Chapter Thirteen
RANDOM COMBINATORIAL OBJECTS

1. GENERAL PRINCIPLES.

1.1. Introduction.

Some applicatlons demand that random combinatorlal objects be generated:
by defilnition, a comblnatorial objlect 1s an object that can be put Into one-to-one
correspondence with a finlte set of Integers. The maln difference with discrete
random variate generation Is that the one-to-one mapping is usually complicated,
so that 1t may not be very efficlent to generate a random Integer and then deter-
mine the objlect by using the one-to-one mapping. Another characteristic is the
size of the problem: typleally, the number of different objects 1s phenomenally
large. A final distlngulshing feature is that most users are interested in the unl-
form distribution over the set of objects.

In this chapter, we will discuss general strategies for generating random com-
binatorlal objects, with the understanding that only uniform distributions are
consldered. Then, In different subsections, particular combinatorial objects are
studled. These Include random graphs, random free trees, random binary trees,
random search trees, random partitlons, random subsets and random permuta~
tlons. This 1s a representative sample of the simplest and most frequently used
comblinatorial objects. It Is hoped that for more complicated objects, the readers
will be able to extrapolate from our examples. A good reference text is Nijenhuls
and WIilf(1978).

XIII.1.GENERAL PRINCIPLES 643

1.2. The decoding method.

Since we want to generate only one of a finite number of objects, 1t 1s possi-

ble to find a functlon f such that for every palr of objects (£,¢) In the collection
of oblects B, we have

f(OF] els, ..., n},

where 7 Is an Integer, which 1s usually equal to | E |, the number of elements In
8. Such a function will be called a coding functlon. By f “}i), we deflne the
object £ In B for which f (£)==¢ (If this object exists). When |E|=n, the fol-
lowing decoding algorithm is valld.

The decoding method

[NOTE: f is a coding function.]
Generate a uniform random integer X €{1, ..., n }.
RETURN f "}(X)

The expected time taken by this algorithm 1s the average tlme needed for decod-
Ing f:

TIME(f 7'(4)) .

1
=1

wE

The advantage of the method 1s that only one uniform random varlate 1s needed
per random combinatorial object. The decoding method 1s optimal from a storage
polnt of view, since each comblnatorial object corresponds uniquely to an Integer
In 1,..., n. Thus, about log,n Dbits are needed to store each combinatorial
oblect, and thls cannot be Improved upon. Thus, the coding functions can be

used to store data In compact form. The disadvantages usually outwelgh the
advantages:

1. Except In the simplest cases, |E | 1Is too large to be practical. For example,
If this method Is to be used to generate a random permutationof 1, . . ., 40,
we have | B | ==40!, so that multiple precision arlthmetic s necessary. Recall
that 12!<2%%<13!.

2. The expected time taken by the decoding algorithm !s often unacceptable.
Note that the time taken by the uniform random varlate generator 1s negli-
gible compared to the tlme needed for decoding.

3. The method can only be used when for the glven value of n, we are able to
count the number of objects. This Is not always the case. However, If we use
rejection (see below), the counting problem can be avolded.

644 XIII.1.GENERAL PRINCIPLES

Example 1.1. Random permutations.

Assume that B={ all permutatlons of 1, ..., n }. There are a number of
possible coding functions. For example, we could use the factorlal representation
of Lehmer (1064), where a permutation o,, . .., o, Is unlquely described by a
sequence of n -1 Integers a,, . . ., 4, _; (Where 0<a; <n -1t) according to the fol-
lowing rule: start with 1, ..., n. Let o, be the a,+1-st Integer from this list,
and delete this number. Let g4 be the a,41-st number of the remalning numbers,
and so forth. Then, deflne

f(ay, ..., a,4) = a;(n-1)+ay(n-2)4+ - - - +a, ;1141

It 1s easy to see that [Is a proper codlng function glving all values between 1
and n!. Just observe that

n!=(n-1)n = (n-1)(n-1)+(n-1)!

= (n-1)(n-1)+(n-2)(n-2)+ - - - +111+1 .
The algorithm consists of !generatlng a random Integer X between 1 and n!,
determining a¢,, ..., q,_; from X, and determining the random permutation
oy, - ..,0, from the a; sequence. First, the a;’s are obtalned by repeated divl-

slons by (n-1)!,(n -2)!, etcetera. The g;’'s can be obtalned by an exchange algo-
rithm. Formally, we have:

Random permutation generator

Generate a random integer X uniformly distributed on {1, ..., n1}. X «X-1.
FOR 1:=1 TO n-1 DO
(a; ,.X)—([W l X mod(n ~¢)!) (This determines all the g;’s.)

Setoy,,...,0p «—1,...,1n.
FOR ¢ =1 TO n~-1 DO

Exchange (swap) 0, 4, and 0, ;.

RETURN 0, . .., 0,.

In the exchange step of the algorithm, we exchange a randomly picked element
with the last element in every lteratlon. The tlme taken by the algorithm Is

omn). B

Sometimes slmple coding functlons can be found with the property that
n > |E [, that 1s, some of the iIntegers In 1, ..., n do not correspond to any
combinatorial object In E. When n 1s not much larger than |E |, thls Is not 2
big problem, because we can apply the rejection principle:

XIII.1.GENERAL PRINCIPLES 645

Decoding with rejection

REPEAT
Generate a random integer X with a uniform distribution on {1, ..., n }.
Accept +—(f (§)=X for some £€E]

UNTIL Accept

RETURN f (X)

Just how one determines qulckly whether f (§)=X for some £EE depends upon
the clrcumstances. Usually, because of the size of ||, 1t is impossible or not
practical to store a vector of flags, flagging the bad values of X. If |E| is
moderately small, then one could conslder dolng this in a preprocessing step.
Most of the tlme, It 1s necessary to start decoding X, untll In the process of

decodlng one dlscovers that there Is no combinatorial object for the glven value
of X. In any case, the expected number of lteratlons Is

3

. What we have

1

bought here is (1) simplicity (the decoding functlon can be slmpler If we allow
gaps In our enumeratlon) and (11) convenlence (It 1s not necessary to count | & |;
In fact, this value need not be known at all !).

1.3. Generation based upon recurrences.

Most comblnatorial objects can be counted Indirectly via recurrence rela-
tlons. Direct counting, as In the case of random permutations, addresses itself to
the decoding method. Counting vla recurrences can be used to obtaln alternative
generators. The ldea has been around for some time. It was first developed
thoroughly by WIIf (1977) (see also Nijenhuls and WIIf (1978)).

‘We need to have two things:

1. A formula for the number of comblnatorial objects with a certaln parameter
(or parameters) £ in terms of the number of comblnatorial objects with
smaller parameter(s). This will be called our recurrence relation.

A good understanding of the recurrence relation, so that the relation ltself
can be lilnked In a constructive way to a combinatorial object.

For example, consider g, , the collectlon of permutationsof 1, . . . , n. We have

[N

B, | =n|E,,]
|~n n|=p

The meaning of this relation Is clear; we can obtaln £EE, by consldering all per-
mutatlons E,_;, padding them with the single element n (In the last position),
and then swapping the n-th element with one of the n elements. The swapping

646 XIII.1.GENERAL PRINCIPLES

operation glves us the factor n In the recurrence relatlon. We will rewrlte the
recurrence relation as follows:

n
Bp(12,...,n)= UB,_(1,2,...,1-1,441,...,n)1
t =1

where B, (1,2, ...,1-1,54+1, ..., n) Is the collectlon of all permutations of
the glven n -1 elements, and . Is the concatenation operator. To generate a ran-
dom element from B, , 1t suffices to choose a random term In the union (with pro-
babllity proportional to the cardinality of the chosen term), and to construct the
part of the combinatorlal object that corresponds to thls cholce. In the case of
the random permutations, each of the n terms In the unlon shown In the
recurrence relatlon has equal cardinallty, and should thus be chosen with equal
probabllity. But chooslng the 1-th term corresponds to putting the i-th element
of the n-vector at the end of the permutation, and generating a random permu-
tatlon for the n -1 remalning elements. This leads qulte naturally to the swap-
ping method for random permutations:

The swapping method for random permutations

Setoy,...,0, «—1,...,n.
FOR {:=n DOWNTO 2 DO
Generate X uniformly in1,...,¢.

Swap ox and o;.
RETURNo,,...,0, .

There are obviously more complicated situations: see for example the subsec-
tlons on random partitions and random blnary trees In the corresponding subsec-
tlons. For now, we will merely apply the technlque to the generation of random
subsets of slze k out of n elements, and see that It reduces to the sequentlal
method In random sampling.

There are
[n I n -1) [n -1]
k=0 k 3Tk
sets of size k >1 conslsting of different Integers plcked from {1,...,n }, where
n >k . Clearly, as boundary conditlons, we have

il =

The recurrence can be Interpreted as follows: k Integers can be drawn from
2, ..., n (thus, ignoring 1), or by chooslng 1 and choosing a random subset of
slze k-1 from 2, ..., n (thus, Including 1). The probabllity of inclusion of 1 Is

XIII.1.GENERAL PRINCIPLES 647

therefore

n-—l]
k-1

Tk
M
k
This leads directly to the following algorithm:

Random subset of size k from 1,...,n

S 0 (set to be returned is empty)
FOR {:=1 TO n DO

Generate a uniform [0,1] random variate U.

k
< -— ' Y b=k =
IFU_n_i_H THEN S+SU{¢}; k+—k-1

RETURN §

We can also look at the method of recurrences as some sort of composition
method. }Typlcally, E, 1s spllt into a number of subsets of oblects, each having a
speclal property. Let us write

k
B, = UBE,(1)
t==1
where the sets 8, (1) are non-overlapping. If an Integer ¢+ 1s plcked with proba-
bility

|8, (i) |

(1<:1<k),
|8, |

—

and If we generate a unlformly distributed object In &, (z), then the random’
oblect 1s uniformly distributed over E,. Of course, we are allowed to apply the
same decomposition principle to the Individual subsets In turn. The subsets have
generally speaking some property which allows us to construct part of the solu-
tion, as was lllustrated with random permutations and random subsets.

648 XIII.2.RANDOM PERMUTATIONS

2. RANDOM PERMUTATIONS.

2.1. Simple generators.

The decoding method of section XIII.1.2 requires only one uniform random
varlate per random permutation of 1, ..., n. It was suggested In a number of
papers (see e.g. Robinson (1967), Jansson (1966), de Balbine (1867), and the sur-
vey paper by Plackett (1968)). Glven an arbltrary array of length n, and one uni-
formly distributed random Integer on 1, . . ., n!, the decoding method constructs
in time O (n) one random permutation of 1, ..., n. The algorithm of section
XJ11.1.2 is a two-pass algorithm. Robson (1969) has polnted out that there s a
slmple one-pass algorlthm based upon decoding:

Robson’s decoding algorithm

[NOTE: This algorithm assumes that some permutation oy, ...,0, of 1, ..., n is given.
Usually, this permutation is a previously generated random permutation.]

Generate a random integer X uniformlyon1, ..., n!.
FOR {:=n DOWNTO 2 DO

(X.,Z)—(t-‘%ﬁ,Xmodi +1)

Swap o; and oz
RETURN oy, ..., 0,

Desplte the obvious Improvement over the algorithm of sectlon XIII.1.2, the
decoding method remalns of llmlted value because n! Increases too quickly with
n.

The exchange method of sectlon XIII.1.3 on the other hand does not have
this drawback. It Is usually attributed to Moses and Oakford (1963) and to
Durstenfeld (1964). The method requlres n -1 Independent uniform random varl-
ates per random permutation, but 1t Is extremely slmple In conception, requiring
only one pass and no multiplications, divisions or truncations.

2.2. Random binary search trees.

Random permutations are useful In a number of applications. As we have
polnted out earlier, the swapping method can be stopped after a given number of
iterations to yileld a method for generating a random subset of 1, ..., n of slze
k <n. This was dealt with In chapter XII on random sampling. Another applica-
tion deals with the generation of a random binary search tree.

XHI.2.RANDOM PERMUTATIONS 649

A random blnary search tree with n nodes Is defined as a blnary search tree
constructed from a random permutatlon, where each permutation lIs equally
llkely. It Is easy to see that different permutatlons can yleld a tree of the same
shape, so all trees are not equally likely (but the permutations are !). It 1s clear
that If we proceed by Insertlng the elements of a random permutation In turn,

starting from an empty tree, then the expected time of the algorithm can be
measured by

ST E(D;)
§ =1

where D; Is the depth (path length from root to node) of the ¢-th node when
Inserted Into a blnary search tree of size 1 -1 (the depth of the root s 0). The fol-
lowing result Is well-known, but Is Included here because of lts short unorthodox
proof, based upon the theory of records (see Glick (1978) for a recent survey):

Lemma 2.1. In a random blnary search tree,
ED,) < 2(log(n)+1) .

In fact E (D,)~2 log(n). Based upon Lemma 2.1, 1t 1s not difficult to see that
the expected time for the generator Is O (nlog(n)). Since E (D,)~2 log(n) , the
expected time 1Is also Q(n log(n)).

Proof of Lemma 2.1.

D, is equal to the number of left turns plus the number of right turns on
the path from the root to the node corresponding to the n-th element. By sym-
metry, E (D,) Is twice the expected number of right turns. These right turns can
convenlently be counted as follows. Conslder the random permutation of
1, ..., n, and extract the subsequence of all elements smaller than the last ele-
ment. In thls subsequence (of length at most n -1), flag the records, l.e. the larg-
est values seen thus far. Note that the flrst element always represents a record.
The second element I1s a record with probability one half, and the ¢-th element s
a record with probablilty 1/:. Each record corresponds to a right turn and vice
versa. This can be seen by noting that elements followilng a record which are not
records themselves are In a left subtree of a node on the path to the record,
‘whereas the n-th orlglnal element Is in the right subtree. Thus, these elements
cannot have any Influence on the level of the n-th element. The subsequence has
length between O and n -1, and to bound the expected number of records from
above, 1t sufflces to conslder subsequences of length equal to n —1. Therefore, the
expected depth of the last node Is not more than

n-ly 1 :
2 E T < 2(1+f? dz) = 2(1+log(n)) .
1

=1

650 XIII.2.RANDOM PERMUTATIONS

But Just as with the problem of the generation of an ordered random sam-
ple, there Is an lmportant short-cut, which allows us to generate the random
binary search tree In llnear expected time. The important fact here is that \f the
root 1s fixed (say, lts Integer value Is ¢), then the left subtree has cardinallty 7 -1,
and the right subtree has cardinallty n—t¢. Furthermore, the value of the root
1tself Is uniformly distributed on 1, ..., n. These propertles allow us to use
recursion In the generation of the random blnary search tree. Since there are n
nodes, we need no more than n uniform random wvarlates, so that the total
expected time is O (n). A rough outline follows:

Linear expected time algorithm for generating a random binary search tree with
n nodes

[NOTE: The binary search tree consists of cells, having a data fleld "Data”, and two
pointer flelds, "Left” and "Right”. The algorithm needs a stack S for temporary storage.

MAKENULL (5) (stack S is initially empty).
Grab an unused cell pointed to by pointer p .
PUSH {p.i,n]onto S.
WHILE NOT EMPTY (S) DO
POP S, yielding the triple [p ,{,r].
Generate a random integer X uniformly distributedon [, ..., r.
p T.Data—X, p 1.Left—NIL, p .Right«NIL
IF X <r THEN
Grab an unused cell pointed to by ¢*.
p 1.Right«—g# (make link with right subtree)
PUSH [¢*,X +1,r] onto stack S (remember for later)
IFr X >! THEN
Grab an unused cell pointed to by ¢ .
p T.Left«¢ (make link with left subtree)
PUSH (g ,!,X~-1] onto stack S (remember for later)

2.3. Exercises.

1. Conslder the followilng putative swapplng method for generating a random
permutation:

XIII.2.RANDOM PERMUTATIONS 651

Start with an arbitrary permutation oy, . .. ,0, of 1,...,n.
FOR ¢:=1TO n DO
Generate a random integer X on 1, ..., n (note that the range does not

depend upon 7).
Swap o; and oy
RETURN oy, ..., 0,

Show that this algorithm does not yleld a valld random permutation (all per-
mutatlons are not equally likely). Hint: there is a three line comblnatorial
proof(de Balbine, 1887).

2. The dlstribution of the helght H,, of a random bilnary search tree Is very
complicated. To slmulate H,, we can always generate a random blnary
search tree and find H,. This can be done In expected time O (n) as we
have seen. Find an algorlthm for the generation of H,, In subllnear expected
time. The closer to constant expected time, the better.

3. Show why Robson’s decoding algorithm Is valld.

Show that for a random blnary search tree, £ (D,)~2 log(n) by employlng
the analogy with records explalned in the proof of Lemma 2.1.

5. Glve a linear expected time algorithm for constructing a random trle with n
elements. Recall that a trle Is a blnary tree In which left edges correspond to
zeroes and right edges correspond to ones. The n elements can be considered
as n Independent Inflnlte sequences of zeroes and ones, where all zeroes and
ones are obtalned by perfect coin tosses. Thlis ylelds an infinite tree In which
there are preclsely n paths, one for each element. The trle deflned by these
elements 1s obtalned by truncating all these paths to the polnt that any
further truncation would lead to two ldentlcal paths. Thus, all internal
nodes which are fathers of leaves have two chlldren.

8. Random heap. Give a linear expected time algorithm for generating a ran-
dom heap with elements 1, . . . , n so that each heap Is equally likely. Hint:
assoclate with Integer ¢ the 7-th order statistle of a unlform sample of slze
n, and argue In terms of order statistlies.

652 XIII.3.RANDOM BINARY TREES

3. RANDOM BINARY TREES.

3.1. Representations of binary trees.

A blnary tree consists of a root, or a root and a left and/or a right subtree,
and each of the subtrees In turn Is a binary tree. Two binary trees are similar if
they have the same shape. They are equlvalent If they are simllar, and If the
corresponding nodes contaln the same information. The distinction between simi-
larity and equivalence 1s thus based upon the absence or presence of labels for the
nodes. If there are n nodes, then every permutation of the labels of the nodes
yvields another labeled blnary tree, and all such trees are slmilar.

A random blnary tree with n nodes Is a random unlabeled binary tree which
1s uniformly distributed over all nonsimliar binary trees with n nodes. The unl-
form distribution on the n nodes causes some problems, as we can see from the
followling simple example: there are 5 different blnary trees with 3 nodes. Yet, If
we generate such a tree elther by generating a random permutation of 1,2,3 and
constructing a blnary search tree from this permutation, or by growing the tree
via uniform replacements of NIL polnters by new nodes, then the resulting trees
are not equally llkely. For example, the complete binary tree with 3 nodes has

1
probability ? in both schemes, instead of % as 1s required. The unlformity con-

dition will ré)ughly speaking stretch the blnary trees out, make them appear more
unbalanced, because less likely shapes (under standard models) become equally
likely.

In this section, we look at some handy representations of binary trees which
can be useful further on.

Theorem 3.1.

Let py,po, - .., Pq, be a balanced sequence of parentheses, l.e. each p;
belongs to {(,)}, for every partial sequence p,,p,, . .., p;, the number of open-
Ing parentheses Is at least equal to the number of closing parentheses, and In the
entire sequence, there are an equal number of opening and closing parentheses.

Then there exists a one-to-one correspondence between all such balanced
sequences of 2n parentheses and all bilnary trees. with n nodes.

Proof of Theorem 3.1.

We wlll prove this constructively. Consider an Inorder traversal of a blnary
tree, l.e. a traversal whereby each node is visited after lts left subtree has been
vislted, but before 1ts right subtree Is visited. In the traversal, a stack S Is used.
Initially the root Is pushed onto the stack. Then, a move to the left down the tree
corresponds to another push. If there 1s no left subtree, we pop the stack and go
the the right subtree If there Is one (thls requires yet another push). If there Is no
rlght subtree elther, then we pop agaln, and so forth untll we try to pop an
empty stack. The algorithm Is as follows:

XIII.3.RANDOM BINARY TREES 653

Inorder stack traversal of a binary tree

(NOTE: The binary tree consists of n cells, each having a left and a right pointer field. S

s a stack, and p,,..., py, is the sequence of pushes (opening parentheses) and pops
(closing parentheses) to be returned.)

p + root of tree (p is a pointer)
{«-2 (¢ is a counter)
MAKENULL (5)
PUSH p onto S; p,+(
REPEAT
IF p 1.Lefts£NIL
THEN PUSH p 1.Left onto S; p «p f.Left; p;«+(; { ¢ +1

ELSE
REPEAT
POP S, yielding p; p; «); 1 {41
UNTIL 7 >2n OR p t.Right£NIL
IF ¢ <2n
THEN PUSH p f.Right onto S; p +—p 1.Right; p; —(; t «¢ +1
UNTIL i >2n
RETURN p,, ..., pon

Different sequences of pushes and pops correspond to different binary trees. Also,
every partlal sequence of pushes and pops Is such that the number of pushes Is at
least equal to the number of pops. Upon exlt from the algorithm, both numbers
are of course equal. Thus, If a push Is 1dentified with an opening parenthesls, and
a pop with a closlng parenthesls, then the equlvalence clalmed in the theorem s
obvious. |}

For example, the sequence ())()()() * - - () corresponds to a blnary tree In
which all nodes have only right subtrees. And the sequence (((((- -)
corresponds to a blnary tree In which all nodes have only left subtrees. The
representation of a blnary tree in terms of a balanced sequernice of parentheses
comes in very handy. There are other representations that can be derlved from
Theorem 3.1.

654 XIII.3.RANDOM BINARY TREES

Theorem 3.2.

There 1s a one-to-one correspondence between a balanced sequence of 2n
parentheses and a random walk of length 2n which starts at the origln and
returns to the origin without ever crossing the zero axis.

Proof of Theorem 3.2.

Let every opening parenthesis correspond to a step of slze "+1” in the ran-
dom walk, and let every closing parenthesis correspond to a step of size "-1" in
the random walk. Obvlously, such a random walk returns to the origin If the
string of parentheses Is balanced. Also, 1t does not take any negative values. .

Theorem 3.2 can be used to obtaln a short proof for counting the number of
different (l.e., nonsimllar) binary trees with n nodes.

Theorem 3.3.
There are

n+41 L 7N

different binary trees with n nodes.

Proof of Theorem 3.3.

The proof uses the celebrated mirror principle (Feller, 1885). Conslder a
random walk startlng at (2k,0) (2k >0 Is the Initial value; O Is the inltlal time):
In one time unilt, the value of the random walk elther Increases by 1 or decreases
by 1. The number of paths ending up at (0,27) which take at least one negatlve
value 1s equal to the number of unrestricted paths from (2£,0) to (-2,2n). This
can most easlly be seen by the following argument: there is a one-to-one
correspondence between the glven restricted and unrestricted paths. Note that
each restricted path must take the value -1 at some polnt in time: Let ¢ be the
first time that thils happens. From the restricted path to (0,2n), construct an
unrestricted path to (-2,2n) as follows: keep the inltlal segment up to tlme ¢,
and flilp the tall segment between time ¢ and time 2n around, so that the path
ends up at (-2,2n). Each different restricted path ylelds a different unrestricted
path. Vice versa, since the unrestricted paths must all cross the horizontal line at
-1, tilme ¢t 1s well deflned, and each unrestricted path corresponds to a restricted
path.

The number of paths from (2k,0) to (0,2n) which do.not cross the zero axls
equals the total number of unrestricted paths minus the number of paths that do

XIII.3.RANDOM BINARY TREES 655

cross the zero axls, l.e.

2n) [2n)
k+n) (k+n+1)
which 1s easlly seen by using a small argument Involving numbers of possible sub-

sets. In particular, If we set k£ =0, we see that the total number of blnary trees
(or the total number of nonnegattve paths from (0,0) to (0,2n)) 1Is

HENAESWE

The number of blnary trees with n nodes grows very qulckly with n (see
table below).

n Number of binary trees with n
nodes

14
42
132
429
3430

@ [~ { [JC2 |0 {=

One can show (see exerclses) that this number ~4" /(v/7n3/2). Because of this,
the decoding method seems once agaln impractical except perhaps for n smaller
than 15, because of the wordslze of the integers involved In the computations.

3.2. Generation by rejection.

Random blnary trees or random strings of balanced parentheses can be gen-
erated by the rejectlon method. This could be done for example by generating a
random permutation of n openlng parentheses and n closilng parentheses, and
accepting only If the resulting string satisfles the property that all partial sub-
strings have at least as many openlng parentheses as closlng parentheses. There

are
[2n
n

Inltial strings, all equally likely. By Theorem 3.3, the probabillity of acceptance of
a string 1s thus

el Furthermore, to declde whether a string has the sald
n +1

656 XIII.3.RANDOM BINARY TREES

property takes expected tlme proportional to n. Thus, the expected time taken
by the algorithm varles as n 2. For this reason, the rejection method Is not recom-
mended.

3.3. Generation by sequential sampling.

It Is possible 1o generate a random binary tree with » nodes in time O (n)
by first generating a random string of balanced parentheses of length 2n in time
O (n) and then reconstructing the tree by mimicking the Inorder traversal given
in the proof of Theorem 3.1. The string can be generated in one pass, from left to
right, simllar to the sequential sampling method for generating a random subset.
It 1s perhaps best to conslder the analogy with random walks once agaln. We
start at (0,0), and have to end up at (0,2n). At each polnt, say (k,t), we declde
to generate a (with probabllity equal to the ratio of the number of nonnegatlve
paths from (k +1,t +1) to (0,2n) to the number of nonnegative paths from (k,t)
to (0,2n). We generate a) otherwise. It Is clear that thls method uses a
recurrence relation for blnary trees, but the explanation given here In terms of
random walks Is perhaps more insightful. The number of nonnegative paths from
(k,t) to (0,2n) 1s (see the proof of Theorem 3.3):

2n -t 2n-t 2n -1 2k +2
k4+2n~t | | k+2+2n-t k+2n-t}m ‘
2 2 2
The probability of a (at (k,t) 1s thus
2n-t-1 o2k +4
k+2n—t | 2n—t+k+2
2 k42 2n-t-k
on —t ok +2 T k41 2(2n-t)
k+2n-t | on_t+k+2
2

The resulting algorithm for generating a random string of balanced parentheses is
due to Arnold and Sleep (1980):

XIII.3.RANDOM BINARY TREES 657

Sequential method for generating a random string of balanced parentheses

[NOTE: The string generated by us is returned in p,,....p on «)
X <0 (X holds the current "value” of the corresponding random walk.)
FOR t:=0 TO 2n-1 DO
Generate a uniform (0,1} random variate U.
FU< X+2 2n-t-X
— X+1 2(2n-t)
THEN X —X +1, py .1+(
ELSE X «—X -1, p; ,,+)
RETURN py, ..., Pon

It is relatively stralghtforward to check that the random walk cannot take nega-
tlve values because when X ==0, the probabllity of generating (In the algorithm
Is 1. It 1s also not possible to overshoot the origln at tlme 2n because whenever
X ==2n-t, the probabllity that a (Is generated 1Is O.

The reconstruction In llnear tlme of a binary tree from a string of balanced
parentheses 1s left as an exerclse to the reader. Basically, one should mimic the
algorithm of Theorem 3.1 where such a string 1s constructed glven a binary tree.

3.4. The decoding method.

There are a number of sophisticated coding functlons for binary trees, which
can be decoded In linear time, but all of them require extra storage space for aux-
llary constants. See e.g. Knott (1977), Ruskey (1978), Ruskey and Hu (1977) and
Trojanowskl (1978). See also Tinhofer and Schreck (1984).

3.5. Exercises.

n

1. Show that the number of blnary trees with n nodes ~ 3

Vrn 2

2. Conslder an arbltrary (unrestricted) random walk from (0,0) to (0,2n) (thls
can be generated by generating a random permutation of n 1's and n -1's).
Deflne another random walk by taking the absolute value of the unrestricted
random walk. This random walk does not take negatlve values, and
corresponds therefore to a string of balanced parentheses of length 2n . Show
that the random strings obtalned In this manner are not unlformly

658 XIII.3.RANDOM BINARY TREES

distributed.

3. Glve a llnear tlme algorithm for reconstructing a binary tree from a string of
balanced parentheses of length 2n using the correspondence established in
Theorem 3.1.

4. Random rooted trees. A rooted tree with n vertlces conslsts of a root
and an ordered collectlon of nonempty rooted subtrees when n >1. When
n =1, It conslsts of just a root. The vertices are unlabeled. Thus, there are 5
different rooted trees when n =4. There are a number of representations of
rooted trees, such as:

A. A vector of degrees: write down for each node the number of children
(nonempty subtrees) when the tree Is traversed In preorder or level
order.

B. A vector of levels: traverse the tree In preorder or postorder and wrlte
down the level number of each node when 1t Is visited.

We can call these vectors of length n codewords. There are other more
storage-efficlent codewords: find a codeword of length 2n consisting of bits
only, which unlquely represents a rooted tree. Show that all codewords for
representing rooted trees or binary trees must take at least (240 (1))n bits
of storage. Generating a codeword lIs equlvalent to generating a rooted tree.
Pick any codeword you like, and give a llnear time algorithm for generating
a valld random codeword such that all codewords are equally likely to be
generated. Hint: notice the connectlon between Tooted trees and binary
trees.

5. Let us grow a tree by replacing on a sequential basls all NIL pointers by new
nodes, where the cholce of a NIL polnter 1s uniform over the set of such
polinters (see sectlon 3.1). Note that there are n +1 NIL polnters If the tree
has n nodes. Let us generate another tree by generating a random permuta-
tlon and constructing a binary search tree. Are the two trees similar In dis-
tribution, l.e. Is 1t true that for each shape of a tree with n nodes, and for
all n, the probabllity of a tree with that shape Is the same under both
schemes ? Prove or disprove.

6. Find a coding function for binary trees which can be decoded in time O (n).

4. RANDOM PARTITIONS.

4.1. Recurrences and codewords.

Many problems can be related to the generatlon of random partitions of
n
{1, ..., n} into k nonempty subsets. We know that there are {k} such parti-

tions, where {} denotes the Stirling number of the second kind. Rather than glve
a formula for the Stirllng numbers In terms of a serles, we wlll employ the

XII1.4.RANDOM PARTITIONS 659

recurstve deflnltlon:

{Z} = ’C{nil}+{’;:i} (o<k <n),

HIEL.

Using thls, we can form a table of Stirllng numbers, just as we can form a table
(Pascal’s triangle) from the well-known recursion for blnomlal numbers. We have:

n == 1 2 3 4 5 6
1 1 1 1 1 1 1
2 1 3 7 15 31
3 1 6 25 90
4 1 10 65
5 1 15
6 1

The recurslon has a physical meanling: we can form a partltion Into £ nonempty
subsets by consldering a partition of {1, ..., n-1} and adding one number, 7.
That number n can be considered as a new singleton set In the partition (thils
explalns the contribution

o)

k-1

In the recursion). It can also be added to one of the sets In the partitlon of
{1, ..., n-1}. In this case, we can add It to one of the k£ sets In the latter partl-
tlon. To have a unlque way of addressing these sets, we order the sets according

to the value of thelr smallest elements, and label the sets 1,2,3, ..., k. The
addition of n to set ¢ lmplles that we must Include

")
k
In the recursion.

Before we proceed with the generation of a random partition based upon this
recurslon, It 1s perhaps useful to describe one kind of codeword for random partl-
tlons. Conslder the case n =5 and k =3. Then, the partition (1,2,5),(3),(4) can be
represented by the n-tuple 11231 where each Integer In the n-tuple represents
the set to which each element belongs. By conventlon, the sets are ordered
according to the values of thelr smallest elements. So it Is easy to see that
different codewords yleld different partitions, and vice versa, that all n-tuples of
Integers from {1, ..., k} (such that each Integer Is used at least once) having
this ordering property correspond to some partltion Into & nonempty subsets.
Thus, generating random codewords or random partitions 1s equlvalent. Also, one
can be constructed from the other in time O (n).

660 XIII.4. RANDOM PARTITIONS

4.2. Generation of random partitions.

The generator described below produces a random codeword, uniformly dis-
tributed over the collectlon of all possible codewords. It Is based upon the recur-
slon explalned above. To add n to a partitlon of {1, ..., n —1}, we should define
a singleton set {n } (In which case 1t must have set number &) with probability

o)
k-1
0
k
and add 1t to a randomly picked set from among 1, . . . , & with probabllity
Y
k
W
k
each. Obvlously, we have to generate the random codeword backwards.

Random partition generator based upon recurrence relation for Stirling
numbers

[NOTE: n and k are given and will be destroyed.]
REPEAT

Generate a uniform [0,1] random variate U,
i)
k-1
W
k

THEN X, «<k, k—k-1

UL

ELSE Generate X, uniformlyoni,...,k
n+en-1
UNTIL n =0
RETURN the codeword X, X, . . ., X,

If the Stirling numbers can be computed In time O (1) (for example, If they are
stored In a two-dimensional table), then the algorithm takes time O (n) per code-
word. The storage requlrements are proportional to nk. The preprocessing time
needed to set up the table of size n by k Is also proportlonal to nk If we use the
fundamental recurston. '

XIII.4. RANDOM PARTITIONS 661

We conclude this sectlon by notlng that the algorithm gilven above Is a

sllightly modlified verslon of an algorithm glven ln WIIf (1977) and Nljenhuls and
WIIE (1978). ’

4.3. Exercises.

1.

Define a coding function for random partitions, and find an O (n) decodlng
algorithm.

Random partitions of integers. Let p(n,k) be the number of partitlons
of an Integer n such that the largest part 1s k. The followlng recurrence
holds:

p(n.k)=p(n-1,k-1)+p(n-k,k).

The first term on the right-hand side represents those partitions of n whose
largest part Is £ and whose second largest part Is less than k (because such
partitions can be obtalned from one of n -1 whose largest part s k-1 by
adding 1 to the largest part). The partitlons of n whose largest two parts
are both k come from partitions of n -k of largest part k£ by repllcating the
largest part. Argulng as tn WIIf (1977), a partitlon Is a serles of declslons
"add 1 to the largest part” or "adjoln another copy of the largest part”.

A. Glve an algorithm for the generatlon of such a random partition (all
partitlons should be equally llkely of course), based upon the glven
recurrence relation.

B. Find a coding function for these partitions. Hint: base your function on
the parts of the partition glven In descending order.

C. How would you generate an unrestricted partition of n ? Here, unres-
tricted means that no bound Is glven for the largest part in the partl-
tion.

D. FInd a recurrence relatlon simllar to the one glven above for the
number of partitions of n wlth parts less than or equal to k.

E. For the combinatorial objects of part D, find a coding functlon and a
decoding algorithm for generating a random object. See also McKay
(1985).

662 XII.5.RANDOM FREE TREES

5. RANDOM FREE TREES.

5.1. Prufer’s construction.

A free tree Is a connected graph with no cycles. If there are n nodes, then
there are n -1 edges. The distinctlon between labeled and unlabeled free trees is
Important. Note however that unlike other trees, free trees do not have a glven
root. All nodes are treated equally. We will however keep using the term leaf for
nodes with degree one.

The generatlon of a random free tree can be based upon the following
theorem:

Theorem 5.1.

Cayley’s theorem. There are exactly n"~2 labeled free trees with n nodes.
Prufer’s construction. There exists a one-to-one correspondence between all
(n -2)tuples ("codewords™) of Integers a,, ..., @, , each takilng values In

{1, N }, and all labeled free trees with n nodes. The relationship is given In
the proof below.

Proof of Theorem 5.1.

Cayley’'s theorem follows from Prufer's construction. Let the nodes of the
labeled free tree have labels 1, . . ., n. From a labeled free tree a codeword can
be constructed as follows. Let a, be the label of the neighbor of the leaf with the
smallest label. Delete the corresponding edge. Slnce one of the endpoints of the
edge 1s a leaf, removal of the edge wlll leave us with a labeled free tree of slze
n —1. Repeat thls process until n -2 components of the codeword have been calcu-
lated. At the end, we have a labeled free tree with Just 2 nodes, which can be dis-
carded. For example, for the labeled free tree with 8 nodes and edges (1,2), (2,3),
(4,3), (5,3), (8,3), the codeword (2,3,3,3) Is obtained.

Conversely, from each codeword, we can construct a free tree having the
property that If we use the construction given above, the initial codeword s
obtalned agaln. This Is all that Is needed to establish the one-to-one correspon-
dence. For the construction of the tree from a glven codeword, we begin with
three lists:

A. The codeword: a,, . .., a, .

B. A listof n flags: f,, ..., f,, where f;=1 Indlcates that node ¢ Is avall-
able. Inltlally, all flags are 1. Flag ¢+ Is set to O only when ¢ is a leaf, and the
edge connected to ¢ 1s suddenly removed from the tree.

C. A list of n flags Indlcating whether a node Is a leaf or not: I, . . ., [, . [;=1
Indlcates that node ¢ 1s a leaf. Note that this list is redundant, since a node
Is a leaf If and only if its label can be found In the codeword. The initiallza-
tion of this list of flags 1s simple. '

XIII.5.RANDOM FREE TREES 663

The construction proceeds by first recreating the n-2 edges that correspond to
the n -2 components of the codeword. This Is done simply as follows: choose node
a; (this I1s not a leaf, since It is In the codeword), and choose the smallest leaf v
(flag [, =1 and avallabllity flag f, =1). Return the edge (a,,v), and set the flag
of v to 0, which effectlvely ellmlnates v. If ¢, cannot be found in the remalnder
of the codeword, then a, becomes a leaf In the new free tree, and the flag b,
must be set to 1. This process can be repeated untll a,, . . ., @, _, 1s exhausted.
The last (n-1-st) edge at the end Is slmply found by taking the only two nodes
whose avallabllity flags are still 1. Thls concludes the construction. It 1s easy to

verify that If the tree !s used to construct a codeword, the Initlal codeword ls
obtained. [Jj

The degree of a node Is one plus the number of occurrences of the node In
the codeword, at least If codewords are translated Into free trees via Prufer’s con-
structlon. To generate a random labeled free tree with n nodes (such that all.
such trees are equally likely), one can proceed as follows:

Random labeled free tree generator

FOR ?:=1 TO n-2 DO
Generate ¢; uniformly on {1, ..., n}.
Translate the codeword into a labeled free tree via Prufer’s construction.

A careless translation of the codeword could be inefficlent. For example, the
verlficatlon of whether an Internal node becomes a leaf during construction, when
done by traversing the leftover part of the codeword, ylelds an Q(n?) contribu-
tlon to the total tlme. Using llnear search to filnd the smallest avallable leaf
would glve a contributlon of £2(n?%) to the total tlme. Even If a heap were used
for this, we would still be facing a contributlon of (2(n log(n)) to the total time.
In the next sectlon, a linear time translatlon algorithm due to Kllngsberg (1977)
Is presented.

664 XIII.5.RANDOM FREE TREES

5.2. Klingsberg’s algorithm.

The purpose of this sectlon Is to explaln Klingsberg's O (n) algorithm for
translating a codeword a,, ..., a,_, Into a labeled free tree. His solutlon
requires one additlonal array T (1}, ..., T [n], which Is used to return the edges
and to keep Informatlon about the avallabllity flags and about the leaf flags (see
proof of Theorem 1). The edges returned are

1, Tan2,7T2),...,(n-1,T[n-1]).

The other uses of thls array are:

A. T [i]==avallable_not_leaf means that node ¢ Is still avallable and Is not a
leaf. The constant is set to —1 In Kingsberg’s work.

B. T [i1]==avallable_leaf means that node ¢ Is an avallable leaf. The constant ls
set to O In Klingsberg's work.

C. T |[i]=7 >0 Indlcates that node ¢ Is no longer avallable, and In fact that
(1,7) 1s an edge of the labeled free tree.

In the example of codeword (2,3,3,3) given In sectlon 5.1, the array T would ini-
tlally be set to (avallable_leaf , available_not_leaf , avallable_not_leaf ,
avallable_leaf , avallable_leaf , avallable_leaf) since only nodes 2 and 3 are Inter-
nal nodes.

To speed up the determination of when an internal node becomes a leaf, we
merely flag the last occurrence of every node In the codeword. This can con-
venlently be done by changing the slgns of these entries. In our example, the
codeword would initially be replaced by (-2,3,3,-3).

Filnally, to find the smallest avallable leaf quickly, we note that In the con-
struction, these leaf labels Increase except when a new leaf s added, and its label
1s smaller than the current smallest leaf label. Thls can be managed with the ald
of two moving polnters: there Is a masterpolnter which moves up monotonlcally
from 1 to n; In addltion, there Is a temporary pointer, which usually moves with
the masterpolnter, except in the situatlon described above, when 1t Is temporarily
set to a value smaller than that of the masterpointer. The temporary polinter
always polnts at the smallest avallable leaf. It 1s thils Ingenlous device which per-
mitted Klingsberg to obtaln an O (n) algorithm. We can now summarize his
algorithm.

XIII.5.RANDOM FREE TREES 665

Klingsberg’s algorithm for constructing a labeled free tree from a codeword

[PREPARATION.]
FOR 7:=1 TO n DO T [¢{]« available_leaf
FOR ¢ :=n -2 DOWNTO 1 DO
IF T [a;]==available_leaf THEN
T {a;)==available_not_leaf; a; +——a;
Master «1
@,_1+~n (for convenience in defining last edge)
Master «—min(j:T (5]= available_leaf)
Temp +- Master
[TRANSLATION]
FOR 1:=1 TO n-1DO
Select «— | a; | (select internal node)
T [Temp)« Select (return edge)
IF { <n-1 THEN
IF a; >0
THEN
Master «min(y:T [f)= avallable_leaf)
Temp + Master
- ELSE
T [Select]«— available_leaf
IF Select < Master THEN Temp «- Select (temporary step
up)
RETURN (1,T[1]), . .., (n-1,T [n~1})

The llnearity of the algorithm follows from the fact that the masterpolnter can
only Increase, and that all the operations in every lteration that do not involve
the masterpointer are constant time operations.

5.3. Free trees with a given number of leaves.

Assume next that we wish to generate a labeled free tree with n nodes and /
leaves where 2</ <n-1. For the solutlon of thls problem, we recall Prufer’s
codeword. The codeword contalns the labels of all Internal nodes. Thus, It s
necessary to generate only codewords In which preclsely n—{ labels are present.
The actual labels can be put in by selecting n—{ labels from n labels by one of
the random sampling algorithms. Thus, we have:

666 XIII.5.RANDOM FREE TREES

Generator of a labeled free tree with n nodes and | leaves

Generate a random subset of n —/ labels from 1, ..., n.

Perform a random permutation on these labels (this may not be necessary, depending upon
the random subset algorithm.)

Generate a random partition of n -2 elements into n -/ non-empty subsets, and assign the
first label to the first subset, etcetera. This yields a codeword of length n -2 with precisely
n ~{ different labels.

Translate the codeword into a labeled free tree (preferably using Klingsberg’s algorithm).

In this algorithm, we need algorithms for random subsets, random partitions and
random permutations. It goes without saying that some of these algorithms can
be combined. Another by-product of the decomposition of the problem Into
manageable sub-problems Is that it Is easy to count the number of combinatoria!
objlects. We obtaln, In thls example:

(-5} = 22275

5.4. Exercises.

1. Let d,, ..., d, be the degrees of the nodes 1, ..., n In a free tree. (Note
that the sum of the degrees Is 2n -2.) How would you generate such a free
tree ? Hint: generate a random Prufer codeword with the correct number of
occurrences of all labels. The answer is extremely simple. Derive also a sim-
ple formula for the number of such labeled free trees.

2. Glve an algorithm for computing the Prufer codeword for a labeled free tree
with n nodes In time O (n).

3. Prove that the number of free trees that can be bullt with n labeled edges
(but unlabeled nodes) Is (n +1)" 2, Hint: count the number of free trees with
n labeled nodes and n -1 labeled edges first.

4. Glve an O (n) algorithm for the generation of a random free tree with n
labeled edges and n +1 unlabeled nodes. Hint: try to use Klingsberg's algo-
rithm by reducing the problem to one of generating a labeled free tree.

5. Random unlabeled free trees with n vertices. Find the connectlon
between unlabeled free trees with n vertices and rooted trees with n ver-
tices. Explolt the connectlon to generate random unlabeled free trees such
that all trees are equally likely (WIilf, 1981).

XII1.6. RANDOM GRAPHS ' 667

6. RANDOM GRAPHS.

6.1. Random graphs with simple properties.

Graphs are the most general combinatorial objects dealt with In this
chapter. They have applications In nearly all flelds of sclence and englneering. It
Is qulte Impossible to glve a thorough overview of the different subclasses of
graphs, and how oblects In these subclasses can be generated uniformly and at
random. Instead, we will Just glve a superficlal treatment, and refer the reader to
general princlples or speclfic articles In the literature whenever necessary.

We will use the notatlon n for the number of nodes in a graph, and e for
the number of edges In a graph. A random graph with a certain property P s
such that all graphs with thls property are equally likely to occur. Perhaps the
slmplest property Is the property: "Graph G has n nodes”. We know that there

are
2
o2
objects with thls property. This can easily be seen by considering that each of the

n
[2] possible edges can elther be present or absent. Thus, we should Include each

edge In a random graph with this property with probabllity 1/2.

The number of edges chosen Is bilnomlally distributed with parameters n
and 1/2. It Is often necessary to generate sparser graphs, where roughly speaking
e 1s O(n) (or at least not 2(n?)). This can be done In two ways. If we do not
require a specific number of edges, then the slmplest solution Is to select all edges
Independently and with probabllity p . Note that the expected number of edges Is

n
p[2] . Thls 1s most easlly implemented, especlally for small p, by using the fact

that the waltlng tlme between two selected edges Is geometrlcally dlstributed
with parameter p, where by "walting tlme” we mean the number of edges we
must manlipulate before we see another selected edge. This requires a linear order-
Ing on the edges, which can be done by the codlng function given below.

-If the property Is "Graph G has n nodes and e edges”, then we should first
n

2
perty 1s simple to deal with. The only slight problem 1s that of establishing a sim-
ple coding function for the edges, which Is easy to decode. This is needed since
we have to access the endpolnts of the edges some of the time (e.g., when return-
Ing edges), and the coded edges most of the time (e.g., when random sampling

select a random subset of e edges for the set of [possible edges. Thlis pro-

668 XIII.6. RANDOM GRAPHS

based upon hashling). One possibility 1s shown below:

Node u Node v Coded version of edge (u ,v)
1 2 1
1 3 2
1 n n-1
3 (n-1)+1
2 n (n -1)+(n -2)
n -1 n (n=1)+(n-2)+ - - - +2+1

The coding function for this scheme 1s

f)= (u-1)n-2E1)

+(v-u) .

Interestingly, this function can be decoded In tlme O (1) (see exercise 6.1).
Whether random sampling should be done on coded Integers with decoding only
at the very end, or on sets of edges (u,v) without any decoding, depends upon
the sampling scheme. In classical sampling schemes for example, 1t s necessary to
verlfy whether a certain edge has already been selected. The verification can be
based upon a vector of flags (which can be done here by using a lower trlangular
n by n matrix of flags). When 2 heap or a tree structure 1s used, there 1s no need
ever for codlng. When hashling 1s used, codlng seems appropriate. In sequential
sampling, no coding is needed, as long as we can easlly !mplement the function
NEXT(u ,v) (r v=n THEN NEXT(u ,v)«—(u +1,u +2) ELSE
NEXT(u ,v)~(u ,v +1)). However, If sequential sampling Is accelerated by taking
glant steps, then coding the edges seems the wise thing to do.

6.2. Connected graphs.

Most random graphs that people want to generate should be of the con-
nected type. From the work of Erdos and Reny! (1859, 1960), we know that If €

Is much larger than %nlog(n) (or if p 1s much larger than _l_gg(_n_)_)’ then the
n

probablllty that a random graph with e (or binomlal (n,p)) edges Is connected
tends to 1 as n —oo. In those situatlons, 1t Is clear that we could use the rejection
algorithm:

XIII.6. RANDOM GRAPHS 669

Rejection method for generating a connected random graph with n nodes and e
edges

REPEAT

Generate a random graph G with ¢ edges and n nodes.
UNTIL G is connected
RETURN G

“To verlfy that a graph Is connected Is a standard operation: If we use depth first
search, thils can be done in tlme O (max(n ,e)) (Aho, Hopcroft and Ullman, 1983).
Thus, the expected time needed by the algorithm 1s O (max(n ,e)) when

im inf—a— > L

n—o00 nlog(n) 2

In fact, since In those cases the probabllity of acceptance tends to 1 as n —o0 ,
the expected time taken by the algorithm 1s (140 (1)) times the expected time
needed to check for connectedness and to generate a random graph with ¢ edges.
Unfortunately, the condition glven above Is asymptotle, and 1t 1s difficult to ver-
Ify whether for given values of e and n,we have a good relection constant. Also,
there 1s a gap for precisely the most Interesting sorts of graphs, the very sparse
graphs when e s of the order of n. This can be done via a general graph genera-
tion technique of Tinhofer’s (1978,1980), which Is explalned In the next sectlon. In
1t, we recognlize ingredlents of WIIf's recurrence based method.

6.3. Tinhofer’s graph generators.

In two publications, Tinhofer (1978,1980) has proposed useful random graph
generators, with applications to connected graphs (wlth or without a specific
number of edgés), digraphs, bichromatic graphs, and acycllc connected graphs.
Hls algorithms require in all cases that we can count certain subclasses of graphs,
and they run fastest If tables of these counts can be set up beforehand. We will
merely give the general outline, and refer to Tlnhofer's work for the detalls.

Let us represent a graph by a sequence of adlacency lists, with the property
that each edge should appear In only one adjacency list. The adjacency list for
node : will be denoted by A;. Thus, the graph Is completely determined by the
sequence

A A, A, .

We will generate the adjacency llsts In some (usually random) order,
A,,I,A,,Q, ..., where v,,vy ..., %, s a permutation of 1,...,n. To avold

670 XIII.6.RANDOM GRAPHS

the dupucamon of nodes, we require that all nodes In adjacency list A fall out-

slde U {v, }. The following sets of nodes will be needed:

1. The set U of all nodes In U A with label not In v,, ..., vy This set
contalns all nelghbors of the h;slt J nodes outside v, . . ., v; .

2. The set Vj which conslsts of all nodes with label outside v, . . ., v; that
are not In U;.

3. The speclal sets Uy={1}, Vo={2,3, ..., n}.

When the adjacency llsts are belng generated, 1t is also necessary to do some
counting: define the quantity NJ- as the total number of graphs with the desired
property, having fixed adlacency llsts A,,‘, ce ., A‘,]. Sometimes we will write
Ni(Ay, - -, A,,J,) to make the dependence expliclt. Glven A, , .. ., Av,_,’ we
should of course generate A,,j according to the following distribution:

Ni(Ayy - -, Ay A)
N (A, . A,

It 1s easy to see that thls Is Indeed a probabllity vector In A . We are now ready
to give Tinhofer’s general algorithm.

P4, =A)=

Tinhofer’s random graph generator

Us—{1}; Vo—{2,...,n}
FOR j:=1 TO n DO
IF EMPTY (U;_,)
THEN v; «—min(s:t €V;_,)
ELSE v; «~min(¢:t €U;_))
Generate a random subset Av, on U; ,UV;_,~{v;} according to the probability dis-
tribution given above.
U;—U;aUA;-{v; }
Vi—Via-A;—{v;}
RETURN A,I,A,,z, o, Ay

n~l

The major problem In this algorithm Is to compute (on-'llne) the probabllity dis-
tribution for A,,). In many examples, the probabllitles depend only upon the car-
dinalitles of U j-1 and VJ-_1 and posslbly some other sets, and not upon the actual
structure of these sets. This 1s the case for the class of all connected graphs with
n nodes, or all connected graphs with n nodes and e edges (see Tinhofer, 1980).
Nevertheless, we still have to count, and run Into numerical problems when n Or
e are large.

XIII.6. RANDOM GRAPHS | 671

6.4. Bipartite graphs.

A bipartite graph Is a graph In which we can color all vertlces with two
colors (baby plnk and mustard yellow) such that no two vertlces with the same
color are adjacent. There exlsts a useful copnectlon with matrices which makes
bipartite graphs a manageable class of graphs. If there are b baby vertlces and
m mustard vertlces, then a blpartite graph Is completely deflned by a & Xm
Incldence matrlx of 0’s and 1's. At this polnt we may recall the algorlthms of sec-
tlon XI.8.3 for generating a random R X C table wlith glven row and column
totals. Thls leads dlrectly to a relection algorithm for generating a random blpar-
tite graph with given degrees for all vertices:

Bipartite graph generator

[NOTE: This algorithm returns a b Xm incidence matrix defining a random bipartite
graph with b baby vertices and m mustard vertices. The row totals are r; , 1<{ <}, and
the column totals are ¢; , 1< 7 <m]

REPEAT
Generate a random R X C matrix of dimension b Xm with the given row and
column totals.

UNTIL all elements in the matrix are O or 1

RETURN the matrix

The reduction to a random R X C matrix was suggested by Wormald
(1984). By Wald's equation, we know that the expected time taken by the algo-
rithm 1s equal to the product of the expected tlme needed to generate one ran-
dom R X C matrix and the expected number of terations. For example, If we use
the ball-in-urn method of sectlon XI.68.3, then a random R X C matrix can be
obtalned In time proportional to e, the total number of edges (which Is also equal
to 3r; and to Yj¢;). The analysls of the expected number of lterations Is also
due to Wormald (1984):

Theorem 6.1.

Assume that all r;'s and ¢;'s are at most equal to k. The expected number
of lterations In the rejectlon algorithm s

.(1+o (1))exp %iél [;t] jX:)llczj]] |

where e 1s the total number of edges, and o (1) denotes a functlon tending to O
as ¢ —oo which depends only upon £ and not on the r;’s and bj ‘S.

672 XTII.6.RANDOM GRAPHS

As a corollary of thls Theorem, we see that the expected number of ltera-
tlons Is unlformly bounded over all blpartite graphs whose degrees are untformly
bounded by some number k.

Blpartite graphs play a cruclal role In graph theory partly because of the fol-
lowing connectlon. Consider a b Xm Incldence matrix for a blpartlte graph In
which all baby vertices have degree 2, l.e, all r;'s are equal to 2. This deflnes a
graph on m nodes In the following manner: each palr of edges connected to a
baby vertex defines an edge in the graph on m nodes. Thus, the new graph has
b edges. We can now generate a random graph with glven collectlon of degrees
as follows:

Random graph generator

[NOTE: This algorithm returns an array of b edges defined on a graph with vertices

{1, ..., m}. The degree sequenceis c,, . .., ¢, .]

REPEAT
Generate a random b X m bipartite graph with degrees all equal to two for the baby
vertices (r; =2), and degrees equal to ¢,, . . ., ¢, for the mustard vertices.

UNTIL no two baby vertices share the same two neighbors

RETURN (k,,!,), ..., (kn,l,) where k; and [; are the columns of the two 1's found in
‘the ¢ -th row of the incidence matrix of the bipartite graph.

Agaln we use the rejection princlple, In the hope that for many graphs the
rejectlon constant 1s not unreasonable. Note that we need to check that there are
no duplicate edges In the graph. This is done by checking that no two rows in the
bipartite graph’'s incidence matrix are identical. It can be verified that the pro-
cedure takes expected time O (b+m) where b 1Is the number of edges In the
graph, provlded that all degrees of the vertices In the graph are bounded by a
constant k¥ (Wormald, 1984). In particular, the method seems to be Ideally sulted
for generating random r-regular graphs, l.e. graphs In which all degrees are
equal to r. It can be shown that the expected number of R X C matrices needed
before halting Is roughly speaking e"-1/4, This increases rapldly with r. Wor-
mald also gives a particular algorithm for generating 3-regular, or cuble, graphs.

XIIL.6.RANDOM GRAPHS ' 673

8.5. Exercises.

1.

Find a simple O (1) decoding rule for the codlng functlon for edges In a
graph glven In the text.

Prove Theorem 6.1.

Prove that If random graphs with b edges and m vertlces are generated by
Wormald’'s method, then, provided that all degrees are bounded by k, the

expected tlme I1s O(b+m). Glve the detalls of all the data structures
involved in the solution.

Event simulators. We are given n events with the following dependence
structure. Each Indlvidual event has probabllity p of occurring, and each
palr of events has probabillity ¢ of occurring. All triples carry probabllity
zero. Determine the allowable values for p,q. Also Indlcate how you would
handle one simulation. Note that In one slmulatlon, we have to report all the
Indlces of events that are supposed to occur. Your procedure should have
constant expected time.

Random strings in a context-free language. Let S be the set of all
strings of length n generated by a given context-free grammar. Assume that
the grammar Is unambiguous. Uslng at most O (n” 1) space where r is the
number of nonterminals In the grammar, and using any amount of prepro-
cessing time, ind a method for generating a uniformly distributed random

string of length n In S In linear expected time. See also Hickey and Cohen
(1983).

