we know, (Y,,U,u(Y,)),... Is a homogeneous Polsson process with unlt
rate under the curve of u \f U,,U,,.. are 1id uniform [0,1] random varlates
(Theorem 1.3). Thus, the subsequence falling under the curve of X determlines a
homogeneous Polsson process with unit rate under that curve (part (i) of the
‘'same theorem). Finally, taking the z-coordinates only of that subsequence gives a
nonhomogeneous Polsson process with rate function A.

The nonhomogeneous Polsson process with rate function p s usually
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obtalned by the Ilnverslon method.

Example 1.4. Cyclic rate functions.

The following example Is also due to Lewls and Shedler (1979): conslder a
cyclic rate function

A(t) = MN1+cos(t))

with as obvlous cholce for dominating rate function u(t)==2\. We have

T +0
)
REPEAT
Generate an exponential random variate £ .
E
T—T+—
T
Generate a uniform [0,1] random variate U.
F U< 1+c<;s(T)
THEN k—k+1, X3 «T
UNTIL False

It goes without saylng that the squeeze principle can be used here to help avold-
Ing the cosine computation most of the time. JJjj

A final word about the efficlency of the algorithm when used for generating a
nonhomogeneous Polsson process on a s$t, [0,t]. The expected number of events

needed from the domlnating process 1s fu(u) du , whereas the expected number

0
t

of random varlates returned is f Au ) du . The ratio of the expected values can be
0

considered as a falr measure of the efficlency, comparable 1n spirit to the rejection

constant In the standard rejection method. Note that we cannot use the expected

value of the‘ratlo because that would In general be oo In view of the positlve pro-

~[Mu) du
bability (e ° ) of returning no varlates.
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1.4. Global methods for nonhomogeneous Poisson process simulation.

Nonhomogeneous Polsson processes on [0,00) can always be obtained from
homogeneous Polsson processes on [0,00) by the following property (see e.g. Cin-
lar (1975, pp. 98-99)):

Theorem 1.4. -

If 0<T,<T,< ‘- Is a homogeneous Polsson process with unlt rate on
[0,00), and If A 1s an Integrated rate function, then

O<A™ T )<A T )< - -

determlines a nonhomogeneous Polsson process with Integrated rate function A.

Proof of Theorem 1.4.

‘We have lmpllcitly shown thls In the previous section. Let z‘l,... be Integers,
let £ be an Integer, and let N (A ) be the number of polnts In a set A C[0,00).
Then, N (A) 1s equal to N*(A(A)) where N¥ refers to the homogeneous Polsson
process, and A(A ) Is the set A transformed under A. Thus, If A, ..., A; are
disjoint sets, 1t 1s easlly seen that N(A,), ..., N(A;) are distributed as
N#*(A(A ), ..., N*¥(A(A;)), which Is a sequence of independent Polsson ran-
dom varlables with parameters equal to the Lebesgue measures of the sets A(A;),
l.e. f>\(t) dt whete X\ Is the a.e. derlvative of A. Thls shows that the transformed

A :
process Is a nonhomogeneous Polsson process with Integrated rate function A. i

o]

We observe that if f)\(t) dt <co, then the functlon A™! is not defined for

o]
(e o]

very large arguments. In that case, the T;'s with values exceeding f>\(t) dt
0
should be ignored. We conclude thus that only a finite number of events occur 1n

such cases. No matter how large the finite value of the Integral s, there 1s always
a positlve probability of not having any event at all.

Let us apply thils theorem to the simulation restricted to a flnite Interval
(0,t,]. This 1s equlvalent to the Infinlte Interval case provlded that AE) s
replaced by

{X(t) (0=t <to)
0 (t>to)
Thus, 1t suffices to use A™}(T,),... for all T;'s not exceeding A({,). The Inversion

of A Is sometimes not practical. The next property can be used to avold 1t, pro-
vided that we have fast methods for generating order statistics with non-uniform
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densities (see e.g. chapter V). The stralghtforward proof of Its validity Is left to
the reader (see e.g. Cox and Lewls, 1968, chapter 2).

Theorem 1.5.

Let N ©be a Polsson random varlate with parameter A(f,). Let

0<T,<T,< -+ <Tpy Dbe order statistics corresponding to the distribution
function

A(t)
__A(to) (0<t <ty).,

then thls subsequence determines a nonhomogeneous Polsson process on [0,¢]
with Integrated rate function A.

Both Theorem 1.4 and Theorem 1.5 lead to global methods, l.e. methods in
which a nonhomogeneous Polsson process can be obtalned from another process,
usually In a separate pass of the data. The methods of the previous section, In
contrast, are sequential: the event times of the process are generated dlirectly
from left to right. Since the one-pass sequential approach allows optlonal stop-
plhg and restarting anywhere in the process, 1t 1s definitely of more practical
value. In some applications, there 15 also a considerable savings In storage because
no Intermediate (or auxlliary) process needs to be stored. Flnally, some global
methods requlre the computation of A7}, whereas the thinnlng method does not.
This Is an Important consideration when A 1s difficult to compute.

For more examples, and addltlonal detalls, we refer to the exerclses and the
other sectlons In this chapter. Readers who do not speclallze In random process

generation will probably not galn very much from reading the other sections In
this chapter.

1.5. Exercises.
o o]
1. When f A(t) dt <oo, the inversion and thinning methods for nonhomogene-
0
ous Polsson process generation need modifylng. Show how.

2. Let N be the total number of events (points) In a nonhomogeneous Polsson
process on the positive real line with rate function \(t). Show that there are
only two possible situations:




VI.1.THE POISSON PROCESS 259

3]

P (N <oo)=1 (fX\(t) dt <o0)
. ]

P(N <c0)=0 ([X\t) dt =c0).
(o}

3. The followlng rate functlon Is glven to you: A(¢) Is plecewlse constant with
breakpolnts at «,2a¢,3a,4a, ..., where for t€[ia,(f+1)a), \t)=X,,
t ==0,1,2,.... Generallze the exponentlal spacings method for generating a
nonhomogeneous Polsson process with thls rate function. Hint: do not use
transformations of exponentlal random varlates when you cross breakpoints,
but rely on the memoryless property of the exponential distribution.

4. We are Interested in the generation of a nonhomogeneous Polsson process
wlth log-linear rate functlon '

NE) = coe ™ (t>0).

where ¢,>0, c €R. There are two lmportant situations: when ¢ <O, the
process dles out and only a flnlte number of events occurs. The process
corresponds to an exponential population exploslon however when ¢ >0.
Generate such a process by the Inversion-of-A method.

5. This 1s a contlnuatlon of the previous exerclse related to a method of Lewls
and Shedler (1978) for simulating non-homogeneous Polsson processes with

¢
log-linear rate function. Show that if N Is a Polsson (—--9-) random varlable,
c

and E,E,,... Is a sequence of 11d exponential random varlates, then, assum-
ing ¢ <0,

c(N-t+1)

(1<¢<N)

are distributed as the gaps between events In a nonhomogeneous Polsson
process with rate functlon A(t) = c,e‘°"® (£>0) on [0,00). Glve the
algorithm that explolts thls property. Note that thls implles that the
Co
expected number of events In such a process Is —-—c—<oo. For the case ¢ >0,
show how by flipping the time axls around, you can reduce the problem to
that of the case ¢ <0 provided that one Is only Interested In simulation on a
finite time interval.

8. Glve an algorithm for generatlng random variates with a log-quadratic rate
function. Hint: conslder several cases as In the prevlous two exerclses (Lewls
and Shedler, 1979).
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2. GENERATION OF RANDOM VARIATES WITH A GIVEN
HAZARD RATE.

2.1. Hazard rate. Connection with Poisson processes.

In this section we conslder the problem of the computer generation of ran-
dom varlables with a given hazard rate A on [0,00). If X is a random varlable
with denslty f and distribution function F, then the hazard rate 4 and
cumulative hazard rate H are Inter-related as follows:

_J (=) .
h@) =170y

H(z)= [h(y) dy = -log(1-F (z));
0

F(z)= 1-¢~H),
f(z)=h(z)e HE)

The hazard rate plays a cruclal role 1n retlabllity studles (Barlow and Proschan,
1985) and In all situations Involving Ifetlme distributions. Note that
o0

fh(y) dy=co and thus lim H(z)=ococ. The key distributlon now Is the

0 T 00

exponential: 1t has constant hazard rate of value 1. Roughly speaklng, hazard

rates tending to O correspond to denslties with larger-than-exponential talls, and

diverging hazard rates are for densities with smaller-than-exponentlal talls. For

compact support distributions, we have llen H(z)=o00 for some filnite c
AN

(corresponding to the rightmost point in the support). Sometimes, b or H 1Is
given, and not f or F. In particular, when only A 1s given, f cannot be com-
puted exactly because we would first need to compute H by numerical Integra-
tion. Thus, there Is a need for methods which allow us to generate random vari-
ates with a glven hazard rate h. Fortunately, such random varlates are inti-
mately connected to Polsson polnt processes. '

Theorem 2.1.

Let 0<T,<T,< --- be a nonhomogeneous Polsson process with rate
function h (and thus Integrated rate function H). Then T, Is a random varlable
with hazard rate h . ¢

Proof of Theorem 2.1.
Note that for z >0,

P(T,<z)=1-P (no event times In [0,7])

~[h(t) dt
= 1-¢ °
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= 1-¢~H(z)

which was to be shown. JJjj

This connection helps us understand the algorithms of this section. We will
discuss the Inversion, composition and thinning methods. For speclal sub-classes
of hazard rate functlons, there are universally applicable (black box) methods
that are worth reporting. In particular for DHR distributions (distributions
with decreaslng hazard rate), the method of dynam!c thinning will be Introduced
and analyzed (Devroye, 1985). Other classes, such as the class of IHR distribu-

tions (distributlons with Increasing hazard rate), are dealt with indlrectly In the
text and exerclses.

2.2. The inversion method.

For generating a random varlate with cumulative hazard rate H, it suffices
to Invert an exponentlal random varlate:

Inversion method

Generate an exponential random variate E .
RETURN X —H"Y(E)

If H™! 1s not explicitly known, then we are forced to solve H(X)=F for X by
some lIteratlve method. Here the discusslon of the standard Inversion method for
distribution functions applies agaln.

We can easlly verify that the algorithm 1s valld, elther by using the connec-
tlon with Polsson processes given In Theorem 2.1, or directly: for z >0 observe
that If H s strictly increasing, then

PHYE)<z)=P((E<H(z)) = 1-e 7@ = F(z) .

When H 1Is not strictly increasing, then the chaln of Inequallties remains valld for
any conslstent deflnltlon of H 1.

This method Is difficult to attribute to one person. It was mentloned in the
works of Cinlar (1975), Kaminsky and Rumpf (1977), Lewls and Shedler (1979)
and Gaver (1979). In the table below, a llst of examples Is glven. Baslcally, this
llst contains distributions with an easlly Invertible distribution function because
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F(z)=1-¢H®)

f(z) h(z) H(z) HYE)
1
az® ‘e’ (a >0)(Weibull) az®! z° E*
E
a a £
— (P a_
RV (Pareto) e alog(l+z) [ e -1
a-1 L
az®™! (a >0,z <1) (power function) :z - ~log(1-z°%) | (1-e7F)¢
-z
2.3. The composition method.
When h=h+ - - +h, where the h;'s are in turn hazard rates, then we
can use Theorem 2.1 dlrectly and use the fact that it suffices to conslder the
minlmum of n random varlables X,, ..., X, with the Indlvidual hazard rates

h;. When the Indlvidual cumulative hazard rates are H;, then this can be shown
directly: for z >0,

n
Pmin(X,, ..., X,)>z)= J[e ") = ¢ H)
§=1
o0

If the decomposition Is such that for some h; we have fh,-(t) dt <oco, then the

o]
method s still applicable If we switch to nonhomogeneous Polsson processes.

Composition method

X o0
FOR t =1 TO n DO

Generate Z distributed as the first event time in a nonhomogeneneous Poisson pro-
cess with rate function h; (ignore this if there are no events in the process; if
o0

fh,- ==00, then Z has hazard rate h;).
4]

IF Z <X THEN X «Z
RETURN X

Usually, the composition method s slow because we have to deal with all the
Indlvidual hazard rates. There are shortcuts to speed things up a bit. For exam-
ple, after we have looked at the first component and set X equal to the random
varlate with hazard rate A, 1t suffices to conslder the nonhomogeneous Polsson
processes restricted to [0,X ]. The point Is that If X 1s small, then the probability
of observing one or more event times in this Interval 1s also small. Thus, often a
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quick check sufflces to avold random varlate generation for the remalning nonho-
mogeneous Polsson processes. To lllustrate thls, decompose b as follows:

h(z) = hi(z)+hy(z)

where &, Is a hazard rate which puts its mass near the origin. The functlon h, Is
nonnegative, but does not have to be a hazard rate. It can be consldered as a
small adjustment, h, belng the maln (easy) component. Then the followlng algd-
rithm can be used:

Composition method with quick acceptance

Generate a random variate X with hazard rate h,.
Generate an exponential random vartate E .
IF E <H X) (H, is the cumulative hazard rate for h,)
THEN RETURN X «—H,XE)
ELSE RETURN X

Somethlng can be galned If we replace X «+H,}(E ) by a step In which we return
a random varlate X distributed with hazard rate

1-F ,(z)
b X )

which can be done by methods that do not Involve Inversion. The expected
number of times that we need to use the second (time-consumling) step In the
algorithm s the probabllity that E <H,(X ) where X has hazard rate A :

P(E SHz(X)) = fhl(y )e"Hl(y)(1~c‘H2(y)) dy
0
= 1-[hy(y)e 7 dy
0
= 1-[(h(y)-hy(y))eFW) dy
0

o0
= fh2(y )e‘H(y) dy
0

o0
ho(y)
= [( )/ (y) dy
o h(y)
where f 1s the denslty corresponding to f . From the last expression we conclude

that 1t Is Important to keep -—,—:— small.
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2.4. The thinning method.

Comblning the theorem about thinning Poisson processes (Theorem 1.4) with
Theorem 2.1 shows that the following algorithm produces a random variate with
hazard rate h, provided that we can generate a nonhomogeneous Poisson polnt
process with rate function g where

h(z) < g(z) (allz).

Thinning method (Lewis and Shedler, 1979)

X0
REPEAT

Generate a random variate A with hazard rate g (X +z) (z 20) (equivalently, gen-
erate the first occurrence in a nonhomogeneous Poisson point process with the same
rate function).

Generate a uniform [0,1] random variate U.
X~X+a

UNTIL Ug (X)<h(X)

RETURN X

This algorithm s most efflclent when ¢ s very simple. In particular, constant

dominating rate functions g ==g, are practlcal, because A can be obtalned as —gg—

. , 0
where F s an exponential random varlate. We will now see what the expected
complexity 1s for thils algorlthm. It 1s annoylng that the distribution of the
number of iterations (which we shall call N) depends very heavily on A and g¢.
Recall, In comparison, that for the relectlon method, the distribution s always
geometric. For the thinning method, we might even have F (N )=o00, so that 1t is
absolutely essentlal to clarify Just how E (/N ) depends upon A and ¢ . The follow-
Ing theorem Is due to Devroye (1985):

Theorem 2.2. (Analysis of the thinning method.)

Let f and F be the density and distribution function correspondlng to a hazard

rate h. Let ¢ >h be another hazard rate having cumulative hazard rate G.

Then the expected number of iteratlons In the thinning algorithm given above is
[e,0]

E(N)= [g(z)a-F(z)) dz = [[ ()G (z) dz .
0 0
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Proof of Theorem 2.2.

Let us call the X varlates in subsequent literatlons X;, where 1 =1,2,....
Simllarly, the unlform [0,1] random varlates used In the algorithm have also sub-
scripts referring to the iteration, as In U,,U,,.... In Theorem 1.4 we have shown
that (X ,,U,9 (X ),(X,,U,9(X,)),... If contlnued at infinltum form a homogene-
ous Polsson process with unlt rate on the area bounded by the z-axls and the
curve g . The only thing that we introduce In the thinning method is a stopplng
rule. We condlition now on X, the random varlate returned in the algorlthm.
Notice that [N 1s 1 plus the number of event times In a nonhomogeneous Polsson
process with rate functlon ¢g-h restricted t<))( [0,X). Thus, conditioned on X,

N -1 1s Polsson distributed with parameter f (9 —h ). This observation uses the
0
propertles of Theorem 1.4 connecting homogeneous Polsson processes In the plane

with nonhomogeneous Polsson processes on the line.

It 1s a simple matter to compute E (N ):
X X _
E(N)=1+E(J(g-h))=1+E(J¢)-E (H(X))
0 0

X
=E(fg)
0

0~ 8 o+~ 3

/G

g(1-F).

Here we used the fact that H (X ) Is exponentlally distributed, and, In the last
step, partial Integration. [

Theorem 2.2 establishes a connection between E (/V) and the size of the tall
of X . For example, when ¢ =c¢ s a constant, then

EN)=cEX).

Not unexpectedly, the value of E (/N ) Is scale-lnvarlant: 1t depends only upon the
shapes of A and ¢. When ¢ Increases, as for example In

g(z)= En]c,-xi ,

t =0

then E (V) depends upon more than just the first moment:

E(N)= Y ——E (X' *).
o ¢t+1
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There are plenty of examples for which £ (N )=c0 even when ¢ (z )=1 for all z.

1
Conslder for example A (z )= parwll which corresponds to the long-talled density

1
f (&)y=——.
(z+1)
For example, we have the following helpful inequallties:

Generally speaking, £ (/N ) 1s small when ¢ and h are close.

Theorem 2.3.
The thinning algorithm satlsfles

g(z) .
ENY= s 45y

1-F (z)
ENY = sw Ty

where F' ,F* are the distribution functlons for 2 and ¢ respectively.

Proof of Theorem 2.3.

The first Inequality follows from
(e 0]
EN)= (L&) ,
W)= JiGy @) ds

and the second inequallty Is a consequence of

1-F (z)

E(N)={f*($);13*—(x‘)' T,

where f * 1s the denslty corresponding to ¢ . JJj

There are examples In which ¢ and h appear to be far apart

(Ilm g(=z) = 00), yet E(N)<oo: consider for example

z oo h(xl)

h(z)= , 9(z )==—-1-——— ,0<a <1. The explanation Is that ¢ and h
T +1 (z +1)* ‘

should be close to each other near the origin and that the difference does not
matter too much In low denslty regions such as the talls.

The expresslon for £ (N ) can be manlpulated to choose the best dominating
hazard rate ¢ from a parametrized class of hazard rates. This will not be
explored any further.



VI.2.HAZARD RATE 2687

2.5. DHR distributions. Dynamic thinning.

In thils sectlon we wlill try to obtain a black box generator for DHR distribu-
tlons, l.e. a generator which does not require a prlorl expliclt knowledge of the
form of h. The method that will be given In thls sectlon Is the method of
dynamic thinning. This princlple In Itself 1s also useful for other distributions
and for the nonhomogeneous Polsson process on the real llne. The algorithm
resembles the thinning algorithm, but the domlnating hazard rate s dynamie, l.e.
1t varles during the execution of the algorithm. '

The DHR distributions form a sub-class of the monotone densities because
f =he ™, h| and H1. It contalns the Pareto distribution with parameter a >O0:

h(z)= xil’

the Welbull distributlon with parameter ¢ <1 and the gamma distributlon with
parameter a <1. The peak of the density Is at 0, with value f (0)==h (0). Thils
value can of course be co as for the gamma (@ ) denslty with 0<a <1. The class
has some desirable propertles, for example, 1t Is closed under convex combinations
(see exerclses), which means that mixtures of DHR distributions are again DHR.

The Inverslon method s based upon the fact that the solution X of
H (X )=FE where E 1s exponentlally distrlbuted, has cumulatlve hazard rate H.
But for DHR distributlons, H s concave (Its derlvative h s nonlncreasing).
Thus, Newton-Raphson lterations started at O converge whenever h (0)<oco:

Inversion method for DHR distributions

X0
REPEAT
E-H(X)
XX +——————h )
UNTIL False

In practlcal appllcations, an appropriate stopping rule must be added. An exact
solution usually requlres Infinite time (this Is not the case If A 1s plecewlse con-
stant !). The thinnlng method, If 1t Is to be used In black box mode, can only use
the constant domilnating hazard rate g =~h(0), In which case the expected
number of lteratlons becomes '

h(0)E(X) .

We recall however that DHR distributions have heavier-than-exponentlal talls.
Thus, the fact that E (/N ), the expected number of lterations, Is proportlonal to
E(X) could be a serlous drawback. The two prototype examples that we will
conslder throughout thls section are the exponentlal density
(£ (N)=h (0)E (X )==1) and the Pareto (a) denslty
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-
(1+z )a+l !

f(z)=

for which A (z )=T_-(:_—x,H (z )=dlog(1+z ),k (O)=0a, and, If a >1, E(X )=—1—-.

a-1
Thus,
0<a <1
E(N)=
a>1
a-1
We are now ready to present the dynamilc thinning algorithm:
Dynamic thinning algorithm for DHR distributions
X+0
REPEAT
A—=h (X))
Generate an exponential random variate £ and a uniform [0,1) random variate U.
xx+Z
A
UNTIL AU <k (X)
RETURN X

The method uses thinning with a constant but continuously adjusted dominating
hazard rate A\. When h decreases as X grows, so will A\. This forces the probabll-
Ity of acceptance up. The complexity can agaln be measured In terms of the
number of Iterations before halting, /N. Note that the number of evaluations of A
Is 1+N (and not 2N as one mlight conclude from the algorithm shown above,
because some values can be recuperated by Introducing auxiliary variables). If
Ah (X') 1s taken out of the loop, and replaced at the top by X«h (0), we obtaln
the standard thinning algorithm. While both algorithms do not require any
knowledge about h except that h s DHR, a reduction in N is hoped for when
dynamlc thinning 1s used. In Devroye (1985), varlous useful upper bounds for
E (N) are obtalned. Some of these are glven In the next subsectlon and In the
exercise section. The value of F (/N) Is always less than or equal that of the thin-
ning method. For example, for the Pareto (e ) distribution, we obtaln

E(N) = ——-= ,

-1
Jer(+3) do
0 a

which is finlte for all a >0. In fact, we have the followlng chaln of Inequallitles
showing the lmprovement over standard thinnlng:



VI.2.HAZARD RATE 269

E(N)= — 1

-1
fe’z (1+-?-) dz
o a

<2 :1 (use Jensen's Inequallty; note: —=—— Is convex In z)
z
(1+=)
a
< (for all @ >1)
a-1

For example, at a =1, we have E (IV)<2 whereas & (0)F (X )=o00.

2.6. Analysis of the dynamic thinning algorithm.
Throughout this section, we will use the following notation:

p="h()EX),

00
= sup [ e V*E)h (z)-h(z +y)) dy ,
z 207

h(z)
Ut o
h(x+h(x))

§ = E (log.(h (0)X))

where u,B,7 and € are varlous quantitles that will appear In the upper bounds for

E (N) given In this subsectlon. Note that £ Is the logarlthmle moment of 4 (0)X,
for which we have, by Jensen's inequality, '

€ < E (log(h (0)X +1)) < log(u+1) < u,

so that € 1s always finite when g 1s finite. Obtalning an upper bound of the form
O (€) 1s, needless to say, strong proof that dynamic thinning is a drastic lmprove-
ment over standard thinning. This Is the goal of thls subsection. Before we
proceed with the technlicallties, 1t Is perhaps helpful to collect all the results.
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Bounds C and D are never better than bound B, but often = Is easler to compute
than (. For the Pareto famlly, we obtaln via D,

E(N) < vy=21=,

a result that can be obtalned from B vla Jensen's Inequality too. Inequalitles E-H
relate the slze of the tall of X to E(/N), and glve us more Insight Into the
behavior of the algorithm. Of these, Inequallty H 1s perhaps the eastest to under-
stand: E (IN) cannot grow faster than the logarlthm of . Unfortunately, when
pu==00, 1t Is of little help. In those cases, the logarlthmlc moment £ Is often finlte.
For example, this Is the case for all members of the Pareto famlly. We wlil now
prove Theorem 2.4. It requires a few Lemmas and other technlcal facts. Yet the
proofs are Instructive to those wishing to learn how to apply 'embeddlng tech-
nlques and well-known lnequalitles In the analysls of algorlthms. Non-technical
readers should most certalnly not read beyond this point.

Proof of Theorem 2.4.

Part A. This part uses embedding. Conslder the sequence of random vectors
(Y ,h QYU )(Y 5,h (0)U ,),... where the U;'s are 11d unlform [0,1] random varl-
ables, and 0=Y <Y ;< Y,< - - - are defilned by the relations:

E;

Yip = Y+hg;
where EI,E2,... are lld exponentlal random varlates. This Is the sequence con-
sidered in standard thinnlng, where we stop when for the frst time
h(QU; <k(Y;). We recall from Theorem 2.3 that In that case
E(N)=p=FE (h (0)X ). Let us use starred random varlables for the subsequence
satisfylng h (0)U; <h (Y;_,). Observe first that this sequence 1s distributed as the
sequence of random vectors used In dynamic thinnlng. Then, part A follows
wlithout work because we stlll stop when the first random vector falling below the
curve of h 1s encountered.

Part B. Let the E;'s be as before. The sequence Y,<Y,< - used In
dynamlc thinning satisfles: Y ,==0, and

Eii
Yt+1 Y+h(Y)

Note that thls Is the sequence of possible candldates for the returned random
varlate X 1In the algorithm. The Index  refers to the lteration. Taking the stop-
ping rule Into account, we have for 1 > 1,
. J h (Y] ) )
P(N>t|Y, ..., Y)= 11— .
= h (Yj_l)
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Theorem 2.4.

The expected number of iteratlons In the dynamic thinnlng algorithm
applied to a DHR distribution with bounded A does not exceed any of the follow-
ing quantitlies:

Ao 1
A
1-4’
€ -
e-1 :
~ (when h Is also convex);
1 1

(81) % +4(8p) %

2¢
Inf (4p +2+———);
p>2( P log(p —1))

O ( s ) as £—00;

1 (E()
log(u) _
(loglog(u)) s HTee

m oo 9E Yo

Part A states that we have an Improvement over standard thinning. Inequallties
B and D are sharp: for example, for the exponentlal distribution, we have §=0,
~==1, which leads to F (/N)<1. Inequality B Is also sharp for the Pareto famlly
defined above. One can easlly verify that

- a a
— 1+z .
ﬂ_{c (1+x 1+x+y)dy
o0
= fe“"’ 1- dz
0 1+i
a

where we used the transformation z=%. By carefully checking the induction
T

argument used in the proof of Theorem 2.4, we see that for any 1 >0,
P (N >1)=4" and thus that

E(N)= ———— ~

fe?(1+%) d=
0 a

1
1-8
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Thus, for 1 >2,

CP(N>i | Y,y ..., Y
= 'rf(l—h(( J)))f B (Y, )~k (Y, +y) dy
J=1 1
-1 h(Y;)
< BT -—1=),
HO5w

and we obtaln, by a simple Induction argument on ¢, that
P(N>i{)< B (i>0).
Thus,

EWL—EPW>M<——.
iZo -B

Part C. Part C Is obtained from B by bounding 8 from above. Fix z and ¢ >0.
Then

[e b (z)-h(z+y)) dy
0

[4

h(z)
< e V) (h (2 )-h (z+y)) dy + f e V@) (h (z)-h (z4+v)) dy
Y>3 i
[os) h(c:c) b o) c
< -z g VAN —h d
_{e z + { e (h(z)~h (@ +5750) dy
h(z+ )l
R e h( )
= e ¢ 4+ (1-e7°) __—_——_h(x)
h(z+ )
L )
= 1-(1-¢~°) W)

Inequallty C follows after taking ¢ =1.

Part D. Inequality D follows by applylng Jensen’s Inequality to an Intermedlate
expression In the preceding chaln of lnequalities:

[e @) h (z)-h (z+y)) dy
0

..__oo ~-yh(z) h(z+y)
—£e3’ h(z)(1- —-—-—-——-——-—-—h( ) ) dy

o0

1
< hlz+[e ¥ @p (z)y dy
ST { (z)y
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= 1- h( )h(z+h( ))

Lemma 2.1, needed for parts E-H. We will show that for z >0, p >2 and
Integer m 1n {0,1, ..., n},

1 m

20z -2 (>0,

" P(N>n)< P(X >z)+—=2Z

Deflne the E; and Y; sequences as In the proof of part B, and let U,,U,,... be a
sequence of 11d unlform [0,1] random varlables. Note that the random vartate X
returned by the algorithm Is Y, where [V 1Is the first Index ¢ for which
U; R (Y;_))<h(Y;). Define N,,N, by:
n
N, =21 ,
h El b (YDA (Y,)

n

»I

t=1

N

ll

lh(m>—1‘;h(x-ln '

Then we can write the following:
[N>n]CX >z UX <z ,N,2n-m ,N>n|UN,Zm ,N>n].

Now,

P(X<z,N,>n-m ,N>n) < P(E,<20, o 20
p"

pn—m
and
m
P(N,>m N>n)< P(N>n |N,>m) < (1~-;-)

Thils concludes the proof of the Lemma.

Part E. Conslder Lemma 2.1, and take z =z, random, Independent of X and

n n +1
uniformly dlstributed on , where C >0 Is a constant to be chosen
Y S TAORTIOL
further on. Take m =m, = %}, and take p constant and ‘Independent of n.

‘We wlll apply the formula '

E(N)= I P(N>n)

n =0

and use Lemma 2.1, averaged over z, . This ylelds an upper bound conslsting of
three terms:
1)

n+1

%O)P(X>xn)== § [ P(Ch(0)X >t) dt

n =0 n=0 n
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= [P(Ch(®)X >t) dt = E(Ch(0)X)= Cpu .
. 0

(11)

1
o o 2(1-=)
Y (1-=) =142 (1-=) =1+ P —2p-1
n =0 p j=1 ..1._
4
(1m)
n-+1
1 X ~(n-m,) 1 X 2041 ~(n-m,)
=2 ([tdt)y V=3 ———p "
Cn=0 n Cn=0 2
2 o0
==Y (@2n+1)p™"
C-'n,=0
2 1 x -
= '5( +2 Y np7")
1_.1_ n =0
P
2 1 2 1
= _( - 2)
T S R
4 4
1+
—2__°r
C 1.2

These estimates are substituted In

0 h(O)z.n 1 m,
E(N) S 1+ 5 (P(X >z, )+—— +(1_;) ,
n=1 n
This glves the upper bound
E(N) < 14Cu-P (X >z)+2(p 1)+ = (2L2EL) "‘2) Ly
¢ (p-1 4

Since h (0)X s stochastlcally greater than an exponential random varlate, we
have ‘
1 1 3

P(X>z)= [P(ChO)X>t)dt > [e C dt
0 0

|-

e? dz = C(l-—c__a) > 1-—

= 2C

O%Q

Thus,
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E(N) < e 2plety)
(N) = Cpta(p-1)+— )

The optlmal cholce for C Is
c = /20 +12) ,

p(p-1)
which, after substitution, gives

E(N) < 2(p-1)+Vau, /2023
(p-1)

< 2(p-1)+V8u ;;)+11

1
The right-hand-side 1s minimal for p-1=(8x)*, and thls cholce glves Inequality
E. .
Part F. In Lemma 2.1, replace n by 27, and sum over j. Set My =7,
poj=p>2,and h (0)z,;=(p ~1)7 . Slnce for any random varlable Z,

[ee]

%P(Z}j) < 1+fP(Z>t)dt =14+E(Z,),

7 =0 0

we see that

EWNN)< 2% P(N>25)

J=0

o0 . 1 7
<23 (P(h(O)X>(p-1) )+2(1_-§) )

s

© _ log.(h(0)X)
=22 P(————>7)+4

2 Ty Tt

log  (h (0)X') Vrap 42
= log(p -1) pre
Part G. Inequallty G follows from Inequality F for the followling cholce of p:
—oy— &
2log?(1+¢€)

This value was obtalned as follows: Inequallty F Is sharpest when p 1s plcked as
the solutlon of (p —1)log?(p —1)=—§-. But because we want p >2, and because we

want a good p for large values of £, 1t Is good to obtain a rough solutlon by func-
tlonal lteration, and then adding 2 to this to make sure that the restrictions on p
are satlsfled. Resubstitution ylelds:

E(N) < 104—25 4 2¢
0g%(1+6)  jog14 — &

—)
2log“(1+€)
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3

log(§)

Part H. Use the bound of part G, and the fact that £<log(1+4u). In fact, we
have shown that

which 1s O (

)as -0 .

E(N) < (o) 280

as p—oo. Jj

2.7. Exercises.
1. Sketch the hazard rate for the halfnormal density for =z >0 Determine

whether 1t 1s monotone, and show that llTrn (:c)
z Too T

2. Glve an efliclent algorithm for the generatlon of random varlates from the
left tall of the extreme value dlstribution truncated at ¢ <O (the extreme
value distribution function before truncatlon is e¢~° ). Hint: when E 1s

exponentially distrlbuted, then %log(1+bEe %) has hazard rate
h(z)=e®*% for >0, b >0.

3. Show that when H 1s a cumulative hazard rate on [0,00), then H(z) Is a
z

hazard rate on [0,00). Assume now that random varlates with cumulative
hazard rate H are easy to generate. How would you generate random vari-

H) ,
(=)

ates with hazard rate

1
4. Prove that — cannot be a hazard rate on [0,00).
z

5. Construct a hazard rate on [0,00), continuous at all points except at ¢ >0,
having the additional properties that h(a: }>0 for all >0, and that
Ilm A(z)=1m h(z) = oo.
zte zle

6. In thls exercise, we conslder a tight fit for the thlnnlng method:

M = [(g-h) < oco. Show first that

EWN) < 1+f(g-h)-.

0

Prove also that the probabllity that N 1s larger than Me decreases very
rapldly to O, by establlshlng the Inequality

P(N>i) < -MU‘M) (i >M).
To do this, start with P (N >4) < e % E (e'V) where t >0 Is arbltrary (this

1s Jensen’'s lnequallty). Evaluate the expected value, bound this value by
introducing M, and optimize with respect to t.
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10.

11.

12.

13.
14.

15.

16.

18.

19.

z (z >0), where b >0 1s a
1+bx ’ '
parameter. Discuss random varlate generation for this family. The average
time needed per random varlate should remain uniformly bounded over b.

Glve an algorithm for the generatlon of random varlates with hazard rate
hy (z )=b +z (z >0) where b >0 is a parameter. Inverslon of an exponen-
tlal random vartate requires the evaludtion of a square root, which is con-
sidered a slow operation. Can you think of a potentlally faster method ?

Develop a thinning algorithm for the famlly of gamma densitles with param-
eter ¢ > 1 which takes expected time unlformly bounded over a .

The hazard rate has Inflnite peaks at all locatlons at which the denslty has
infinlte peaks, plus possibly an extra infinlte peak at co. Construct a mono-
tone denslty f which Is such that 1t osclllates Infinitely often in the follow-
Ing extreme sense:

Conslder the famlly of hazard rates h; (z )=

Ilm sup A(z) = o0 ;
z Joo

lm Inf A(z)=0.

z Too

Notice that 2 Is nelther DHR nor IHR.

If X Is a random varlate with hazard rate h, and 1 !s a sultable smooth
monotone transformation, glve a formula for the hazard rate of ¥(X ) and
condlitlons under which your formula 1s valld. See Gaver (1979) for several
examples of such transformations.

Show that a mixture of DHR distributions Is agaln a DHR distribution (Bar-
low, Marshall and Proschan, 1983).

Show that for any DHR random varlable X, u=F (h (0)X )>1.

Construet a DHR dlstribution for which the logarithmlc moment
E=E (log.(h (0)X ))=00.

For the Pareto famlly (density f (x)=———a——, z >0 ), find the rate of

Increase of £, the logarithmlic moment, as a |0 (the answer should be of the

form: £~ slmple expresslon 1nvolving a ).
Develop a black box method for DHR distributlons with A (0)=o0.

Let the hazard rate h be plecewlse constant with breakpolnts at
0=1,<2,<T,< ‘- and values h; on (z;_,,2;], *+ =>1. Assume that these
numbers are glven In an Infinlte table. Describe the inversion algorithm.
Determlne the expected number of lteratlons as a functlon of the z;’'s and
the h;'s.

Show that for the dynamlic thinning method for DHR dlistributions,
E (N)<4+V24u, where u=E (h (0)X ) (Devroye, 1985).

This exercise 1s concerned with an improvement over inequalities F -H in
Theorem 2.4. Define the random varlable Y =log_(h (0)X ), and the quantity

_ Y
X = E(xog(1+Y)) '
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A. Show that x<<oo Implles {<oo (try to do thls by establishing an Ilne-
quallty).

B. Show by example that there exists a density f for which X <00, yet
E=o0.

C. Find positive constants a¢ >0,b >0 such that for the dynamlc thinning:
method, E(N)Y<a+bx. Hint: in Lemma 2.1, choose

n n
p =p, =————, m=m, == | ~——————m 1,
" logd(n +1) " log(n +1)
=z, = 20) e "logn—4nloglog(n +1); ang use E(N)<no+ S P(N>n)
. n="ney

for an appropriate n, (Devroye, 1985).

3. GENERATING RANDOM VARIATES WITH A GIVEN
DISCRETE HAZARD RATE.

3.1. Introduction.

Assume that we wish to generate a random varlate with a glven probablility
vector p ,p ..., and that the discrete hazard rate function A, ,n=1,2,... Is
glven, where

p

h, = —,
qn
o.¢]

qdp = Ep’

f=n
One verifies qulckly that
Py = hn H(l_hi) .

f<n
In some applications, the original probablility vector of p,’s has a more compli-
cated form than the discrete hazard rate function.

The general methods for random varlate generatlon In the continuous case
have natural extenslons here. As we will see, the role of the exponentlal distribu-
tion 1s Inherlted by the geometric distribution. In different sections, we will
briefly touch upon varlous technlques, while examples will be drawn from the
classes of logarithmlc series distributions and negative blnomial distributions. In
general, If we have filnite-valued random varlables that remaln fixed throughout
the simulatlon, table methods should be used. Thus, It seems appropriate to draw
all the examples from classes of distributions with unbounded support.
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3.2. The sequential test method.

The following method will be called the sequential test method. Although
1t 1s conceptually very slmple, it seems to have been formally proposed for the
first tlme by Shanthlkumar (1983,1985).

Sequential test method

X+0

REPEAT ’
Generate a uniform [0,1] random variate U.
Xe=X+1

UNTIL U <hy

RETURN X

The valldity of thls method follows dlrectly from the fact that all h,, 's are
numbers In [0,1], and that

P = hn H (1—hi) .
. t<n

It Is obvious that the number of lterations needed here is equal to X. The
strength of this method Is that it Is unlversally applicable, and that 1t can be
used In the black box mode. When 1t Is compared with the Inversion method for
discrete random varlates, one should observe that In both cases the expected
number of Iterations Is F (X ), but that In the Inverslon method, only one uniform
random varlate 1s needed, versus one uniform random varlate per lteration in the
sequentlal test method. If Ak, Is computed In O (1) time and p, 1s computed as
the product of n factors lnvolving hl, e, hn, then the expected tlme of the
Inverslon method grows as E (X?2). Fortunately, there Is a sitmple recursive for-
mula for p,, :

hn 11
h

Thus, If the p,’s are computed recursively In this manner, the Inversion method
takes expected tlme proportional to F (X ), and the performance should be com-
parable to that of the sequentlal test method.

Prir = pn( )(l‘hn) .

n
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3.3. Hazard rates bounded away from 1.

Conslder the class of discrete hazard rates h, with supremum p<1. This
class will be called the class H (p). For such hazard rates, the sequentlal test
method can be accelerated by observing that we can Jump ahead more than 1 In
each 1iteration. To see this, assume that X s geometrically distributed with
parameter p:

P(X=n)=p(-p)"? (n21).

Then X has hazard rate h, =p. But In that case the sequentlal test method
counts the number of 1id uniform [0,1] random variates generated untll for the
first time a number smaller than p 1s obtained. Thls is of course known to be
geometrically distributed with parameter p. In thls speclal case, the individual
uniform random varlates can be avolded, because we can generate X dlrectly by
inversion of a uniform random varlate U as

- -loglU
~log(1-p)

E
~log(1-p )
limit case p =1, we have X =1 with probabllity one. The smaller p, the more
dramatlc the Improvement. For non-geometric distributions, it Is possible to glve
an algorithm which parallels to some extent the thinning algorithm.

ora.sX+—|

‘ , where F 1s an exponential random varlate. For the

Thinning method for discrete distributions

NOTE: This algorithm is valid for hazard rates in H (p) where pE.(O,l] is a given number.
X0 '
REPEAT

Generate iid uniform [0,1) random variates U, V.

logU
X=X+ |—7
i [mgu-p) \

hx
UNTIL V<X
P)

RETURN X

This algorithm Is due to Shanthikumar (1983,1985). We have to show that 1t Is
valld, and verify what the expected time complexlty Is.
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Theorem 3.1. (Shanthikumar, 1983,1985)

The dlscrete thinning method generates a random variate with discrete
hazard rate h,, . .

Proof of Theorem 3.1.

Let G ,,G,,... be the sequence of 11d geometric (p ) random varlates used In
the discrete thinning method. Let X be the returned random varlate. Thus,
X =G+ ' +Gy where N Is the number of Iteratlons. Let us deflne the par-

n

tlal sums S, =Y G;. Thus, X =Sy. We compute the probabllity P (Sy=n)
f=1 )
from the following formula:

P(X=n,N=k+1,5,=n,, ..., S =n)

k B,

= hy pF (1-p)"F [T (1-—) (k<n-1).
f =1 p

This can be seen by Just computing Indlvidual probabllitles of Independent

events. To obtaln P (X =n), 1t suffices to sum over all possible values of £ and
n; . We note now that the followlng multlnomial expansion 1s valld:

n-1 h;

IT (p(1——)+1-p)

§ =1 p
n-1 k h

= 3 o* (1-p)* 1K ( > I1(-—) .
k=0 1<n,<n0< « - - <np <n-1i =1 p

Thus,

hn n-1 hi
P(X=n)= p—;—- T1 (p(1—7)+1—p)

{=1
= b, [ (k) (n=1.2...),
f==1

which was to be shown. JJj

If we use the algorithm with p=1 (which Is always allowed), then the
sequential test algorithm is obtained. For some distributions, we are forced Into
this situation. For example, when X has compact support, with p, >0,p, ., =0
for some n and all ¢+ >1, then k, =1. In any case, we have
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Theorem 3.2.

For the discrete thinning algorithm, the expected number of Iterations E (N)
can be computed as follows:

E(N)=pE(X).

Proof of Theorem 3.2.
We observe that In the notatlon of the proof of the previous theorem,
N
X =G,
{==1
so that by Wald's equatlon,
EX)=EN)E(G,)=E(NN),

which was to be shown. i

Example 3.1. The logarithmic series distribution.
For the logarithmlc series distribution deflned by

n
1 6 (n>1),

P(X=n)=m“n—' 2

where #€(0,1) 1s a parameter, we observe that h, Is not easy to compute (thus,
some preprocessing seems necessary for this distributlon). However, several key
propertles of h, can be obtalned with little difficulty:

1 né n 62
1 B
O h, -+ n+l n+2
‘ (1) &, |1-6 as n —o0;

(1) p==sup h, =h =
n

+...;

4
-log(1-4)
Thus, while the sequential method has E (N )=FE (X )-———-i-&-, the discrete thin-
ning method satisfles
p?

Since p—0 as 6—1, we see that the impi'ovement In performance can be
dramatlc. Unfortunately, even with the thinning method, we do not obtaln an
algorithm that 1s uniformly fast over all values of :
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E(N)= oo .
2y V= B

3.4. Discrete dynamic thinning.

Shanthikumar (1983,1985) has also observed that for distributlons with
decreasing discrete hazard rate (also referred to below as DHR distributlons) that
the value of p can be dynamlcally modified to Increase the Jumps for the
geometric random varlates, and thus Increase the performance. The formal algo-
rithm 1s glven below. ‘

Dynamic thinning method for discrete DHR distributions

X0
REPEAT
Generate iid uniform [0,1] random variates U,V .

p—hx 4,
XX+ |2l
log(1-p)
hx
UNTIL V<=
P
RETURN X

The validity of this algorithm follows by a short recursive argument:

P (X >n | X >n-1, the last partlal sum of geometric varlates
less than n takes the value k)

)

n

k

h
= (1-hy )+h (1- .

= 1-h, .
Thus, because this does not depend upon k,
P(X>n)= (l—hn P (X >n-1)
n
== H(l—h,-) .

=1
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3.5. Exercises.

1. Prove the followlng for the logarithmic series distribution with parameter
6€(0,1):

2
1) 1 nd no

h, n+1 n+2

(M) h, | 1-0asn—oc0,

g 1

m EX)= .

(m) £ &) -log(1-0) 1-6

2.© Assume that dlscrete dynamic thinning 1s used for a DHR distribution.
Obtaln good upper bounds for £ (/N ) in terms of the size of the tall of the
distribution. Show also that for the logarithmlc serles distribution the value

of E(NN) 1s not uniformly bounded in §€(0,1) , the parameter of the distribu-
tion.

+‘..’

3. Show that In the discrete thinning algorlthm, quick acceptance and rejection
steps can be Introduced that would effectively reduce the expected number
of evaluatlons of h,. Compute the expected number of such evaluations for
two squeezing sequences.

4. A continuation of exerclise 3. For the logarithmlic series distribution with
parameter §, show that

1-6 < b, < nQ@-9)+1 (n>1) .
- n+1
Show that if these bounds are used for squeeze steps In the discrete dynamlic
thinning method, then the expected number of evaluations of h, 1s o (1) as
611. (The Inequalitles are due to Shanthlkumar (1983,1985).)

5. The negative binomial distribution. A random varlable Y has the
negative blnomlal distribution with parameters (k,p ) where & >1,p €(0,1) If

~1 :
P(¥=n)= [t 2]ptapr* b

Then, the normalized random variable X =Y —k 41 has a distribution on all
positive integers. For this random varlable X, show that A, {p as n foo.
(Hint: the relationshlp

n+k-1_ by

hy, +1=( n X 1-h,

a-p) (n21)

k
Is helpful.) Show that in the sequentlal test algorithm, E (/N )=-—, while In

the discrete thinning algorithm (with p==p ), we have E (N )=k . Compare
thls algorithm with the algorithm based upon the observation that Y s dis-
tributed as the sum of k 11d geometric (p ) random varlates. Finally, show
the squeeze type inequalitles :

_n+lc—1
n

1 (1-p)< hy Sp (n21).
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6. [Example 3.1 for the logarithmic serles distribution and the previous exerclse
for the negatlve blnomlal dlstribution require the computation of h,. This

can be done by settlng up a table up to some large value. If the parameters

of the distributlons change very often, this 1s not feasible. Show that we can

compute the sequence of values recursively during the generatlon process by
hy=p,;

h . Pr +1 hn
e+l Pa 1"hn




