
Chap fer Three 
DISCRETE RANDOM VARIATES 

1. INTRODUCTION. 
A dlscrete random varlable 1s a random varlable taklng only values on the 

nonnegatlve integers. In probablllty theorltlcal texts, a dlscrete random varlable 
1s a random variable whlch takes wlth probablllty one values In a glven countable 
set of polnts. Since there 1s a one-to-one correspondence between any countable 
set and the nonnegatlve integers, I t  1s clear that we need not consider the general 
case. In most cases of interest to the practltloner, thls one-to-one correspondence 
1s obvlous. For example, for the countable set 1,-,-,-,. .., the mapplng Is 

t rlvlal. 

bablllty vector p o , p  

1 1 1  
2 4 8  

The dlstrlbutlon of a dlscrete random varlable X 1s determlned by the pro- 

P ( X = i )  = p i  (i =0,1,2 ,...) . 
The probablllty vector can be glven to us In several ways, such as 
-1. 

B. 

A table of values p o , p  . . . , p~ . Note that here I t  Is necessary that X can 
only take dnltely many values. 
A n  analytlcal expression such as p i  =2-' (i 2 1). Thls 1s the standard form 
In statlstlcal appllcatlons, and most popular dlstrlbutlons such as the blno- 
mlal, Poisson and hypergeometrlc dlstrlbutions are glven In thls form. 
A subprogram whlch allows us to compute p i  for each i. Thls is the "black 
box" model. 
Indirectly.. For example, the generating function 

C. 

D. 

i =O 

can be glven. Sometlmes, a recurslve equatlon allowlng us to compute pi 
from pi , j  < i ,  1s glven. 

12 cases B, C and D, we should also dlstlngulsh between methods for the genera- 
:l,?n of X when X has a Axed dlstrlbutlon, and methods that should be 
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Name of distribution 

Poisson( A) 

Parameters P ( X = i )  Range for i 

i 20 e - X>O .'I 

Logarithmic series( 6) 

I Geometric( p ) I o < p < 1  I p (1-p y-1 I i 2 1  

W i > I  - - 0 < 6 < 1  

We refer the reader to  Johnson and Kotz (1969, 1982) or Ord (1972) for a 
survey of the propertles of the most frequently used dlscrete dlstrlbutlons In 
statlstlcs. For surveys of generators, see Schmelser (1983), Ahrens and Kohrt 
(1981) or Rlpley (1983). 

Some of the methods descrlbed below are extremely fast: thls Is usually the 
case for well-deslgned table methods, and for the allas method or Its varlant, the 
allas-urn method. The method of gulde tables 1s also very fast. Only flnlte- 
valued dlscrete random varlates can be generated by table methods because 
tables must be set-up beforehand. In dynamlc sltuatlons, or when dlstrlbutlons 
are lnflnlte-talled, slower methods such as the lnverslon method can be used. 
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avolded altogether as can be seen from the followlng example. 

Example 2.1. Poisson random variates by sequential search. 
We can qulckly verlf’y that for the Poisson ( A )  dlstrlbutlon, 

x - ,-A P i + l  = - i+ l  P i  ’ P o  - 
Thus, the sequentlal search algorlthm can be slmpllfled somewhat by recursively 
computlng the values of pi durlng the search: 

Poisson generator using sequential search 

Generate a uniform [OJ] random variate u .  
Set x+-o ,P+e-’ ,S+P.  
WHILE u>s DO 

X-X+l ,P+- y , S t S + P .  

RETURN x 

We should note here that the expected number of comparlsons is equal to 
E (x+l)=x+l. 

A sllght lmprovement In whlch the varlable S 1s not needed was suggested 
by Kemp(1981). Note however that thls forces us to destroy U: 

Inversion by sequential search (Kemp, 1981) 

Generate a uniform [ O , l ]  random variate U. 
x t o  
WHILE U >px DO 

u-v-p, 
X+X+l 

RETURN x 
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2. THE INVERSION METHOD. 

2.1. Introduction. 
In the inversion method, we generate one unlform [0,1] random varlate U 

and obtaln x by a monotone transformatlon of U whlch 1s such that 
P (X=i  )=pi .  If we deflne X by 

F ( X - 1 ) =  Cpi < u 5 Cpi = F ( X ) ,  
i <X i <X 

then I t  1s clear that P (x=z )=F (z' )-F ( i - l ) = p i .  Thls Is comparable to the 
lnverslon method for contlnuous random varlates. The solutlon of the lnequallty 
shown above 1s unlquely deflned wlth probablllty one. An exact solutlon of the 
lnverslon lnequalltles can always be obtalned ln flnlte tlme, and the lnverslon 
method can thus truly be called unlversal. Note that for contlnuous dlstrlbutlons, 
we could not lnvert In flnlte tlme except In speclal cases. 

There are several posslble technlques for solvlng the lnverslon lnequalltles. 
We start wlth the slmplest and most unlversal one, 1.e. a method whlch Is appll- 
cable to all dlscrete dlstrlbutlons. 

Inversion by sequential search 

Generate a uniform [0,1] random variate U ,  
Set X+o , S+po. 
WHJLE u>s DO 

x-x+1;s +-s +px 
RETURN X 

Note that S 1s adJusted as we lncrease X In the sequential search algorithm. 
Thls method applies to the "black box" model, and I t  can handle lnflnlte tails. 
The tlme taken by the algorithm Is a random varlable N ,  whlch can be equated 
In flrst approxlmatlon wlth the number of comparlsons In the WHILE condltlon. 
But 

P ( N = i )  = P(X=i -1 )  = pi -1  (i 21) . 

Thus, E ( N ) = E ( X ) + l .  In other words, the tall of the dlstrlbutlon of X deter- 
mlnes the expected time taken by the algorithm. Thls 1s an uncomfortable sltua- 
tlon In vlew of the fact that E ( X )  can posslbly be 00. There are other more prac- 
tical obJectlons: p i  must be computed many tlmes, and the consecutlve addltlons 
S+S+px may lead to  lnadmlsslble accumulated errors. For these reasons, the 
sequentlal search algorithm 1s only recommended as a last resort. In the 
remainder of this sectlon, we wlll descrlbe varlous methods for lmprovlng the 
sequentlal search algorlthm. In partlcular cases, the computatlon of p , ~  can be 
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2.2. Inversion by truncation of a continuous random variate. 

that G agrees wlth F on the Integers, 1.e. 

G (i +1) = F ( i )  

If we know a contlnuous dlstrlbutlon functlon G on [O,oo) wlth the property 

(i =0,1, ...) , G (0) = 0 , 

then we could use the followlng algorlthm for generatlng a random varlate X 
wlth dlstrlbutlon functlon F : 

Inversion by truncation of a continuous random variate 

Generate a uniform [O,l] random variate u . 
RETURN X+ \G-'(Lr)l 

Thls method 1s extremely fast  If G-' 1s expllcltly known. That I t  1s correct fol- 
lows from the observatlon that for all i 20, 

P ( X 5 i )  = P(G- ' (U)<i+l )  = P ( U < G ( i + l ) )  = G ( i + l )  = F ( i ) .  

The task of Andlng a G such that G (i +l)-G (i )=pi  , all i , 1s often very slm- 
ple, as we lllustrate below wlth some examples. 

Example 2.2. The geometric distribution. 
When G (z)=l-e-'' , z 20, we have 

G (i + 1 ) - ~  (i = e -Xi -e -Wi+1) 

- - e -'i (1-e -') 

= (1-q h a  (i 20) 9 

where q =e-'. From thls, we conclude that 
r 1 

Is geometrlcally dlstrlbuted wlth parameter e -'. Equlvalently, 

geometrlcally dlstrlbuted wlth parameter p . Equlvalently, 
E 

geometrlcally dlstrlbuted wlth the same parameter, when E 1s' an exponentlal 
random varlate. 
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Example 2.3. A family of monotone distributions. 
Conslder G ( x ) = l - ~ - ~  , x 21 , G (1)=0 , 6 >O. We see that 

G (i +1)-G (i)=iqb -(i +I)-~ . Thus a random varlate x wlth probablllty vector 
1 

can be generated as \.-'I. In partlcular, 1% 1 has probablllty vector 

Example 2.4. Uniformly distributed discrete random variates. 
A dlscrete random varlable 1s sald to be unlformly dlstrlbuted on 

1 {1?2, . . . , K }  when p i = -  for all 1 L i L K .  Slnce p i = G ( i + l ) - G ( i )  where 

, 1 5 3  <K +l , we see that X t  Ll+KUJ 1s unlformly dlstrlbuted 
K 

x -1 G (x )=- K 
on the lntegers 1 through K .  

2.3. Comparison-based inversions. 
The sequentlal search algorlthm uses comparlsons only ( between U and cer- 

taln functlons of the p j ' s  ). I t  was convenient to compare U flrst wlth p o t  then 
wlth p o + p  and so forth, but thls is not by any means an optlmal strategy. In 
thls sectlon we wlll hlghllght some other strategles that are based upon comparls- 
ons only. Some of these requlre that the probablllty vector be flnlte. 

For example, If we were allowed to  permute the Integers flrst and then per- 
form sequentlal search, then we would be best off If we permuted the integers In 
such a way that p o 2 p 1 2 p z >  . Thls 1s a consequence of the fact that the 
number of comparlsons 1s equal to  1+X where X 1s the random varlate gen- 
erated. Reorganlzatlons of the search that result from thls wlll usually not 
preserve the monotonlclty between U and X.  Nevertheless, we wlll keep uslng 
the term lnverslon. 

The lmprovements In expected tlme by reorganlzatlons of sequentlal search 
can sometlmes be dramatlc. Thls 1s the case In partlcular when we have peaked 
dlstrlbutlons wlth a peak that 1s far removed from the orlgln. A case In point 1s 
the blnomlal dlstrlbutlon whlch has a mode at Lnp] where n and p are the 

. 
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parameters of the blnomlal dlstrlbutlon. Here one could flrst verlfy whether 
I/ <F - ( Lnpj ), and then perform a sequentlal search "up" or "down" dependlng 
upon the outcome of the comparlson. For Axed p , the expected number of com- 
parkions grows as 6- lnstead of as n as can easlly be checked. Of course, we 
have to compute elther dlrectly or In a set-up step, the value of F at LnpJ. A 
slmllar improvement can be Implemented for the Poisson dlstrlbutlon. Interest- 
lngly, In this slmple case, we do preserve the monotonlclty of the transformatlon. 

Other reorganlzatlons are posslble by uslng Ideas borrowed from computer 
sclence. We wlll replace llnear search (l.e., sequentlal search) by tree search. For 
good performance, the search trees must be set up In advance. And of course, we 
will only be able to handle a flnlte number of probabllltles In our probablllty vec- 
tor. 

One can construct a blnary search tree for generatlng X .  Here each node In 
the tree 1s elther a leaf (termlnal node), or an lnternal node, In whlch case I t  has 
two chlldren, a left chlld and a rlght chlld. Furthermore, each lnternal node has 
assoclated wlth I t  a real number, and each leaf contalns one value, an lnteger 
between 0 and K .  For a glven tree, we obtaln X from a unlform [0,1] random 
varlate U In the followlng manner: 

Inversion by binary search 

Generate a uniform [0,1] random variate U .  
Ptr + Root of tree (Ptr points to a node). 
WHILE Ptr # Leaf DO 

IF Value (Ptr) > U 
THEN Ptr - Leftchild (Ptr) 
ELSE Ptr t Rightchild (Ptr). 

RETURN X+- Value (Ptr) 

Here, we travel down the tree, taklng left and rlght turns accordlng to the com- 
parlsons between U and the real numbers stored in the nodes, untll we reach a 
leaf. These real numbers must be chosen In such a way that the leafs are reached 
wl th  the correct probabllltles. There 1s no partlcular reason for chooslng K+1 
leaves, one for each posslble outcome of X ,  except perhaps economy of storage. 
Havlng Axed the shape of the tree and deflned the leaves, we are left wlth the 
task of determlnlng the real numbers for the K lnternal nodes. The real number 
for a glven lnternal node should be equal to the probabllltles of all the leaves 
encountered before the node In an lnorder traversal. At the root, we turn left 
wl th  the correct probablllty, and by lnductlon, I t  1s obvlous that we keep on 
dolng so when we travel to a leaf. Of course, we have qulte a few posslbllltles 
where the shape of the tree 1s concerned. We could make a complete tree, 1.e. a 
tree where all levels are full except perhaps the lowest level (whlch 1s fllled from 
left to rlght). Complete trees wlth 2K+1 nodes have 
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L = 1+ [log2(2K+1) 1 
levels, and thus the search takes at most L comparlsons. In llnear search, the 
worst case 1s always n(l" ), whereas now we have L -log&. The data structure 
that can be used for the lnverslon 1s as follows: deflne an array of 2K+1 records. 
The last K+1 records correspond to the leaves (record K+z' corresponds to 
lnteger z'-1). The flrst K records are Internal, nodes. The j - t h  record has as chll- 

dren records 2 j  and 2 j + l ,  and as father 1 f 1. Thus, the root of the tree 1s 
L A  

record 1, Its chlldren are records 2 and 3, etcetera. Thls glves us a complete 
blnary tree structure. We need only store one value In each record, and thls can 
be done for the entlre tree In tlme o ( K )  by notlng that we need only do an 
lnorder traversal and keep track of the cumulatlve probablllty of the leaves 
vlslted when a node 1s encountered. Uslng a stack traversal, and notatlon slmllar 
t o  that of Aho, Hopcroft and Ullman (1982), we can do I t  as follows: 

Set-up of the binary search tree 

(BST[l] ,..., BST(PKS.11 is our array of values. TO save space, we can store the probabilities 
po, . . . , p~ in BST[K+l] ,..., BST[PK+l].) 
(S is an auxiliary stack of integers.) 
h4AKENULL(S) (create an empW stack). 
P t r t l ,  PUSH(Ptr,S) (start at  the root). 
P -0 (set cumulative probability to  zero). 
REPEAT 

IF P t r S K  

THEN PUSH(Ptr,S), P t r t 2  P t r  
ELSE 

P +-P + BST[Ptr] 
Ptr+TOP(S), POP(S) 
BST[Ptr] +P 
P t r t 2  P t r + l  

UNTIL EMPTY (S) 

The blnary search tree method descrlbed above 1s not optlmal wlth respect 
to  the expected number of comparlsons requlred to reach a declslon. For a Axed 

blnary search tree, thls number 1s equal to  p i  Di where Di 1s the depth of the 

i - th  leaf (the depth of the root 1s one, and the depth of a node 1s the number of 
nodes encountered on the path from that node to the root). A blnary search tree 
1s optlmal when the expected number of comparlsons 1s mlnlmal. We now deflne 
Huffman's tree (Huffman, 1952, Zlmmerman, 1959), and show that I t  1s optlmal. 

K 

i =O 
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The two s m a l k ;  probablllty leaves should be furthest away from the root, 
for If they are nor;. :".en we can always swap one or both of them wlth other 
nodes at a deeper 1 ~ 4 .  and obtaln a smaller value for Cpi Di . Because lnternal 
nodes have two chl:f:ell, we can always make these leaves chlldren of the same 
lnternal node. But l i  ;'?e lndlces of these nodes are j and I C ,  then we have 

K 
C P i D i  = PiDi + ( p j + ~ k ) D *  + ( ~ j + ~ k ) .  

i =O : = j , k  

Here D* 1s the der:> of the lnternal father node. We see that mlnlmlzlng the 
rlght-hand-slde of r;Zs espresslon reduces to a problem wlth K lnstead of 1<+1 
nodes, one of these x d e s  belng the new lnternal node wlth probablllty p j  + p k  
assoclated wlth I t .  Thus, we can now construct the entlre (Huffman) tree. 
Perhaps a small e x a i 2 i e  is lnformatlve here. 

Example 2.5. 
Consider the pr:"?sbllltles 

0.25 

0.21 
D *  0.13 

We note that we a'r?~ld Joln nodes 0 and 4 flrst and form an lnternal node of 
cumulatlve welght 2-24. Then, thls node and node 3 should be Jolned lnto a 
supernode of welgh: 3-45. Next, nodes 1 and 2 are made chlldren of the same 
lnternal node of we!z31 0.55, and the two leftover lnternal nodes flnally become 
chlldren of the root. 

For a data s t r c su re .  we can no longer use a complete blnary tree, but we 
can make use of the -ray lmplementatlon In whlch entrles 1 through I< denote 
lnternal nodes, and pnrrles K+1 through 2K+1 deflne leaves. For leaves, the 
entrles are the glves ?robabllltles, and for the lnternal nodes, they are the thres- 
hold values as deflne2 b r  general blnary search trees. Slnce the shape of the tree 
must also be determlzed. we are forced to add for entrles 1 through I< two flelds, 
a leftchlldpolnter a23 3 rlghtchlldpolnter. For the sake of slmpllclty, we use 
BST[.] for the t h r e s h i d  values and probabllltles, and Left[.], Rlght[.] for the 
polnter fields. The r x - t  can be constructed In tlme 0 ( K  logic ) by the Hu-Tucker 
algorlthm (Hu,Tuckt:. ISi1): 
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Construction of the Huffman tree 

Create a heap H with elements (K+l,p,), . . . , ( 2 K + l , p ~ )  and order denned by the keys 
p i  (the smallest key is at the top of the heap). (For the definition of a heap, we refer to 
Aho, Hopcroft and Ullman (1982)). Note that  this operation can be done in 0 ( K )  time. 
FOR i:=1 T O  K DO 

Take top element ( j  , p  ) off the heap H and fix the heap. 
Take top element (k ,q ) off the heap H and Ax the heap. 
Left[i 1-J' , Right[i]+k . 
Insert ( i  , p  f q  ) in the heap H. 

Compute the array BST by an inorder traversal of the tree. (This is analogous to the 
traversal seen earlier, except that for travel down the tree, we must make use of the fields 
Left[.] and Right[.] instead of the positional trick that  in a complete binary tree the index 
of the leftchild is twice that  of the father. The time taken by this portion is 0 (K).) 

The entire set-up takes time 0 (I< logK) In view of the fact that lnsertlon and 
deletlon-off-the-top are 0 (logK ) operatlons for heaps. 

It 1s worth polntlng out that for families of dlscrete dlstrlbutlons, the extra 
cost of setting up a binary search tree is often inacceptable. 

We close thls section by showing that for most distrlbutlons the expected 
number of cornparlsons ( E ( C ) )  wlth the Huffman binary search tree 1s much less 
than with the complete binary search tree. T o  understand why thls is posslble, 
conslder for example the slmple dlstrlbution wlth probability vector 

1 1  -- . It is trivial to see that the Huffman tree here has a llnear 1 1  -- 
2'4'. ' * '  2 K  ' 2 K  

shape: we can deflne I t  recursively by putting the largest probability in the rlght 
chlld of the root, and putting the Huffman tree for the leftover probabilities in 
the left subtree of the root. Clearly, the expected number of comparisons is 
1 1 1 

(-)2+(7)3+(;)4+ - . . For any K ,  this is less than 3, and as I<-+oo, the 
2 

value 3 is approached. In fact, this flnite bound also applies t o  the extended 
Huffman tree for the probabillty vector 7 ( 2  2 1 )  . Similar asymmetric trees 

are obtalned for all dlstrlbutions for whlch E ( e  tx)<oo for some t >0: these are 
dlstrlbutions wlth roughly speaking exponentlally or subexponentlally decreaslng 
tail probabilltles. The relatlonship between the tail of the dlstrlbutlon and E (C ) 
is clarlfled in Theorem 2.1. 

1 
2 
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Theorem 2.1. 

struct a blnary search tree (lncludlng the Huffman tree) for whlch 
Let p l , p  2,... be. an arbltrary probablllty vector. Then I t  1s possible to con- 

E ( c )  5 1+4 bogz(14-E (x))] , 

where x Is the dlscrete random varlate generated by uslng the blnary search tree 
for lnverslon. 

Proof of Theorem 2.1. 
The tree that wlll be consldered here Is as follows: choose flrst an lnteger 

k >1. We put leaves at levels k +1,2k +1,3k +1,... only. At level k +I, we have 
2k-slots, and all but one 1s fllled from left to rlght. The extra slot Is used as a 
root for a slmllar tree wlth Z k  -1 leaves at  level 2k  + l .  Thus, C 1s equal to: 

2k -1 
k +1 wlth probablllty p i  

i = 1  
2( -1 )  

2 k + l  wlth probablllty p i  . 
i =2' 

. . .  

Taking expected values glves 

i = 1  i i -1 
2 -1 2k -1 
-<jSl+- 

If we take k = bog2(l+E ( X ) ) \  , then 2k -l>E (X), and thus, 

) = 1+4 [10g2(l+E (x))] 
Thls concludes the proof of Theorem 2.1. 1 
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We have shown two thlngs In thls theorem. Flrst, of all, we have exhlblted a 
partlcular blnary search tree wlth deslgn constant k 21 (k 1s an Integer) for 
whlch 

E ( X ) .  E ( C )  _< 1 + 2 k + -  
2 k  -1 

2k  

Next, we have shown that the value of E ( C )  for the Huffman tree does not 
exceed the upper bound glven In the statement of the theorem by manlpulatlng 
the value of k and notlng that the Huffman tree 1s optlmal. Whether In practlce 
we can use the constructlon successfully depends upon whether we have a falr 
ldea of the value of E ( X ) ,  because the optlmal k depends upon thls value. The 
upper bound of the theorem grows logarlthmlcally in E ( X ) .  In contrast, the 
expected number of comparlsons for lnverslon by sequentlal search grows llnearly 
wlth E (X) .  It goes wlthout saylng that If the pi ' s  are not In decreaslng order, 
then we can permute them to order them. If In the constructlon we All empty 
slots by borrowlng from the ordered vector p ( l ) , p ( 2 ) , . . . ,  then the lnequallty 

- .  remains valld If we replace E ( X )  by ~ p ( ~ ) .  We should also note that Theorem 

2.1 1s useless for dlstrlbutlons wlth E (X)=cm. In those sltuatlons, there are other 
posslble constructlons. The binary tree that we construct has once again leaves at 
levels k + 1 , 2 k + l ,  ..., but now, we deflne the leaf posltlons as follows: at level 
k + 1 ,  put one leaf, and deflne 2 k - 1  roots of subtrees, and recurse. Thls means 
that at level 2 k  +1 we And 2k -1 leaves. We assoclate the pi ' s  wlth leaves In the 
order that they are encountered In thls constructlon, and we keep on golng untll 
K leaves are accommodated. 

i=1 

~ ~~~ 

Theorem 2.2. 
For the blnary search tree constructed above wlth Axed deslgn constant 

k > I ,  - we have 

and, for k = 2 ,  

where X 1s a random varlate wlth the probablllty vector p that 1s 
used In the constructlon of the blnary search tree, and C Is the number of com- 
parlsons in the lnverslon method. 

. . . , 
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C = '  

95 

, 
k + 1  wlth probablllty p 

2k +1 wlth probablllty p 2+ . * + p , + ,  

3 k  +1 wlth probablllty p m  +2+ . * * +pm2+m +1 
' 

. . .  
\ 

In such expresslons, we assume that  p i  =O for i > K .  The constructlon also 
works for lnflnite-tailed dlstrlbutlons, so that  we do not need K any further. 
Now, 

I+. . . t-mJ-1 
E(C) <, l + k p l + k E  j c P i  

j = 2  i = 1 + 1 + .  . . +mJ-l 
0 

= l + k p l + k C  p ;  c j 
i = 2  ,+I+ . . . +mJ-2<i  <I+ 9 . . +mJ-' 
M 

O3 logi 

2k O0 

5 l + k p  ,+k (2-1 
logm i =2 

= 1+kp ,+- pi mi 
logm 

logm 
= 1+kp1+- 2k E(1ogX) . 

Thls proves the flrst lnequallty of the theorem. The remainder follows wlthout 
work. 

The bounds of Theorem 2.2 grow as E(1ogX) and not as log(E(X)). The 
dlfference 1s that E (logX)Llog(E (X)) (by Jensen's lnequallty), and that  for 
long-talled dlstrlbutlons, the former expresslon can be flnlte whlle the second 
expresslon 1s 00. 

1 
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2.4. The method of guide tables. 
We have seen tha t  lnverslon can be based upon sequentlal search, ordlnary 

blnary search or modlfled blnary search. All these technlques are comparlson- 
based. Computer sclentlsts have known for a long tlme that hashlng methods are 
ultra fast  for searchlng data structures provlded that the elements are evenly dls- 
trlbuted over the range of values of Interest. Thls speed Is bought by the explol- 
tatlon of the truncatlon operatlon. 

Chen and Asau (1974) flrst suggested the use of hashlng technlques to  handle 
the lnverslon. To insure a good expected tlme, they lntroduced an lngenlous trick, 
whlch we shall descrlbe here. Thelr method has come to  be known as the 
method of guide tables. Agaln, we have a monotone relatlonshlp between X ,  
the generated random varlate, and U ,  the unlform [0,1) random varlate whlch 1s 
lnve r t  e d. 

We assume that a probablllty vector p o , p  1, . . . , p~ 1s glven. The cumula- 
tlve probabllltles are deflned as 

I 

Qi Pj (05; S K )  . 
j -0 

If we were to throw a dart (In thls case u )  at the segment [0,1], whlch 1s partl- 
tloned Into K+1 lntervals [O,qo) , [qo ,q , ) ,  . . . , (qK-l, l] ,  then I t  would come to  
rest In the lnterval [ q i - l , q j )  wlth probablllty q i - q i - l = p i .  Thls 1s another way of 
rephraslng the lnverslon prlnclple of course. It 1s another matter to  And the lnter- 
val to  whlch U belongs. Thls can be done by standard blnary search In the array 
of qi 's (thls corresponds roughly to the complete blnary search tree algorlthmj. If 
we are t o  explolt truncatlon however, then we somehow have to  conslder equl- 

a -1 a 
K + I ' K + I  spaced Intervals, such as [- - ) , l<t'sE( +l. The method of gulde 

tables helps the search by storlng In each of the K+1 lntervals a "gulde table 
value" gi where 

Si = max j . 
i 

qJ <- K + i  

Thls helps the lnverslon tremendously: 
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Method of guide .tables 

97 

Generate a uniform [0,1] random variate u . 
Set x+ L(K+l)U+lA (this is the truncation). 
Set X+gx +1 (guide table look-up). 
W I L E  gx-l> U DO XCX-1. 
RETURN x 

I t  1s easy to  determlne the valldlty of thls algorlthm. Note also that no 
expenslve computatlons are Involved. 

Theorem 2.3. 

guide tables 1s always bounded from above by 2. 
The expected number of comparlsons (of qx-l  and V )  In the method of 

Proof of Theorem 2.3. 
Observe that  the number of comparlsons C 1s not greater than the number 

of qi values In the lnterval X (the returned random variate) plus one. But slnce 
all lntervals are equl-spaced, we have 

l K  
K+1 j=o 

E(C) 5 l+- (number of values of q i  In lnterval %' ) 

Theorem 2.3 1s very lmportant because I t  guarantees a unlformly good per- 
3rmance  for all dlstrlbutlons as long as we make sure that the number of Inter- 
v d s  and the number of posslble values of the dlscrete random varlable are equal. 

Thls lnverslon method too requlres a set-up step. The table of values 
2 ?.g ?, . . . , gK+1 can be found In tlme 0 ( K ) :  
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Set-up of guide table 

FOR i :=I TO K +I DO gi +-0. 

s +o. 
FOR i:= 0 TO K DO 

S+-S+p; (S  is now q i ) .  

j + Ls ( K  +1)+1 . (Determine interval for qi .) 
gj t i .  

FOR i :=2 TO K +1 DO gi tmax(gi-,,gi). 

There Is a trade-off between expected number of comparlsons and the slze of 
the gulde table. It 1s easy to  see that lf we have a gulde table of a(K+l )  ele- 
ments for some a>O, then we have 

E(C) 5 1+'. 
a! 

If speed Is extremely lmportant, one should not hesltate to  set Q equal t o  5 or 10. 
Of all the lnverslon methods dlscussed so far, the method of gulde tables shows 
clearly the greatest potential in terms of speed. Thls Is conflrmed In Ahrens and 
Kohrt (1 981). 

2.5. Inversion by correction. 
I t  Is sometlmes posslble to. And another dlstrlbutlon functlon G that 1s close 

to the dlstrlbutlon functlon F of the random varlable X .  Here G 1s the dlstrlbu- 
tlon functlon of another dlscrete random varlable, Y .  It Is assumed that G 1s an 
easy dlstrlbutlon. In that case, I t  1s posslble to generate X by flrst generatlng Y 
and then applylng a small correctlon. It should be stressed that the fact that G 
1s close to F does not lmply that the probabllltles G (i )-G (i-1) are close to  the 
probabllltles F (i)-F (i-1). Thus, other methods that are based upon the close- 
ness of these probabllltles, such as the reJectlon method, are not necessarlly appll- 
cable. We are slmply uslng G to obtaln an lnltlal estlmate of X .  
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Inversion by correction; direct version 

Generate a uniform [ O , i ]  random variate U. 
Set X+G-’(U) (i.e. X is an integer such that G (X-1)< U 5 G ( X )  . This usually means 
that x is obtained by truncation of a continuous random variable.) 
IF U < F ( X )  

THEN WHILE U <-F(X-1)  DO X + X - l .  
ELSE WHILE U > F ( X + 1 )  DO x+x+1. 

RETURN x 

We can measure the tlme taken by this algorithm In terms of the number of 
F -computations. We Eave: 

Theorem 2.4. 

above 1s 
The number of computatlons C of F in the lnversion algorithm shown 

2+ I Y - x  I 
where X ,  Y are deflned by 

F ( X - I ) < U L F ( X ) ,  G ( Y - I ) < U < G ( Y ) .  

It is clear that E ( C ) = 2 + E  ( I Y - X  I ) where Y ,X are as deflned In the 
theorem. Note that Y and X are dependent random variables In thls deflnltlon. 
We observe that In the algorithm, we use lnverslon by sequentlal search and start 
thls search from the lnltlal guess Y .  The correction Is I Y - X  I . 

There 1s one lmportant special case, occurring when F and G are stochastl- 
cally ordered, for example, when F G . Then one computatlon of F can be 
saved by notlng that we can use the followlng lmplementatlon. 
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Inversion by correction; F 5 G 

Geaerate a unlform [ O J ]  random varlate U. Set X t G - ’ ( U ) .  
WHILE U > F ( X )  DO X t X t - 1 .  
RETURN X 

What 1s saved here 1s the comparison needed t o  declde whether we should search 
up or down. Slnce In the notatlon of Theorem 2.4, Y <X, we see that 

E ( C )  = 1+E(X-Y). 
When E (X) and E ( Y )  are Anlte, thls can be wrltten as i+E (X )-E (Y ). In any 
case, we have 

E(C) = 1+C I F ( i ) - G ( i )  I . 
i 

To see thls, use the fact that E (X)=C(i-F (i )) and E ( Y  )=C( i -G ( i  )). When 

F 2 G , we have a symmetrlc development of course. 
In some cases, a random varlate with dlstrlbutlon functlon G can more 

easlly be obtalned by methods other than lnverslon. Because we stlll need a unl- 
form [0,1] random varlate, I t  1s necessary to cook up such a random varlate from 
the prevlous one. Thus, the lnltlal palr of random varlates ( V , X )  can be gen- 
erated lndlrectly: 

: i 

Inversion by correction; indirect version 

Generate a random variate X with distribution function G , 
Generate an independent uniform [0,1] random variate V ,  and set 

IF U S F ( X )  
U+G (X-l)+ V (  G (X)-G (X-1)). 

THEN WHILE U < F ( X - I )  DO X t X - 1 .  
ELSE WHILE U > F ( X + l )  DO X+X+i.  

RETURN X 

It is easy t o  verlfy that the dlrect and lndlrect verslons are equlvalent because the 
Jolnt dlstrlbutlons of the starting palr ( V , X )  are ldentlcal. Note that In both 
cases, we have the same monotone relatlon between the generated x and the 
random varlate U, even though In the lndlrect verslon, an auxlllary unlform [0.1] 

I 
I 

- 



III.2.INVERSION METHOD 101 

random varlate v 1s needed. 

Example 2.6. 

Consider 

where a >O and p >1 are given constants. Explicit lnverslon of F 1s not feaslble 
except perhaps In speclal cases such a s  p =2 or p =3. If sequential search is used 
started at 0, then the expected number of F computations Is 

l + a  O 0 1  
00 03 

1+ (1-F (i)) = 1+ L l + C - .  
i = 1  j=1 i p  +ai i = 1  z 'P 

Assume next that we use lnverslon by correctlon, and that as easy dlstributlon 
functlon we take G (i)=l-- , i 21. First, we have stochastic ordering 1 

i p  
because F 5 G . 
2.4) 1s equal to 

that G-'( U )  (the lnverse being deflned as in Theorem 

. Furthermore, the expected number of computations 
of F 1s 

* aiP-ai  m u '  00 

I+ G ( i ) -F  ( i )  = I+ <1+c-. 
i=1  ;=2 i p  ( i P  +ai ) - j = 2  i p  

Thus, the lmprovement In terms of expected number of cornputatlons of F Is at 

least l+(l-a ) -, and this can be considerable when a 1s small. 0 3 1  

j = 2  i p  

2.6. Exercises. 
1. Glve a one-llne generator (based upon lnversion via truncation of a continu- 

ous random varlate) for generatlng a random varlate X wlth dlstrlbutlon 

P ( X = i )  = a ( i< i  L n )  . 
n ( n  +I) 

2 

2. By empirical measurement, the following discrete cumulative dlstributlon 
functlon was obtalned by Nlgel Horspool when studylng operatlng systems: 

F ( i )  = mln(1 , 0.114 log(l+- i )-0.069) 
0.731 

(i 21) . 
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Glve a one-llne generator for thls dlstrlbutlon whlch uses truncation of a 
contlnuous random varlate. 
Glve one-llne generators based upon lnverslon by truncatlon of a contlnuous 
random varlate for the followlng probablllty dlstrlbutlons on the posltlve 
Integers: 

3. 

I I 

3. TABLE LOOK-UP METHODS. 

3.1. The table look-up principle. 
We can generate a random varlate X very qulckly If all probabllltles p i  are 

ratlonal numbers wlth common denomlnator M .  It sumces t o  note that the sum 
of the numerators is also M .  Thus, If we were to  construct an array A of slze M 
wlth Mp, entrles 0, Mp entries 1, and so forth, then a unlformly plcked element 
of thls array would yleld a random varlate wlth the glven probablllty vector 
p o,p  Formally we have: 

Table look-up method 

[ SET-UP] 
k o  k ,  Given the probability vector ( p , = - , p  M M 

Integers, we deflne a table A =(A [O], . . . , A [M-11) where ki entries are t', E' 20. 

Generate a uniform (0,1] random variate u. 
RETURN A [ LMU] ] 

where the ki 's and M are nonnegative 

[GENERATOR] 

The beauty of thls technlque Is that I t  takes a constant tlme. Its dlsadvantages 
lnclude Its llmltatlon (probabllltles are rarely rational numbers) and its large 
table slze (M can be phenomenally blg). 
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We wlll glve two lmportant examples to  lllustrate its use. 

Example 3.1. Simulating dice. 
We are asked to generate the sum of n lndependently thrown unblased dlce. 

Thls can be done nalvely by uslng x,+x,+ * - +X, where the Xi ' s  are lid unl- 
form {1,2, . . . , 6) random varlateS. The tlme for thls algorlthm grows as n. 
Usually, n wlll be small, so that thls 1s not a major drawback. We could also 
proceed a s  follows: flrst we set up a table A [O], . . . , A [M-11 of slze M=0" 
where each entry corresponds to one of the 0' posslble outcomes of the n throws 
(for example, the flrst entry corresponds to l , l , l , l ,  . . . , 1, the second entry to 
2,1,1,1J . . . , 1, etcetera). The entrles themselves are the sums. Then A [ LMU]] 
has the correct dlstrlbutlon when u 1s a unlform [O,l] random varlate. Note that 
the tlme 1s 0 ( l ) ,  but that the space requlrements now grow exponentlally In n . 
Interestlngly, we have one unlform random varlate per random varlate that 1s 
generated. And If we wlsh to lmplement the lnverslon method, the only thlng 
that we need to  do Is to sort the array accordlng to  lncreaslng values. We have 
thus bought tlme and pald wlth space. It should be noted though that In thls 
case the space requlrements are so outrageous that we are practlcally llmlted to 
n 55. Also, the set-up 1s only admlsslble If very many lld sums are needed In the 
slmulatlon. 

Example 3.2. The histogram method. 
Statlstlclans often construct hlstograms by countlng frequencles of events of 

a certaln type. Let events 0,1, . . . , K have assoclated wlth them frequencles 
k , ,k  1, . . . , k~ . A questlon sometlmes asked 1s to generate a new event wlth the 
probabllltles defined by the hlstogram, Le. the probablllty of event z' should be 
ki K - where M= M ki. In thls case, we are usually glven the orlglnal events In 

i =o 
table form A [O], . . . , A [M-11, and l t  1s obvlous that the table method can be 
applled here wlthout set-up. We wlll refer to thls speclal case as the histogram 
method. Note that for Example 3.1, we could also construct a hlstogram, but I t  
dlffers ln that a table must be set up. 

Assume next that we wish to  generate the number of heads In n perfect coln 
tosses. It 1s known that thls number 1s blnomlally dlstrlbuted wlth parameters n 

1 and -. By the method of Example 3.1, we can use a table look-up method wlth 
2 
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table of slze 2 n ,  so for n <lo ,  - thls 1s entlrely reasonable. Unfortunately, when 
the coln 1s not perfect and the probablllty of heads 1s an lrratlonal number p , the 
table look-up method cannot be used. 

3.2. Multiple table look-ups. 
The table look-up method has a geometric Interpretatlon. When the table 

slze 1s M ,  then we can thlnk of the algorlthm In terms of the selectlon of one of 
M equl-spaced lntervals of [0,1] by flndlng the Interval to whlch a unlform [o,i] 
random varlate u belongs. Each lnterval has an lnteger assoclated wlth it, whlch 
should be returned. 

One of the problems hlghllghted In the prevlous sectlon 1s the table she.  One 
should also recognlze that there normally are many ldentlcal table entrles. These 
dupllcates can be grouped together to reduce the table slze. Assume for example 
that there are ki entrles wlth value i where i 2 0  and ICi =M. Then, if 

M=M&, for two lntegers M,,M,, we can set up an auxlllary table 
B [O], , . . , B [Mo-l] where each B [ i ]  polnts to a block of M ,  entrles In the true 
table A [O], . . . , A [M-11. If thls block 1s such that all values are ldentlcal, then 
i t  1s not necessary t o  store the block. If we thlnk geometrlcally agaln, then thls 
corresponds to  deflnlng a partltlon of [0,1] lnto M ,  lntervals. The orlglnal partl- 
tlon of M lntervals 1s Aner, and the boundarles are allgned because M Is a multl- 
ple of M,. If for the i - th  blg Interval, all M ,  values of A [j] are ldentlcal, then 
we can store that value dlrectly In B [ i ]  thereby savlng M,-1 entrles In the A 
table. By rearranglng the A table, I t  should be posslble to repeat thls for many 
large lntervals. For the few large lntervals coverlng small lntervals wlth non- 
ldentlcal values for A ,  we do store a placeholder such as * . In thls manner, we 
have bullt a three-level tree. The root has M ,  chlldren wlth values B [i]. When 
B [i ] 1s an lnteger, then i 1s a termlnal node. When B [i ]= * , we have an Inter- 
nal node. Internal nodes have in turn M ,  chlldren, each carrylng a value A [ j ] .  It 
1s obvlous that thls process can be extended to  any number of levels. Thls struc- 
ture Is known as a trle (Fredkln, 1960) or an extendlble hash structure (Fagln, 
Nlevergelt, Plppenger and Strong, 1979). If all lnternal nodes have preclsely two 
chlldren, then we obtaln In effect the blnary search tree structure of sectlon 111.2. 
Since we want to  get as much as posslble from the truncatlon operation, I t  1s 
obvlous that the fan-out should be larger than 2 ln all cases. 

Conslder for example a table for look-up wlth 1000 entrles deflned for the 

i 20 
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followlng probablllty vector: 

Probability 
p ,  0.005 

P 2  0.123 

P 4  0.355 
p ,  0.240 

p ,  0.277 

105 

Number of entries in table A 
5 

123 
240 
355 
277 

The lnterpretatlon 1s that If B [ z ] = j  then j appears 100 tlmes In table A , and 
If B [;I=* then we must consult a block of 100 entrles of A whlch are not all 
Identlcal. Thus, If B [ 8 ]  or B[9] are chosen, then we need to consult 
A [800], . . . , A [999], where we make sure that there are 5 "i"'s, 23 "2"'s, 40 
'*3"'s, 55 "4"'s and 77 "5"'s. Note however that we need no longer store 
A [O], . . . , A [799] ! Thus, our space requlrements are reduced from 1000 words 
to 210 words. 

Af'ter havlng set-up the tables B (01, . . . , B [9] and A [800], . . . , A [999], we 
can generate X as follows: 

Example of a multiple table look-up 

Generate a uniform [0,1] random variate U . 
Set X c B  [ LloUJ]. 
IF X#* 

THEN RETURN x 
ELSE RETURN A [ [lo00 U J  ] 

Here we have explolted the fact that the same U can be reused for obtalnlng a 
random entry from the table A .  Notlce also that In 80% of the cases, we need 
not access A at all. Thus, the auxlllary table does not cost us too much tlmewlse. 
Flnaily, observe that the condltlon X # *  can be replaced by x > 7 ,  and that 
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therefore B [8] and B [9] need not be stored. 
What we have descrlbed here forms the essence of Marsaglia's table 

look-up method (Marsaglla, 1963; see also Norman and Cannon, 1972). We can 
of course do a lot of flne-tunlng. For example, the table A [SOO], . . . , A [999] can 
In turn be replaced by an auxlllary table c grouplng now only 10 entrles, whlch 
could be plcked as follows: - 

2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 
* 
* - 

Glven that B [;I= * for our value of u, we can In 90% of the cases return 
C [ LlOOUj]. Only lf once more an entry * 1s seen do we have to access the table 
A (9801, . . . , A [999] at posltlon LlOOOU] . The numberlng In our arrays 1s con- 
venlent for accesslng elements for our representatlon, 1.e. B [; ] stands for 
C [ l O i ] ,  . . . , C[lOi+S], or for A [loo;], . . . , A [100;+99]. Some hlgh level 
languages do not permlt the use of subranges of the lntegers as lndlces. I t  Is also 
convenlent t o  comblne A ,B and C lnto one blg array. All of thls requires addl- 
tlonal work durlng the set-up stage. 

We observe that In the multllevei table look-up we must group ldentlcal 
entrles In the orlglnal table, and thls forces us to  lntroduce a nonmonotone rela- 
tlonshlp between U and x. 

The method descrlbed here can be extended towards the case where all p i ' s  
or 2-32. In these cases, the p i ' s  are usually approxlma- are multlples of elther 

tlons of real numbers truncated by the wordslze of the computer. 
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4. THE ALIAS METHOD. 

4.1. Definition. 
Walker (1974, 1977) proposed an lngenlous method for generatlng a random 

varlate X wlth probablllty vector p o,p 1, . . . , p ~ - ~  whlch requlres a table of slze 
0 ( K )  and has a worst-case tlme that 1s lndependent of the probablllty vector 
and K . His method 1s based upon the following property: 

Theorem 4.1. 

able mlxture of K two-polnt dlstrlbutlons. 
Every probablllty vector p , ,p  . . . , p K - l  can be expressed as an equlprob- 

Proof of Theorem 4.1. 

and K probabllltles qo ,  . . . , q K - l  such that 
We have to show that there are K palrs of lntegers ( i o , j o ) ,  . . . , ( i ~ - ~ , j ~ - ~ )  

1 K-1 

l=o 
P i  = K C (Q1 I[i,=i] + (I-ql )I[j,=iI) (O<i - <K 1 . 

Thls can be shown by lnductlon. It 1s obvlously true when K =l. Assuming that 
I t  1s true for K < n  , we can show that I t  1s true for K = n  as follows. Choose the 
mlnlmal p i .  Slnce I t  1s at most equal to - we can take io equal to the lndex of 

thls mlnlmum, and set q o  equal to Kpio. Then choose the lndex j o  whlch 
corresponds to the largest p i .  Thls defines our flrst palr In the equlprobable mlx- 

< p i o  because --< The other ture. Note that we used the fact that 

K-1 palrs In the equlprobable mlxture have to be constructed from the leftover 
probabllltles 

1 
K '  

(1-q 0) 1 
K --PjO. K -  

whlch, after deletlon of the io-th entry, Is easlly seen to be a vector of K-1 non- 
negatlve numbers summlng to - -' . But for such a vector, an equlprobable mlx- 
ture of K -1 two-polnt dlstrlbutlons can be found by our lnductlon hypothesls. 

K 

To turn thls theorem into profit, we have two tasks ahead of us: flrst we 
need to actually construct the equlprobable mlxture (thls Is a set-up problem), 
and then we need to generate a random varlate X .  The latter problem 1s easy to 
solve. Theorem 4.1 tells us that I t  sufflces to  throw a dart at the unlt square In 
the plane and to read off the lndex of the reglon In whlch the dart has landed. 
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The unlt square 1s of course partltloned lnto reglons by cuttlng the x-axls up lnto 
K equl-spaced Intervals whlch define slabs In the plane. These slabs are then cut 
lnto two pleces by the threshold values q1. If 

1 K-1 
P i  = - ( Q I  J l i / = i ]  + (1-ql ) I / j / = i j )  (05; < K )  , 

K 1 =o 

then we can proceed as follows: 

The alias method 

Generate a uniform [OJ] random variate U. Set X +  LKUJ. Generate a uniform [O,i] ran- 
dom variate v. 
IF V<qx  

THEN RETURN ix 
ELSE RETURN jx 

Here one unlform random varlate 1s used to  select one component In the 
equlprobable mlxture, and one unlform random varlate 1s used t o  declde whlch 
part In the two-polnt dlstrlbutlon should be selected. Thls unsophlstlcated ver- 
slon of the allas method thus requlres preclsely two unlform random varlates and 
two table look-ups per random varlate generated. Also, three tables of slze K are 
needed. 

We observe that one unlform random varlate can be saved by notlng that 
for a unlform [O,l]  random varlable U ,  the random varlables X =  LKUJ and 
V=KU-X are Independent: X 1s unlformly dlstrlbuted on 0, . . . , K-1, and 
the latter 1s agaln unlform [0,1]. Thls trlck 1s not recommended for large K 
because I t  relles on the randomness of the lower-order dlglts of the unlform ran- 
dom number generator. Wlth our ldeallzed model of course, thls does not matter. 

One of the arrays of slze K can be saved too by notlng that we can always 
lnsure that io, . . . , i ~ - ~  1s a permutatlon of 0, . . . , K-1. Thls 1s one of the 
dutles of the set-up algorlthm of course. If a set-up glves us such a permuted 
table of i-values, then I t  should be noted that we can In tlme 0 ( I C )  reorder the 
structure such that il =I! ,  for all I!. The set-up algorlthm glven below wlll dlrectly 
compute the tables j and q In tlme 0 ( K )  and 1s due to Kronmal and Peterson 
(1979, 1980): 
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The allas method can further be lmproved by mlnlmlzlng thls expresslon, but thls 
won't be pursued any further here. The maln reason for not dolng so 1s that there 
exlsts a slmple generallzatlon of the allas method, called the allas-urn method, 
whlch 1s deslgned to  reduce the expected number of table accesses. Because of its 
Importance, we wlll descrlbe I t  In a separate sectlon. 

4.2. The alias-urn method. 
Peterson and Kronmal (1982) suggested a generallzatlon of the allas method 

In the followlng manner: think of the probablllty vector p o , p  1, . . . , p K - l  as a 
speclal case of a probablllty vector wlth K* L K  components where p i  - -0 for all 
i L K .  Everythlng that was sald In the prevlous sectlon remalns valld for thls 
case. In partlcular, If we use the llnear set-up algorlthm for the tables q and j ,  
then I t  should be noted that q1 > O  for at most K values of I .  At least for all 
I > K -1 we must have q1 =O. For these values of I , one table access Is necessary: 

The alias-urn method 

Generate a random integer X uniformly distributed on 0, . . . , K*-i. 
I F X Z K  

THEN RETURN jx 
ELSE 

Generate a uniform [0,1] random variate V .  
IF v59x 

THEN RETURN x 
ELSE RETURN jx 

Per  random varlate, we requlre elther one or two table look-ups. It 1s easy to  
see that the expected number of table look-ups (not countlng qx)  1s 

The upper bound of 1 may somehow seem llke maglc, but one should remember 
that Instead of one comparlson, we now have elther one or two comparlsons, the 
expected value belng 

K 
K* 1+-. 

Thus, as K* becomes large compared to K ,  the expected number of comparlsons 
and the expected number of table accesses both tend to one, as for the urn 
method. In thls llght, the method can be consldered as an urn method wlth sllght 
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Set-up of tables for alias method 

Greater 4-0, Smaller -0 (Greater and Smaller are sets of integers.) 
FOR I :a0 T O  K-1 DO 

Q1 CKPl 
IF PI <1 

THEN Smaller t Smaller + { I  }. 
ELSE Greater - Greater + { I  }. 

WHILE NOT EMPTY ( Smaller) DO 
Choose k. E Greater , I  E Smaller (ql is flnalized]. 

Set jr +k [ j l  is flnalized]. 

IF qk (1 THEN Greater +- Greater - { k  }, Smaller + Smaller + { k  }. 
Smaller + Smaller -{I }. 

4% +Q, -(l-Q1). d 
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The sets Greater and Smaller can be lmplemented In many ways. If we can do I t  
In such a way that the operatlons "grab one element", "Is set empty ?", "delete 
one element" and "add one element" can be done In constant tlme, then the algo- 
rlthm glven above takes tlme 0 ( K ) .  Thls can always be lnsured If llnked llsts 
are used. But slnce the cardlnalltles sum to K at all tlmes, we can organlze I t  by 
uslng an ordlnary array In whlch the top part 1s occupied by Smaller and the bot- 
tom part by Greater. The allas algorlthm based upon the two tables computed 
above reads: 

Alias method with two tables 

Generate a random integer X uniform./ distributed on 0, . . . , K-1.  

Generate a uniform (0,1] random variate V . 
IF V 5 Q X  

THEN RETURN X 
ELSE RETURN ix 

Thus, per random varlate, we have elther 1 or 2 table accesses. The expected 
number of table accesses 1s 

i K-I 
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flne-tunlng. We are paylng for thls luxury in terms of space, slnce we need to 
store K*+K values: io, . . . , j ~ # - ~ , q ~ ,  . . . , qK-l. Flnally, note that the com- 
parlson X 2 K  takes much less tlme than the comparlson V 5 q x .  

4.3. Geometrical puzzles. 
We have seen the geometrlcal lnterpretation of the alias method: throw a 

dart at random and unlformly on the unlt square of R 2  properly partltioned lnto 
2K rectangles, and return the lndex that 1s assoclated wlth the rectangle that is 
hlt. The lndlces, or allases, are stored in a table, and so are the deflnttions of the 
rectangles. The power of the allas method is due to  the fact that we can take K 
ldentlcal slabs of height 1 and base - and then split each slab lnto two rectan- 

gles. It should be obvlous that there are an unllmited number of ways in whlch 
the unlt square can be cut up convenlently. In general, if the  components are 
A 

1 
K 

. . . , A M ,  and the aliases are jl, . . . , j ~ ,  then the algorlthm 

General alias algorithm 

Generate a random variate (X, Y )  uniformly distributed in [0,112. 
Determine the index Z in 1, . . . , M such that (X, Y ) E A Z .  
RETURN jz  

produces a random varlate which takes the value k wlth probabillty 

area(A1) . 
l : j , = k  

Let us lllustrate this wlth an example. Let the probabillties for consecutlve 
C - , where n Is a posltlve Integer, c c c c c c  Integers 1,2 ,... be c ,-,-,--,-,- 

2 2 4 4  4 4 ' " "  2n 
and c=- 1s a normalization constant. It is clear that we can group the 

values In groups of s h e  1,2,4, . . . , 2 n ,  and the probability welghts of the groups 
are all equal to c . Thls suggests that we should partltion the square flrst into 

n +I 

1 
n +1 equal vertlcal slabs of height 1 and base - . Then, the i - th  slab should n +I 
be further subdlvlded lnto 2i equal rectangles to dlstlngulsh between dlfferent 
lntegers In the groups. The algorlthm then becomes: 
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0 0 0 0 0  
0 1 1 1 1  
0 1 2 2 2  

0 1 2 3 3 .  

0 1 2 3 4  
0 1 2 3 4  

TII.4.ALIAS METHOD 

Generate a random variate x with a uniform distribution on {0,1, . . . , n }. 
Generate a random variate Y with a uniform distribution on g X ,  . . . , 2x +1-1. 
RETURN Y. 

In thls slmple example, I t  1s posslble to  comblne the unlform ‘arlate g-nera 
and membershlp determlnatlon lnto one. Also, no table Is needed. 

Conslder next the probablllty vector 

lon 

I 

4.4. Exercises. 
1. Glve a slmple llnear tlme algorlthm for sortlng a table of records 

R . . . , R, If I t  1s known that the vector of key values used for sortlng 1s 
a permutatlon of 1, . . . , n .  
Show that there exlsts a one-llne FORTFLAN or PASCAL language generator 
for random varlates wlth. probablllty vector p i  =-(1--) , 05; < n  

(Duncan McCallum). 
Comblne the reJectlon and geometrlc puzzle method for generatlng random 

C varlates wlth probablllty vector p i  =- , 1s i < K ,  where c 1s a normallza- i 
tlon constant. The method should take expected tlme bounded unlformly 

2. 
2 i 

n + l  n 

3. 

c c c c c c  
2 2 4 4 4 4  

over K .  Hlnt: note that the vector c ,-,-,-,-,-,- ,... domlnates the 
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given probability vector. 
Repeat the previous exercise for the two-parameter class of probablllty vec- 
tors p i = -  , 15; S K  where 

4. 
C 

Is a positive integer. 
i M  

5. OTHER GENERAL PRINCIPLES. 

5.1. The rejection method. 

the probablllty vector p ;  , i 20, Is such that 
The rejection prlnclple remalns of course valid for discrete dlstrlbutions. If 

where c 21 Is the rejectlon constant and qi , z' 20, is an easy probability vector, 
then the following algorithm Is valld: 

The rejection method 

REPEAT 
Generate a uniform [0,1] random variate u.  
GENERATE a random variate x with discrete distribution determined by 
qi , i > o .  

UNTIL UCqx <px 
RETURN x 

We recall that the number of iterations Is geometrically dlstributed with parame- 

px . In ter - (and thus mean c ). Also, In each Iteratlon, we need to compute - 1 

C CQX 
vlew of the ultra fast methods described In the previous sections for flnlte-valued 
random varlates, I t  seems that the rejection method is mainly applicable In one of 
two situations: 
A. The distribution has an lnAnlte tall. 

B. The distribution changes frequently (so that we do not have the time to set 
up long tables every time). 

Often, the body of a dlstrlbutlon can be taken care of by the gulde table, allas or 
alias-urn methods, and the tall (whlch carries small probability anyway) Is dealt 
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with by the rejection method. 

111.5 .OTHER PRINCIPLES 

Example 5.1. 
Conslder the probabillty vector 

(iL1) . 6 p i  = - 
n2i 

Sequential search for this dlstrlbutlon is undeslrable because the expected number 

of cornparlsons would be 1+ 
03 

;pi =m. Wlth the easy probability vector 
i = 1  

we can apply the rejectlon method. The best possible rejectlon constant 1s 

P i  6 i +1 12 = sup- = -sup- - 
i y 1  qi n 2 a l i  a n2 

c 

Slnce 

able), we can proceed as follows: 

has probabillty vector q (where U 1s a uniform [0,1] random vari- 

REPEAT 

If 1. Generate iid uniform [OJ] random variates U,V. Set X t  

UNTIL 2VX5X+i 
RETURNX 

L J  

Example 5.2. Monotone distributions. 

that p i  5- for all i . Thus, the followlng rejectlon algorlthm 1s valld: 
When the probablllty vector p l ,  . . . , p n  1s nonincreaslng, then I t  is obvious 

1 
a 
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REPEAT 
1 - Generate a random variate X with probability vector proportional to 1,- 1 

2 ’ ” ”  n . 
Generate a uniform [O,l] random variate U. 

UNTIL V s X p ,  
RETURN x 

n 1  The expected number of lteratlons 1s -<l+log(n).  For example, a blnomlal 

(n  , p )  random varlate can be generated by thls method In expected tlme 
0 (log(n )) provlded that the probabllltles can be computed In tlme 0 (1) (thls 
assumes that the logarlthm of the factorlal can be computed In constant tlme). 
For the domlnatlng dlstrlbutlon, see for example exerclse III.4.3. 

i = 1  i -  

Example 5.3. The hybrid rejection method. 
As In example 5.1, random varlates wlth the domlnating probablllty vector 

are usually obtalned by truncatlon of a continuous random variate. Thus, I t  
seems lmportant to dlscuss very brlefly how we can apply a hybrld reJectlon 
method based on the followlng lnequallty: 

p i  5 cg ( 5 )  (all z E [ i  ,i+l) , i 20) . 
Here c 21 Is the rejection constant, and g 1s an easy denslty on [O,oo). Note that 
p can be extended to a denslty f ln the obvious manner , 1.e. 
f (5 )=p i  ,all 5 E[i  ,i +1). Thus, random varlates wlth probablllty vector p can 
be generated as follows: 
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Hybrid rejection algorithm 

REPEAT 
Generate a random variate Y with density g . Set X+ LY]. 
Generate a uniform [O,l] random variate U .  

UNTIL UCg (Y)<px 
R E T U R N X  

5.2. The composition and acceptance-complement methods. 
It goes wlthout saylng that the entlre dlscusslon of the composltlon and 

acceptance-complement methods for contlnuous random varlates can be repeated 
for dlscrete random varlates. 

5.3. Exercises. 
1. Develop a reJectlon algorithm for the generation of an Integer-valued random 

varlate X where 
C C P ( X = i )  = --- 

2i-1 2i 
(i =1,2, ...) 

1 and c=- 1s a normallzatlon constant. Analyze the efflclency of your 
210g2 

algorlthm. Note: the serles 1--+--- +--. . . converges to log2. There- 1 1 1  1 
2 3 4  5 

fore, the terms considered In palrs and dlvlded by log2 can be considered as 
probabllltles deAnlng a probabllity vector. 

2. Conslder the famlly of probabillty vectors c ( a )  , iL1, where a 20 1s a 

parameter and c ( a  )>0 1s a normallzatlon constant. Develop the best possl- 
ble reJectlon algorlthm that is based upon truncation of random varlables 
wlth dlstributlon functlon 

( a  

F (x ) = l-- a+1 ( x > l ) .  
a +x 

Flnd the probablllty of acceptance, and show that i t  1s at least equal to 
. Show that the lnfimum of the probablllty of acceptance over U 

a +2 
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a E[o,oo) Is nonzero. 
The discrete normal distribution. A random varlable X has the discrete 
normal dlstrlbutlon wlth parameter a>O when 

3. 

( I  i I +$ l 2  

- 
P ( X = i )  = ce 2 2  ( z  Integer) . 

Here c > O  1s a normallzation constant. Show flrst that 

1 1  
c = -(-+o(l)) 

0 6  

. its o+oo. Show then that X can be generated by the following rejectlon 
algor1 thm: 

REPEAT 
Generate a normal random variate Y, and let x be the closest integer to Y, 
Le. X+round( Y). Set + I X I f ~ .  1 

Generate a uniform [0,1] random variate U. 
UNTIL -2a210g( U ) 2 Z2- Y2 
RETURN x 

Note that -log( u )  can be replaced by an exponential random varlate. Show 

that  the probablllty of rejectlon does not exceed - &. In other words, 

the algorlthm 1s very emclent when u 1s large. 
U 

' I  


