Chapter Three
 DISCRETE RANDOM VARIATES

1. INTRODUCTION.

A discrete random varlable is a random varlable taking only values on the nonnegative integers. In probabllity theoritlcal texts, a discrete random varlable is a random varlable which takes with probabllity one values in a given countable set of points. Since there is a one-to-one correspondence between any countable set and the nonnegative integers, it is clear that we need not consider the general case. In most cases of interest to the practitioner, this one-to-one correspondence is obvlous. For example, for the countable set $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$, the mapping is trivial.

The distribution of a discrete random varlable X is determined by the probablllty vector p_{0}, p_{1}, \ldots :

$$
P(X=i)=p_{i} \quad(i=0,1,2, \ldots) .
$$

The probabillty vector can be given to us in several ways, such as
A. A table of values $p_{0}, p_{1}, \ldots, p_{K}$. Note that here it is necessary that X can only take flnitely many values.
B. An analytical expression such as $p_{i}=2^{-i} \quad(i \geq 1)$. This is the standard form In statistlcal applications, and most popular distributions such as the blnomial, Polsson and hypergeometric distributions are given in this form.
C. A subprogram which allows us to compute p_{i} for each i. This is the "black box" model.
D. Indirectly.. For example, the generating function

$$
m(s)=\sum_{i=0}^{\infty} p_{i} s^{i} \quad(s \in R)
$$

can be given. Sometimes, a recurslve equation allowing us to compute p_{i} from $p_{j}, j<i$, is given.
\therefore cases B, C and D, we should also distingulsh between methods for the genera\therefore :on of X when X has a flxed distribution, and methods that should be
applicable when X belongs to a certain family of integer-valued random variables.

The methods that will be described below apply usually to only one or two of the cases llsted above. Some of these are based on princlples that are equally applicable to continuous random varlate generation like inversion, composition and refection. Other princlples are unlque to discrete random varlate generation llke the allas princlple and the method of guide tables. In any case, this chapter goes hand in hand with chapter II. Very often, the best generator for a certain denslty uses a clever comblnation of discrete random varlate generation principles and standard methods for continuous random varlates. The actual discussion of such combinations is deferred untll chapter VIII.

When we give examples in this chapter, we will refer to well-known discrete distributions. At this point, it is instructive to summarize some of these distributlons.

Name of distribution	Parameters	$P(X=i)$	Range for i
Poisson (λ)	$\lambda>0$	$\frac{e^{-\lambda} \lambda^{i}}{i!}$	$i \geq 0$
Binomial (n, p)	$n \geq 1 ; 0 \leq p \leq 1$	$\binom{n}{i} p^{i}(1-p)^{n-i}$	$0 \leq i \leq n$
Negative binomial (n, p)	$n \geq 1 ; p>0$	$\binom{n+i-1}{i} p^{i}(1+p)^{n+i}$	$i \geq 0$
Logarithmic series (θ)	$0<\theta<1$	$\frac{\theta^{i}}{-\log (1-\theta) i}$	$i \geq 1$
Geometric (p)	$0<p<1$	$p(1-p)^{i-1}$	$i \geq 1$

We refer the reader to Johnson and Kotz (1968, 1982) or Ord (1972) for a survey of the propertles of the most frequently used discrete distributions in statistics. For surveys of generators, see Schmelser (1983), Ahrens and Kohrt (1981) or Ripley (1983).

Some of the methods described below are extremely fast: this is usually the case for well-designed table methods, and for the allas method or its variant, the allas-urn method. The method of gulde tables is also very fast. Only finitevalued discrete random variates can be generated by table methods because tables must be set-up beforehand. In dynamle situations, or when distributions are infinite-talled, slower methods such as the inversion method can be used.
avolded altogether as can be seen from the following example.

Example 2.1. Poisson random variates by sequential search.

We can quickly verlfy that for the Polsson (λ) distrlbution,

$$
p_{i+1}=\frac{\lambda}{i+1} p_{i}, p_{0}=e^{-\lambda}
$$

Thus, the sequentlal search algorlthm can be slmpllfled somewhat by recursively computing the values of p_{i} during the search:

Poisson generator using sequential search

Generate a uniform $[0,1]$ random variate U.
Set $X \leftarrow 0, P \leftarrow e^{-\lambda}, S \leftarrow P$.
WHILE $U>S$ DO

$$
X \leftarrow X+1, P \leftarrow \frac{\lambda P}{X}, S \leftarrow S+P
$$

RETURN X

We should note here that the expected number of comparisons is equal to $E(X+1)=\lambda+1$.

A slight improvement in which the variable S is not needed was suggested by Kemp(1981). Note however that thls forces us to destroy U :

Inversion by sequential search (Kemp, 1981)

Generate a uniform $[0,1]$ random variate U.
$X \leftarrow 0$
WHILE $U>p_{X}$ DO

$$
\begin{aligned}
& U \leftarrow U-p_{X} \\
& X \leftarrow X+1
\end{aligned}
$$

RETURN X

2. THE INVERSION METHOD.

2.1. Introduction.

In the inversion method, we generate one unlform $[0,1]$ random varlate U and obtaln X by a monotone transformation of U which is such that $P(X=i)=p_{i}$. If we deflne X by

$$
F(X-1)=\sum_{i<X} p_{i}<U \leq \sum_{i \leq X} p_{i}=F(X)
$$

then it is clear that $P(X=i)=F(i)-F(i-1)=p_{i}$. This is comparable to the Inversion method for continuous random varlates. The solution of the inequallty shown above is unlquely deflned with probabllity one. An exact solution of the inversion inequalitles can always be obtained in finite time, and the inversion method can thus truly be called universal. Note that for contlnuous distributions, we could not Invert In finlte time except in spectal cases.

There are several possible techniques for solving the inversion inequalitles. We start with the simplest and most universal one, i.e. a method which is applicable to all discrete distributions.

Inversion by sequential search

Generate a uniform $[0,1]$ random variate U.
Set $X \leftarrow 0, S \leftarrow p_{0}$.
WHILE $U>S$ DO

$$
X \leftarrow X+1 ; S \leftarrow S+p_{X}
$$

RETURN X

Note that S is adjusted as we increase X in the sequential search algorithm. This method applles to the "black box" model, and it can handle infinite talls. The time taken by the algorithm is a random variable N, which can be equated In flrst approximation with the number of comparisons in the WHILE condition. But

$$
P(N=i)=P(X=i-1)=p_{i-1} \quad(i \geq 1) .
$$

Thus, $E(N)=E(X)+1$. In other words, the tall of the distribution of X determines the expected time taken by the algorithm. This is an uncomfortable situathon in vlew of the fact that $E(X)$ can posslbly be ∞. There are other more practlcal objections: p_{i} must be computed many times, and the consecutive additions $S \leftarrow S+p_{X}$ may lead to inadmissible accumulated errors. For these reasons, the sequential search algorithm is only recommended as a last resort. In the remainder of this section, we will describe varlous methods for lmproving the sequentlal search algorthm. In partlcular cases, the computation of p_{X} can be

2.2. Inversion by truncation of a continuous random variate.

If we know a continuous distribution function G on $[0, \infty)$ with the property that G agrees with F on the Integers, i.e.

$$
G(i+1)=F(i) \quad(i=0,1, \ldots), G(0)=0,
$$

then we could use the following algorithm for generating a random variate X with distrlbution function F :

Inversion by truncation of a continuous random variate

Generate a uniform $[0,1]$ random variate U.
RETURN $X \leftarrow\left\{G^{-1}(U)\right\}$

This method is extremely fast if G^{-1} is explicitly known. That it is correct follows from the observation that for all $i \geq 0$,

$$
P(X \leq i)=P\left(G^{-1}(U)<i+1\right)=P(U<G(i+1))=G(i+1)=F(i)
$$

The task of finding a G such that $G(i+1)-G(i)=p_{i}$, all i, is often very simple, as we lllustrate below with some examples.

Example 2.2. The geometric distribution.

When $G(x)=1-e^{-\lambda x}, x \geq 0$, we have

$$
G(i+1)-G(i)=e^{-\lambda i}-e^{-\lambda(i+1)}
$$

$$
=e^{-\lambda i}\left(1-e^{-\lambda}\right)
$$

$$
=(1-q) q^{i} \quad(i \geq 0)
$$

where $q=e^{-\lambda}$. From thls, we conclude that

$$
\left\lceil-\frac{1}{\lambda} \log U\right\rceil
$$

Is geometrically distributed with parameter $e^{-\lambda}$. Equivalently, $\left\lceil\frac{\log U}{\log (1-p)}\right\rceil$ is geometrically distributed with parameter p. Equivalently, $\left[-\frac{E}{\log (1-p)}\right]$ is geometrically distributed with the same parameter, when E is an exponential random varlate.

Example 2.3. A family of monotone distributions.

Consider $\quad G(x)=1-x^{-b}, x \geq 1, G(1)=0, b>0$. We see that $G(i+1)-G(i)=i^{-b}-(i+1)^{-b}$. Thus a random varlate X with probabllity vector

$$
p_{i}=\frac{1}{i^{b}}-\frac{1}{(i+1)^{b}} \quad(i \geq 1)
$$

can be generated as $\left\{U^{-\frac{1}{b}}\right\}$. In particular, $\left\lfloor\frac{1}{U}\right\rfloor$ has probabllty vector

$$
p_{i}=\frac{1}{i(i+1)} \quad(i \geq 1)
$$

Example 2.4. Uniformly distributed discrete random variates.
A discrete random varlable is sald to be unlformly distributed on $\{1,2, \ldots, K\}$ when $p_{i}=\frac{1}{K}$ for all $1 \leq i \leq K$. SInce $p_{i}=G(i+1)-G(i)$ where $G(x)=\frac{x-1}{K}, 1 \leq x \leq K+1$, we see that $X \leftarrow\lfloor 1+K U\rfloor$ is unlformly distributed on the integers 1 through K.

2.3. Comparison-based inversions.

The sequentlal search algorithm uses comparisons only (between U and certain functions of the p_{j} 's). It was convenient to compare U first with p_{0}, then with $p_{0}+p_{1}$ and so forth, but this is not by any means an optimal strategy. In thls section we will highlight some other strategles that are based upon comparisons only. Some of these require that the probabllity vector be finite.

For example, if we were allowed to permute the integers first and then perform sequential search, then we would be best off if we permuted the integers in such a way that $p_{0} \geq p_{1} \geq p_{2} \geq \cdots$. This is a consequence of the fact that the number of comparisons is equal to $1+X$ where X is the random variate generated. Reorganizations of the search that result from this will usually not preserve the monotonlcity between U and X. Nevertheless, we will keep using the term Inversion.

The improvements in expected time by reorganizations of sequentlal search can sometimes be dramatic. Thls is the case in partlcular when we have peaked distributions with a peak that is far removed from the orlgin. A case in point is the binomial distribution which has a mode at $\lfloor n p\rfloor$ where n and p are the
parameters of the blnomial distribution. Here one could first verlfy whether $U \leq F(\lfloor n p\rfloor)$, and then perform a sequentlal search "up" or "down" depending upon the outcome of the comparlson. For fixed p, the expected number of comparisons grows as \sqrt{n} instead of as n as can easily be checked. Of course, we have to compute elther directly or in a set-up step, the value of F at $\lfloor n p\rfloor$. A similar Improvement can be implemented for the Polsson distribution. Interestingly, in this slmple case, we do preserve the monotonlclty of the transformation.

Other reorganlzatlons are possible by using ldeas borrowed from computer sclence. We will replace llnear search (l.e., sequentlal search) by tree search. For good performance, the search trees must be set up in advance. And of course, we will only be able to handle a finlte number of probabilltles in our probabllity vector.

One can construct a blnary search tree for generating X. Here each node in the tree is elther a leaf (terminal node), or an Internal node, In which case it has two chlldren, a left child and a rlght chlld. Furthermore, each internal node has assoclated with it a real number, and each lear contalns one value, an integer between 0 and K. For a glven tree, we obtaln X from a unlform [0,1] random varlate U in the following manner:

Inversion by binary search

Generate a uniform $[0,1]$ random variate U.
$\mathrm{Ptr} \leftarrow$ Root of tree (Ptr points to a node)
WHILE Ptr \neq Lear DO
IF Value (Ptr) $>U$
THEN Ptr \leftarrow Leftchild (Ptr)
ELSE Ptr \leftarrow Rightchild (Ptr).
RETURN $X \leftarrow$ Value (Ptr)

Here, we travel down the tree, taking left and right turns according to the comparlsons between U and the real numbers stored in the nodes, untll we reach a leaf. These real numbers must be chosen in such a way that the leafs are reached with the correct probabllitles. There is no particular reason for choosing $K+1$ leaves, one for each possible outcome of X, except perhaps economy of storage. Having flxed the shape of the tree and defined the leaves, we are left with the task of determining the real numbers for the K Internal nodes. The real number for a glven internal node should be equal to the probabilities of all the leaves encountered before the node in an inorder traversal. At the root, we turn left with the correct probabllity, and by Induction, it is obvlous that we keep on dolng so when we travel to a leaf. Of course, we have quite a few possibillties where the shape of the tree is concerned. We could make a complete tree, i.e. a tree where all levels are full except perhaps the lowest level (which is fllled from left to rlght). Complete trees with $2 K+1$ nodes have

$$
L=1+\left\{\log _{2}(2 K+1)\right\}
$$

levels, and thus the search takes at most L comparisons. In llnear search, the worst case is always $\Omega(K)$, whereas now we have $L \sim \log _{2} K$. The data structure that can be used for the Inversion is as follows: define an array of $2 K+1$ records. The last $K+1$ records correspond to the leaves (record $K+i$ corresponds to Integer $i-1$). The first K records are internal nodes. The j-th record has as chlldren records $2 j$ and $2 j+1$, and as father $\left\lfloor\frac{j}{2}\right\rfloor$. Thus, the root of the tree is record 1, its chlldren are records 2 and 3, etcetera. This glves us a complete blnary tree structure. We need only store one value in each record, and this can be done for the entlre tree in time $O(K)$ by noting that we need only do an Inorder traversal and keep track of the cumulative probabllity of the leaves visited when a node is encountered. Using a stack traversal, and notation similar to that of Aho, Hopcroft and Ullman (1982), we can do It as follows:

Set-up of the binary search tree

($\operatorname{BST}[1], \ldots, \operatorname{BST}[2 K+1]$ is our array of values. To save space, we can store the probabilities p_{0}, \ldots, p_{K} in $\left.\operatorname{BST}[\mathrm{K}+1], \ldots, \operatorname{BST}[2 \mathrm{~K}+1].\right)$
(S is an auxiliary stack of integers.)
MAKENULL(S) (create an empty stack).
Ptr-1, PUSH(Ptr,S) (start at the root).
$P \leftarrow 0$ (set cumulative probability to zero).
REPEAT
IF $\mathrm{Ptr} \leq K$
THEN PUSH(Ptr,S), Ptr匹2 Ptr
ELSE
$P \leftarrow P+\operatorname{BST}(\operatorname{Ptr}]$
$\mathrm{Ptr} \leftarrow \mathrm{TOP}(\mathrm{S}), \mathrm{POP}(\mathrm{S})$
$\mathrm{BST}[\mathrm{Ptr}) \leftarrow P$
$\mathrm{Ptr}-2 \mathrm{Ptr}+1$
UNTIL EMPTY (S)

The binary search tree method described above is not optimal with respect to the expected number of comparisons required to reach a decision. For a fixed binary search tree, this number is equal to $\sum_{i=0}^{K} p_{i} D_{i}$ where D_{i} is the depth of the i-th leaf (the depth of the root is one, and the depth of a node is the number of nodes encountered on the path from that node to the root). A blnary search tree is optimal when the expected number of comparisons is minimal. We now deffne Huffman's tree (Huffman, 1952, Zimmerman, 1859), and show that it is optimal.

The two smallesi probabllity leaves should be furthest away from the root， for if they are not．izen we can always swap one or both of them with other nodes at a deeper lerel，and obtain a smaller value for $\sum p_{i} D_{i}$ ．Because internal nodes have two ch！$\pm=e n$ ，we can always make these leaves chlldren of the same Internal node．But tr ine indices of these nodes are j and k ，then we have

$$
\sum_{i=0}^{K} p_{i} D_{i}=\sum_{:=j, k} p_{i} D_{i}+\left(p_{j}+p_{k}\right) D *+\left(p_{j}+p_{k}\right)
$$

Here $D *$ is the defiz of the internal father node．We see that minimizing the right－hand－side of tise expression reduces to a problem with K instead of $K+1$ nodes，one of these zodes belng the new Internal node with probabllity $p_{j}+p_{k}$ assoclated with it．Thus，we can now construct the entlre（Huffman）tree． Perhaps a small exa二⿰亻⿱丶⿻工二又⿴囗⿱一一儿丶 ie is informative here．

Example 2．5．

Consider the presabilities

p_{0}	0.11
p_{1}	0.30
p_{2}	0.25
p_{3}	0.21
p_{4}	0.13

We note that we stevuld join nodes 0 and 4 frst and form an internal node of cumulative weight C .24 ．Then，this node and node 3 should be Jolned into a supernode of welgh： 0.45 ．Next，nodes 1 and 2 are made chlldren of the same Internal node of we： 5 ht 0.55 ，and the two leftover internal nodes finally become children of the root．

For a data strusture，we can no longer use a complete blnary tree，but we can make use of the array implementation in which entrles 1 through K denote Internal nodes，and entries $K+1$ through $2 K+1$ deflne leaves．For leaves，the entrles are the glven probabilitles，and for the Internal nodes，they are the thres－ hold values as defines for general binary search trees．Since the shape of the tree must also be determ：$⿻ \mathrm{zed}$ ．we are forced to add for entrles 1 through K two flelds， a leftchlldpointer aza a rightchlldpolnter．For the sake of slmpliclty，we use BST［．］for the threstold values and probabllties，and Left［．］，Right［．］for the polnter fields．The teee can be constructed in time $O(K \log K)$ by the Hu－Tucker algorlthm（Hu，Tucke－．1971）：

Construction of the Huffman tree

Create a heap H with elements $\left(K+1, p_{0}\right), \ldots,\left(2 K+1, p_{K}\right)$ and order defined by the keys p_{i} (the smallest key is at the top of the heap). (For the definition of a heap, we refer to Aho, Hopcroft and Ullman (1982)). Note that this operation can be done in $O(K)$ time.
FOR $\mathrm{i}:=1$ TO K DO
Take top element (j, p) off the heap H and fix the heap.
Take top element (k, q) off the heap H and fix the heap.
Left $[i] \leftarrow j, \operatorname{Right}[i] \leftarrow k$.
Insert $(i, p+q)$ in the heap H.
Compute the array BST by an inorder traversal of the tree. (This is analogous to the traversal seen earlier, except that for travel down the tree, we must make use of the fields Left[.] and Right[.] instead of the positional trick that in a complete binary tree the index of the leftchild is twice that of the father. The time taken by this portion is $O(K)$.)

The entire set-up takes time $O(K \log K)$ in view of the fact that insertion and deletlon-off-the-top are $O(\log K)$ operatlons for heaps.

It is worth pointing out that for familles of discrete distributions, the extra cost of setting up a binary search tree is often inacceptable.

We close this section by showing that for most distributions the expected number of comparisons $(E(C)$) with the Huffman blnary search tree is much less than with the complete binary search tree. To understand why this is possible, consider for example the simple distribution with probability vector $\frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2^{K}}, \frac{1}{2^{K}}$. It is trivial to see that the Huffman tree here has a llnear shape: we can deflne it recursively by putting the largest probability in the right child of the root, and putting the Huffman tree for the leftover probabillties in the left subtree of the root. Clearly, the expected number of comparisons is $\left(\frac{1}{2}\right) 2+\left(\frac{1}{4}\right) 3+\left(\frac{1}{8}\right) 4+\cdots$. For any K, this is less than 3 , and as $K \rightarrow \infty$, the value 3 is approached. In fact, thls fintte bound also applies to the extended Huffman tree for the probabillty vector $\frac{1}{2^{i}}(i \geq 1)$. Similar asymmetric trees are obtalned for all distributions for which $E\left(e^{t X}\right)<\infty$ for some $t>0$: these are distributions with roughly speaking exponentially or subexponentlally decreasing tall probabilitles. The relatlonshlp between the tall of the distribution and $E(C)$ is clarifled in Theorem 2.1.

Theorem 2.1.

Let p_{1}, p_{2}, \ldots be an arbitrary probabllity vector. Then it is possible to construct a binary search tree (including the Huffman tree) for which

$$
E(C) \leq 1+4\left\lceil\log _{2}(1+E(X))\right\rceil
$$

where X is the discrete random variate generated by using the binary search tree for Inversion.

Proof of Theorem 2.1.

The tree that will be consldered here is as follows: choose first an integer $k \geq 1$. We put leaves at levels $k+1,2 k+1,3 k+1, \ldots$ only. At level $k+1$, we have 2^{k} slots, and all but one is filled from left to right. The extra slot is used as a root for a slmilar tree with $2^{k}-1$ leaves at level $2 k+1$. Thus, C is equal to:

$$
\begin{array}{ll}
k+1 & \text { with probabillty } \sum_{i=1}^{2^{k}-1} p_{i} \\
2 k+1 & \text { wlth probabllity } \sum_{i=2^{k}}^{2(k-1)} p_{i}
\end{array}
$$

Taking expected values gives

$$
\begin{aligned}
& E(C)=1+k \sum_{j=1}^{\infty} j \sum_{i=(j-1)\left(2^{k}-1\right)+1}^{j\left(2^{k}-1\right)} p_{i} \\
& =1+k \sum_{i=1}^{\infty} p_{i} \sum_{\frac{i}{2^{k}-1} \leq j \leq 1+\frac{i-1}{2^{k}-1}} \sum_{i=1}^{\infty} p_{i}\left(1+\frac{i-1}{2^{k}-1}\right)\left(2-\frac{1}{2^{k}-1}\right) \\
& \leq 1+2 k \sum_{i=1}^{\infty} p_{i}\left(1+\frac{i}{2^{k}-1}\right) \\
& \leq 1+2 k+\frac{2 k}{2^{k}-1} \sum_{i=1}^{\infty} i p_{i} \\
& =1+2 k+\frac{2 k}{2^{k}-1} E(X) .
\end{aligned}
$$

If we take $k=\left\lceil\log _{2}(1+E(X))\right\rceil$, then $2^{k}-1 \geq E(X)$, and thus,

$$
E(C) \leq 1+2\left\lceil\log _{2}(1+E(X))\right]\left(1+\frac{E(X)}{E(X)}\right)=1+4\left\lceil\log _{2}(1+E(X))\right\rceil
$$

This concludes the proof of Theorem 2.1.

We have shown two things in thls theorem. First, of all, we have exhlblted a particular binary search tree with design constant $k \geq 1$ (k is an integer) for which

$$
E(C) \leq 1+2 k+\frac{2 k}{2^{k}-1} E(X)
$$

Next, we have shown that the value of $E(C)$ for the Huffman tree does not exceed the upper bound given in the statement of the theorem by manipulating the value of k and noting that the Huffman tree is optimal. Whether in practice we can use the construction successfully depends upon whether we have a falr Idea of the value of $E(X)$, because the optlmal k depends upon this value. The upper bound of the theorem grows logarithmically in $E(X)$. In contrast, the expected number of comparisons for inversion by sequential search grows llnearly with $E(X)$. It goes without saying that if the p_{i} 's are not in decreasing order, then we can permute them to order them. If in the construction we fll empty slots by borrowing from the ordered vector $p_{(1)}, p_{(2)}, \ldots$, then the inequality remains valld if we replace $E(X)$ by $\sum_{i=1}^{\infty} i p_{(i)}$. We should also note that Theorem 2.1 is useless for distributions with $E(X)=\infty$. In those sltuations, there are other possible constructions. The binary tree that we construct has once again leaves at levels $k+1,2 k+1, \ldots$, but now, we define the leaf positions as follows: at level $k+1$, put one leaf, and define $2^{k}-1$ roots of subtrees, and recurse. This means that at level $2 k+1$ we find $2^{k}-1$ leaves. We assoclate the p_{i} 's with leaves in the order that they are encountered in this construction, and we keep on going untll K leaves are accommodated.

Theorem 2.2.

For the binary search tree constructed above with fixed design constant $k \geq 1$, we have

$$
E(C) \leq 1+k p_{1}+\frac{2 k}{\log \left(2^{k}-1\right)} E(\log X)
$$

and, for $k=\mathbf{2}$,

$$
E(C) \leq 1+2 p_{1}+\frac{4}{\log 3} E(\log X) \leq 3+\frac{4}{\log 3} E(\log X)
$$

where X is a random varlate with the probablity vector p_{1}, \ldots, p_{K} that is used In the construction of the binary search tree, and C is the number of comparisons in the inversion method.

Proof of Theorem 2.2.

Let us define $m=2^{k}-1$ to simplify the notation. It is clear that

$$
C=\left\{\begin{array}{ll}
k+1 & \text { with probabllity } p_{1} \\
2 k+1 & \text { with probabllity } p_{2}+\cdots+p_{m+1} \\
3 k+1 & \text { with probabllity } p_{m+2}+\cdots+p_{m^{2}+m+1} \\
\cdots &
\end{array} .\right.
$$

In such expressions, we assume that $p_{i}=0$ for $i>K$. The construction also works for Infinite-talled distrlbutions, so that we do not need K any further. Now,

$$
\begin{aligned}
& E(C) \leq 1+k p_{1}+k \sum_{j=2}^{\infty} j_{i=1+1+\cdots+m^{j-2}}^{1+\cdots+m^{j-1}} p_{i} \\
& =1+k p_{1}+k \sum_{i=2}^{\infty} p_{i} \sum_{1+1+\cdots+m^{j-2} \leq i \leq 1+\cdots+m^{i-1}}^{j} \\
& \leq 1+k p_{1}+k \sum_{i=2}^{\infty} p_{i} \sum_{m^{j-2}<i \leq m^{j}} j \\
& \leq 1+k p_{1}+k \sum_{i=2}^{\infty}\left(2 \frac{\log i}{\log m}\right) \\
& =1+k p_{1}+\frac{2 k}{\log m} \sum_{i=2}^{\infty} p_{i} \log i \\
& =1+k p_{1}+\frac{2 k}{\log m} E(\log X)
\end{aligned}
$$

This proves the first inequality of the theorem. The remalnder follows without work.

The bounds of Theorem 2.2 grow as $E(\log X)$ and not as $\log (E(X))$. The difference is that $E(\log X) \leq \log (E(X)$) (by Jensen's Inequallty), and that for long-talled distributions, the former expression can be finlte whlle the second expression is ∞.

2.4. The method of guide tables.

We have seen that inversion can be based upon sequential search, ordinary blnary search or modifled blnary search. All these techniques are comparisonbased. Computer sclentists have known for a long tlme that hashing methods are ultra fast for searching data structures provided that the elements are evenly distributed over the range of values of interest. This speed is bought by the exploltation of the truncation operation.

Chen and Asau (1974) frst suggested the use of hashing techniques to handle the inversion. To insure a good expected time, they introduced an ingenious trick, which we shall describe here. Thelr method has come to be known as the method of guide tables. Agaln, we have a monotone relationship between X, the generated random varlate, and U, the unlform $[0,1]$ random varlate which is inverted.

We assume that a probabllity vector $p_{0}, p_{1}, \ldots, p_{K}$ is given. The cumulatlve probabllitles are deflned as

$$
q_{i}=\sum_{j=0}^{i} p_{j} \quad(0 \leq i \leq K)
$$

If we were to throw a dart (In thls case U) at the segment $[0,1]$, which is partltloned into $K+1$ intervals $\left[0, q_{0}\right),\left[q_{0}, q_{1}\right), \ldots,\left[q_{K-1}, 1\right]$, then it would come to rest in the interval $\left(q_{i-1}, q_{i}\right)$ with probabillty $q_{i}-q_{i-1}=p_{i}$. This is another way of rephrasing the inversion princlple of course. It is another matter to find the interval to which U belongs. Thls can be done by standard blnary search in the array of q_{i} 's (thls corresponds roughly to the complete binary search tree algorithm). If we are to explolt truncation however, then we somehow have to conslder equlspaced intervals, such as $\left[\frac{i-1}{K+1}, \frac{i}{K+1}\right), 1 \leq i \leq K+1$. The method of guide tables helps the search by storing in each of the $K+1$ Intervals a "gulde table value" g_{i} where

$$
g_{i}=\max _{q_{j}<\frac{i}{K+1}} j
$$

This helps the Inversion tremendously:

Method of guide tables

Generate a uniform [0,1] random variate U.
Set $X \leftarrow\lfloor(K+1) U+1\rfloor$ (this is the truncation).
Set $X \leftarrow g_{X}+1$ (guide table look-up).
WHILE $q_{X-1}>U$ DO $X \leftarrow X-1$.
RETURN X

[^0]
Theorem 2.3.

The expected number of comparisons (of q_{X-1} and U) in the method of gulde tables is always bounded from above by 2 .

Proof of Theorem 2.3.

Observe that the number of comparisons C is not greater than the number of q_{i} values in the interval X (the returned random variate) plus one. But slnce all Intervals are equl-spaced, we have

$$
\begin{aligned}
& E(C) \leq 1+\frac{1}{K+1} \sum_{i=0}^{K} \text { (number of values of } q_{j} \ln \text { interval } i \text {) } \\
& \leq 1+1=2 .
\end{aligned}
$$

Theorem 2.3 is very important because it guarantees a uniformly good performance for all distributions as long as we make sure that the number of intervals and the number of possible values of the discrete random variable are equal.

This inversion method too requires a set-up step. The table of values $g_{1} \cdot g_{2}, \ldots, g_{K+1}$ can be found in time $O(K)$:

Set-up of guide table

```
FOR \(i:=1\) TO \(K+1\) DO \(g_{i}<0\).
\(S\) -
FOR \(i:=0\) TOK DO
    \(S \leftarrow S+p_{i} \quad\left(S\right.\) is now \(\left.q_{i}\right)\).
    \(j \leftarrow\lfloor S(K+1)+1\rfloor\). (Determine interval for \(\left.q_{i}.\right)\)
    \(g_{j} \leftarrow i\).
FOR \(i:=2\) TO \(K+1\) DO \(g_{i}-\max \left(g_{i-1}, g_{i}\right)\).
```

There is a trade-off between expected number of comparisons and the slze of the guide table. It ls easy to see that if we have a gulde table of $\alpha(K+1)$ elements for some $\alpha>0$, then we have

$$
E(C) \leq 1+\frac{1}{\alpha}
$$

If speed is extremely Important, one should not hesltate to set α equal to 5 or 10 . Of all the inversion methods discussed so far, the method of gulde tables shows clearly the greatest potential in terms of speed. This is confirmed in Ahrens and Kohrt(1981).

2.5. Inversion by correction.

It is sometimes possible to find another distribution function G that is close to the distribution function F of the random varlable X. Here G is the distribution function of another discrete random variable, Y. It is assumed that G is an easy distribution. In that case, it is possible to generate X by first generating Y and then applying a small correction. It should be stressed that the fact that G Is close to F does not Imply that the probabllltles $G(i)-G(i-1)$ are close to the probabillties $F(i)-F(i-1)$. Thus, other methods that are based upon the closeness of these probabllities, such as the rejection method, are not necessarlly appllcable. We are simply using G to obtain an initlal estimate of X.

Inversion by correction; direct version

Generate a uniform $[0,1]$ random variate U.
Set $X \leftarrow G^{-1}(U)$ (i.e. X is an integer such that $G(X-1)<U \leq G(X)$. This usually means that X is obtained by truncation of a continuous random variable.)
IF $U \leq F(X)$
THEN WHILE $U \leq F(X-1)$ DO $X-X-1$.
ELSE WHILE $U>F(X+1)$ DO $X \leftarrow X+1$.
RETURN X

We can measure the time taken by this algorithm in terms of the number of F-computations. We have:

Theorem 2.4.

The number of computations C of F in the inversion algorithm shown above is

$$
2+|Y-X|
$$

where X, Y are deflned by

$$
F(X-1)<U \leq F(X), G(Y-1)<U \leq G(Y)
$$

It is clear that $E(C)=2+E(|Y-X|)$ where Y, X are as deflned in the theorem. Note that Y and X are dependent random varlables in this definition. We observe that in the algorithm, we use inversion by sequential search and start this search from the initial guess Y. The correction is $|Y-X|$.

There is one lmportant spectal case, occurring when F and G are stochastlcally ordered, for example, when $F \leq G$. Then one computation of F can be saved by noting that we can use the following implementation.

Inversion by correction; $F \leq G$
Generate a unlform $[0,1]$ random varlate U. Set $X \leftarrow G^{-1}(U)$.
WHLE $U>F(X)$ DO $X \leftarrow X+1$.
RETURN X

What is saved here is the comparison needed to decide whether we should search up or down. Since in the notation of Theorem $2.4, Y \leq X$, we see that

$$
E(C)=1+E(X-Y)
$$

When $E(X)$ and $E(Y)$ are finlte, this can be written as $1+E(X)-E(Y)$. In any case, we have

$$
E(C)=1+\sum_{i}|F(i)-G(i)|
$$

To see this, use the fact that $E(X)=\sum_{i}(1-F(i))$ and $E(Y)=\sum_{i}(1-G(i))$. When $F \geq G$, we have a symmetric development of course.

In some cases, a random varlate with distribution function G can more easily be obtalned by methods other than Inversion. Because we stlll need a unlform [0,1] random varlate, it is necessary to cook up such a random varlate from the prevlous one. Thus, the initlal palr of random variates (U, X) can be generated Indirectly:

Inversion by correction; indirect version
Generate a random variate X with distribution function G.
Generate an independent uniform $[0,1]$ random variate V, and set $U \leftarrow G(X-1)+V(G(X)-G(X-1))$.
IF $U \leq F(X)$
THEN WHILE $U \leq F(X-1)$ DO $X \leftarrow X-1$.
else while $U>F(X+1)$ DO $X \leftarrow X+1$.
RETURN X

It is easy to verify that the direct and Indirect versions are equivalent because the Joint distributions of the starting palr (U, X) are identical. Note that in both cases, we have the same monotone relation between the generated X and the random varlate U, even though in the indirect version, an auxillary unlform [0.1]
random variate V is needed.

Example 2.6.

Consider

$$
F(i)=1-\frac{1+a}{i^{p}+a i} \quad(i \geq 1)
$$

where $a>0$ and $p>1$ are given constants. Explicit Inversion of F is not feasible except perhaps in spectal cases such as $p=2$ or $p=3$. If sequentlal search is used started at 0 , then the expected number of F computations is

$$
1+\sum_{i=1}^{\infty}(1-F(i))=1+\sum_{i=1}^{\infty} \frac{1+a}{i^{p}+a i} \geq 1+\sum_{i=1}^{\infty} \frac{1}{i^{p}}
$$

Assume next that we use Inversion by correction, and that as easy distribution function we take $G(i)=1-\frac{1}{i^{p}}, i \geq 1$. First, we have stochastic ordering because $F \leq G$. Note first that $G^{-1}(U)$ (the Inverse belng deflined as in Theorem 2.4) is equal to $\left\{1+U^{-\frac{1}{p}}\right\rfloor$. Furthermore, the expected number of computations of F is

$$
1+\sum_{i=1}^{\infty} G(i)-F(i)=1+\sum_{i=2}^{\infty} \frac{a i^{p}-a i}{i^{p}\left(i^{p}+a i\right)} \leq 1+\sum_{i=2}^{\infty} \frac{a}{i^{p}}
$$

Thus, the improvement in terms of expected number of computations of F is at least $1+(1-a) \sum_{i=2}^{\infty} \frac{1}{i^{p}}$, and thls can be considerable when a is small.

2.6. Exercises.

1. Glve a one-llne generator (based upon inverslon vla truncation of a continuous random varlate) for generating a random varlate X with distrlbution

$$
P(X=i)=\frac{i}{\frac{n(n+1)}{2}} \quad(1 \leq i \leq n)
$$

2. By emplrical measurement, the following discrete cumulative distribution function was obtalned by Nigel Horspool when studying operating systems:

$$
F(i)=\min \left(1,0.114 \log \left(1+\frac{i}{0.731}\right)-0.068\right) \quad(i \geq 1)
$$

Glve a one-llne generator for this distrlbution which uses truncation of a continuous random varlate.
3. Glve one-line generators based upon inversion by truncation of a continuous random varlate for the following probabllity distributions on the posltive integers:

3. TABLE LOOK-UP METHODS.

3.1. The table look-up principle.

We can generate a random variate X very quickly if all probabllities p_{i} are rational numbers with common denominator M. It suffices to note that the sum of the numerators is also M. Thus, if we were to construct an array A of size M with $M p_{0}$ entries $0, M p_{1}$ entries 1, and so forth, then a unlformly plcked element of this array would yleld a random varlate with the given probabllity vector p_{0}, p_{1}, \ldots. Formally we have:

Table look-up method

[SET-UP]
Given the probability vector ($p_{0}=\frac{k_{0}}{M}, p_{1}=\frac{k_{1}}{M}, \ldots$), where the k_{i} 's and M are nonnegative integers, we define a table $A=(A[0], \ldots, A[M-1])$ where k_{i} entries are $i, i \geq 0$.
[GENERATOR]
Generate a uniform $[0,1]$ random variate U.
RETURN A [$\lfloor M U\rfloor]$

The beauty of this technlque is that it takes a constant time. Its disadvantages include its limitation (probabilities are rarely rational numbers) and its large table slze (M can be phenomenally big).

We will glve two Important examples to lllustrate its use.

Example 3.1. Simulating dice.

We are asked to generate the sum of n independently thrown unblased dice. This can be done nalvely by using $X_{1}+X_{2}+\cdots+X_{n}$ where the X_{i} 's are lid unlform $\{1,2, \ldots, 6\}$ random varlates. The time for this algorthm grows as n. Usually, n will be small, so that this is not a major drawback. We could also proceed as follows: first we set up a table $A[0], \ldots, A[M-1]$ of size $M=8^{n}$ where each entry corresponds to one of the 6^{n} possible outcomes of the n throws (for example, the first entry corresponds to $1,1,1,1, \ldots, 1$, the second entry to $2,1,1,1, \ldots, 1$, etcetera). The entrles themselves are the sums. Then $A[\lfloor M U\rfloor]$ has the correct distribution when U is a uniform $[0,1]$ random varlate. Note that the time is $O(1)$, but that the space requirements now grow exponentially in n. Interestingly, we have one unlform random varlate per random varlate that is generated. And if we wish to Implement the Inversion method; the only thing that we need to do is to sort the array according to Increasing values. We have thus bought time and pald with space. It should be noted though that in thls case the space requirements are so outrageous that we are practlcally llmited to $n \leq 5$. Also, the set-up is only admissible if very many lid sums are needed in the simulation.

Example 3.2. The histogram method.

Statlstlcians often construct histograms by countling frequencles of events of a certaln type. Let events $0,1, \ldots, K$ have assoclated with them frequencles $k_{0}, k_{1}, \ldots, k_{K}$. A question sometimes asked is to generate a new event with the probabilltles defined by the histogram, l.e. the probabllty of event i should be $\frac{k_{i}}{M}$ where $M=\sum_{i=0}^{K} k_{i}$. In this case, we are usually given the orlginal events in table form $A[0], \ldots, A[M-1]$, and it is obvlous that the table method can be applled here without set-up. We will refer to thls speclal case as the histogram method. Note that for Example 3.1, we could also construct a histogram, but it differs in that a table must be set up.

Assume next that we wish to generate the number of heads $\ln n$ perfect coln tosses. It is known that this number is binomlally distrlbuted with parameters n and $\frac{1}{2}$. By the method of Example 3.1, we can use a table look-up method with
table of size 2^{n}, so for $n \leq 10$, this is entirely reasonable. Unfortunately, when the coln is not perfect and the probability of heads is an Irrational number p, the table look-up method cannot be used.

3.2. Multiple table look-ups.

The table look-up method has a geometric interpretation. When the table size is M, then we can think of the algorithm in terms of the selection of one of M equi-spaced intervals of $[0,1]$ by finding the interval to which a uniform $[0,1]$ random varlate U belongs. Each Interval has an Integer assoclated with it, which should be returned.

One of the problems highllghted in the previous section is the table size. One should also recognize that there normally are many identical table entrles. These duplicates can be grouped together to reduce the table slze. Assume for example that there are k_{i} entrles with value i where $i \geq 0$ and $\sum k_{i}=M$. Then, if $M=M_{0} M_{1}$ for two integers M_{0}, M_{1}, we can set up an auxillary table $B[0], \ldots, B\left[M_{0}-1\right]$ where each $B[i]$ polnts to a block of M_{1} entrles in the true table $A[0], \ldots, A[M-1]$. If this block is such that all values are identical, then it is not necessary to store the block. If we think geometrically agaln, then this corresponds to defining a partition of $[0,1]$ into M_{0} intervals. The original partithon of M intervals is finer, and the boundaries are allgned because M is a multiple of M_{0}. If for the i-th big interval, all M_{1} values of $A[j]$ are identical, then we can store that value directly in $B[i]$ thereby saving $M_{1}-1$ entries in the A table. By rearranging the A table, it should be possible to repeat this for many large intervals. For the few large intervals covering small intervals with nonidentical values for A, we do store a placeholder such as *. In this manner, we have bullt a three-level tree. The root has M_{0} chlldren with values $B[i]$. When $B[i]$ is an integer, then i is a terminal node. When $B[i]=*$, we have an internal node. Internal nodes have in turn M_{1} chlldren, each carrying a value $A[j]$. It is obvious that thls process can be extended to any number of levels. This structure is known as a trle (Fredkin, 1960) or an extendlble hash structure (Fagin, Nlevergelt, Plppenger and Strong, 1979). If all internal nodes have preclsely two children, then we obtain in effect the binary search tree structure of section III.2. Since we want to get as much as possible from the truncation operation, it is obvious that the fan-out should be larger than 2 in all cases.

Consider for example a table for look-up with 1000 entries deffined for the
following probabllity vector:

Probability	Number of entries in table A	
p_{1}	0.005	5
p_{2}	0.123	123
p_{3}	0.240	240
p_{5}	0.355	355
p_{5}	0.277	277

Suppose now that we set up an auxiliary table B which will allow us to refer to sectlons of slze 100 in the table A. Here we could set

$\mathrm{B}[0]$	2
$\mathrm{~B}[1]$	$\mathbf{3}$
$\mathrm{B}[2]$	3
$\mathrm{~B}[3]$	4
$\mathrm{~B}[4]$	$\mathbf{4}$
$\mathrm{B}[5]$	4
$\mathrm{~B}[6]$	5
$\mathrm{~B}[7]$	5
$\mathrm{~B}[8]$	$*$
$\mathrm{~B}[9]$	$*$

The interpretation is that if $B[i]=j$ then j appears 100 times in table A, and If $B[i]=*$ then we must consult a block of 100 entrles of A which are not all Identical. Thus, if $B[8]$ or $B[\theta]$ are chosen, then we need to consult $A[800], \ldots, A[899]$, where we make sure that there are 5 "1"'s, 23 " 2 "'s, 40 $" 3 " \mathrm{~s}, 55$ " 4 "'s and 77 " 5 "'s. Note however that we need no longer store $A[0], \ldots, A[798]!$ Thus, our space requirements are reduced from 1000 words to 210 words.

After having set-up the tables $B[0], \ldots, B[9]$ and $A[800], \ldots, A$ [999], we can generate X as follows:

Example of a multiple table look-up

Generate a uniform $[0,1]$ random variate U.
Set $X \leftarrow B[\lfloor 10 U\rfloor]$.
IF $X \neq *$
THEN RETURN X
ELSE RETURN A [$1000 U\rfloor]$

Here we have explolted the fact that the same U can be reused for obtaining a random entry from the table A. Notice also that in 80% of the cases, we need not access A at all. Thus, the auxlliary table does not cost us too much tlmewise. Finally, observe that the condition $X \neq *$ can be replaced by $X>7$, and that
therefore $B[8]$ and $B[8]$ need not be stored.
What we have described here forms the essence of Marsaglia's table look-up method (Marsaglla, 1983; see also Norman and Cannon, 1972). We can of course do a lot of fine-tuning. For example, the table A [800], . . . , A [899] can in turn be replaced by an auxllary table C grouplng now only 10 entrles, which could be plcked as follows:

$\mathrm{C}[80]$	2
$\mathrm{C}[81]$	2
$\mathrm{C}[82]$	3
$\mathrm{C}[83]$	3
$\mathrm{C}[84]$	3
$\mathrm{C}[85]$	3
$\mathrm{C}[86]$	4
$\mathrm{C}[87]$	4
$\mathrm{C}[88]$	4
$\mathrm{C}[89]$	4
$\mathrm{C}[90]$	4
$\mathrm{C}[91]$	5
$\mathrm{C}[92]$	5
$\mathrm{C}[93]$	5
$\mathrm{C}[94]$	5
$\mathrm{C}[95]$	5
$\mathrm{C}[96]$	5
$\mathrm{C}[97]$	5
$\mathrm{C}[98]$	$*$
$\mathrm{C}[99]$	$*$

Given that $B[i]=*$ for our value of U, we can $\ln 90 \%$ of the cases return $C[\lfloor 100 U\rfloor]$. Only if once more an entry $*$ is seen do we have to access the table $A[980], \ldots, A$ [899] at position $\lfloor 1000 U\rfloor$. The numbering in our arrays is conventent for accessing elements for our representation, i.e. $B[i]$ stands for $C[10 i], \ldots, C[10 i+8]$, or for $A[100 i], \ldots, A[100 i+99]$. Some hlgh level languages do not permit the use of subranges of the integers as indices. It is also convenlent to comblne A, B and C into one blg array. All of this requires additlonal work during the set-up stage.

We observe that in the multilevel table look-up we must group identical entries in the original table, and this forces us to introduce a nonmonotone relationshlp between U and X.

The method described here can be extended towards the case where all p_{i} 's are multiples of elther 10^{-7} or 2^{-32}. In these cases, the p_{i} 's are usually approximathons of real numbers truncated by the wordsize of the computer.

4. THE ALIAS METHOD.

4.1. Definition.

Walker (1974, 1977) proposed an Ingenlous method for generating a random varlate X with probabillty vector $p_{0}, p_{1}, \ldots, p_{K-1}$ which requires a table of slze $O(K)$ and has a worst-case time that is Independent of the probability vector and K. His method is based upon the following property:

Theorem 4.1.

Every probabllity vector $p_{0}, p_{1}, \ldots, p_{K-1}$ can be expressed as an equiprobable mixture of K two-point distributions.

Proof of Theorem 4.1.

We have to show that there are K pairs of integers $\left(i_{0}, j_{0}\right), \ldots,\left(i_{K-1}, j_{K-1}\right)$ and K probabilitles q_{0}, \ldots, q_{K-1} such that

$$
p_{i}=\frac{1}{K} \sum_{l=0}^{K-1}\left(q_{l} I_{[i,=i]}+\left(1-q_{l}\right) I_{\left[j_{l}=i\right]}\right) \quad(0 \leq i<K)
$$

This can be shown by induction. It is obvlously true when $K=1$. Assuming that it is true for $K<n$, we can show that it is true for $K=n$ as follows. Choose the minimal p_{i}. Since it is at most equal to $\frac{1}{K}$, we can take i_{0} equal to the index of this minimum, and set q_{0} equal to $K p_{i_{0}}$. Then choose the index j_{0} which corresponds to the largest p_{i}. This deflnes our first palr in the equiprobable mixture. Note that we used the fact that $\frac{\left(1-q_{0}\right)}{K} \leq p_{j_{0}}$ because $\frac{1}{K} \leq p_{j_{0}}$. The other $K-1$ palrs in the equiprobable mixture have to be constructed from the leftover probabllitles

$$
p_{0}, \ldots, p_{i_{0}}-p_{i_{0}}, \ldots, p_{j_{0}}-\frac{1}{K}\left(1-q_{0}\right), \ldots, p_{K-1}
$$

which, after deletion of the i_{0}-th entry, is easily seen to be a vector of $K-1$ nonnegative numbers summing to $\frac{K-1}{K}$. But for such a vector, an equiprobable mixture of $K-1$ two-polnt distributions can be found by our Induction hypothesis.

To turn thls theorem into proft, we have two tasks ahead of us: flrst we need to actually construct the equiprobable mixture (thls is a set-up problem), and then we need to generate a random varlate X. The latter problem is easy to solve. Theorem 4.1 tells us that it suffices to throw a dart at the unlt square in the plane and to read off the index of the reglon in which the dart has landed.

The unit square is of course partitioned into reglons by cutting the x-axis up into K equl-spaced intervals which define slabs in the plane. These slabs are then cut into two pleces by the threshold values q_{l}. If

$$
p_{i}=\frac{1}{K} \sum_{l=0}^{K-1}\left(q_{l} I_{[i,=i]}+\left(1-q_{l}\right) I_{\left[j_{l}=i\right]}\right) \quad(0 \leq i<K)
$$

then we can proceed as follows:

The alias method

Generate a uniform $\{0,1]$ random variate U. Set $X \leftarrow\lfloor K U\rfloor$. Generate a uniform $[0,1\}$ random variate V.
IF $V<q_{X}$
THEN RETURN i_{X}
ELSE RETURN j_{X}

Here one uniform random varlate is used to select one component in the equiprobable mixture, and one unlform random variate is used to decide which part in the two-point distribution should be selected. This unsophisticated verslon of the allas method thus requires precisely two unlform random varlates and two table look-ups per random varlate generated. Also, three tables of slze K are needed.

We observe that one uniform random varlate can be saved by noting that for a unlform $[0,1]$ random varlable U, the random varlables $X=\lfloor K U\rfloor$ and $V=K U-X$ are independent: X is unlformly distributed on $0, \ldots, K-1$, and the latter is agaln unform $[0,1]$. Thls trick is not recommended for large K because it relles on the randomness of the lower-order digits of the unlform random number generator. With our ideallzed model of course, thls does not matter.

One of the arrays of slze K can be saved too by noting that we can always insure that i_{0}, \ldots, i_{K-1} is a permutation of $0, \ldots, K-1$. This is one of the dutles of the set-up algorithm of course. If a set-up glves us such a permuted table of i-values, then it should be noted that we can in time $O(K)$ reorder the structure such that $i_{l}=l$, for all l. The set-up algorithm given below will directly compute the tables j and q in time $O(K)$ and is due to Kronmal and Peterson (1979, 1980):

The allas method can further be improved by minimizing this expression, but this won't be pursued any further here. The maln reason for not doing so is that there exists a slmple generallzation of the allas method, called the allas-urn method, which is deslgned to reduce the expected number of table accesses. Because of its importance, we will describe it in a separate section.

4.2. The alias-urn method.

Peterson and Kronmal (1982) suggested a generalization of the allas method In the following manner: think of the probability vector $p_{0}, p_{1}, \ldots, p_{K-1}$ as a special case of a probabllity vector with $K * \geq K$ components where $p_{i}=0$ for all $i \geq K$. Everything that was sald in the previous section remains valld for this case. In partlcular, if we use the linear set-up algorithm for the tables q and j, then it should be noted that $q_{l}>0$ for at most K values of l. At least for all $l>K-1$ we must have $q_{l}=0$. For these values of l, one table access is necessary:

The alias-urn method

Generate a random integer X uniformly distributed on $0, \ldots, K *-1$.
IF $X \geq K$
THEN RETURN j_{X}
ELSE
Generate a uniform $[0,1]$ random variate V. IF $V \leq q_{X}$

THEN RETURN X
ELSE RETURN j_{X}

Per random varlate, we require elther one or two table look-ups. It is easy to see that the expected number of table look-ups (not counting q_{X}) is

$$
\frac{K *-K}{K *}+\frac{1}{K *} \sum_{l=0}^{K-1}\left(1-q_{l}\right) \leq 1
$$

The upper bound of 1 may somehow seem like magic, but one should remember that instead of one comparison, we now have elther one or two comparisons, the expected value belng

$$
1+\frac{K}{K^{*}}
$$

Thus, as $K *$ becomes large compared to K, the expected number of comparisons and the expected number of table accesses both tend to one, as for the urn method. In thls light, the method can be considered as an urn method with slight

Set-up of tables for alias method

```
Greater \(\leftarrow \emptyset\), Smaller \(\leftarrow \emptyset\) (Greater and Smaller are sets of integers.)
FOR \(l:=0\) TO \(K-1\) DO
    \(q_{l} \leftarrow K p_{i}\).
    IF \(q_{l}<1\)
        THEN Smaller \(\leftarrow\) Smaller \(+\{l\}\).
        ELSE Greater \(\leftarrow\) Greater \(+\{l\}\).
WHLLE NOT EMPTY ( Smaller) DO
    Choose \(k \in\) Greater,\(l \in\) Smaller [ \(q_{l}\) is finalized].
    Set \(j_{l} \leftarrow k\) [ \(j_{l}\) is finalized].
    \(q_{k} \leftarrow q_{k}-\left(1-q_{l}\right)\).
    IF \(q_{k}<1\) THEN Greater \(\leftarrow\) Greater \(-\{k\}\), Smaller \(\leftarrow\) Smaller \(+\left\{k^{n}\right\}\).
    Smaller \(\leftarrow\) Smaller \(-\{l\}\).
```

The sets Greater and Smaller can be Implemented In many ways. If we can do it In such a way that the operations "grab one element", "Is set empty ?", "delete one element" and "add one element" can be done In constant tlme, then the algorlthm glven above takes time $O(K)$. Thls can always be insured if linked lists are used. But since the cardinallties sum to K at all times, we can organize it by using an ordinary array in which the top part is occupled by Smaller and the bottom part by Greater. The allas algorlthm based upon the two tables computed above reads:

Alias method with two tables

Generate a random integer X uniformly distributed on $0, \ldots, K-1$.
Generate a uniform $[0,1]$ random variate V.
IF $V \leq q_{X}$
THEN RETURN X
ELSE RETURN j_{X}

Thus, per random varlate, we have elther 1 or 2 table accesses. The expected number of table accesses is

$$
1+\frac{1}{K} \sum_{l=0}^{K-1}\left(1-q_{l}\right)
$$

flne-tunlng. We are paying for this luxury in terms of space, slnce we need to store $K *+K$ values: $j_{0}, \ldots, j_{K *-1}, q_{0}, \ldots, q_{K-1}$. Finally, note that the comparison $X \geq K$ takes much less time than the comparison $V \leq q_{X}$.

4.3. Geometrical puzzles.

We have seen the geometrical Interpretation of the allas method: throw a dart at random and unlformly on the unlt square of R^{2} properly partitioned into $2 K$ rectangles, and return the index that is assoclated with the rectangle that is hit. The indices, or allases, are stored in a table, and so are the definitions of the rectangles. The power of the allas method is due to the fact that we can take K identical slabs of helght 1 and base $\frac{1}{K}$ and then split each slab into two rectangles. It should be obvious that there are an unlimited number of ways in which the unlt square can be cut up convenlently. In general, if the components are A_{1}, \ldots, A_{M}, and the allases are j_{1}, \ldots, j_{M}, then the algorlthm

General alias algorithm

Generate a random variate (X, Y) uniformly distributed in $[0,1]^{2}$.
Determine the index Z in $1, \ldots, M$ such that $(X, Y) \in A_{Z}$.
RETURN j_{Z}
produces a random variate whlch takes the value k with probabllity

$$
\sum_{l: j_{l}=k} \operatorname{area}\left(A_{l}\right)
$$

Let us lllustrate thls with an example. Let the probabllitles for consecutive Integers $1,2, \ldots$ be $c, \frac{c}{2}, \frac{c}{2}, \frac{c}{4} \frac{c}{4}, \frac{c}{4}, \frac{c}{4}, \ldots, \frac{c}{2^{n}}$, where n is a positive integer, and $c=\frac{1}{n+1}$ is a normallzation constant. It is clear that we can group the values in groups of slze $1,2,4, \ldots, 2^{n}$, and the probabllity welghts of the groups are all equal to c. Thls suggests that we should partition the square first into $n+1$ equal vertlcal slabs of helght 1 and base $\frac{1}{n+1}$. Then, the i-th slab should be further subdivided Into 2^{i} equal rectangles to distlnguish between different Integers in the groups. The algorlthm then becomes:

Generate a random variate X with a uniform distribution on $\{0,1, \ldots, n\}$. Generate a random variate Y with a uniform distribution on $2^{X}, \ldots, 2^{X+1}-1$. RETURN Y.

In this simple example, it is possible to combine the unlform varlate generation and membershlp determination into one. Also, no table is needed.

Consider next the probabllity vector

$$
p_{i}=\frac{2}{n+1}\left(1-\frac{i}{n}\right) \quad(0 \leq i \leq n)
$$

Now, we can partition the unit square into $n(n+1)$ equal rectangles and assign allases as \ln the matrix shown below;

$$
\left|\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 & 2 \\
0 & 1 & 2 & 3 & 3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 & 4
\end{array}\right| .
$$

We can verlfy first that the probabllties are correct. Then, it is easily seen that the allas method applled here requires no table elther. Both examples illustrate the virtually unllmited possibillties of the allas method.

4.4. Exercises.

1. Glve a simple linear time algorlthm for sorting a table of records R_{1}, \ldots, R_{n} if it is known that the vector of key values used for sorting is a permutation of $1, \ldots, n$.
2. Show that there exists a one-line FORTRAN or PASCAL language generator for random varlates with probabllity vector $p_{i}=\frac{2}{n+1}\left(1-\frac{i}{n}\right), 0 \leq i \leq n$ (Duncan McCallum).
3. Combine the refection and geometric puzzle method for generating random varlates with probabllity vector $p_{i}=\frac{c}{i}, 1 \leq i \leq K$, where c is a normallzatlon constant. The method should take expected time bounded unlformly over K. Hint: note that the vector $c, \frac{c}{2}, \frac{c}{2}, \frac{c}{4}, \frac{c}{4}, \frac{c}{4}, \frac{c}{4}, \ldots$ dominates the
glven probabllity vector.
4. Repeat the prevlous exerclse for the two-parameter class of probabillty vectors $p_{i}=\frac{c}{i^{M}}, 1 \leq i \leq K$ where M is a positive integer.

5. OTHER GENERAL PRINCIPLES.

5.1. The rejection method.

The rejection princlple remains of course valld for discrete distributions. If the probabllity vector $p_{i}, i \geq 0$, is such that

$$
p_{i} \leq c q_{i} \quad(i \geq 0)
$$

where $c \geq 1$ is the rejection constant and $q_{i}, i \geq 0$, is an easy probabillty vector, then the following algorlthm is valld:

```
The rejection method
REPEAT
    Generate a uniform [0,1] random variate U.
    GENERATE a random variate }X\mathrm{ with discrete distribution determined by
    q},i\geq0
UNTIL Ucq}\mp@subsup{q}{X}{}\leq\mp@subsup{p}{X}{
RETURN X
```

We recall that the number of iterations is geometrically distributed with parameter $\frac{1}{c}$ (and thus mean c). Also, in each Iteration, we need to compute $\frac{p_{X}}{c q_{X}}$. In vlew of the ultra fast methods described In the previous sections for finlte-valued random varlates, it seems that the rejection method is malnly applicable in one of two situations:
A. The distribution has an infinlte tall.
B. The distribution changes frequently (so that we do not have the time to set up long tables every time).
Often, the body of a distribution can be taken care of by the guide table, allas or allas-urn methods, and the tall (which carrles small probabllty anyway) Is dealt
wlth by the rejection method.

Example 5.1.

Consider the probabillty vector

$$
p_{i}=\frac{6}{\pi^{2} i^{2}} \quad(i \geq 1)
$$

Sequential search for this distribution is undesirable because the expected number of comparisons would be $1+\sum_{i=1}^{\infty} i p_{i}=\infty$. With the easy probability vector

$$
q_{i}=\frac{1}{i(i+1)} \quad(i \geq 1)
$$

we can apply the rejection method. The best possible rejection constant is

$$
c=\sup _{i \geq 1} \frac{p_{i}}{q_{i}}=\frac{6}{\pi^{2}} \sup _{i \geq 1} \frac{i+1}{i}=\frac{12}{\pi^{2}} .
$$

Since $\left\{\frac{1}{U}\right\}$ has probability vector q (where U is a uniform $[0,1]$ random varlable), we can proceed as follows:

repeat

Generate iid uniform $[0,1]$ random variates U, V. Set $X \leftarrow\left\lfloor\frac{1}{U}\right\rfloor$.
UNTLL $2 V X \leq X+1$
RETURN X

Example 5.2. Monotone distributions.

When the probability vector p_{1}, \ldots, p_{n} is nonincreasing, then it is obvious that $p_{i} \leq \frac{1}{i}$ for all i. Thus, the following rejection algorithm is valld:

REPEAT

Generate a random variate X with probability vector proportional to $1, \frac{1}{2}, \ldots, \frac{1}{n}$. Generate a uniform $[0,1]$ random variate U.
UNTIL $U \leq X p_{X}$
RETURN X

The expected number of iterations is $\sum_{i=1}^{n} \frac{1}{i} \leq 1+\log (n)$. For example, a binomial (n, p) random varlate can be generated by this method in expected time $O(\log (n))$ provided that the probabilltles can be computed in time $O(1)$ (thls assumes that the logarithm of the factorlal can be computed in constant time). For the dominating distribution, see for example exerclse III.4.3.

Example 5.3. The hybrid rejection method.

As in example 5.1, random varlates with the dominating probabllity vector are usually obtalned by truncation of a continuous random variate. Thus, it seems Important to discuss very brlefly how we can apply a hybrld rejection method based on the following Inequallity:

$$
p_{i} \leq c g(x) \quad(\text { all } x \in[i, i+1), i \geq 0)
$$

Here $c \geq 1$ is the rejection constant, and g is an easy density on $[0, \infty)$. Note that p can be extended to a density f in the obvious manner , i.e. $f(x)=p_{i}$, all $x \in[i, i+1)$. Thus, random varlates with probabllity vector p can be generated as follows:

Hybrid rejection algorithm

REPEAT
Generate a random variate Y with density g. Set $X \leftarrow\lfloor Y\rfloor$.
Generate a uniform [0,1] random variate U.
UNTIL $\operatorname{Ucg}(Y) \leq p_{X}$
RETURN X

5.2. The composition and acceptance-complement methods.

It goes without saying that the entire discussion of the composition and acceptance-complement methods for contlnuous random varlates can be repeated for discrete random varlates.

5.3. Exercises.

1. Develop a rejection algorthm for the generation of an integer-valued random varlate X where

$$
P(X=i)=\frac{c}{2 i-1}-\frac{c}{2 i} \quad(i=1,2, \ldots)
$$

and $c=\frac{1}{2 \log 2}$ is a normallzation constant. Analyze the efficiency of your algorithm. Note: the serles $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots$ converges to $\log 2$. Therefore, the terms consldered in pairs and divided by $\log 2$ can be considered as probabllitles defining a probabllity vector.
2. Consider the family of probability vectors $\frac{c(a)}{(a+i)^{2}}, i \geq 1$, where $a \geq 0$ is a parameter and $c(a)>0$ is a normalization constant. Develop the best posslble rejection algorlthm that is based upon truncation of random variables with distribution function

$$
F(x)=1-\frac{a+1}{a+x} \quad(x>1)
$$

Find the probabillty of acceptance, and show that it is at least equal to $\frac{a}{a+2}$. Show that the inflmum of the probabllity of acceptance over
$a \in[0, \infty)$ is nonzero.
3. The discrete normal distribution. A random varlable X has the discrete normal distribution with parameter $\sigma>0$ when

$$
P(X=i)=c e^{-\frac{\left(|i|+\frac{1}{2}\right)^{2}}{2 \sigma^{2}}} \quad(i \text { integer })
$$

Here $c>0$ is a normalization constant. Show flrst that

$$
c=\frac{1}{\sigma}\left(\frac{1}{\sqrt{2 \pi}}+o(1)\right)
$$

as $\sigma \rightarrow \infty$. Show then that X can be generated by the following refection algorithm:

REPEAT

Generate a normal random variate Y, and let X be the closest integer to Y, i.e. $X \leftarrow \operatorname{round}(Y)$. Set $Z \leftarrow|X|+\frac{1}{2}$.

Generate a uniform $[0,1]$ random variate U.
UNTLL $-2 \sigma^{2} \log (U) \geq Z^{2}-Y^{2}$
RETURN X

Note that $-\log (U)$ can be replaced by an exponential random varlate. Show that the probabllity of rejection does not exceed $\frac{2}{\sigma} \sqrt{\frac{2}{\pi}}$. In other words, the algorithm is very efficlent when σ is large.

[^0]: It is easy to determine the valldity of this algorlthm. Note also that no expenslve computations are Involved.

