Chapter Three
DISCRETE RANDOM VARIATES

1. INTRODUCTION.

A discrete random varlable 1s a random varlable taking only values on the
nonnegative Integers. In probability theoritlcal texts, a discrete random variable
1s a random varlable which takes with probability one values In a given countable
set of polnts. Since there Is a one-to-one correspondence between any countable
set and the nonnegatlve Integers, 1t Is clear that we need not conslder the general

case. In most cases of interest to the practltloner, this one-to-one correspondence

1
Is obvious. For example, for the countable set 1,—1-,l,—,..., the mapping is

trivial.

The distribution of a discrete random varlable X 1s determined by the pro-
bablllty vector p,,p 4,...:

P(X=i)=p; (i=0,1,2,.).

The probablllty vector can be glven to us In several ways, such as

A. A table of values pop,, . . ., pg . Note that here 1t Is necessary that X can
only take filnitely many values.

B. An analytical expresslon such as p; =2 (¢ >1). This Is the standard form
In statlstlical applicatlons, and most popular distributions such as the bino-
mlal, Polsson and hypergeometrlc distributions are given In this form.

C. A subprogram which allows us to compute p; for each 7. This Is the "black
box™ model.

D. Indlrectly.. For example, the generating function

m(s)= N ps' (sER)

f =0

can be glven. Sometimes, a recursive equation allowlng us to compute p;
from p; ,J <t, 1s glven.

-

-2 cases B, C and D, we should also distingulsh between methods for the genera-
tion of X when X has a flxed distribution, and methods that should be

84 II.1I.INTRODUCTION

applicable when X belongs to a certain famlly of Integer-valued random varil-
ables.

The methods that will be described below apply usually to only one or two
of the cases llsted above. Some of these are based on principles that are equally
applicable to continuous random varlate generation llke inverslon, composition
and rejectlon. Other principles are unlque to discrete random varlate generation
ltke the allas princlple and the method of guide tables. In any case, this chapter
goes hand In hand with chapter II. Very often, the best generator for a certaln
density uses a clever comblnatlon of discrete random varlate generatlon principles
and standard methods for continuous random varlates. The actual dlscussion of
such comblnations is deferred untll chapter VIII.

‘When we glve examples In thls chapter, we will refer to well-known discrete

distributions. At thls polnt, it Is Instructlve to summarize some of these distribu-
tions.

Name of distribution Parameters P(X=1) Range for ¢
=Ayf
Polsson(\) A>0 -‘-—t-f— i >0
n . .
Binomial(n ,p) n>1;0<p <1 i p'(1-p)" 0<i<n
n+i-1) . . .
Negative binomial(n,p) | n >1;p >0 i p'(1+p)*t | £ >0
1
Logarithmic series(f) o<1 —:ﬁm 121
Geometric(p) 0<p <1 p(1-p)! i2>1

We refer the reader to Johnson and Kotz (1969, 1982) or Ord (1972) for a
survey of the properties of the most frequently used discrete distributions In
statistics. For surveys of generators, see Schmelser (1983), Ahrens and Kohrt
(1981) or Ripley (1983).

Some of the methods described below are extremely fast: this is usually the
case for well-designed table methods, and for the allas method or its variant, the
“allas~-urn method. The method of gulde tables Is also very fast. Only finlte-
valued discrete random varlates can be generated by table methods because
tables must be set-up beforehand. In dynamlc situatlons, or when distributions
are Infinlte-talled, slower methods such as the Inversion method can be used..

86 III.2.INVERSION METHOD

avolded altogether as can be seen from the followlng example.

#

Example 2.1. Poisson random variates by sequential search.
We can qulckly verlfy that for the Polsson ()\) distribution,

DY
Pi+1=mp" sy Po=¢€".

Thus, the sequentlal séarch algorithm can be simplified somewhat by recursively
computing the values of p; durlng the search:

Poisson generator using sequential search

Generate a uniform [0,1) random variate U.
Set X ~0 P e ,5+P.
WHILE U >S§ DO

XX +1 ,P<—1X’i S—S+P.

RETURN X

We should note here that the expected number of comparisons Is equal to
EX+1)=x+1. R

A slight Improvement In which the varlable S Is not needed was suggested
by Kemp(1981). Note however that this forces us to destroy U:

Inversion by sequential search (Kemp, 1981)

Generate a uniform [0,1] random variate U.
X+0
WHILE U >py DO
U—U-px
X—=X+1
RETURN X

III.2.INVERSION METHOD 85

2. THE INVERSION METHOD.

2.1. Introduction. "

In the inversion method, we generate one uniform [0,1] random varlate U
and obtaln X by a monotone transformation of U which s such that
P (X =1)==p;.If we define X by

FX-1)= 2p;, < U< p, =F(X),

i<X i<X
then 1t Is clear that P (X =1)=F (¢)-F (1-1)=p,;. Thils 1s comparable to the
Inversion method for contlnuous random varlates. The solutlon of the Inequallty
shown above 1s unlquely deflned with probablllty one. An exact solutlon of the
inversion lnequalitles can always be obtalned in finite time, and the Inversion

method can thus truly be called unlversal. Note that for contlnuous distributions,
we could not Invert in finlte time except In speclal cases.

There are several possible technlques for solving the inverslon inequalities,
‘We start with the simplest and most universal one, l.e. a method which s appli-
cable to all discrete distributions.

Inversion by sequential search

Generate a uniform [0,1] random variate U.
Set X —0, S+—p,.
WHILE U >S5 DO
X+—X+1;8 S +px
RETURN X

Note that S 1s adjusted as we Increase X In the sequential search algorithm.
Thils method applies to the "black box” model, and 1t can handle infinlte talls.
The time taken by the algorithm Is a random varlable [N, which can be equated
In first approximation with the number of comparisons In the WHILE condltlon.
But '

PWN=i)=PX=i-1)=p;, (i>1).

Thus, E (N)=F (X)+1. In other words, the tall of the distributlon of X deter-
milnes the expected time taken by the algorithm. This Is an uncomfortable sltua-
tlon in view of the fact that £ (X) can possibly be oo. There are other more prac-
tical objJectlons: p; must be computed many times, and the consecutive additions
S «S +px may lead to Inadmlssible accumulated errors. For these reasons, the
sequentlal search algorithm 1s only recommended as a last resort. In the
remalnder of thls sectlon, we wlll describe varlous methods for !mproving the
sequentlal search algorlthm. In partlcular cases, the computatlon of pyxy can be

II1.2.INVERSION METHOD 87

2.2. Inversion by truncation of a continuous random variate.

If we know a contlnuous distribution function G on [0,00) with the property
that G agrees with F on the Integers, l.e.

GU+1)=F(() (1==0,1,..),G(0)=0,

then we could use the folilowing algorithm for generating a random varilate X
with distribution function F:

Inversion by truncation of a continuous random variate

Generate a uniform [0,1) random variate U .

RETURN X « &G’"(U)B

This method s extremely fast If G~! Is explicitly known. That it Is correct fol-
lows from the observatlon that for all + >0,

PX<i)=P(GYU)<i+1) =P(U<G(i+1)=GGE+1)= F(i).

The task of finding a G such that G (¢ +1)-G (1)=p; , all 1, I1s often very sim-
ple, as we lllustrate below with some examples.

Example 2.2. The geometric distribution.
When G (z)=1-¢>* , 2 >0, we have

G(I+1)-G ()= e - +D
= e (1-e™)
= (1-¢)¢' (i20),

where ¢ =¢~*. From thls, we conclude that

[——Sl\—log U}

logU
Is geometrically distributed with parameter e, Equlvalently, [-l—ag(—f——z-)—)— 1s
E
geometrically distributed with parameter p. Equlvalently, —-m

geometrically distributed with the same parameter, when F 1s an exponentlal
random varlate. Jji

88 II1.2.INVERSION METHOD

Example 2.3. A family of monotone distributions.

Conslder G(z)=1-z"% ,z>1, G(1)=0, b >o0. We see that
G (i +1)-G (i)=1"% —(¢ +1)" . Thus a random varlate X with probability vector

1 1 .
py = 7 (121)
? (¢ 4+1)
L : 1
can be generated as | U b Y. In particular, {—[}-l has probabllity vector
p = —r (i>1) W
1 (1 +1) -

Example 2.4. Uniformly distributed discrete random variates.
A dlscrete random varlable Is sald to be uniformly distributed on
{1,2,...,K} when p,‘=—}{— for all 1<+ <K. Since p;=G (1 +1)-G (3) where

G (z)= g1 , 1<z <K +1, we see that X «— [1+KU] 1s uniformly distributed
on the Integers 1 through K.

2.3. Comparison-based inversions.

The sequentlal search algorithm uses comparisons only (between U and cer-
tain functions of the p;’s)- It was convenlent to compare U first with p,, then
with po+p, and so forth, but this Is not by any means an optimal strategy. In
thls section we wlll highlight some other strategies that are based upon comparis-
ons only. Some of these require that the probabllity vector be finite.

For example, If we were allowed to permute the Integers first and then per-
form sequentlal search, then we would be best off If we permuted the integers in
such a way that p,>p,>p,> - - . This Is a consequence of the fact that the
number of comparisons Is equal to 14+X where X Is the random varlate gen-
erated. Reorganlzatlons of the search that result from this will usually not

preserve the monotonicity between U and X . Nevertheless, we will keep using
the term inverslon.

The Improvements In expected tlme by reorganlzations of sequentlal search
can sometlmes be dramatic. Thls Is the case in partlcular when we have peaked
distributions with a peak that s far removed from the origin. A case In point Is
the binomlal distribution which has a mode at l_np_l where n and p are the

I11.2. INVERSION METHOD 89

parameters of the binomilal distrlbution. Here one could first verify whether
U<F(l_an), and then perform a sequentlal search "up” or "down" depending
upon the outcome of the comparlson. For fixed p, the expected number of com-
parlsons grows as Vn Instead of as n as can easlly be checked. Of course, we
have to compute elther dlrectly or In a set-up step, the value of F at |_np_l A
simllar Improvement can be lmplemented for the Polsson distribution. Interest-
Ingly, In this simple case, we do preserve the monotoniclty of the transformation.

Other reorganizatlons are possible by using ideas borrowed from computer
sclence. We wlll replace llnear search (l.e., sequential search) by tree search. For
good performance, the search trees must be set up In advance. And of course, we
will only be able to handle a finlte number of probabilities In our probablilty vec-
tor.

One can construct a binary search tree for generating X . Here each node In
the tree Is elther a leaf (termlnal node), or an Internal node, In which case 1t has
two chlldren, a left chlld and a right child. Furthermore, each internal node has
assoclated with 1t a real number, and each leaf contains one value, an integer
between O and K. For a given tree, we obtaln X from a uniform [0,1] random
varlate U In the following manner:

Inversion by binary search

Generate a uniform [0,1] random variate U .
Ptr «— Root of tree (Ptr points to a node).
WHILE Ptr 5£ Leaf DO
IF Value (Ptr) >U
THEN Ptr «— Leftchild (Ptr)
ELSE Ptr + Rightchild (Ptr).
RETURN X « Value (Ptr)

Here, we travel down the tree, taking left and right turns according to the com-
parisons between U and the real numbers stored in the nodes, untll we reach a
leaf. These real numbers must be chosen in such a way that the leafs are reached
with the correct probabllitles. There 1s no particular reason for choosing K +1
leaves, one for each possible outcome of X, except perhaps economy of storage.
Having fixed the shape of the tree and deflned the leaves, we are left with the
task of determining the real numbers for the K Internal nodes. The real number
for a glven Internal node should be equal to the probabilities of all the leaves
encountered before the node In an Inorder traversal. At the root, we turn left
wlith the correct probability, and by lnductlon, 1t is obvlous that we keep on
dolng so when we travel to a leaf. Of course, we have qulte a few possibilities
where the shape of the tree Is concerned. We could make a complete tree, l.e. a
tree where all levels are full except perhaps the lowest level (which Is fllled from
left to right). Complete trees with 2K +1 nodes have

90 III.2.INVERSION METHOD

L =1+ ll_logg(zK +1)j

levels, and thus the search takes at most L comparlsons. In llnear search, the
worst case Is always Q(K), whereas now we have L ~log,K . The data structure
that can be used for the Inverslon Is as follows: deflne an array of 2K -1 records.
The last K +1 records correspond to the leaves (record K 41 corresponds to
Integer ¢-1). The first K records are Internal nodes. The j-th record has as chill-

dren records 27 and 27 +1, and as father —2'2- . Thus, the root of the tree Is
record 1, Its chlldren are records 2 and 3, etcetera. This glves us a complete
binary tree structure. We need only store one value in each record, and thls can
be done for the entire tree In time O (K) by noting that we need only do an
Inorder traversal and keep track of the cumulative probabllity of the leaves
visited when a node Is encountered. Using a stack traversal, and notation similar
to that of Aho, Hopcroft and Ullman (1982), we can do 1t as follows:

Set-up of the binary search tree

(BST[1} ..., BST[2K+1] is our array of values. To save space, we can store the probabilities
Por - -+, Px In BSTK+1] ,..., BST[2K+1].)

(S is an auxiliary stack of integers.)
MAKENULL(S) (create an empty stack).
Ptr«1, PUSH(Ptr,S) (start at the root).

P «-0 (set cumulative probability to zero).

REPEAT
IF Per<K
THEN PUSH(Ptr,S), Ptr—2 Ptr
ELSE

P «—P + BST|[Ptr]
Ptr«TOP(S), POP(S)
‘BST[Ptr} «P
Ptr«2 Ptr+1

UNTIL EMPTY (S)

The binary search tree method described above 1s not optimal with respect
to the expected number of comparlsons req%red to reach a decislon. For a fixed

binary search tree, this number Is equal to Y p; D; where D; 1s the depth of the
i=0

+-th leaf (the depth of the root is one, and the depth of a node s the number of

nodes encountered on the path from that node to the root). A blnary search tree

Is optimal when the expected number of comparisons Is minimal. We now deflne

Huffman’s tree (Hufiman, 1952, Zimmerman, 1959), and show that 1t Is optimal.

[11.2.INVERSION METHOD 91

The two smallest probablllty leaves should be furthest away from the root,
for If they are not. ihen we can always swap one or both of them with other
nodes at a deeper lsTzl. and obtaln a smaller value for 33p; D; . Because Internal
nodes have two chliZirsn, we can always make these leaves children of the same
Internal node. But 17 12e Indlces of these nodes are j and k, then we have

K

oDy = I piD; + (pj+p)D* + (pj+pi) -

f =0 r=73 k
Here D#* 1s the der:iX of the Internal father node. We see that minlmlzing the
right-hand-slde of tZisz expresslon reduces to a problem with K Instead of K +1
nodes, one of these —odes belng the new Internal node with probabllity p;+pi

assoclated with 1t. Thus, we can now construct the entire (Huffman) tree.
Perhaps a small exaz=—1le is Informative here.

Example 2.5.
Conslder the prcabiitties

po | 0.11
p, | 0.30
p, | 0.25
ps | 0.21
ps | 0.13

We note that we stould Join nodes O and 4 first and form an Internal node of
cumulative welght C.24. Then, thls node and node 3 should be Jolned into a
supernode of welghz 0.45. Next, nodes 1 and 2 are made children of the same

Internal node of welzht 0.55, and the two leftover Internal nodes finally become
children of the root. JJj

For a data strusiure, we can no longer use a complete binary tree, but we
can make use of the array lmplementation In which entrles 1 through K denote
Internal nodes, and =nirtes K 41 through 2K +1 deflne leaves. For leaves, the
entrles are the glven probabllitles, and for the Internal nodes, they are the thres-
hold values as deflnel for general blnary search trees. Since the shape of the tree
must also be determ!zed. we are forced to add for entrles 1 through K two flelds,
a leftchlldpointer an~d a rightchildpolnter. For the sake of simpliclty, we use
BST[.] for the threshold values and probabillties, and Left[.], Right[.] for the
polnter flelds. The tms2 can be constructed In time O (K logK) by the Hu-Tucker
algorithm (Hu,Tuckar. 1971):

92 HI.2.INVERSION METHOD

Construction of the Huffman tree

Create a heap H with elements (K +1,p,), . . . , (2K +1,pg) and order defined by the keys
p; (the smallest key is at the top of the heap). (For the definition of a heap, we refer to
Aho, Hoperoft and Ullman (1982)). Note that this operation can be done in O (K) time.

FOR i:==1 TO K DO
Take top element (7,p) off the heap H and fix the heap.
Take top element (k,g) off the heap H and fix the heap.
Left{t }«j , Right{z)—Fk .
Insert (¢,p +¢) in the heap H.

Compute the array BST by an inorder traversal of the tree. (This is analogous to the
traversal seen earlier, except that for travel down the tree, we must make use of the fields
Left[.] and Right[.] instead of the positional trick that in a complete binary tree the index
of the leftchild is twice that of the father. The time taken by this portion is O (K').)

The entlre set-up takes time O (K logK) In view of the fact that Insertlon and
deletlon-off-the-top are O (logK) operations for heaps.

It Is worth polnting out that for famllles of discrete distributions, the extra
cost of setting up a blnary search tree Is often inacceptable.

We close this sectlon by showing that for most distributlons the expected
number of comparisons (£ (C)) with the Huffman blnary search tree s much less
than with the complete blnary search tree. To understand why this 1s possible,

conslder for example the simple distribution with probability vector
i,-?l-, e, -i—,—l-—. It 1s trivial to see that the Huffman tree here has a linear
shape: we can deflne 1t recurslvely by putting the largest probabllity In the right
child of the root, and putting the Huffman tree for the leftover probabllities In

the left subtree of the root. Clearly, the expected number of comparlsons ls
(—;—)2+(—i—)3+(%)4+ «+-. For any K, this Is less than 3, and as K —oo, the
value 3 is approached. In fact, this finite bound also applles to the extended
Huffman tree for the probability vector —-1’— (¢ 21) . Slmllar asymmetric trees

are obtained for all distributions for which E' (e X)<oo for some t >0: these are
distributions with roughly speaking exponentlally or subexponentlally decreasing
tall probabliitles. The relationship between the tall of the distribution and E (C)
1s clarlfled in Theorem 2.1.

III.2.INVERSION METHOD 93

Theorem 2.1.

Let p,po,... be an arbltrary probablllty vector. Then It Is possible to con-
struct a binary search tree (Including the Huffman tree) for which

E(C)< 1+4 [1og2(1+E (X))] ,

where X 1s the discrete random varlate generat;ed by using the blnary search tree
for Inversion.

Proof of Theorem 2.1.

The tree that will be consldered here 1s as follows: choose first an Integer
k >1. We put leaves at levels k +1,2k 41,3k +1,... only. At level k-+1, we have
ok slots, and all but one Is fllled from left to right. The extra slot iIs used as a
root for a simllar tree with 2% —1 leaves at level 2k +1. Thus, C Is equal to:
ot 1
k+1 with probabllity ¥ p;
t=1
2(*-1)
2k +1 with probabllity 3 p;

i =0t

Takling expected values glves
jf-1)

E(C)=1+k%27 2 »p

J=1 i=(j-1)(2F-1)+1

o0
= 1+k 3] p; by J
;"_—..1 !. . 1-1
<5<
2‘—1 =I= +2"-1

1
< 1+k 1+—)(2—)

EIP’(2k 1 2k 1
< 1+2k‘§_‘_, p; (1+—)

’_1 2 '—'1
< A 2k X .
S 142 +-—-———— 'p;

2f 1 i-z——-:“l ‘

= 142k + 2k

E'(X)

It we take k = [1og2(1+E (X))], then 2% —1 > F (X), and thus,

E(C) < 1+2 [mgg(u—E (X))](H gg;) — 144 [1og2(1+E(X)>] .

This concludes the proof of Theorem 2.1. .

94 III.2.INVERSION METHOD

We have shown two things in thls theorem. First, of all, we have exhlbited a
particular blnary search tree with design constant £ >1 (k& s an Integer) for
which

E(C) < 1+21c+—k?k— EX).
2% -1

Next, we have shown that the value of E(C) for the Huffman tree does not
exceed the upper bound glven in the statement of the theorem by manipulating
the value of k¥ and noting that the Huffman tree Is optimal. Whether in practice
we can use the constructlon successfully depends upon whether we have a falr
ldea of the value of E (X), because the optimal £ depends upon this value. The
upper bound of the theorem grows logarithmlically In F (X). In contrast, the
expected number of comparlsons for Inverslon by sequentlal search grows llnearly
with E(X). It goes without saylng that if the p,;’s are not In decreasing order,
then we can permute them to order them. If In the construction we fill empty
slots by borrowing from the ordered vector PP (2)ree then the Inequality

0 .
remalns valld if we replace E (X) by 37 1p ;). We should also note that Theorem
1 =1

2.1 Is useless for distributions with F (X)=co. In those sltuatlons, there are other
possible constructions. The binary tree that we construct has once agaln leaves at
levels k +1,2k +1,..., but now, we define the leaf positions as follows: at level
k +1, put one leaf, and define 2k _1 roots of subtrees, and recurse. Thls means
that at level 2k +1 we find 2% -1 leaves. We assoclate the p;’'s with leaves In the
order that they are encountered In this construction, and we Keep on going until
K leaves are accommodated.

Theorem 2.2.

For the blnary search tree constructed above with fixed design constant
k >1, we have

E(C) < 1+1cp1+—1-ik——-—
14

oy E (logX)

and, for k =2,

E(C) < 142p (+——E (logX) < 3+——E (logX) ,
log3 _ log3

where X Is a random variate with the probability vector p,, ..., px that Is
used In the construction of the binary search tree, and C 1s the number of com-
parisons In the inverslon method.

II1.2.INVERSION METHOD 95

Proof of Theorem 2.2.
Let us deflne m =2% -1 to simplify the notation. It Is clear that

k+1 with probabllity p,

2k +1 with probabllity po+ - - +py 4y

¢ = 3k+1 with probabllity p, ,o+ - - +Pm2emr

In such expresslons, we assume that p;=0 for ¢ >K . The constructlon also

works for Infinite-tailed distributions, so that we do not need K any further.
Now,

) 1+ - - +mi
E(C) < 1+kp,+kY g by p;
J=2 f=141+ - - +m'?
m .
= 1+kp,+k 3 p; by g

$=2 1414+ --- +m1’—2SiS1+ e I

(o0}
< 14kp+k p; »]
i=2 mi%<i<m’
log?
;)
ogm

0
< 1+kp,+k 3 (2

1=2

= 1+kp +—-2£— %o) p;logt
1 logm '

§ =2

E (logX) .

log

ogm

Thils proves the first lnequality of the theorem. The remalinder follows without
work.]

The bounds of Theorem 2.2 grow as E (logX) and not as log(E (X)). The
difference 1s that E (logX)<log(E (X)) (by Jensen's Inequallty), and that for
long-talled distributions, the former expression can be finlte while the second
expresslon Is oo,

06 II1.2. INVERSION METHOD

2.4. The method of guide tables.

We have seen that Inversion can be based upon sequential search, ordinary
binary search or modifled blnary search. All these technlques are comparlson-
based. Computer sclentists have known for a long time that hashing methods are
ultra fast for searching data structures provided that the elements are evenly dls-
tributed over the range of values of Interest. This speed 1s bought by the explol-
tation of the truncatlion operation.

Chen and Asau (1974) first suggested the use of hashing techniques to handle
the Inverslon. To Insure a good expected time, they Introduced an Ingenlous trick,
which we shall describe here. Thelr method has come to be known as the
method of guide tables. Again, we have a monotone relatlonship between X,
the generated random variate, and U, the uniform [0,1] random varlate which Is
Inverted.

We assume that a probablllty vector pq,p,, . - ., Pg 1s glven. The cumula-
tlve probabillities are defined as

If we were to throw a dart (in this case U) at the segment [0,1], Which 1s partl-
tloned into K +1 Intervals [0,9o)[¢0:9 1), - - -, [9g-1,1), then it would come to
rest 1n the Interval [g;_,,q;) With probability ¢;—¢;_,=p;. This Is another way of
rephrasing the inversion principle of course. It s another matter to find the intér-
val to which U belongs. This can be done by standard binary search In the array
of ¢;’s (thls corresponds roughly to the complete binary search tree algorithm}. If
we are to explolt truncation however, then we somehow have to conslder equl-

1 -1) .
—_— , 1<¢ <K +1. The method of gulde
K+l Kai) 13 &

tables helps the search by storing In each of the K +1 Intervals .a "gulde table
value” g; where

spaced Intervals, such as |

g; = max 7 .
3
A]

This helps the Inversion tremendously:

I11.2.INVERSION METHOD 97

Method of guide tables

Generate a uniform [0,1] random variate U.
Set X — [(K +1)U+1] (this is the truncation).
Set X «—gy +1 (guide table look-up).

WHILE ¢qx_,>U DO X «-X-1.

RETURN X

It 1s easy to determine the valldity of this algorlthm. Note also that no
expensive computations are involved.

Theorem 2.3.

The expected number of comparisons (of ¢y_, and U) In the method of
gulde tables is always bounded from above by 2.

Proof of Theorem 2.3.

Observe that the number of comparisons C s not greater than the number
of ¢; values In the Interval X (the returned random varlate) plus one. But since
all Intervals are equl-spaced, we have ‘

K :

L 5 (number of values of ¢ i In interval 1)
§ =0

E(C) <1+

<i1+1=2.R

Theorem 2.3 1s very lmportant because 1t guarantees a uniformly good per-
formance for all distributions as long as we make sure that the number of inter-
vals and the number of possible values of the discrete random varlable are equal.

This Inversion method too requires a set-up step. The table of values
190, - - -, 9r 41 can be found In time O (K):

98 II.2.INVERSION METHOD

Set-up of guide table

FOR ¢:=1 TO K +1 DO g; +0.

S «0.

FOR ¢:=0 TO K DO
S+8+p; (S isnow gq;).
j+ LS(X +1)+1]. (Determine interval for g¢; .)
g;+t.

FOR 1:=2 TO K +1 DO g; +-max(g; _;,¢;)-

There 1s a trade-off between expected number of comparisons and the slze of
the gulde table. It Is easy to see that If we have a gulde table of a(K +1) ele-
ments for some a>0, then we have

E(©) <1+~
[0}

If speed Is extremely Important, one should not hesltate to set « equal to 5 or 10.
Of all the Inverslon methods discussed so far, the method of guide tables shows
clearly the greatest potentlal In terms of speed. This Is confirmed In Ahrens and
Kohrt(1981).

2.5. Inversion by correction.

It 1s sometimes posslble to-find another distribution function G that is close
to the distributlon function F of the random varlable X . Here G Is the distribu-
tlon function of another discrete random varlable, Y. It Is assumed that G is an
easy distributlon. In that case, It Is possible to generate X by first generating Y
and then applylng a small correction. It should be stressed that the fact that G
Is close to F' does not imply that the probabllitles G (¢)~G (¢ ~1) are close to the
probabllities F (1)-F (i -1). Thus, other methods that are based upon the close-
ness of these probabllities, such as the rejection method, are not necessarily appli-
cable. We are simply using G to obtain an Inltlal estimate of X .

MIL.2.INVERSION METHOD 99

Inversion by correction; direct version

Generate a uniform [0,1] random variate U .

Set X +—G™(U) (i.e. X is an integer such that G (X -1)<U <G (X) . This usually means
that X is obtained by truncation of a continuous random variable.)

Ir ULSF(X)
THEN WHILE U <F (X -1) DO X «X-1.
ELSE WHILE U >F (X +1) DO X «X +1.
RETURN X

‘We can measure the time taken by thls algorithm In terms of the number of
F -computations. We have: '

Theorem 2.4.

The number of computatlons C of F in the Inverslon algorithm shown
above 1s :

2+ | Y-X |
where X ,Y are defined by
F(X1)<UL<FX),G(Y-1))<ULG(Y).

It 1s clear that E(C)=2+E(|Y-X |) where Y,X are as deflned In the
theorem. Note that Y and X are dependent random varlables In thls definltion.
We observe that in the algorithm, we use inverslon by sequential search and start
thls search from the Initlal guess Y. The correctionls | Y-X |.

There Is one Important speclal case, occurring when F and G are stochastl-
cally ordered, for example, when F <G . Then one computation of F can be
saved by noting that we can use the following Implementation.

100 III.2.INVERSION METHOD

Inversion by correction; F <@

Generate a unlform [o0,1] random varlate U. Set X G (V).
WHILE U>F(X)YDO X+«X+1.
RETURN X

What Is saved here is the comparison needed to decide whether we should search
up or down. Since In the notation of Theorem 2.4, Y <X, we see that

E(C)=1+E(X-Y).

When E (X') and E (Y') are finlte, this can be written as 1+E (X)-E (Y). In any
case, we have

E(C)=1+% | F(i)-G ()] .

To see thls, use the fact that E (X)=3(1-F(¢)) and E (Y)=33(1-G (:)). When
{ §

F > G, we have a symmetric development of course.

In some cases, a random varlate with distributlon function G can more
easlly be obtalned by methods other than Inversion. Because we still need a uni-
form [0,1] random varlate, It Is necessary to cook up such a random varlate from
the previous one. Thus, the Inltlal palr of random varlates (U,X) can be gen-
erated indirectly: ‘

Inversion by correction; indirect version

Generate a random variate X with distribution function G .

Generate an independent uniform [0,1] random variate V, and set
UG (X-1)+V(GX)-G(X-1)).

IF ULF(X)
THEN WHILE U <F(X-1) DO X +~X-1.
ELSE WHILE U >F (X +1) DO X «X +1.
RETURN X

It 1s easy to verify that the direct and indirect verslons are equivalent because the
Jolnt distributlons of the starting palr (U,X) are identical. Note that in both
cases, we have the same monotone relation between the generated X and the
random varlate U, even though In the Indirect verslon, an auxillary uniform [0.1]

{ d
,,}’
'”ff
‘1 IIL2.INVERSION METHOD

’:,

i

\75_'_!

random varlate V 1s needed.

Example 2.6.
Consider

F(i)=1-—2% (i>1)
1P +a1

101

where a >0 and p >1 are glven constants. Expllicit inversion of F is not feasible
except perhaps In speclal cases such as p =2 or p ==3. If sequential search 1s used

started at O, then the expected number of F computatlons Is

o0 o0 : [o.0)
1+ 3 (A-F () = 1+ 3] =% > 1+ 37 = .
2, 20 var 2

Assume next that we use Inverston by correctlon, and that as easy distributlon

. 1 .
functlon we take G (s)=1—T,z21. First, we have stochastic orde
1

ring

because FF <G . Note first that G~(U) (the Inverse belng defined as In Theorem

-1

2.4) 1s equal to L1+U P). Furthermore, the expected number of computations

of F is

143G (I)-F (i) = 1+ 33 —at g-—-.'

i =1 a—zzp(ip'*‘(“) —2 1P
Thus, the lmprovement In terms of expected number of computations of F 1

o0
least 14(1-a) 3] -_—lp—, and thils can be conslderable when a Is small. JJ|
i=21? '

2.6. Exercises.

1. Glve a one-llne generator (based upon inverslon via truncatlon of a cont
ous random varlate) for generating a random vartate X with distribution

PX=1)= T 1<:<n).

2

to

s at

inu-

By eniplrlcal measurement, the following dlscrete cumulative distribution

functlon was obtalned by Nigel Horspool when studying operating systems:

F (1) = min(1, 0.114 log(1+

—)-0.060) (i 21).

V05966

102

III.2INVERSION METHOD

Glve a one-llne generator for thls distribution which uses truncation of a

continuous random varlate.

Glve one-llne generators based upon inversion by truncation of a continuous

random varlate for the following probabllity distributions on the positive

integers:

Pn

a
(ntae)n+e+1)

(a >0)

1
on

3n343n+1
n3(n +1)3

2n +1
ni(n +1)°

1
Va(n +0(Vn +vn £1)

3. TABLE LOOK-UP METHODS.

3.1. The table look-up principle.

We can generate a random varlate X very quickly If all probabllities p; are
rational numbers with common denomlinator M . It suffices to note that the sum
of the numerators 1s also M. Thus, If we were to construct an array A of slze M
with Mp, entries 0, Mp, entrles 1, and so forth, then a uniformly plcked element
of this array would yleld a random varlate with the glven probabllity vector

P oD 1--.. Formally we have:

Table look-up method

[SET-UP)

k,

k
Given the probability vector (p°=—2,p1=7,...), where the k;’s and M are nonnegative

integers, we define a table A =(4 [0], . .
[GENERATOR)])

M

Generate a uniform [0,1] random variate U.

RETURN A4 [LMU]J)

The beauty of this technlque is that it takes a constant time.

., A [M-1]) where k; entries are 7, { >0.

Its disadvantages

Include Its limitation (probabllities are rarely rational numbers) and its large
table slze (M can be phenomenally blg).

II1.3. TABLE LOOK-UP 103

We will glve two lmportant examples to lllustrate 1ts use.

Example 3.1. Simulating dice.

We are asked to generate the sum of n Independently thrown unblased dice.
This can be done nalvely by using X +X 4 - * - +X, where the X, 's are 11d unl-
form .{1,2, e, 6} random varlates. The tlme for thils algorithm grows as n.
Usually, n will be small, so that this is not a major drawback. We could also
proceed as follows: first we set up a table A[0], ..., A [M~1] of slze M =8"
where each entry corresponds to one of the 8" possible outcomes of the n throws
(for example, the first entry corresponds to 1,1,1,1, ..., 1, the second entry to
2,1,1,1, . . ., 1, etcetera). The entrles themselves are the sums. Then A [LMU]]
has the correct distribution when U 1s a uniform [0,1] random varlate. Note that
the time 1s O (1), but that the space requirements now grow exponentially In n.
Interestingly, we have one uniform random varlate per random varlate that s
generated. And If we wish to lmplement the Inversion method, the only thing
that we need to do 1s to sort the array according to Increasing values. We have
thus bought tlme and pald with space. It should be noted though that in this
case the space requirements are so outrageous that we are practically limited to
n <5. Also, the set-up 1s only admlssible If very many 1id sums are needed In the
simulation. [Jjj

Example 3.2. The histogram method.

Statlsticlans often construct histograms by countlng frequencles of events of
a certaln type. Let events 0,1, ..., K have assoclated with them frequencles
kosky, - .., kg . A questlon sometimes asked Is to generate a new event with the
probabilities defined by the histogram, l.e. the probabllity of event ¢ should be

: K
_J\:T where M == Y7 k;. In thls case, we are usually glven the orlginal events In
§ ==0 .

table form A [0], ..., A [M-1], and it 1s obvlous that the table method can be
applied here wlthout set-up. We will refer to this speclal case as the histogram
method. Note that for Example 3.1, we could also construct a hilstogram, but it
differs In that a table must be set up.

Assume next that we wish to generate the number of heads In n perfect coln
tosses, It 1s known that thls number 1s binomlally distributed with parameters n

and % By the method of Example 3.1, we can use a table look-up method with

104 II1.3.TABLE LOOK-UP

table of size 2", so for n <10, this is entirely reasonable. Unfortunately, when
the coln Is not perfect and the probabllity of heads Is an Irrational number p, the
table look-up method cannot be used.

3.2. Multiple table look-ups.

The table look-up method has a geometric interpretatlon. When the table
slze 1s M, then we can think of the algorithm In terms of the selection of one of
. M equl-spaced Intervals of [0,1] by finding the interval to which a uniform [0,1]
random varlate U belongs. Each Interval has an Integer assoclated with 1t, which
should be returned.

One of the problems highlighted In the previous sectlon is the table size. One
should also recognlze that there normally are many ldentical table entrles. These
duplicates can be grouped together to reduce the table size. Assume for example
that there are k; entrles with value ¢ where 1 220 and 3 k;=M. Then, If

i>0
M=MM, for two Integers M ,M,, we can set up an auxillary table
Blo], ..., B[My-1] where each B [¢] polnts to a block of M, entrles in the true

table A [0], ..., A [M-1]. If this block 1s such that all values are 1dentical, then
It I1s not necessary to store the block. If we think geometrically agaln, then this
corresponds to deflning a partitlon of [0,1] Into M, intervals. The orliglnal parti-
tlon of M Intervals Is finer, and the boundaries are aligned because M is a multi-
ple of M. If for the 7-th blg interval, all M, values of A [j] are ldentical, then
we can store that value directly In B [:] thereby saving M ~1 entrles In the A
table. By rearranging the A table, 1t should be possible to repeat this for many
large Intervals. For the few large Intervals covering small Intervals with non-
ldentical values for A, we do store a placeholder such as * . In thls manner, we
have bullt a three-level tree. The root has M, children with values B [:]. When
B [7] 1s an integer, then ¢ Is a terminal node. When B [¢]=#, we have an Inter-
nal node. Internal nodes have in turn M, chlldren, each carrylng a value A [7]. It
Is obvlous that thls process can be extended to any number of levels. This struc-
ture i1s known as a trle (Fredkln, 1960) or an extendlble hash structure (Fagin,
Nievergelt, Pippenger and Strong, 1979). If all internal nodes have preclsely two
children, then we obtaln In effect the binary search tree structure of section IIl.2.
Since we want to get as much as possible from the truncation operation, 1t 1s
obvious that the fan-out should be larger than 2 In all cases.

Conslder for example a table for look-up with 1000 entries deflned for the

I11.3.TABLE LOOK-UP , 105

followlng probabllity vector:

Probability | Number of entries in table A
p; | 0.005 5
pg | 0.123 123
ps | 0.240 240
4 | 0.355 355
pe | 0.277 277

Suppose now that we set up an auxillary table B which will allow us to refer to
sectlons of size 100 In the table A . Here we could set :

B(0]
B(1]
B[2]
B(3]
| Bl4]
B(5)
B[6]
B(7]
B(8]
Bl9]

¥ ¥ VOB R W RN

The Interpretation Is that if B{i|=7 then j appears 100 times In table A, and
If B[i]=% then we must consult a block of 100 entrles of A which are not all
identical. Thus, If B{8] or B|[9] are chosen, then we need to consult
A [800], . .., A[999], where we make sure that there are 5 "1"'s, 23 "2"’s, 40
”3"'s, 55 "4”'s and 77 ”"5”'s. Note however that we need no longer store
Alo],...,A[799] ! Thus, our space requirements are reduced from 1000 words
to 210 words.

After having set-up the tables B[0], ..., B[9] and A [800], . . ., A [999], we
can generate X as follows:

Example of a multiple table look-up

Generate a uniform [0,1} random variate U.
Set X B[|l10U]].
IF X 5+

THEN RETURN X

ELSE RETURN A [[1000U]]

Here we have exploited the fact that the same U can be reused for obtalning a
random entry from the table A . Notlce also that In 80% of the cases, we need
not access A at all. Thus, the auxlliary table does not cost us too much tlmewise.
Finally, observe that the condition X 3% * can be replaced by X >7, and that

106 II1.3. TABLE LOOK-UP _

therefore B [8] and B [9] need not be stored.

What we have described here forms the essence of Marsaglia’s table
look-up method (Marsaglla, 1963; see also Norman and Cannomn, 1972). We can
of course do a lot of fine-tuning. For example, the table A [800], . . . , A [999] can

in turn be replaced by an auxillary table C' grouping now only 10 entrles, which
could be plcked as follows:

C[80]
C[81]
Cis2]
C[83]
Cls4]
Cls5)
C[s6]
Cl87)
C[sg]
C[89]
Cl90]
C[91]
Clo2]
Clo3)
Clo4]
Clos)
C[96]
Clo7)
Cios]
Cl99]

* % Qv v Or Ov Ot b B R W W WD

Glven that B[:]=# for our value of U, we can In 909 of the cases return
C[L100U]]. Only if once more an entry * Is seen do we have to access the table

A [080], . .., A[999] at position [1000U). The numbering in our arrays Is con-
venlent for accesslng elements for our representation, l.e. B[¢] stands for
Cli0¢], ..., C[101+9], or for A[100:}, ..., A [1007 +99]. Some high level

languages do not permit the use of subranges of the Integers as indlces. It 1s also
convenlent to comblne A ,B and C Into one big array. All of this requires addl-
tlonal work during the set-up stage.

We observe that In the multllevel table look-up we must group identlcal
entrles In the orlginal table, and this forces us to Introduce a nonmonotone rela-
tionship between U and X.

The method described here can be extended towards the case where all p;’'s
are multiples of elther 1077 or 272, In these cases, the p;’s are usually approxima-
tlons of real numbers truncated by the wordslze of the computer.

111.4.ALIAS METHOD 107

4. THE ALIAS METHOD.

4.1. Deﬁnition.

Walker (1974, 1977) proposed an Ingenlous method for generating a random
varlate X with probabllity vector po,p,, . . ., Pg_; Which requires a table of slze
O (K') and has a worst-case tlme that Is Independent of the probabliity vector
and K . His method is based upon the following property:

Theorem 4.1.

Every probabllity vector py,p,, . - ., Pg-; Can be expressed as an equiprob-
able mixture of K two-polnt distributlions.

Proof of Theorem 4.1.

We have to show that there are K palrs of Integers (14,74), - - - » (z'k_l,]'K_l)
and K probabllitles g4, . . ., gx_; Such that
K-1
1 o
pi = _Izlzo(ql I[z}:i] + (1_QI)I[jlzz']) (0_<_Z <K) .

This can be shown by Inductlon. It Is obviously true when K =1. Assuming that ‘
1t 1s true for K <n, we can show that 1t Is true for K ==n as follows. Choose the

‘ 1 .
minlmal p;. Slnce 1t Is at most equal to ==, we can take ¢, equal to the Index of

K
this minimum, and set ¢, equal to Kp;. Then choose the Index j, which
corresponds to the largest p;. This deflnes our first palr In the equlprobable mix-
(1-q0) < 1

Sp;, because _I?

K -1 palrs In the equiprobable mixture have to be constructed from the leftover
probabllities

ture. Note that we used the fact that <p;,- The other

1
Por - - pio_pio) LR pjo_f(l—qo),' LR pK—l

which, after deletlon of the 7,-th entry, Is easlly seen to be a vector of K -1 non-
K-1

negative numbers summing to . But for such a vector, an equlprobable mix-

ture of K -1 two-polnt distributions can be found by our Induction hypothesis. .

To turn thils theorem into proflt, we have two tasks ahead of us: flrst we
need to actually construct the equlprobable mixture (thls Is a set-up problem),
and then we need to generate a random varlate X . The latter problem 1s easy to
solve, Theorem 4.1 tells us that 1t sufflces to throw a dart at the unlt square In
the plane and to read off the Index of the reglon In which the dart has landed.

108 II1.4.ALIAS METHOD

The unlt square 1s of course partitioned into reglons by cutting the x-axls up into
K equl-spaced intervals which define slabs in the plane. These slabs are then cut
Into two pleces by the threshold values ¢;. If

1 K—l .
P = % S @l + G0 jjm) i <K),

then we can proceed as follows:

The alias method

Generate 2 uniform (0,1] random variate U. Set X« [KU]. Generate a uniform (0,1} ran-
dom variate V.

i 14 < ax
THEN RETURN iy
ELSE RETURN jy

Here one uniform random varlate Is used to select one component In the
equlprobable mlxture, and one unlform random varlate 1s used to declde which
part In the two-polnt dlstributlon should be selected. This unsophlsticated ver-
slon of the allas method thus requires precisely two uniform random varlates and

two table look-ups per random varlate generated. Also, three tables of size KX are
needed.

‘We observe that one uniform random varlate can be saved by noting that
for a uniform [0,1] random varlable U, the random variables X = LKU| and
V=KU-X are Independent: X 1s uniformly distributed on O, ..., K-1, and
the latter s agaln uniform [0,1]. This trick Is not recommended for large K
because 1t relies on the randomness of the lower-order digits of the uniform ran-
dom number generator. With our ldeallzed model of course, this does not matter.

One of the arrays of slze K can be saved too by noting that we can always
Insure that ¢4, ..., 1 _; Is a permutation of O, ..., K-1. This Is one of the
dutles of the set-up algorithm of course. If a set-up glves us such a permuted
table of 7-values, then 1t should be noted that we can In time O (K) reorder the
structure such that ¢y =/, for all /. The set-up algorithm glven below will directly
compute the tables 7 and ¢ In time O (K) and Is due to Kronmal and Peterson
(1979, 1980):

110 II1.4.ALIAS METHOD

The allas method can further be improved by minimizing thls expression, but this
won't be pursued any further here. The maln reason for not dolng so Is that there
exists a simple generallzatlon of the allas method, called the allas-urn method,
which Is designed to reduce the expected number of table accesses. Because of its
Importance, we will describe 1t 1n a separate section.

4.2. The alias-urn method.

Peterson and Kronmal (1982) suggested a generalization of the allas method
In the followlng manner: think of the probabllity vector po,p,, ..., py_, 8S a
speclal case of a probablllty vector with K* > K components where p; =0 for all
+ 2K . Everything that was sald In the previous sectlon remalns valld for this
case. In partlcular, If we use the llnear set-up algorithm for the tables ¢ and 7,
then 1t should be noted that ¢, >0 for at most K values of [. At least for all
l > K -1 we must have ¢, =0. For these values of [, one table access Is necessary:

The alias-urn method

Generate a random integer X uniformly distributed on 0, . . ., K*-1,
FX>K
THEN RETURN jyx
ELSE
Generate a uniform [0,1] random variate V.
IF V<gx
THEN RETURN X
ELSE RETURN jy

Per random varlate, we require elther one or two table look-ups. It Is easy to
see that the expected number of table look-ups (not counting gy) is

K+-K 1 k2
—g)< 1.
e T K*1§0(1)= 1

The upper bound of 1 may somehow seem llke magle, but one should remember
that Instead of one comparison, we now have elther one or two comparisons, the
expected value belng

145
K=*
Thus, as K* becomes large compared to K , the expected number of comparlsons
and the expected number of table accesses both tend to one, as for the urn
method. In this light, the method can be consldered as an urn method with slight

II1.4.ALIAS METHOD 109

Set-up of tables for alias method

Greater «—@, Smaller «—@ (Greater and Smaller are sets of integers.)
FOR !:=0 TO K -1 DO
@ —Kp .
IFrq<1 , ;
THEN Smaller +— Smaller +{/}.
ELSE Greater + Greater +{/ }.
WHILE NOT EMPTY (Smaller) DO
Choose k € Greater ,/ € Smaller [g, is finalized].
Set 5; —k [j; is finalized].
gk e —~(1~q;). ,
IF ¢; <1 THEN Greater +— Greater - {k }, Smaller +— Smaller +{k }.
Smaller + Smaller -{! }.

The sets Greater and Smaller can be Implemented In many ways. If we can do 1t
In such a way that the operations "grab one element”, "Is set empty ?”, "delete
one element” and "add one element” can be done In constant time, then the algo-
rithm glven above takes time O (K). This can always be Insured if llnked lists
are used. But since the cardinallties sum to K at all tlmes, we can organize 1t by
using an ordlnary array In which the top part Is occupied by Smaller and the bot-
tom part by Greater. The allas algorithm based upon the two tables computed
above reads:

Alias method with two tables

Generate a random integer X uniformly distributed on 0, .. ., K ~1.
Generate a uniform {0,1} random variate V.
IFV<gx

THEN RETURN X

ELSE RETURN jy

Thus, per random variate, we have either 1 or 2 table accesses. The expected
number of table accesses Is

I11.4.ALIAS METHOD 111

fine-tuning. We are paying for thls luxury In terms of space, slnce we need to

store K*+K values: 7o, . . ., Jgs_1sq0, - - -, §x—,- Flnally, note that the com-
parison X > K takes much less tlme than the comparison V <gy.

4.3. Geometrical puzzles.

We have seen the geometrical Interpretation of the allas method: throw a
dart at random and uniformly on the unlt square of R 2 properly partitioned Into
2K rectangles, and return the Index that Is assoclated with the rectangle that 1s
hit. The Indlces, or allases, are stored In a table, and so are the definitions of the
rectangles. The power of the allas method Is due to the fact that we can take K

identical slabs of helght 1 and base —}{— and then split each slab Into two rectan-

gles. It should be obvious that there are an unlimited number of ways In which
the unit square can be cut up convenlently. In general, If the components are
A, ..., Ay, and the allases are 7,, . . ., Jy, then the algorithm

General alias algorithm

Generate a random variate (X ,Y) uniformly distributed in (0,1}
Determine the index Z in 1, ..., M such that (X,Y)€A;.
RETURN j3

produces a random varlate which takes the value k£ with probabllity

Y area(4;) .
lij(=k

Let us lllustrate this with an example. Let the probabllltles for consecutlve

c ¢ ¢cc ¢ ¢ c

Integers 1,2,... be ¢ ,—,—,—~—,—,— ..., -, Where n 1s a positive Integer,
22 44 4 4 on

and ¢ = 1s a normallzation constant. It Is clear that we can group the

values In groups of slze 1,2,4, . . ., 2", and the probabllity ‘wel'ghts of the groups
are all equal to ¢. This suggests that we should partitlon the square first into

1 . Then, the ¢-th slab should

be further subdivided into 2! equé,l rectangles to distlngulsh between dlfferent
Integers In the groups. The algorithm then becomes:

n +1 equal vertical slabs of helght 1 and base

112

III.4.ALIAS METHOD

Generate a random variate X with a uniform distribution on {0,1, ..., n }.
Generate a random variate Y with a uniform distribution on 2X, . .., 2X*+_.
RETURN Y.

In this simple example, 1t Is posslble to combine the uniform varlate generation
and membershlp determination Into one. Also, no table is needed.

Conslder next the probablllt,y vector

pi = (1-—) (0<:1<n).

n +1

Now, we can partition the unit square Into n(n +1) equal rectangles and assign
allases as In the matrix shown below:

00000
01111
01222 ,
01233
01234
01234

We can verlfy first that the probablllities are correct. Then, it 1s easlly seen that
the allas method applied here requires no table elther. Both examples illustrate
the virtually unlimlited possibilities of the allas method.

4'4.

1.

Exercises.

Glve a simple linear time algorithm for sorting a table of records
R, ..., R, it 1t s known that the vector of key values used for sorting Is
a permutation of 1, , N

Show that there exlsts a one-line FORTRAN or PASCAL language generator
(1—--) , 01 <n
1 n

for random varlates with' probabllity vector p;=
(Duncan McCallum).

Combine the rejection and geometrlc puzzle method for generating random
varlates with probabllity vector p,-=£. , 11 <K, where ¢ 1s a normaliza-
tlon constant. The meﬁhod should ta:ke expected time bounded uniformly
over K. Hint: note that the vector c,ﬁ,—,—,—,—,—,... dominates the

III.4.ALTIAS METHOD 113

given probabllity vector.
4. Repeat the prevlous exerclse for the two-parameter class of probabllity vec-

¢ :
tors p; =~——, 1<¢ <K where M Is a positive Integer.
z .

5. OTHER GENERAL PRINCIPLES.

5.1. The rejection method.

The relection principle remalns of course valld for discrete distributions. If
the probablllty vector p; , ¢+ >0, Is such that

p; S cq; (z ZO) ’

where ¢ 21 Is the reJectlon constant and ¢, , ¢ >0, 1s an easy probabllity vector,
then the followlng algorithm 1s valld:

The rejection method

REPEAT
Generate a uniform [0,1] random variate U.

GENERATE a random variate X with discrete distribution determined by
g ,t20.

UNTIL Ueqy <pyx

RETURN X

We recall that the number of lterations Is geometrically distributed with parame-

X . In
cqx
view of the ultra fast methods described In the previous sectlons for finlte-valued

random varlates, 1t seems that the relectlon method Is malnly applicable in one of
two sltuations:

A. The distributlon has an Infinlte tall.

B. The distributlon changes frequently (so that we do not have the time to set
up long tables every time).

1
ter — (and thus mean c¢). Also, In each Iteratlon, we need to compute
¢

Often, the body of a distribution can be taken care of by the guide table, allas or
allas-urn methods, and the tall (which carrles small probability anyway) Is dealt

114 III.5.OTHER PRINCIPLES

with by the rejection method.

Example 5.1.
Conslder the probabllity vector
6

w2

pi = —5 (21).

Sequentlal search for this distribution Is undesirable because the expected number
o0
of comparlsons would be 1+ 37 ip; ==c0. With the easy probabllity vector

§=1

L (i>1),

1(1+1)
we can apply the rejection method. The best possible rejection constant s

Py 6 1+ 12
u S—

qi ==

u] .
i >1 g m2i>1 1 2

has probabliity vector ¢ (where U 1s a uniform [0,1] random vari-

| S——

1
Since | —
U

able), we can proceed as follows:

REPEAT

Generate iid uniform [0,1] random variates U,V . Set X + l%k

UNTIL 2VX <X +1
RETURN X i

Example 5.2. Monotone distributions.
When the probabllity vector py, . . ., p, Is nonincreasing, then 1t Is obvious
that p; 5—1:- for all +. Thus, the following rejectlon algorithm Is valid:
?

II.5.OTHER PRINCIPLES 115

REPEAT
Generate a random variate X with probability vector proportional to 1,—3—, C -—1—.

Generate a uniform [0,1} random variate U.
UNTIL U < Xpy
RETURN X

The expected number of iteratlons 1s 3 —<1+log(n). For example, 2 binomlal
: ?
t =1
(n,p) random varlate can be generated by this method In expected time
O (log(n)) provided that the probabllitles can be computed in time O (1) (this
assumes that the logarithm of the factorlal can be computed in constant time).
For the domlnating distributlon, see for example exercise I11.4.3. |

Example 5.3. The hybrid rejection method.

As In example 5.1, random varlates with the domlinating probabllity vector
are usually obtalned by truncation of a continuous random variate. Thus, 1t
seems lmportant to discuss very briefly how we can apply a hybrid rejection
method based on the following Inequallty:

p; Jeg(z) (allz€fr,i+1),1t>0).

Here ¢ >1 1s the reJectlon constant, and ¢ Is an easy density on [0,00). Note that
p can be extended to a density f In the obvious manner , Le.
f (z)=p; ,all x €[7,7 +1). Thus, random varlates with probabllity vector p can
be generated as follows:

116

5.2.

II1.5.0THER PRINCIPLES

Hybrid rejection algorithm

REPEAT
Generate a random variate Y with density g . Set X« | Y.
Generate a uniform [0,1) random variate U.

UNTIL Ueg (Y)<px

RETURN X |}

The composition and acceptance-complement methods.
It goes without saylng that the entlre discussion of the composition and

acceptance-complement methods for continuous random varlates can be repeated
for discrete random variates.

5.3.
1.

Exercises.

Develop a rejection algorithm for the generatlon of an Integer-valued random
variate X where

P(X=i)= 2;_1 --2% (i =1,2,...)

and ¢ ==

Slos 1s a normallzatlon constant. Analyze the efficlency of your
og

1 1 ‘
algorithm. Note: the serles 1—-;——{——5-—-:1——1—-2-— -+ - converges to log2. There-

fore, the terms consldered in palrs and divided by log2 can be considered as
probabllities defilnlng a probabllity vector.

¢(a)
(a+1)?
parameter and ¢ (a)>0 Is a normalization constant. Develop the best possl-
ble relection algorithm that 1s based upon truncation of random varlables
with distribution function

a+1
a+zx

Conslder the family of probabllity vectors ,t2>>1, where a >0 1s a

F(z)=1- (z >1).

Find the probabllity of acceptance, and show that it is at least equal to

T2 Show that the Infimum of the probability of acceptance over
a

ITII.5.0OTHER PRINCIPLES 117

a €[0,00) 1s nonzero.

8. The discrete normal distribution. A random variable X has the discrete
normal distributlon with parameter >0 when

. 1.2
_(| i +?)
P(X=i)=ce 2 (i integer) .

Here ¢ >0 1s a normallzation constant. Show first that

1 1
- Tan +0 (1))

as o—co. Show then that X can be generated by the following rejlectlon
algorithm:

¢ ==

REPEAT
Generate a normal random variate Y, and let X be the closest integer to Y,
l.e. X +round(Y). Set Z— | X | +%.

Generate a uniform [0,1] random variate U.
UNTIL ~20%0g(U)>22-7*
RETURN X

Note that -log(U) can be replaced by an exponentlal random varlate. Show

2 2
that the probabllity of rejection does not exceed ; ? In other words,

the algorithm 1s very efficlent when o Is large.

