
Chap fer Six 
THE POISSON PROCESS 

1. THE POISSON PROCESS. 

1.1. Introduction. 
One of the most lmportant processes occurrlng In nature 1s the Polsson polnt 

process. It 1s therefore lmportant t o  understand how such processes can be slmu- 
lated. The methqds of slmulatlon vary wlth the type of Polsson polnt process, 1.e. 
wlth the space In whlch the process occurs, and wlth the homogenelty or non- 
homogenelty of the process. We wlll not be concerned wlth the genesls of the 
Polsson polnt process, or wlth lmportant appllcatlons In varlous areas. To make 
thls materlal come allve, the reader 1s urged to read the relevant sectlons In 
Feller (1965) and Clnlar (1975) for the baslc theory, and some sectlons in Trlvedl 
(1982) for computer sclence appllcatlons. 

In a flrst step, we will deflne the homogeneous Polsson process on [O,m): the 
process 1s entlrely determlned by a collectlon of random events occurrlng at cer- 
taln random tlmes O< T,<  T 2 <  . . * . These events can correspond t o  a varlety 
of thlngs, such as bank robberles, blrths of qulntuplets and accldents lnvolving 
Montreal tax1 cabs. If N( t , , t , )  1s the number of events occurrlng In the tlme 
lnterval ( t  l , t 2 ) ,  then the following two condltlons are often satlsfied: 
(I) For dlsjolnt lntervals ( t i , t 2 ) , ( t 3 , t 4 ) ,  . . . , the random varlables 

N ( t  l , t 2 ) ,N( t3 , t4 ) , . . .  are Independent. 
(11) N ( t , , t 2 )  1s dlstrlbuted as N(0,t2-t ,) ,  1.e. the dlstrlbutlon of the number of 

events In a certaln tlme lnterval Just depends upon the length of the Inter- 
val. 
The amazlng fact 1s that these two condltlons lmply that all random varl- 

ables N ( t  , , t 2 )  are Polsson dlstrlbuted, and that there exlsts a constant 120 such 
that N ( t  ,t +a  ) 1s Polsson ha for all t 20, a >O. See e.g. Feller (1965). Thus, 
the Polsson dlstrlbutlon occurs very naturally. 

d .  Let A be a subset of d ,  
and let N be a random varlable taking only lnteger values. Let X,, . . . , X N  be 
a sequence of random vectors talclng values In A .  Then we say that the & ' s  

The prevlous concept can be generallzed to 
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deflne a unlform (or: homogeneous) Polsson process on A lf 

(A) For any flnlte callectlon of flnlte-volume nonoverlapplng subsets of A ,  say 

(B) For any Bore1 subset B G A  , the dlstrlbutlon of N ( B )  depends upon 

Agaln, these assumptlons lmply that all N ( B ) ’ s  are Polsson dlstrlbuted wlth 
parameter V o l ( B )  for some 120. X wlll be called the rate , or rate parameter, 
of the homogeneous Polsson process on A .  Examples of such processes In multldl- 
menslonal Euclldean space lnclude bacterla on a Petrl plate and locatlons of 
murders In Houston. 

A ,, . . . , A,  , the random varlables N ( A  1), . . . , N (Ak ) are lndependent. 

Vol ( B  ) only. 

1 Theorem 1.1. 
Let B S A  be Axed sets from R d ,  and let O< Vol ( B  )<w. Then: 
If X 1 , x 2 , . . .  determlnes a unlform Polsson process on A wlth parameter A, 
then for any parltlon B I, . . . , Bk of B , we have that N ( B  J, . . . , N (Bk ) 
are lndependent Polsson dlstrlbuted wlth parameters 
Let N be Polsson dlstrlbuted wlth parameter A Vol (B) ,  and let 
X , ,  . . . , X N  be the flrst N random vectors from an lid sequence of random 
vectors unlformly dlstrlbuted on B . For any partltlon B 1, . . . , Bk of B , 
the  sequence N ( B l ) ,  . . . , N ( B k )  1s sequence of lndependent Polsson ran- 
dom varlables wfth parameters Vol (Bk ). In other words, 
X , ,  . . . , lYN determlnes a unlform Polsson process on B wlth rate parame- 
ter A. 

Vol (Bi ). 

Vol ( B  1), . . . , 

Proof of Theorem 1.1. 
We wlll only show part (11). Assume that Vol(B)=l and that B 1s partl- 

tloned lnto two sets, A ,,A wlth respectlve volumes p and q =1-p . For any two 
lntegers i , j  20 wlth z’ + j  = k  , we have 

P ( N  ( A  ,)=i ,N ( A  J= j  ) 

= P ( N ( B ) = k ) P ( N ( A , ) = i , N ( A , ) = j  I N ( B ) = k )  

and therefore, N ( A  1) and N ( A  2) are lndependent Polsson random varlables as 
clalmed. Thls argument can be extended towards all flnlte partltlons and all posl- 
tlve values for Vol ( B  ). 
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1.2. Simulation of homogeneous Poisson processes. 
If we have to slmulate a unlform Polsson process on a set A E R  d ,  then we 

need to generate a number of random vectors Xi EA . Thls can be done as follows 
(by Theorem 1.1): 

Homogeneous Poisson process generator 

Generate a Poisson random variate N with parameter X Vol (A ). 
Generate iid random vectors X,, . . . , XJ uniformly distributed on A ,  
RETURN XI, . . . , XJ 

To generate N I t  1s vlrtually useless to use an O(1) expected tlme algorlthm 
because In the remalnder of the algorlthm, at least tlme n(N) 1s spent. Thus, I t  
1s recommended that lf the algorlthm 1s used, the Polsson random varlate be gen- 
erated by a very slmple algorlthm (wlth expected tlme typlcally growlng as A). 
For speclflc sets A ,  other methods can be used whlch do not requlre the expllclt 
generatlon of a Polsson random varlate. There are three cases that we wlll use to 
Illustrate this: 

(I)  A 1s [O,oo). 
(1) A 1s a circle. 
(111) A 1s a rectangle. 

To do so, we need an lnterestlng connectlon between Polsson processes and the 
exponentlal dlstrlbutlon. 

Theorem 1.2. 

parameter h>O. Then 
Let o<T,<T,< . be a unlform Polsson process on [O,oo) wlth rate 

A( T f-O),h( 2- T ,>,q T 3- T 2), . .. 
are dlstrlbuted as lld exponentlal random varlables. 
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Thus, glven Tk , Tk+,-Tk 1s exponentlal wlth parameter A. Generallzlng this 
argument to obtaln the clalmed lndependence as well, we see that for any Anlte 
I C ,  and any sequence of nonnegatlve numbers zo,xl,  . . . , 

p ( q + l - T k  >q ,Tk-Tk-,>q-,, * - * , T,-T,>5T,-o>s,)  

= p (N(O,zo+z,+ . . . +z,)=o) 

- - ( N (  Tb ,Tk +zk)=O, * * * N ( ~ , z o ) = o )  

k 

-1 2, 
1 - 0  = e  

i =O 

Thls concludes the proof of Theorem 1.2. 

Theorem 1.2 suggests the followlng method for slmulatlng a unlform Polsson 
process on A =[O,m): 

Uniform Poisson process generator on the real line: the exponential spacings 
method 

T t 0  (auxiliary variable used for updating the "time") 
k t o  (initialize the event counter) 
REPEAT 

Generate an 
k + - k + l  

E T+-T+- x 
T k t T  

exponential random variate E .  

UNTIL False (this is an inf l i te  loop; a stopping rule can be added if desired). 

Thls algorlthm 1s easy to lmplement because no Polsson random varlates are 
needed. For other slmple sets A ,  there exlst trlvlal generallzatlons of Theorem 
1.2. For example, when A 1s [O,t]X[0,1] where posslbly t=m, 
O<T,<T,<. . * 1s a unlform Polsson process wlth rate A on [O,t 1, and 
ul,u ,,... 1s a sequence of lld unlform [0,1] random varlables, then 

( 1' u 114 T,, U,),... 
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determlnes a unlform Polsson process wlth rate X on A . 

Example 1.1. A uniform Poisson process on the unit circle. 
If the set A 1s the clrcle wlth unlt radlus, then the varlous properties of unl- 

form Polsson processes can be used t o  come up wlth several methods of genera- 
tlon (these can be extended to  d dlmenslonal spheres). Assume that X ls the 
deslred rate. Flrst, we could slmply generate a Polsson x.lr random varlate N ,  and 
then return a sequence of N lld random vectors unlformly dlstrlbuted In the unlt 
clrcle. If we apply the order statlstlcs method suggested by Theorem 1.2, then the 
Polsson random varlate 1s lmpllcltly obtalned. For example, by swltchlng to 
polar coordlnates ( R  ,e), we note that for a unlform Polsson process, R and 8 are 
lndependent, and that a randomly chosen R has denslty 2r  (O<r 51) and that 
a randomly chosen 8 1s unlformly dlstrlbuted on [0,2n]. Thus, we could proceed as 
follows: generate a unlform Polsson process 0<8,<82< . . * < e N  wlth rate 
parameter - on [ 0 , 2 ~ ]  by the exponentlal spaclngs method. Exlt wlth x 

2T 

(e1,R 11, . > ( 6 ,  ,RN) 

where the Ri 's are lld random varlates wlth denslty 2r ( 0 5 r  51) whlch can be 
generated indlvldually as the maxlma of two lndependent unlform [0,1] random 
varlates. There 1s no speclal reason for applylng the exponentlal spaclngs method 
t o  the angles. We could have plcked the radll as well. Unfortunately, the ordered 
radll do not form a one-dlmenslonal unlform Polsson process on [0,1]. They do 
form a nonhomogeneous Polsson process however, and the generatlon of such 
processes wlll be clarlfled In the next subsectlon. 

1.3. Nonhomogeneous Poisson processes. 
There are sltuatlons In whlch events occur at "random tlmes" but some 

tlmes are more llltely than others. Thls 1s the case for arrlvals In lntenslve care 
units, for Job submlsslons In a computer centre and for lnjurles to  NFL players. A 
very good model for these cases 1s the nonhomogeneous Polsson process model, 
deflned here for the sake of convenlence on [O,GO). Thls 1s the most important 
case because "tlme" 1s usually the runnlng variable. 

A nonhomogeneous Polsson process on [O,GO) 1s determlned by a rate func- 
tlon h(t)>O ( t  L O )  , whlch can be consldered as a denslty of sorts, wlth the 

dlfference that J h ( t )  dt 1s not necessarlly 1 (usually, I t  1s GO). The process 1s 

deflned by the followlng property: for all flnlte collectlons of dlsjolnt lntervals 
A . . . , Ak , the numbers of events happenlng In these lntervals ( N , ,  . . . , Nk ) 
are lndependent Polsson random varlables wlth parameters 

00 

0 
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Let us now revlew how such processes can be slmulated. By slmulatlon, we under- 
stand that the tlmes of occurrences of events O< T I <  T,< . . . are to be glven 
In lncreaslng order. The maJor work on slmulatlon of nonhomogeneous Polsson 
processes Is Lewls and Shedler (1979). Thls entlre sectlon 1s a reworked verslon of 
thelr paper. I t  1s lnterestlng to observe that  the general prlnclples of contlnuous 
random varlate generation can be extended: we wlll see that there are analogs of 
the lnverslon, reJectlon and composltlon methods. 

The role of the dlstrlbutlon functlon wlll be taken over by the lntegrated 
rate functton 

t 
A ( t )  = sX(u  ) du . 

0 

We begln by notlng that glven T, =t , T,  +l-Tn has dlstrlbutlon functlon 

(3 20) F (z ) = 1-e -(Nt +z tNt 1) 

00 

provlded that  Ilm A(t )=co (l.e, J x ( t  ) dt  =co). Thls follows from the fact that 
t - 0  0 

F ( z )  = P(T,+,-T, >z I T,=t) 
= P ( N ( t , t + z ) = o  1 T,=t) 
- - e 4 N t + z ) - a t ) )  (z 20) . 

Thus, Tn+l 1s dlstrlbuted as T,  +F-'( U )  where U 1s a uniform [0,1] random 
varlate. Interestlngly, wrltlng U as l-e-E (where E denotes an exponentlal ran- 
dom varlable), we see that T,  +, Is also dlstrlbuted as A-'(E +A( T, )). In other 
words, we need to lnvert A. Formally, we have (see also Clnlar (1975) or Bratley, 
Fox and Schrage, 1983): 
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Algorithm based on inversion of the integrated rate function 

T t o  ( T  will be an auxiliary variable) 
k t o  (k is a counter) 

REPEAT 
Generate an exponential random variate E .  
k + k + 1  

T + T +a-l(E +a( T )) 
Tk *T 

UNTIL False 

Example 1.2. Homogeneous Poisson process. 
For the speclal case x ( t  )=A , A ( t ) = h t ,  I t  is easily seen that in the algo- 

rlthm glven above, the step T + T +A-l(E +A( T )) reduces to T + T +-. Thus, 

we obtaln the exponentlal spaclngs method agaln. 1 
E 
x 

Example 1.3. 
To model mornlng pre-rush hour trafflc, we can sometlmes take x ( t ) = t ,  

whlch glves A(t  )=-. The step T + T +A-'(E +A( T )) now needs to be replaced 

by 

t 2  
2 

T + m  .I 

If the rate function can be split lnto a sum of rate functions, as in 

X ( t ) =  & ( t )  
I =I.  

and lf O <  T i l <  Ti,< . . , 15; sn are lndegendent reallzatlons of the indlvl- 
dual nonhomogeneous Poisson processes, then the merged ordered sequences form 
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a reallzatlon of the nonhomogeneous Polsson process wlth rate functlon X(t ). 
Thls corresponds to the composition method, but the dlflerence now 1s that we 
need reallzatlons of all component processes. The decomposltlon can be used 
when there 1s a natural decomposition dlctated by the analytlcal form of h ( t  ). 
Because the baslc operatlon In merglng the processes 1s to take the mlnlmal value 
from the n processes, I t  could be advantageous for large n to store the tlmes In a 
heap contalnlng n elements. We summarlze: 

The composition method 

Generate T I , ,  . . . , T,,, for the n Poisson processes, and store these values together with 
the indices of the corresponding processes in a table. 
T t o  ( T is the running time) 
k -0 REPEAT 

Find the minimal element (say, T;j)  in the table and delete it. 
k -k fl 

Tk +- Tij 
Generate the value Ti j + ,  and insert it into the table. 

UNTIL False 

The third general prlnclple 1s that of thinning (Lewls and Shedler, 1979). 
Slmllar to what we dld In the reJectlon method, we assume the exlstence of an 
easy domlnatlng rate function p( t ): 

h ( t )  5 p ( t ) ,  all t . 

Then the idea 1s to generate a homogeneous Polsson process on the part of the 
posltlve halfplane between 0 and p ( t ) ,  then to conslder the homogeneous Pols- 
son process under h ,  and flnally to exlt wlth the x-components of the events In 
thls process. Thls requlres a theorem slmllar to that precedlng the reJectlon 
method. 
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Theorem 1.3. 
Let A ( t  ) L O  be a rate functlon on [O,oo), and let A be the set of all (5 ,y ) 

wlth 2’ L0,OS y <A(x ). The followlng 1s true: 
(1) If (Xl,Yl), ... (wlth ordered Xi’s ) 1s a homogeneous Polsson process wlth 

unlt rate on A ,  then O<X,<X,< * * . 1s a nonhomogeneous Polsson pro- 
cess wlth rate functlon x ( t  ). 

(11) If 0<x1<x2< * . . 1s a nonhomogeneous Polsson process wlth rate func- 
tlon x ( t ) ,  and U 1 , u 2 ,  ... are lld unlform [ O , l ]  random varlables, then 
(X,, U,x(X,)),(X,, U,A(X,)), ... 1s a homogeneous Polsson process wlth unlt 
rate on A .  

(111) If B S A  , and (Xl,Yl), ... (wlth ordered Xi’s ) 1s a homogeneous Polssoii 
process wlth unlt rate on A , then the subset of polnts (Xi ,Y i )  belonglng to 
B forms a homogeneous Polsson process wlth unlt rate functlon on B . 

Proof of Theorem 1.3. We verlfy that for nonoverlapplng lntervals 
A . . . , Ak , the number of Xi’s falllng In the lntervals (whlch we shall denote 
by N ( A  . . . , N ( A k ) ) ,  satisfy: 

P (N(A ,)=il, . . . , N(Ak )=ik ) - 
= P ( N ( A , ) = i , ,  . . . , N(Xk)= ik )  

where xi refers to the lntersectlon of the lnflnlte sllce wlth vertlcal proJectlon Ai 
wlth A .  Thls concludes the proof of part (1). 

To show (ll), we can use Theorem 1.1: I t  sufflces t o  show that for all flnlte 
sets Xi, the number of random vectors N falllng In x, 1s Polsson dlstrlbuted 
wlth parameter Vol (x l ) ,  and that  every random vector In thls set 1s unlformly 
dlstrlbuted In I t .  The dlstrlbutlon of N 1s lndeed Polsson wlth the glven parame- 
ter because the Xi sequence determlnes a nonhomogeneous Polsson process wlth 
the correct rate functlon. Also, by Theorem 11.3.1, a random vector (X,Uh(X)) 
Is unlformly dlstrlbuted In xi If U 1s unlformly dlstrlbuted on [0,1] and X 1s a 
random vector wlth denslty proportlonal to A(s ) restrlcted to A 1. Thus, I t  
sufflces to show that If an X 1s plcked at random from among the Xi’s In A 
then X 1s a random vector wlth denslty proportlonal to A ( E )  restrlcted to A 
Let B be a Bore1 set contalned In A 1,  and let us wrlte A B  and A A ~  for the 
lntegrals of X over B and A respectlvely. Thus, 

P ( X E B  IXEA,)=P(XEB lN(Al)=l)  
P ( N ( B ) = l , N ( A  I-B)=O) - - 

P (N(A , > = I >  
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A B  

A, 1 

=- 

1 
= -JA(s) &a: , 

'A1 B 

whlch was to be shown. 

further work. 
Par t  3 follows from Theorem 1.1 on homogeneous Polsson processes wlthout 

Consider now the thlnnlng algorlthm of Lewls and Shedler (1979): 

The thinning method (Lewis and Shedler) 

T+o 
k t o  
REPEAT 

Generate 2 ,  the first event in a nonhomogeneous Poisson process with rate function 
p occurring after T . Set T +Z . 
Generate a uniform [0 ,1 ]  random variate u .  

THEN k + k + 1 ,  Xk+T 
UNTIL Faise 

The sequence of .Yk 's thus generated 1s claimed to determlne a nonhomogeneous 
Polsson process wlth rate functlon A .  Notlce that we have taken a nonhomogene- 
ous Polsson process O< Y 1< Y,< . . * wlth rate functlon p and ellmlnated some 
polnts. As we know, ( Y l , U l p (  Yl)), ... 1s a homogeneous Polsson process wlth unlt 
rate under the curve of p If U l , U 2 ,  ... are lld unlform [0,1] random varlates 
(Theorem 1.3). Thus, the subsequence falllng under the curve of A determlnes a 
homogeneous Polsson process wlth unlt rate under that curve (part (111) of the 
same theorem). Flnally, taklng the s-coordlnates only of that  subsequence glves a 
nonhomogeneous Polsson process wlth rate functlon A .  

The nonhomogeneous Polsson process wlth rate functlon p 1s usually 
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Example 1.4. Cyclic rate functions. 
The following example 1s also due to Lewis and Shedler (1979): conslder a 

cycllc rate functlon 

A ( t )  = A(l+COS(t)) 

wlth as obvlous cholce for domlnatlng rate functlon p(t  )=2x. We have 

T ~ o  
k t o  
REPEAT 

Generate an exponential random variate E .  
T t T + -  E 

2x 
Generate a uniform [0,1] random variate U .  
u 5 l+cos(T) 

2 

THEN k t k + 1 ,  X b t T  
UNTIL False 

It goes wlthout saylng that the squeeze prlnclple can be used here to help avold- 
ing the coslne computation most of the tlme. 

A Anal .word about the emclency of the algorithm when used for generatlng a 
nonhomogeneous Polsson process on a set [ O , t ] .  The expected number of events 

t 

needed from the domlnatlng process 1s s p ( u  ) du , whereas the expected number 

of random varlates returned 1s sA(u ) du . The ratlo of the expected values can be 

considered as a falr measure of the emclency, comparable In splrlt to the reJectlon 
constant In the standard rejectlon method. Note that we cannot use the expected 
value of the ratlo because that would In general be 00 In vlew of the posltlve pro- 

bablllty ( e  O ) of returnlng no varlates. 

0 t 

0 

-JX(u) du 
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1.4. Global methods for nonhomogeneous Poisson process simulation. 
Nonhomogeneous Polsson processes on [O,oo) can always be obtalned from 

homogeneous Polsson processes on [O,m) by the followlng property (see e.g. Cln- 
lar (1975, pp. 98-99)): 

Theorem 1.4. 

[O,oo), and If A 1s an lntegrated rate functlon, then 
If O<T,<T,< * 1s a homogeneous Polsson process wlth unlt rate on 

o<A-~(T, )<A-~(T, )<  . . . 
determlnes a nonhomogeneous Polsson process wlth lntegrated rate functlon A. 

Proof of Theorem 1.4. 
We have lmpllcltly shown thls In the prevlous sectlon. Let i l ,  ... be Integers, 

let IC be an Integer, and let N ( A  ) be the number of polnts In a set A C [O,m). 
Then, N ( A  ) 1s equal to N* (A(A )) where N* refers to the homogeneous Polsson 
process, and A(A ) 1s the set A transformed under A. Thus, If A . . . , Ak are 
dlsJolnt sets, I t  1s easlly seen that N ( A l ) ,  . . . , N ( A k )  are dlstrlbuted as 
N* (A(A . . . , N* (A(Ak )), whlch 1s a sequence of lndependent Polsson ran- 
dom varlables wlth parameters equal to the Lebesgue measures of the sets A(Ai ), 
1.e. A( t ) dt where A 1s the a.e. derlvatlve of A. Thls shows that the transformed 

process 1s a nonhomogeneous Polsson process wlth lntegrated rate functlon A. 
A ,  

co 
We observe that If J A ( t )  d t  e m ,  then the functlon A-1 1s not deflned for 

very large arguments. In that case, the Ti's wlth values exceedlng J A ( t )  dt 

should be Ignored. We conclude thus that only a flnlte number of events occur In 
such cases. No matter how large the flnlte value of the lntegral is, there 1s always 
a posltlve probablllty of not havlng any event at all. 

Let us apply thls theorem t o  the slmulatlon restrlcted to a flnlte lnterval 
[O, to ] .  Thls 1s equlvalent to the lnflnlte lnterval case provlded that A ( t )  1s 
replaced by 

a3 
0 

0 

{ ,X't 1 ( o l t  9 0 )  

( t  > t o >  

Thus, I t  sufflces to use A-l( Tl), ... for all Ti ' s  not exceedlng A(to). The lnverslon 
Of A 1s sometlmes not practlcal. The next property can be used to avold I t ,  Pro- 
vlded that we have fast methods for generatlng order statlstlcs wlth non-unlform 
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densltles (see e.g. chapter V). The stralghtfonvard proof of Its valldlty 1s left to 
the reader (see e.g. Cox and Lewls, 1966, chapter 2). 

- ~- 

Theorem 1.5. 
Let N be a Polsson random varlate wlth parameter A(to). Let 

. c TN be order statlstlcs correspondlng to the dlstrlbutlon o< T I <  T,< . 
functlon 

then thls subsequence determlnes a nonhomogeneous Polsson process on [O,t 0] 
wlth lntegrated rate functlon A. 

Both Theorem 1.4 and Theorem 1.5 lead to global methods, 1.e. methods ln 
which a nonhomogeneous Polsson process can be obtalned from another process, 
usually In a separate pass of the data. The methods of the prevlous sectlon, In 
contrast, are sequentlal: the event tlmes of the process are generated dlrectly 
from left to rlght. Slnce the one-pass sequentlal approach allows optlonal stop- 
plng and restartlng anywhere In the process, I t  1s deAnltely of more practlcal 
value. In some appllcatlons, there 1s also a conslderable savlngs In storage because 
no lntermedlate (or auxlllary) process needs to  be stored. Flnally, some global 
methods requlre the computatlon of A-', whereas the thlnnlng method does not. 
Thls 1s an lmportant conslderatlon when A 1s dlfflcult t o  compute. 

For more examples, and addltlonal detalls, we refer to the exerclses and the 
other sectlons In thls chapter. Readers who do not speclallze In random process 
generatlon wlll probably not galn very much from readlng the other sectlons In 
thls chapter. 

1.5. Exercises. 

1. 
03 

When I x ( t  ) dt  <oo, the lnverslon and thlnnlng methods for nonhomogene- 

ous Polsson process generatlon need modlfylng. Show how. 
Let N be the total number of events (polnts) In a nonhomogeneous Polsson 
process on the posltlve real llne wlth rate functlon x ( t ) .  Show that there are 
only two posslble sltuatlons: 

0 

2. 

\ 

-. 
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3. 

4. 

5 .  

6. 

03 

P ( N  <oo)=l ( J X ( t )  dt <oo) 

P(N<m)=O ( J X ( t )  d t=m) .  

0 
03 

0 

The followliig rate functlon 1s glven to you: X(t ) 1s plecewlse constant wlth 
breakpolnts at a ,2a ,3a , 4 a ,  . . . , where for t E [ i a  ,(i +l )a  ), x ( t  )=Xi, 
z =0,1,2, .... Generallze the exponentlal spaclngs method for generatlng a 
nonhomogeneous Polsson process wlth thls rate functlon. Hlnt: do not use 
transformatlons of exponentlal random varlates when you cross breakpolnts, 
but rely on the memolyless property of the exponentlal dlstrlbutlon. 
We are lnterested In the generatlon of a nonhomogeneous Polsson process 
wlth log-llnear rate functlon 

c o t - c t  X ( t )  = c o e  ( t  20) . 
where co>O , c ER . There are two lmportant sltuatlons: when c <0, the 
process dles out and only a flnlte number of events occurs. The process 
corresponds to an exponentlal populatlon exgloslon however when c >O. 
Generate such a process by the lnverslon-of-A method. 
Thls 1s a contlnuatlon of the prevlous exerclse related to a method of Lewls 
and Shedler (1976) for slmulatlng non-homogeneous Polsson processes wlth 

log-llnear rate functlon. Show that If N 1s a Polsson (--) random varlable, 

and E 1,E2,... 1s a sequence of lld exponentlal random varlates, then, assum- 
lng c €0, 

C O  

C 

( l<i  g v )  Ei 
c ( N - i  +I) 

- 

are dlstrlbuted as the gaps 'between events In a nonhomogeneous Polsson 
( t  20) on [O,m). Glve the process wlth rate functlon X ( t )  = c o e  

algorlthm that exploits thls property. Note that thls lmplles that the 
C O  expected number of events In such a process 1s --<ea. For the case c >0, 

show how by fllpplng the tlme axls around, you can reduce the problem to 
that of the case c <O provlded that one 1s only lnterested In slmulatlon on a 
Anlte tlme lnterval. 
Glve an algorlthm for generatlng random varlates wlth a log-quadratlc rate 
functlon. Hlnt: coiislder several c s e s  a s  In the prevlous two exerclses (Lewls 
and Shedler, 1979). 

co+ct 

c 
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2. GENERATION OF RANDOM VARIATES WITH A GIVEN 
HAZARD RATE. 

2.1. Hazard rate. Connection with Poisson processes. 
In thls sectlon we conslder the problem of the computer generatlon of ran- 

dom varlables wlth a glven hazard rate h on (0,~). If X 1s a random varlable 
wlth density f and dlstrlbutlon functlon F ,  then the hazard rate h and 
cumulative hazard rate H are Inter-related as follows: 

h(x) = f ( X I  . 
l - F ( x )  ' 
X 

H ( x )  = J h ( y )  dy = - log(l-F(x)) ;  
0 

F (z = l -e - f ' (z )  ; 

f (3)  = h(x ) e - N ( x )  . 
The hazard rate plays a cruclal role In rellablllty studles (Barlow and Proschan, 
lQS5) and In all sltuatlons lnvolvlng llfetlme dlstrlbutlons. Note that 

J h  ( y )  dy =m and thus llm H(z)=oo. The key dlstrlbutlon now 1s the 

exponentlal: I t  has constant hazard rate of value 1. Roughly speaklng, hazard 
rates tending to  0 correspond to  densltles wlth larger-than-exponential talls, and 
diverglng hazard rates are for densltles wlth smaller-than-exponential talls. For 
compact support dlstrlbutlons, we have llm H(x)=m for some Anlte c 

(correspondlng to  the rlghtmost polnt In the support). Sometlmes, h or H Is 
glven, and not f or F. In partlcular, when only h 1s glven, f cannot be com- 
puted exactly because we would flrst need to  compute H by numerlcal lntegra- 
tlon. Thus, {here 1s a need for methods whlch allow us t o  generate random varl- 
ates wlth a glven hazard rate h .  Fortunately, such random varlates are lntl- 
mately connected to  Polsson polnt processes. 

00 

5 -+oo 0 

z t c  

Theorem 2.1. 
Let O<T,<T,< * be a nonhomogeneous Polsson process wlth rate 

functlon h (and thus lntegrated rate functlon H ) .  Then T ,  1s a random varlable 
wlth hazard rate h . c 

Proof of Theorem 2.1. 
Note that.for x >0, 

P (7' , 5 s  ) = 1-P (no event tlmes ln [o,x I) 
I 

- $ h ( t )  dt 
1-e O 
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= l - e - H ( z )  

whlch was to be shown. 

261 

Thls connectlon helps us understand the algorlthms of thls sectlon. We wlll 
dlscuss the lnverslon, composltlon and thlnnlng methods. For speclal sub-classes 
of hazard rate functlons, there are unlversally appllcable (black box) methods 
that are worth reportlng. In partlcular for DHR distributions (dlstrlbutlons 
wlth decreaslng hazard rate), the method of dynamlc thlnnlng wlll be lntroduced 
and analyzed (Devroye, 1985). Other classes, such as the class of IHR distribu- 
tions (dlstrlbutlons wlth lncreaslng hazard rate), are dealt wlth lndlrectly in the 
text and exerclses. 

2.2. The inversion method. 

to lnvert an exponentlal random varlate: 
For generatlng a random varlate wlth cumulatlve hazard rate H ,  i t  sufflces 

Inversion method 

Generate an exponential random variate E 
RETURN X +H-'(E ) 

If H-' 1s not expllcltly known, then we are forced to solve H ( X ) = E  for X by 
some lteratlve method. Here the dlscusslon of the standard lnverslon method for 
dlstrlbutlon Punctlons applles agaln. 

We can easily verlfy that  the algorlthm 1s valld, either by uslng the connec- 
tlon wlth Polsson processes glven In Theorem 2.1, or dlrectly: for z > O  observe 
that If H 1s strlctly lncreaslng, then 

P ( H - ' ( E ) L Z )  = P ( E L H ( X ) )  = l - e - H ( z ) =  F ( x )  3 
When H 1s not strlctly lncreaslng, then the chaln of lnequalltles remains valld for 
any conslstent deflnltlon of Ha'. 

Thls method 1s dlfflcult to attrlbute to one person. It was mentloned In the 
works of Clnlar (1975), Kamlnsky and Rumpf (1977), Lewls and Shedler (1979) 
and Gaver (1979). In the table below, a llst of examples Is glven. Baskally, thls 
llst contalns dlstrlbutlons wlth an easlly lnvertlble dlstrlbutlon functlon because 
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a x  "-l  ax "-1 -?"  e ( a  >O)(Weibull) 
1 - 

2 "  E "  
a 

( l + X  ) " + l  
(Pareto) 

2.3. The composition method. 
. +hfl where the hi ' s  are in turn hazard rates, then we 

can use Theorem 2.1 dlrectly and use the fact that I t  sumces to conslder the 
mlnlmum of n random varlables x,, . . . , x, wlth the lndlvldual hazard rates 
hi .  When the lndlvldual cumulatlve hazard rates are H i ,  then thls can be shown 
dlrectly: for 5 >0, 

When h =h ,+ 

fl  P(mln(X, ,  . . . , X f l ) L x ) =  ne - K ( z )  = , - H ( z )  
i = 1  

03 

If the decomposltlon 1s such that for some hi we have J h i  ( t  ) dt <co, then the 

method Is stlll appllcable if we swltch to nonhomogeneous Polsson processes. 
0 

Y - - a a log(l+x ) e "-1 
l + X  

Composition method 

X-cx, 
F O R i = 1  TO n DO 

Generate Z distributed as the first event time in a nonhomogeneneous Poisson pro- 
cess with rate function hi (ignore this if there are no events in the process; if 

J h i  =co, then z has hazard rate hi ). 

IF <x THEN x+z 

00 

0 

RETURN x 

Usually, the composltlon method 1s slow because we have to deal wlth all the 
lndlvldual hazard rates. There are shortcuts to speed thlngs up a blt. For exam- 
ple, after we have looked at the flrst component and set x' equal to the random 
varlate wlth hazard rate h I t  sufflces to conslder the nonhomogeneous Polsson 
processes restrlcted to [O,X]. The polnt 1s that if X 1s small, then the probablllty 
of observlng one or more event tlmes In thls liiterval 1s also small. Thus, often a 
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qulck check sufflces to avold random varlate generatlon for the remalnlng nonho- 
mogeneous Polsson processes. To lllustrate thls, decompose h as follows: 

h (a: 1 = l(a: )+h& 1 
where h 1s a hazard rate whlch puts Its mass near the orlgln. The functlon h 2  1s 
nonnegatlve, but does not have to be a hazard rate. It can be considered as a 
small acifustment, h ,  belng the maln (easy) component. Then the followlng algb- 
rlthm can be used: 

Composition method with quick acceptance 

Generate a random variate X with hazard rate h 1. 

Generate an exponential random variate E .  
IF E 5 H 2 ( X )  (H, is the cumulative hazard rate for h a )  

THEN RETURN X+H2-' (E)  
ELSE RETURN x 

Somethlng can be galned If we replace X t H 2 - ' ( E )  by a step In whlch we return 
a random varlate X dlstrlbuted wlth hazard rate 

whlch can be done by methods that do not lnvolve lnverslon. The expected 
number of tlmes that we need to use the second (tlme-consumlng) step In the 
algorlthm 1s the probablllty that E s H 2 ( X )  where X has hazard rate h 1: 

03 

- H l ( y  )( l-e - H z ( y  1) dY p ( E  5 H , ( X ) )  = J h  1 ( Y  ) e  

= 1-Jh l(y ) e  - H ( y )  d y  

0 
co 

0 
03 

= 1 - j ( h  ( ~ ) - h , ( y ) ) e - ~ ( Y )  d y  
0 

00 

= J h 2 ( y  ) , - H ( y )  d y  
0 

where f 1s the denslty correspondlng to f . From the last expresslon we conclude 

that I t  1s lmportant to keep - small. h2 

h 
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2.4. The thinning method. 
Comblnlng the theorem about thlnnlng Polsson processes (Theorem 1.4) wlth 

Theorem 2.1 shows that the followlng algorlthm produces a random varlate wlth 
hazard rate h ,  provlded that we can generate a nonhomogeneous Polsson polnt 
process wlth rate functlon g where 

h (z 1 L 9 (5 1 (all 5 1 + 

Thinning method (Lewis and Shedler, 1979) 

x+o 
REPEAT 

Generate a random variate A with hazard rate g (x+s ) (z 20) (equivalently, gen- 
erate the flrst occurrence in a nonhomogeneous Poisson point process with the same 
rate function). 
Generate a uniform [0,1] random variate U. 
X+X+A 

UNTIL Ug ( X ) < h  (X) 
RETURN x 

Thls algorlthm Is most efflclent when g Is very slmple. In partlcular, constant 
E domlnatlng rate functlons g =go are practical, because A can be obtalned as - 
9 0  

where E Is an  exponentlal random varlate. We wlll now see what the  expected 
coinplexlty Is for thls algorlthm. It Is annoylng that the dlstrlbutlon of the 
number of lteratlons (whlch we shall call N )  depends very heavily on h and g .  
Recall, in comparlson, that for the reJectlon method, t h e  dlstrlbutlon 1s always 
geometrlc. For  the thlnnlng method, we mlght even have E(N)=oo, so that I t  Is 
absolutely essentlal to clarlfy Just how E ( N )  depends upon h and g . The follow- 
lng theorem Is due to Devroye (1985): 

Theorem 2.2. (Analysis of the thinning method.) 
Let f and F be the denslty and dlstrlbutlon functlon correspondlng to a hazard 
rate h . Let g >h be another hazard rate havlng cumulatlve hazard rate G . 
Then the expected number of lteratlons in the thlnnlng algorlthrn glven above 1s 

03 03 
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Proof of Theorem 2.2. 
Let us call the X varlates In subsequent lteratlons X i ,  where i = i , 2 ,  .... 

Slmllarly, the unlform [0,1] random varlates used In the algorlthm have also sub- 
scripts referrlng to the Iteration, as In u1,u2, .... In Theorem 1.4 we have shown 
that  ( X I ,  Ulg ( x l ) ) , (X , ,  U 2 g  (I,)), ... If contlnued at lnflnltum form a homogene- 
ous Polsson process wlth unlt rate on the area bounded by the s-axls and the 
curve g . The only thlng that  we lntroduce In the thlnnlng method 1s a stopplng 
rule. We condltlon now on x ,  the random varlate returned In the algorlthm. 
Notlce that N 1s 1 plus the number of event tlmes In a nonhomogeneous Polsson 
process wlth rate Punctlon g-h restrlcted to [O,X). Thus, condltloned on X ,  

N-1 1s Polsson dlstrlbuted wlth parameter J ( g - h ) .  Thls observatlon uses the 

propertles of Theorem 1.4 connectlng homogeneous Poisson processes In the plane 
wlth nonhomogeneous Polsson processes on the Ilne. 

X 

0 

It 1s a slmple matter to compute E ( N ) :  
X X 

E ( N )  = l + E ( J ( g - h ) )  = l + E ( J g ) - E ( H ( X ) )  

= E ( J 9 )  

= J f G  

= J g ( 1 - F ) .  

0 0 
X 

0 

co 

0 
03 

0 

Here we used the fact that H ( X )  1s exponentlally distrlbuted, and, In the last 
step, partial Integratlon. 

Theorem 2.2 establlshes a connectlon between E ( N )  and the size of the tall 
of x. For example, when g =c 1s a constant, then 

E ( N )  = c E ( X )  . 

Not unexpectedly, the value of E ( N )  1s scale-lnvarlant: it, depends only upon the 
shapes of h and g . When g Increases, as for example In 

n 

i =o 
g ( x ) =  C c i x '  9 

then E ( N )  depends upon more than just the flrst moment: 
tl c i  

E ( N )  = c - E ( x i + l )  . 
0 2 +l  
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There are plenty of examples for whlch E (N)=oo even when g (x )=1 for all x . 
Conslder for example h (x )=-, whlch corresponds to the long-talled denslty 

r ( X I =  . Generally speaklng, E ( N )  1s small when g and h are close. 

For example, we have the followlng helpful lnequalltles: 

1 
x +1 

(5 +1)2 

Theorem 2.3. 
The thlnnlng algorlthm satlsfles 

where F ,F* are the dlstrlbutlon functions for h and g respectlvely. 

Proof of Theorem 2.3. 
The flrst lnequallty follows from 

03 .. 

E ( N )  = J- f (x) dx , 
0 h ( X )  

and the second lnequallty 1s a consequence of 

where f * 1s the denslty correspondlng to g . 

There are examples In whlch g and h appear to be far apart 
(llm - g ( x )  - - oo), Yet E (N)<oo: conslder for example 

h (x )=- 9 s(z)= ,O<a 5 1 .  The explanation 1s that g and h 
z t m  h(x) 

1 

x +1 (a: + l I a  
should be close to each other near the origln and that the dlflerence does not 
matter too much In low denslty regions such as the talls. 

The expresslon for E ( N )  can be manlpulated to choose the best domlnatlng 
hazard rate g from a parametrlzed class of hazard rates, Thls wlll not be 
explored any further. 
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2.5. DHR distributions. Dynamic thinning. 
In thls sectlon we wlll try to obtaln a black box generator for DHR dlstrlbu- 

tlons, 1.e. a generator whlch does not requlre a prior1 expllclt knowledge of the 
form of h .  The method that wlll be glven In thls sectlon 1s the method of 
dynamic thinning. Thls prlnclple In ltself 1s also useful for other dlstrlbutlons 
and for the nonhomogeneous Polsson process on the real Ilne. The algorlthm 
resembles the thlnnlng algorlthm, but the domlnatlng hazard rate 1s dynamlc, 1.e. 
I t  varies durlng the executlon of the algorlthm. 

The DHR dlstrlbutlons form a sub-class of the monotone densltles because 
f =he-H,  h -1 and Hf. It contalns the Pareto dlstrlbutlon wlth parameter a >0: 

the Weibull dlstrlbutlon wlth parameter a 51 and the gamma dlstrlbutlon wlth 
parameter a 51. The peak of the density 1s at 0, wlth value f (O)=h (0). Thls 
value can of course be 00 as for the gamma ( a )  density wlth O<a <l .  The class 
has some desirable propertles, for example, I t  1s closed under convex comblnatlons 
(see exerclses), whlch means that mlxtures of DKR dlstrlbutlons are agaln DHR. 

The lnversion method 1s based upon the fact that the solutlon X of 
H ( X ) = E  where E 1s exponentlally dlstrlbuted, has cumulative hazard rate H .  
But for DHR dlstrlbutlons, H 1s concave (Its derlvatlve h 1s nonlncreaslng). 
Thus, Newton-Raphson lteratlons started at 0 converge whenever h (0)<00: 

Inversion method for DHR distributions 

x+-0 
REPEAT 

UNTIL False 

In practlcal appllcatlons, an approprlate stopplng rule must be added. An exact 
solutlon usually requlres lnflnlte time (thls 1s not the case If h Is plecewlse con- 
stant !). The thlnnlng method, If I t  Is to be used In black box mode, can only use 
the constant dominating hazard rate g = h ( O ) ,  In whlch case the expected 
number of iteratlons becomes 

h (0)E (X) . 

We recall however that DHR dlstrlbutlons have heavler-than-exponentlal talls. 
Thus, the fact that E ( N ) ,  the expected number of lteratlons, 1s proportlonal to 
J!?(,Y) could be a serlous drawback. The two prototype examples that we wlll 
conslder throughout thls sectlon are the exponentla1 density 
( E  (N)=h  (0)E (X)=l) and the Pareto ( a  ) denslty 
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for whlch h (a : )=- ,~(x)=a U log(l+x),h (O)=a, and, If a >1, E(X)=-. 1 
l + x  a -1 

Thus, 

03 O<a 51 
E ( N )  = 15 a >1 

We are now ready to present the dynamic thinnlng algorithm: 

Dynamic thinning algorithm for DHR distributions 

x-0 
REPEAT 

A-h (X) 
Generate an exponential random variate E and a uniform [O,l] random variate U .  

E X-X+- x 
UNTIL XU s h  (X) 
RETURN X 

The method uses thinning wlth a constant but continuously adjusted dominating 
hazard rate A. When h decreases as X grows, so wlll 1. Thls forces the probabll- 
lty of acceptance up. The complexlty can agaln be measured in terms of the 
number of lteratlons before haltlng, N .  Note that the number of evaluatlons of h 
1s 1+N (and not 2N as one mlght conclude from the algorlthm shown above, 
because some values can be recuperated by lntroduclng auxlllary ’varlables). If 
X t h  (X) 1s taken out  of the loop, and replaced at the top by X t h  (0), we obtain 
the standard thlnnlng algorithm. Whlle both algorithms do not requlre any 
knowledge about h except that h Is DHR, a reductlon in N Is hoped for when 
dynamlc thlnnlng is used. In Devroye (1985), varlous useful upper bounds for 
E ( N )  are obtalned. Some of these are glven In the next subsectlon and in the 
exercise sectlon. The value of E ( N )  is always less than or equal that of the thln- 
ning method. For example, for the Pareto ( a  ) dlstrlbution, we obtain 

whlch 1s flnlte for all a >O. In fact, we have the following chain of lnequallties 
showlng the lmprovement over standard thlnnlng: 

I 
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1 
E ( W =  o3 

2 -l Je"(i+-) dz 

(use Jensen's lnequallty; note: 

U 0 

1 <- a -I-' 1s convex In z ) 
a - 

(1+-% 
U 

U <- (for all a >I) 

= ,u = h ( O ) E ( X )  . 
a -1 

For example, at a =1, we have E (N)<Z whereas h (0)E (X)=co. 

2.6. Analysis of the dynamic thinning algorithm. 
Throughout thls section, we wlll use the followlng notatlon: 

P = h ( o ) E ( X )  , 

P =  

r =  

E =  

00 

SUP e -yh (' )( h (a: )-h (a:  +y )) dy , 
2 2 0 0  

where p$,r and [ are varlous quantltles that wlll appear In the upper 5ounds for 
E ( N )  glven In thls subsectlon. Note that 6 1s the logarlthmlc moment of h (O)X,  
for whlch we have, by Jensen's lnequallty, 

SO that 6 1s always Anlte when ,u 1s Anlte. Obtalnlng an upper bound of the form 
0 ([) Is, needless to say, strong proof that dynarnlc thlnnlng 1s a drastlc lmprove- 
ment over standard thlnnlng. Thls 1s the goal of thls subsectlon. Before we 
Proceed wIth the technlcalltles, I t  1s perhaps helpful to collect all the results. 
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Bounds C and D are never better than bound B, but often 7 Is easler to compute 
than ,8. For the Pareto family, we obtain via D, 

a +i E ( N )  _< 7 =  -, 
a 

a result that can be obtalned from B vla Jensen's lnequallty too. Inequalltles E-H 
relate the size of the tall of x to E ( N ) ,  and glve us more insight lnto the 
behavlor of the algorlthm. Of these, lnequallty H Is perhaps the easiest to under- 
stand: E ( N )  cannot grow faster than the logarithm of p.  Unfortunately, when 
p=m, I t  1s of llttle help. In those cases, the logarithmic moment E is often flnlte. 
For example, thls Is the case for all members of the Pareto famlly. We will now 
prove Theorem 2.4. It requires a few Lemmas and other technical facts. Yet the 
proofs are lnstructlve to those wlshlng to learn how to apply embeddlng tech- 
niques and well-known lnequalltles In the analysis of algorithms. Non-technical 
readers should most certalnly not read beyond thls point. 

Proof of Theorem 2.4. 

Part A. Thls part uses embeddlng. Conslder the sequence of random vectors 
(Y,,h (0)ul),( Y,,h (0)u2), ... where the vi's are lld unlform [0,1] random varl- 
ables, and O=Y,< Y,< Y,< * . are deflned by the relatlons: 

where E1,E2,... are Ild exponential random varlates. Thls 1s the sequence con- 
sldered In standard thlnnlng, where we stop when for the flrst tlme 
h (0)Vi sh ( Y i ) .  We recall from Theorem 2.3 that In that case 
E ( N ) = p = E  ( h  (0)X) .  Let us use starred random varlables for the subsequence 
satlsfylng h (0)Vi <h - (Yi-,). Observe flrst that thls sequence 1s dlstrlbuted as the 
sequence of random vectors used In dynamic thlnnlng. Then, part A follows 
wlthout work because we still stop when the flrst random vector falllng below the 
curve of h 1s encountered. 
Part B. used In 
dynamlc thlnnlng satlsfles: Yo=O, and 

Let the Ei's be as before. The sequence Y,<Y,< . * * 

Note that thls 1s the sequence of possible candldates for the returned random 
variate X In the algorithm. The lndex z refers to the Iteratlon. Taking the stop- 
Plng rule lnto account, we have for z 21, 
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Theorem 2.4. 
The expected number of lteratlons In the dynamlc thlnnlng algorlthm 

applled to a DHFt dlstrlbutlon wlth bounded h does not exceed any of the follow- 
lng quantltles: 

A. 
1 

e 
e -1 

B. -* 1-p ' 
c. - 7: 

D. 7 (when h 1s also convex): 
1 1 

O C  
E. (8p) +4(8p) : 

Part A states that  we have an lmprovement over standard thlnnlng. Inequalltles 
B and D are sharp: for example, for the exponentlal dlstrlbutlon, we have p=O, 
~ = 1 ,  whlch leads to E ( N ) S l .  Inequallty B 1s also sharp for the Pareto famlly 
defined above. One can easlly verlfy that  

0 
03 

Je-2 

0 1+- 
a 

where we used the transformatlon z=- . By carefully checlclng the lnductlon 
l+X 

argument used ln the proof of Theorem 2.4, we see that  for any i 20, 
P ( N  > z )=pi and thus that  
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Thus, for i 22, 
, P ( N > i  I Y o , .  . . > Yi-1) 

and we obtaln, by a slinple lnductlon argument on i , tha t  

P ( N  > i )  5 p’ ( i  20) . 
Thus, 

1 E ( N ) =  C P ( N > i )  5 - a 

i =o 1-P 

Part C. Part C 1s obtalned from B by boundlng ,8 from above. Flx z and c >O. 
Then 

03 

Je -Yh( ’ ) (h ( z ) -h ( z+y) )  d y  
0 

Inequallty C follows after taklng c =l. 

Part D. Inequallty D follows by applylng Jensen’s lnequallty to an lntermedlate 
expresslon In the precedlng chaln of lnequalltles: 

03 

J e-yh(’ ) (h  (z 1-h (3 + y  1) d y  
0 
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Lemma 2.1, needed for parts E H .  We wlll show tha t  for x 20, p >2, and 
Integer m In {0,1, , . . , n }, 

l r n  P ( N > n )  5 P(X>x)+-  (o)x +(I--)  ( n  >o> P n - m  P 

Deflne the E j  and Yi sequences as In the proof of part B, and let u , , U 2 ,  ... be a 
sequence of lld unlform [0,1] random varlables. Note that  the random varlate X 
returned by the algorlthm 1s YN where N 1s the flrst Index z for whlch 
U i h ( Y i - , ) S h ( Y j ) .  Deflne N, ,N ,  by: 

n 

Then we can wrlte the followlng: 

[ N > n  ] ~ [ ~ > ~ ] U [ X ~ x , N , ~ n - m  ,N > n ] u [ N , L m  ,N > n ]  

Now, 

and 
l m  

P 
P ( N , > m , N > n )  _< P ( N > n  I N2>rn) 5 ( I - - )  . 

Thls concludes the proof of the Lemma. 
Part E. Conslder Lemma 2.1, and take x=$, random, lndependent of x and 

] where C > O  1s a constant to be chosen unlformly dlstrlbuted on [- - 
Ch,-(O); Ch (0) 

n 

further on. Take m=m,= 

We wlll apply the formula 

, and take p constant and lndependent of n .  

00 

E ( N )  = P ( N > n )  
n =O 

and use Lemma 2.1, averaged over 2,. Thls ylelds an upper bound conslstlng Of 

three terms: 

(1) 
n + I  

00 co 
P ( X > X n )  = J P ( C h ( O ) X > t )  dt  

n =O n=O n 
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03 

= JP(Ch(o)X>t)  dt = E(Ch(0)X) = C p  . 
0 

1 2( 1--) 1 m n  00 1 i  03 

(I---) = 1+2 (1--) = 1+ p 2p-1 . 
1 n = o  P j = 1  P - 
P 

P 
2 ,  1 . 2  1 . +- 2 )  

= -  
1 fl---) C ( - T  

1-- 

1 
1+- 

- 2 P -- c 1 2 '  
(1-p)  

These estlmates are substltuted In 

Thls glves the upper bound 

2 P(P+1) 1 --) . E ( N )  5 l+CcL-P ( X  >z0)+2(p -1)+--( c (p-1)2 4 

Slnce h(0)X 1s stochastlcally greater than an exponentlal random varlate, we 
have 

t 1 -- 1 

P(X>xo)  = J P ( C h ( o ) X > t )  dt  2 J e  dt 
0 0 

1 
C 1 
- 

1 -- 
= c J e +  ciz = C(1-e '> 2 I--. 

0 2c 

Thus, 
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The optlmal cholce for C Is 

whlch, after substltutlon, glves 

2d8p 

P -1 
= 2(p-1)+-+&. 

1 - 
The rlght-hand-slde 1s mlnlmal for p -1=(8p) * , and thls cholce glves lnequallty 
E. 
Part I?. In Lemma 2.1, replace n by 2 j ,  and sum over j .  Set m 2 j = j ,  
p = p  >2, and h ( 0 ) ~  = ( p  -1)J . Slnce for any random variable 2' , 

ca 
M 

we see that 

j =o 

ca 1 j  

j =O P 
5 2 ( P  ( h  (0)X > ( p  -1)i )+2(1--) ) 

Part G .  Inequallty G follows from lnequallty F for t,,e followlng c&:e of p : 

e 
210g2(1+{) 

p = 2 +  

Thls value was obtalned as follows: lnequallty F 1s sharpest when p 1s plcked as 

2 
the solutlon of ( p  -i)log*(p --I)=-. < But because we want p >2,  and because we 

want a good p for large values of {, I t  1s good to  obtaln R rough solutlon by func- 
tlonal lteratlon, and then addlng 2 to thls to make si1 I ( 3  that  the restrktlons on p 
are satlsfled. Resubstltutlon ylelds: 
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Part H. Use the bound of part G, and the fact that  f s l o g ( l + p ) .  In fact, we 
have shown that 

2.7. Exercises. 
1, 

2. 

3. 

4. 

5. 

6. 

Sketch the hazard rate for the halfnormal denslty for 3: >O. Determlne 
-1. whether i t  is monotone, and show that llm -- 

Glve an efflclent algorlthm for the generatlon of random varlates from the 
left tall of the extreme value distrlbution truncated at c <O (the extreme 
value dlstrlbutlon function before truncatlon Is eve‘). Hlnt: when E 1s 

exponentlally dlstrlbuted, then --log(l+bEe -a ) has hazard rate 

h (x)=e a + b z  for x >O , b >O. 

Show that when H 1s a cumulatlve hazard rate on [O,co), then - H ( x )  1s a 

hazard rate on [0,00). Assume now that random variates wlth cumulatlve 
hazard rate H are easy to generate. How would you generate random varl- 
ates wlth hazard rate - 

h ( x )  
z t03  5 

1 
b 

5 

H ( x )  .? 

1 
X 

Prove that - cannot be a hazard rate on [O,co). 

Construct a hazard rate on [O,co), contlnuous at all polnts except at c >0, 
havlng the addltlonal propertles that h (x)>O for all I >0, and that 
llm h ( x ) =  Ilm h ( x ) =  00. 

In thls exerclse, we conslder a tlght A t  for the thlnnlng method: 
M = J ( g - h )  < 00. Show flrst that 

Tc z I C  

03 

E ( N )  L 1+J(g-h)  f 

0 

Prove also that the probabillty that N is larger than Me decreases very 
rapldly to 0, by establishlng the lnequality 

To do this, start  wlth P ( N  2;) 5 e - t iE (e  t N )  where t 20 1s arbltrary (thls 
1s Jensen’s lnequallty). Evaluate the expected value, bound thls value by 
lntroduclng M ,  and optlmlze wlth respect to t . 
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I 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

10. 

a: 
Consider the family of hazard rates hb (a:)=- (a: >O), where 6 > O  Is a 
parameter. Dlscuss random variate generation for this family. The average 
tlme needed per random variate should remain unlformly bounded over 6. 
Give an algorithm for the generation of randoni variates with hazard rate 
hb (5)=b +a: (a:  >0) where b 20 1s a Parameter. Inverslon of an exponen- 
tial random variate requires the evaluation of a square root, which is con- 
sidered a slow operation. Can you think of a potentially faster method ? 

Develop a thlnnlng algorlthm for the famlly of gamma densltles wlth param- 
eter a 2 1  whlch takes expected tlme unlformly bounded over a .  

The hazard rate has inflnlte peaks at all locations at whlch the density has 
lnflnlte peaks, plus possibly an extra lnflnlte peak at 00. Construct a mono- 
tone density f whlch Is such that i t  oscillates lnflnltely often In the follow- 
ing extreme sense: 

2 too 

z Too 

1+6a: 

lim sup h (a: ) = 00 ; 

Ilm inf h ( a : )  = o . 

Notfce that h 1s neither DHR nor IHR. 
If X is a random variate with hazard rate h ,  and $J Is a suitable smooth 
monotone transformation, give a formula for the hazard rate of $ J ( X )  and 
condltlons under whlch your formula 1s valld. See Gaver (1979) for several 
examples of such transformations. 
Show that a mixture of DHR distributions Is again a DHR distribution (Bar- 
low, Marshall and Proschan, 1963). 

Show that for any DHR random varlable X ,  p=E ( h  (0)X)Zl. 
Construct a DHR distribution for which the logarithmic moment 
J=E (log+(h (O)X>)=0O. 

a For the Pareto family (density f (a : )=  , a: > O  ), And the rate of 

increase of c, the logarithmic moment, as a 10 (the answer should be of .the 
form: c- slmple expression involving a ). 
Develop a black box method for DHR distributions with h (0)=00. 

Let the hazard rate h be piecewise constant with breakpoints at 
O=z,<x:,<s,< + * and values hi on ( ~ i - ~ , x i ] ,  i > 1 .  - Assume that  these 
numbers are given In an lnflnlte table. Describe the inversion algorithm. 
Determine the expected number of iterations as a function of the x i ' s  and 
the hi's .  

Show that for the dynamic thlnnlng method for DHR distributions, 
E ( N ) < 4 + 6 ,  where p=E (h ( 0 ) X )  (Devroye, 1985). 
Thls exercise 1s concerned wl th  an lmprovement over Inequalltles F - H  In 
Theorem 2.4. Deflne the random varlable Y=log+(h (O)X) ,  and the quantity 

( l + x  )' +l  

T/ 

I 

1 
= *( log ( l+Y)  1 .  
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A. 

B. 

C. 

Show that x<oo lmplles c<oo (try to do thls by establlshlng an lne- 
qual 1 t y ). 
Show by example that there exlsts a denslty f for whlch x<m,  yet 
t=m. 
Flnd posltlve constants a >O,b > O  such that for the dynamlc thlnnlng 
method, E ( N ) s a  + b  x. Hint: In Lemma 2.1, choose 

m=mn=j  log(n n +1) 1, 
for an approprlate n o  (Devroye, 1985). 

3. GENERATING RANDOM VARIATES WITH A GrVEN 
DISCRETE HAZARD RATE. 

3.1. Introduction. 
Assume that we wlsh to generate a random varlate wlth a glven probablllty 

vector p l,p 2,..., and that the discrete hazard 'rate function hn ,n =l,2, ... 1s 
glven, where 

Pn 

Qn 
h n = - ,  

rn 
Qn = pi . 

= n  

One verlfles qulckly tha t  

Pn hn (1-hj) . 
i < n  

In some appllcatlons, the orlglnal probablllty vector of pn 's has a more compll- 
cated form than the dlscrete hazard rate functlon. 

The general methods for random varlate generatlon In the contlnuous case 
have natural extenslons here. As we wlll see, the role of the exponentlal dlstrlbu- 
tlon 1s lnherlted by the geometrlc dlstrlbutlon. In dlfferent sectlons, we wlll 
brlefly touch upon varlous technlques, whlle examples wlll be drawn from the 
classes of logarlthmlc serles dlstrlbutlons and negative blnomlal dlstrlbutlons. In 
general, If we have flnlte-valued random varlables that remaln Axed throughout 
the slmulatlon, table methods should be used. Thus, I t  seems approprlate to draw 
all the examples from classes of dlstrlbutlons wlth unbounded support. 
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3.2. The sequential test method. 
The followlng method wlll be called the sequential test method. Although 

I t  1s conceptually very slmple, I t  seems to have been formally proposed for the 
flrst tlme by Shanthlkumar (1983,1985). 

Sequential test method 

X t o  
REPEAT 

Generate a uniform [ O , l ]  random variate u 
xtx+1 

UNTIL u 5 hx 
RETURN x 

The valldlty of thls method follows dlrectly from the fact that all hn 's  are 
numbers In [ O , l ] ,  and that 

P, = h, n[ (1-hi 1 * 

i c n  

It 1s obvlous that the number of lteratlons needed here Is equal to X .  The 
strength of thls method 1s that I t  1s unlversally appllcable, and that I t  can be 
used In the black box mode. When I t  1s compared wlth the lnverslon method for 
dlscrete random varlates, one should observe that In both cases the expected 
number of lteratlons 1s E ( X ) ,  but that In the lnverslon method, only one unlform 
random varlate 1s needed, versus one unlform random varlate per lteratlon In the 
sequentlal test method. If h, 1s computed In 0 ( 1 )  tlme and p n  1s computed as 
the product of n factors lnvolvlng h 1, . . . , hn , then the expected tlme of the 
lnverslon method grows as E ( X 2 ) .  Fortunately, there 1s a slmple recurslve for- 
mula for pn : 

hn + I  

hn 
Pn +I = Pn (-)(l-hn ) . 

Thus, If the p ,  's are computed recurslvely In thls manner, the lnverslon method 
takes expected tlme proportlonal to E ( X ) ,  and the performance should be com- 
parable to that of the sequentlal test method. 
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3.3. Hazard rates bounded away from 1. 
Conslder the class of dlscrete hazard rates h, wlth supremum p<l. Thls 

class wlll be called the class H(p). For such hazard rates, the sequentlal test 
method can be accelerated by observlng that we can Jump ahead more than 1 In 
each lteratlon. To see thls, assume that x 1s geometrlcally dlstrlbuted wlth 
parameter p : 

P (X=n  ) = p (1-p )n-1 (n 2 1 ) .  

Then X has hazard rate h,=p. But In that case the sequentlal test method 
counts the number of lld unlform [0,1] random varlates generated untll for the 
flrst tlme a number smaller than p 1s obtained. Thls 1s of course known to  be 
geometrlcally dlstrlbuted wlth parameter p . In thls speclal case, the lndlvldual 
unlform random varlates can be avolded, because we can generate X dlrectly by 
lnverslon of a unlform random varlate U as 

r 

E 
-log(l-P ) 

or as Xc- I 1 , where E 1s an exponentlal random varlate. For the 

llmlt case p =1, we haGe X=1 wlth probablllty one. The smaller p , the more 
dramatlc the Improvement. For non-geornetrlc dlstrlbutlons, I t  1s posslble to  glve 
an algorlthm whlch parallels to some extent the thlnnlng algorlthm. 

Thinning method for discrete distributions 

NOTE: This algorithm is valid for hazard rates in H ( p )  where pE(O,l] is a given number. 
x-0 
REPEAT 

Generate iid uniform [0,1] random variates U t  I/ 
log u 

x+x+ 1 log(1-p) 

hX UNTIL V<- 
P 

RETURN X 

Thls algorlthm 1s due to  Shanthlkumar (1983,1985). We have to  show that I t  1s 
valld, and verlfy what the expected tlme complexlty 1s. 
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Theorem 3.1. (Shanthikumar, 1983,1985) 

hazard rate h, . 
The dlscrete thlnnlng method generates a random varlate wlth dlscrete 

Proof of Theorem 3.1. 
Let G1,G2,  ... be the sequence of lld geometric ( p )  random varlates used In 

the dlscrete thlnnlng method. Let x be the returned random varlate. Thus, 
X = G  1+ . . . +GN where N 1s the number of lteratlons. Let us deflne the par- 

tlal sums S, = Gi . Thus, X = S N .  We compute the probablllty P (SN =n ) 

from the followlng formula: 

f l  

i=1 

P ( X = n  ,N=k+l,,S1=nl, . . . , Sr=nk)  

= h, p k  ( ~ - p ) , - l - ~  n (I--) 
k hn, 

i = 1  P 
(k <n -1) . 

Thls can be seen by Just computlng lndlvldual probabllltles of lndependent 
events. To obtaln P (X=n ), I t  sufflces to sum over all posslble values of k and 
ni . We note now that the followlng multlnomlal expanslon Is valld: 

c 
Thus, 

hfl n-1 hi 
P i=1 P 

P ( X  =n ) = p- n (p( l - - )+l-p)  

f l  -1 

= h, n ( l -hi)  ( n  =1,2, ...) , 
I =1 

whlch was to be shown. B 

If we use the algorlthm wlth p=l (whlch 1s always allowed), then the 
sequentlal test algorlthm Is obtalned. For some dlstrlbutlons, we are forced Into 
thls sltuatlon. For example, when X has compact support, with Pn >O,Pn+<=O 
for some n and all i 3 1 ,  then hfl =1. In any case, we have 



282 VI.3.DISCRETE HAZARD RATE 

Theorem 3.2. 

can be computed as follows: 
For the dlscrete thlnnlng algorlthm, the expected number of lteratlons E ( N )  

E ( N )  = p E ( X ) .  

Proof of Theorem 3.2. 
We observe that In the notatlon of the proof of the prevlous theorem, 

N 
X =  C G i ,  

I =1 

so that by Wald’s equatlon, 

E ( X )  = E(N)E(Gl )  = E ( N ) p  , 

whlch was to  be shown. 

Example 3.1. The logarithmic series distribution. 
For the logarlthmlc serles dlstrlbutlon deflned by 

(n 21) 9 

8, 
-iog(i-O) n 

- 1 P ( X = n )  = 

where BE(0,l) 1s a parameter, we observe that h, 1s not easy to  compute (thus, 
some preprocesslng seems necessary for thls dlstrlbutlon). However, several key 
propertles of h, can be obtalned wlth llttle dlmculty: 

+-+ * * * * 
1 n 8  n e 2  

h n  n + l  n+2 
(1) - = 1+- 

(11) h, 11-8 as n --too; 
e (Hi) p=sup h, =h 

n -log( 1-8) * 

Thus, while the sequentlal method has E (N)=E (X)=- , the dlscrete thln- 

nlng method satlsfles 
1-8 

-2 
E ( N )  = p E ( X )  = v .  

1-8 

Slnce p+O as O+l, we see that the lmprovement In performance can be 
dramatlc. Unfortunately, even wlth the thlnnlng method, we do not obtaln an 
algorlthm that 1s unlformly fast  over all values of 8: 
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3.4. Discrete dynamic thinning. 
Shanthlkumar (1983,1985) has also observed that for dlstrlbutlons wlth 

decreaslng dlscrete hazard rate (also referred to below as DHR dlstrlbutlons) that 
the value of p can be dynamlcally modlfled to lncrease the Jumps for the 
geometrlc random varlates, and thus lncrease the performance. The formal algo- 
rlthm 1s glven below. 

Dynamic thinning method for discrete DHR distributions 

x+o 
REPEAT 

Generate iid uniform [OJ] random variates U,V. 
P+-hx + 1 - 

log u 

UNTIL vl- hX 

P 
RETURN x 

The valldlty of thls algorlthm follows by a short recursive argument: 

P ( X  > n I X > n - 1 ,  the last partlal sum of geometrlc varlate-s 

less than n takes the value I C )  

= 14, . 

Thus, because thls does not depend upon k , 
P ( X > n )  = ( l - h , ) P ( X > n - I )  

= rl[ (1 -h j )  . 
n 

I =1 

I 
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3.5. Exercises. 
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1. 

2: 

3. 

4. 

5 .  

Prove the following for the logarlthmlc serles dlstrlbution wlth parameter 
em, 1):  

n 8  n o 2  
n+l n + 2  

-l+- +- + . . '  9 (1) - - 
hn 

(11) h, 1 1-8 as n-+m , 

Assume that dlscrete dynamic thlnnlng Is used for a DHR dlstrlbutlon. 
Obtaln good upper bounds for E ( N )  In terms of the slze of the tall of the 
dlstrlbution. Show also that for the logarithmic serles dlstrlbution the value 
of E (N)  1s not unlformly bounded In e € ( O , l )  , the parameter of the dlstrlbu- 
tlon. 
Show that in the dlscrete thlnnlng algorithm, quick acceptance and rejection 
steps can be lntroduced that would effectlvely reduce the expected number 
of evaluatlons of h, . Compute the expected number of such evaluatlons for 
two squeezlng sequences. 
A contlnuatlon of exerclse 3. For the logarlthmlc serles dlstrlbutlon wlth 
parameter 8, show that 

Show that If these bounds are used for squeeze steps In the dlscrete dynamic 
thlnnlng method, then the expected number of evaluatlons of h, 1s o ( 1 )  as 
811. (The lnequalltles are due to Shanthlkumar (1983,1985).) 
The negative binomial distribution. A random varlable Y has the 
negatlve blnomlal dlstrlbutlon wlth parameters (k , p  ) where k 2 1,p E ( 0 , i )  If 

Then, the normallzed random varlable X = Y - k + l  has a dlstributlon on all 
posltlve Integers. For this random varlable X ,  show that hn t p  a s  n tco. 
(Hlnt: the relatlonshlp 

k 
P 

1s helpful.) Show that In the sequentlal test algorlthm, &(N)=-, while In 

the dlscrete thlnnlng algorlthm (wlth p=p ), we have E ( N ) = k .  Compare 
thls algorlthm wlth the algorlthm based upon the observatlon that Y 1s dls- 
trlbuted as the sum of k lld geometrlc ( p )  random varlates. Flnally, show 
the squeeze type lnequalitles 
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6. Example 3.1 for the logarlthmlc serles dlstrlbutlon and the prevlous exerclse 
for the negatlve blnomlal dlstrlbutlon requlre the computatlon of hn . Thls 
can be done by settlng up a table up to some large value. If the parameters 
of the dlstrlbutlons change very often, thls Is not feaslble. Show that we can 
compute the sequence of values recurslvely durlng the generatlon process by 

h l = P 1 ;  

hn+l  = -- . P n + 1  hn 
~n 1-hn 


