Chapter Two
GENERAL PRINCIPLES
IN RANDOM VARIATE GENERATION

1. INTRODUCTION.

In this chapter we Introduce the reader to the fundamental principles in
non-uniform random varlate generatlon. Thls chapter Is a must for the serlous
reader. On its own 1t can be used as part of a course in simulation.

These baslc principles apply often, but not always, to both continuous and
discrete random varlables. For a structured development It is perhaps best to
develop the materlal according to the gulding princlple rather than according to.
the type of random variable Involved. The reader Is also cautioned that we do -
not make any recommendations at thils polnt about generators for varlous distri-
butlons. All the examples found in this chapter are of a didactical nature, and

the most Important familles of distributions will be studled In chapters IX,X,XI In
more detall.

2. THE INVERSION METHOD.

2.1. The inversion principle.
. The Inversion method 1s based upon the following property:
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Theorem 2.1.
Let F be a continuous distrlbution function on R with Inverse F'~! defined
by
FYu)=1nf {z:F(z)=u,0<u <1} .
If U 1s a uniform [0,1] random varlable, then F~}(U) has distribution function

F. Also, If X has distribution function F, then F (X) is uniformly distributed
on [0,1].

Proof of Theorem 2.1.
The first statement follows after noting that for all z €R,

P(FYU)<z)= P(nf {y:F(y)=U}<z)
= P(ULF(z))=F(z).
The second/ statement follows from the fact that for all O0<u <1,
P(F(X)<u)=P(X<FYu))
=FFu)=u N

Theorem 2.1 can be used to generate random varlates with an arbltrary con-
tinuous distribution function F provided that F~! is explicltly known. The fas-
ter the Inverse can be computed, the faster we can compute X from a glven unl-
" form [0,1] random varlate U. Formally, we have

The inversion method

Generate a uniform [0,1} random variate U.
RETURN X «F(U)

In the next table, we glve a few lmportant examples. Often, the formulas for
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F~Y(U) can be simplified, by noting for example that 1-U 1s distributed as U.

Density f (z) F(z) X=FYU) Simplified form
Exponential(\) -
Xe™>* | z>0 1-¢~* —%log(l—U) —-;l\-log(U)

Cauchy(o)

o 1 1 z . 1

S A — 4 arctan(— —

e o) > + — arctan( po ) otan(m(U p )] ctan(nU)
Rayleigh(o)

z2 ' 22

-g—-c 2*  2>0 1-e 2° av-log(1=-U) ov-log(U)

Triangular on(0,a )

2
21-%), 0<z <a 2z-2 e (1-V1-0 ) e (1-VT )
a a a 2a
Tail of Rayleigh
6%g? a%g?
re ? ,z>a>0 1-¢ 2 a *~2log(1-U) Va?-2logU

Pareto(a ,b)

ab*® b.¢ b b
rdt! ' T Zb >0 1_(_1.-) ’ (]:U)l/a Ul/a

There are many areas in random varlate generation where the inversion
method Is of particular Importance. We clite four examples:

Example 2.1. Generating correlated random variates.

* 'When two random varlates X and Y are needed with distribution functlons
F ‘and G respectively, then these can be obtalned as F~(U) and G}(V') where
U and V are uniform [0,1] random varlates. If U and V are dependent, then so
are F"Y(U) and G~Y(V). Maximal correlation Is achleved by using V=U, and
maximal negative correlatlon s obtalned by settlng V =-U. While other
methods may be avallable for generating X and/or Y Individually, few methods
allow the flex1bllity of controlling the correlatlon as described here. In varlance
reductlon, negatively correlated random varlates are very useful (see e.g. Ham-
mersley and Handscomb, 1964, or Bratley, Fox and Schrage, 1984). .
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Example 2.2. Generating maxima.

To generate X =max(X,, . .., X, ), where the X;'s are 11d random varlates
with distribution function F', we could:

(1) Generate X, . . ., X, , and take the maximum.

(11) Generate a uniform [0,1] random vartate U and find the solution X of
Fr"X)=U.

(111) Generate V', a random varlate distributed as the maximum of n 11d uni-
form [0,1] random varlates, and find the solutlon X of F(X )= V.

Thus, the elegant solutlons (11) and (111) Involve inversion. [}

Example 2.3. Generating all order statistics.

A sample X ), . . ., X, of order statlstles of a sequence X, ..., X, of
11d random varlables with distribution functlon F can be obtalned as
F‘I(U(l)), C F‘I(U(n)), where the U(;y's are the order statlstics of a unlform

sample. As we will see further on, thls Is often more efficient than generating the
X; sample and sorting it. |}

Example 2.4. A general purpose generator.

The Inversion method Is the only truly universal method: If all we can do Is
compute F (z) for all z, and we have enough (l.e., infinite) tlme on our hands,
then we can generate random varlates with distribution functlon F. All the

other methods described in this book require additional information In one form
or another. JIj
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2.2. Inversion by numerical solution of F(X)=U.

The Inversion method Is exact when an explicit form of F~! 1s known. In
other cases, we must solve the equatlon F (X )= U numerlcally, and this
requires an Infinite amount of time when F Is continuous. Any stopping rule
that we use with the numerlcal method leads necessarily to an Inexact algorithm.
In thls sectlon we will briefly descrlbe a few numerlcal inverslon algorithms and
stopping rules. Desplte the fact that the algorithms are lnexact, there are situa-
tlons In which we are virtually forced to use numerical Inverslon, and it Is lmpor-
tant to compare different lnverslon algorithms from various polnts of view.

In what follows, X is the (unknown, but exact) solutlon of F (X ) = U, and
X* 1s the valué returned by the numerlical inversion algorithm. A stopplhg rule
which Inslsts that | X*-X | <6 for some small §>0 1s not reallstic because for
large values of X, thls would probably imply that the number of significant
digits Is -gi'eater than the bullt-in limlt dlctated by the wordslize of the computer.
A second cholce for our stopplng rule would by | F (X*)-F (X)| <€, where ¢>0
Is a small number. Slnce all F' values are in the range [0,1], we do not face the
above-mentloned problem any more, were It not for the fact that small varlations
in X can lead to large varlations In F (X )-values. Thus, 1t Is possible that even
the smallest reallzable Increment In X ylelds a change In F (X ) that exceeds the
glven constant €. A third possibillty for our stopplng rule would be
| X*-X | <8| X | where the value of § 1s determined by the wordslze of the
computer. Whlle this addresses the problem of relatlve accuracy correctly, 1t will
lead to more accuracy than 1s orinarily required for values of X near 0. Thus, no
stopping rule seems universally recommendable. If we know that X takes values
In [-1,1], then the rule | X*-X | <6 seems both practical and amenable to
theoretlcal analysls. Let us first see what we could do when the support of F falls
outslde [-1,1].

Let h :R —(-1,1) be a strictly monotone contlnuous transformatlion.
Assume now that we obtaln X* by the following method:

Let Y* be the numerical solution of F(h~}(y)) = U, where U is a uniform [0,1] random
variable and Y* is such that it is within é of the exact solution Y of the given equation.

X+ «— h7Y(Y#)

Here we used the fact that Y has distributlon functlon F (k7Y (y)), |y | <t1.
Let us now look at what happens to the accuracy of the solution. A varlation of
dy on the value of y leads to varlatlon of h™¥(y) dz = h~V(h (z)) dr on the
corresponding value of . The expected varlatlon thus Is about equal to Vé
where

V = EhV(h(X)) = E(TL,—jjf—)) .
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Unfortunately, the best transformatlon A, l.e. the one that minlmizes V, depends
upon the distribution of X . We can glve the reader some Inslght in how to
choose A by an example. Consider for example the class If transformations

-m
hi(z) = ——————,
@) s+ |z-m |
where s >0 and meR are constants. Thus, we have

h~Yy) = m+sy /(1- |y |), and
V = E(—i—(s-*— | X-m |)2) = s +2E (| X -m |)+—18—E((X—m 1) .

For symmetric random varlables X, thls expression is minimized by se‘btlng
m ==0 and s =V Var(X ). For asymmetric X, the minimization problem Is very
difficult. The next best thing we could do is minimize a good upper bound for V,
such as the one provided by applying the Cauchy-Schwarz Inequallty,

V < s+2VE (X -m )2)+—13—E((X—m ) .

This upper bound Is minimal when
m =FEX),s =vVvVar(X).

The upper bound for V then becomes 4V Var(X ). This approach requires either
exact values or good approximations for m and s. We refer to Exerclse 1 for a
detalled comparison of the average accuracy of this method with that of the
direct solution of F (X ) = U given that the same stopplng rule Is used.

We wlll discuss three popular numerlcal Inversion algorithms for F (X )=U:

The bisection method

Find an initial interval {e ,b ] to which the solution belongs.
REPEAT
X(a+b)/2
IFFXHSU
THEN a «X
ELSE b« X
UNTIL b-a <26
RETURN X
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The secant method (regula falsi method)

Find an interval [a ,b] to which the solution belongs.
REPEAT
U-F(a)
X+—a+(b-a )—-—-—-—-—F(b Y F(a)
IF F(X)HSU
THEN ¢ +—X
ELSE b «X
. UNTIL b-a <§

RETURN X

The Newton-Raphson method

Choose an initial guess X .
REPEAT
F(X)-U)
X<——X__(_.-__
» [ (X)
UNTIL stopping rule is satisfied. (Note: f is the density corresponding to F'.)

RETURN X .

In the first two methods, we need an Initlal Interval [a,b] known to contain
the solutlon. If the wuser knows . functlons G and H such that
G(z)2F(z)>H(z) for all x, then  we could start . with
[a,b) = [GY(U),HY(U)]. In particular, If the support of F Is known, then we
can set [a,b] equal to 1t. Because 1t 1s Important to have reasonably small Inter-
vals, any a priori information should be used to select [a,b]. For example, If F
has varlance o? and Is symmetric about 0, then by Cantelll’'s extenslon of
Chebyshev’s Inequallty,

o2

z240

F(z)2> (z >0).
This suggests that when U >?12-, we take

U
[a,b] == [0,0’ T_—(']-] .



34 II.2.INVERSION METHOD

1
When U S;, we argue by symmetry. Thus, Informatlon about moments and

quantiles of F' can be valuable for Initlal guesswork. For the Newton-Raphson
method, we can often take an arbltrary polnt such as 0 as our Initlal guess.

The actual cholce of an algorithm depends upon many factors such as

(1) Guaranteed convergence.

(11) Speed of convergence.

(111) A prior! information.

(1v) Knowledge of the density f .

If f/ 1s not explicltly known, then the Newton-Raphson method should be
1

avolded because the approximation of f (z) by —5-(F (z 4+6)-F (z)) 1s rather lnac-

curate because of cancelation errors.

Only the bisectlon method 1s guaranteed to converge In all cases. If
F (X)=U has a unlque solution, then the secant method converges too. By "con-
vergence” we mean of course that the returned variable X* would approach the
exact solution X If we would let the number of iteratlons tend to oo. The
Newton-Raphson method converges when F 1s convex or concave. Often, the
density f s unlmodal with peak at m . Then, clearly, F Is convex on (~o0,m ],
and concave on [m ,00), and the Newton-Raphson method started at m con-
verges.

Let us conslder the speed of convergence now. For the blsectlon method
started at [a,b] = [¢,(U),9,(U)] (where g, g, are given functions), we need N
Iteratlons If and only If

2N < g,(U)-g,(U) < 2V .
The solution of this Is

N =1+ 1Llog+<(gz<v)~glw))/6)} :

where log, Is the positive part of the logarithm with base 2. From thls expres-
sion, we retain that £ (/N) can be Infinite for some long-talled distributions. If the
solution Is known to belong to [-1,1], then we have deterministically,

N < 1+log+(—15-) .

And In all cases In which E(N) < oo, we have as 6|0, E(N )~log(-]$—). Essen-

tially, adding one bit of accuracy to the solutlon Is equivalent to adding one
\teration. As an example, let us take § = 1077, which corresponds to the stan-
dard cholce for problems with solutions in [-1,1] when a 32-blt computer s used.
The value of N In that case Is In the nelghborhood of 24, and this Is often inac-
ceptable.

The secant and Newton-Raphson methods are both faster, albelt less robust,
than the bisectlon method. For a good discussion of the convergence and rate of
convergence of the glven methods, we refer to Ostrowskl (1973). Let us merely
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state one of the results for F (/N), the quantity of Interest to us, where N 1s the
number of lteratlons needed to get to within § of the solution (note that this is
imposslble to verlfy when an algorithm Is running !). Also, let F' be the distribu-
tlon functlon corresponding to a unlmodal density with absolutely bounded
derlvative f’/. The Newton-Raphson method started at the mode converges, and
for some number [V, depending only upon F (but possibly co) we have

E(N) < No+lqglog(-15)

where all logarithms are base 2. For the secant method, a simllar statement can
be made but the base should be replaced by the golden ratlo, %(1+\/5). In both

cases, the Influence of § on the average number of Iterations Is practically nil, and
the asymptotlc expresslon for E (N) Is smaller than In the blsectlon method
(when 6]0). Obviously, the secant and Newton-Raphson methods are not unlver-
sally faster than the bisectlon method. For ways of accelerating these methods,
see for example Ostrowskl! (1973, Appendix I, Appendix G).

2.3. Explicit approximations.

When F~!is not explicltly known, It can sometimes be well approximated by
another expllicltly known function ¢ (U ). In Iterative methods, the stopplng rule
usually takes care of the accuracy problem. Now, by resorting to a one-step pro-
cedure, we squarely put the burden of verifylng the accuracy of the solution on
the shoulders of the theoreticlan. Also, we should defilne once agaln what we
mean by accuracy (sée Devroye (1982) for a critlcal discusslon of varlous
definitlons). Iteratlve methods can be notoriously slow, but this Is a small price
to pay for their conclseness, simpllclty, flexiblilty and accuracy. The four maln
lilmitatlons of the direct approximation method are:

(1) The approximatlon 1s valid for. a given F: to use 1t when F changes fre-
quently durlng the slmulation experlment would probably require extraordl-
nary set-up times.

(11) The functlon ¢ must be stored. For example, ¢ Is often a ratio of two poly-
nomlals, In which case all the coefficlents must be put In a long table.

(1) The accuracy of the approximatlon Is fixed. If a better accuracy s needed,
the entlre functlon ¢ must be replaced. This happens for example when one
switches to a computer with a larger wordslize. In other words, future com-
puter upgrades will be expensive.

(Iv) Certaln functions cannot be approxlmated very well by standard approxl-
mation technlques, except possibly by lnacceptably complicated functlons.
Also, approximatlons are difficult to develop for multiparameter famllles of
functions.
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How one actually goes about designing approximations g wIill not be
explalned here. For example, we could start from a very rough approximation of
F 1, and then expllcitly compute the functlon that corresponds to one or two or
a fixed number of Newton-Raphson lteratlons. This Is not systematlc enough In
general. A spllne method was developed In Kohrt (1980) and Ahrens and Kohrt
(1981). In the general literature, one can find many examples of approxlmations
by ratlos of polynomlals. For example, for the Inverse of the normal distribution
functlon, Odeh and Evans (1974) suggest

g (u) = vo2iog(u )+ AV-2loe()) -;- >4 > 107,

B (V-2log(u))
4 . 4 :
where A (z)= S a;z', and B(z)= Y] b; 2", and the coefficlents are as shown In
: { =0 §=0
the table below:
1 a; b"
0 [ -0.322232431088 0.0993484626060
1] -1.0 0.588581570495
2 | -0.342242088547 0.531103462366
3 | -0.0204231210245 0.103537752850
4 | -0.0000453642210148 | 0.0038560700634

For u In the range [-%—,1—-10’20], we take —¢ (1-v ), and for « In the two tiny left-

over Intervals near O and 1, the approximation should not be used. Rougher
approximations can be found In Hastings (1955) and Balley (1981). Balley’s
approximation requires fewer constants and s very fast. The approximation of
Beasley and Springer (1977) Is also very fast, although not as accurate as the
Odeh-Evans approxlmation given here. Simllar methods exist for the Inverslon of
beta and gamma distribution functlons.

2.4. Exercises.

1. Most stopping rules for the numerical lterative solutlon of F (X )==U are of
the type b—a <6 where [a,b] Is an Interval contalning the solutlon X, and
6>0 is a small number. These algorithms may never halt if for some u,
there is an Interval of solutions of F (X )=u (this applies especlally to the
secant method). Let A be the set of all ¥ for which we have for some
z<y, F(z)=F(y)=u. Show that P (U€EA )==0, l.e. the probabllity of
ending up in an infinite loop Is zero. Thus, we can safely lIft the restriction
Imposed throughout this section that F (X )==« has one solution for all .

2. Show that the secant method converges iIf F (X )=U has one solutlon for
the glven value of U.

3. Show that if F (0)==0 and F Is concave on [0,00), then the Newton-Raphson
method started at O converges.
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4. Student’s t distribution with 3 degrees of freedom.
Conslder the denslty

2
(@)= ——0r,
m(14z%)
and the corresponding distribution function

F(z)= -;—+-71r—(arc tan z + ).

14z

These functions define the t distributlon with 3 degrees of freedom. Else-
where we will see very efficlent methods for generating random varlates from
thls distributlon. Nevertheless, because F-! is not known explicitly (except
perhaps as an Infinlte serles), this distrlbution can be used to lllustrate many

polnts made In the text. Note first that the distribution Is symmetric about
0. Prove first that

,l+—1—arc tanz < F(z) < -L-i--?-arc tanz (z 2>0).
2 7w 2 7

Thus, for U 2-;—, the solutlon of F (X )==U lles In the Interval
™ 1 1
tan(—(U -=)),tan(m(U-=))] .
[an(z( 2))a(7f( 2))]

Using this Interval as a starting Interval, compare and time the blsectlon
method, the secant method and the Newton-Raphson method (In the latter
method, start at O and keep lterating untll X does not change In value any
further). Flnally, assume that we have an efflclent Cauchy random varlate
generator at our disposal. Recalllng that a Cauchy random varlable C Is

distributed as tan(W(U—-g-)), show that we can generate X by solving the

equation

arc tan X +

T == arc tan C ,
1+

and by starting with initial lnterval
[ V1+C%1
V1+C%1

when C >0 (use symmetry In the other case). Prove that this Is a valld
method.

C]

5. Develop a general purpose random varlate generator which 1s based upon
Inverslon by the Newton-Raphson method, and assumes only that F and the
corresponding density f can be computed at all polnts, and that f s unl-
modal. Verlfy that your method Is convergent. Allow the user to speclfy a
mode If thls Informatlon is avallable.
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Write general purpose generators for the bisectlon and secant methods In
which the user specifies an inltlal Interval [g,(U),g,(U)).

Discuss how you would solve F (X )=U for X by the bisection method If no
Initial Interval Is avallable. In a first stage, you could look for an interval
[a,b] which contalns the solution X . In a second stage, you proceed by ordl-
nary bisectlon untll the Interval’s length drops below 8. Show that regardless
of how you organize the original search (this could be by looking at adjacent
Intervals of equal length, or adjacent Intervals with geometrically Increasing
lengths, or adjacent Intervals growing as 2,22,222,...), the expected tlme taken
by the entlre algorithm Is co whenever F (log, | X | )=oc0. Show that for
extrapolatory search, 1t Is not a bad strategy to double the Interval sizes.
Finally, exhiblt a distribution for which the glven expected search time Is co.
(Note that for such distributions, the expected number of bits needed to
represent the Integer portion is infinite.)

An exponential class of distributions. Consider the distributlon func-

n .

tlon F (z)=1-¢ “4(%) where A, ()= a;z' for z 20 and A, (z)=0 for
i=1

z <0. Assume that all coefficlents a; are nonnegative and that a,>0. If U

Is a uniform [0,1) random varlate, and E Is an exponentlal random varlate,

then 1t Is easy to see that the solutlon of 1—e “A*X)={/ 1s distributed as the

solutlon of A, (X )==FE . The baslc Newton-Raphson step for the solution of

the second equatlon is
A, (X)-E
A, (X)

X—X-

Since a,>0 and A, Is convex, any starting polnt X >0 will yleld a conver-
gent sequence of values. We can thus start at X =0 or at X =F /a ; (which
Is the first value obtalned In the Newton-Raphson sequence started at 0).
Compare this algorithm with the algorithm In which X 1s generated as

where El, ..., E, are 11d exponential random varlates.

Adaptive inversion. Consider the situation In which we need to generate
a sequence of n ild random varlables with continuous distribution function
F by the method of Inversion. The generated couples (X,,U,),... are stored
(Xy=F"(U,) and U, 1s uniform [0,1]). Define an algorithm based upon a
dynamic hash table for the U;’s in which the table 1s used to find a good
starting Interval for Inversion. Implement, and compare this adaptive
method with memoryless algorithms (Yuen, 1981).

Truncated distributions. Let X be a random varlable with distribution
functlon F. Define the truncated random varlable Y by lits distribution
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11.

12.

functlon
0 | r<a
G(z)== ___—_—F(b)—F(a) a<z<b.
1 z>b

Here -o00<a <b <oco. Show that Y can Dbe generated as
F~YF (a)+U(F (b)-F (a))) where U Is a uniform [0,1] random varlate.

Find a monotonlcally decreasing density f on [0,00) such that the Newton-
Raphson procedure started at X =0 needs IN steps to get within § of the

solution of F' (X )=U where N Is a random varlable with mean E (N )==co
for all 6>0.

The logistic distribution. A random variable X 1s sald to have the logls-

tlc distribution with parameters ¢ €R and b >0 when

F(z)= LI

z -4

1+e °

It 1s obvious that e Is a translation parameter and that b 1s a scale parame-
ter. The standardlized loglstic distributlion has ¢ ==0,b =1. The denslty 1s

(@)= -(—1—::—)-2- = F(z)(1-F (2)) .

The loglstic density Is symmetric about O and resembles In several respects
the normal density. Show the followilng:
U

A. When U Is unlformly distributed on [0,1], then X =log( 7

) has the
standard loglstic distributlon.

1s distributed as the ratlo of two i1d exponentlal random varlables.

C. We say that a random variable Z has the extremal value distribution
with parameter ¢ when F (z)=e~% . If X s distributed as Z with
parameter Y where Y s exponentlally distributed, then X has the
standard logistic distributlon.

EX="", ana E(XH=T"",
3 15

E. If X, X, are independent extremal value distributed random varlables

with the same parameter ¢, then X 1"X o has a loglstic distribution.
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3. THE REJECTION METHOD.

3.1. Definition.

The rejectlon method 1s based upon the following fundamental property of
densltles:

Theorem 3.1.

Let X be a random vector with density / on R ¢ andlet U be an indepen-
dent uniform [0,1] random variable. Then (X ,cUf (X)) Is uniformly distributed
on A={(z,u)z€R?® ,0<u<cf (z)}, where ¢ >0 Is an arbltrary constant.
Vice versa, If (X,U) Is a random vector In R ¢*! unlformly distributed on A ,
then X has denslity f/ on R¢.

Proof of Theorem 3.1.

For the first statement, take a Borel set B C A, and let B, be the sectlon of
B at z,le. B, _{u:(z,u)EB}. By Tonelll's theorem,

1
X, B) =
P(X.cUT (O0EB) = | | <7

Since the area of A 1s ¢, we have shown the first part of the Theorem. The
second part follows If we can show that for all Borel sets B of R d,
P(XeB )=ff (z ) dz (recall the definitlon of a density). But

B

du f(:z:)dx=—1—fdu dz .
B

P(Xe€B)=P(X,U)eB, = {(z,u):z€B ,05u <cf (z)})
[ du dz
B, 1

I eeemm—— T t— d = d ’
J[ du dz C{JCf(x)z 1f3f(x)x

A

which was to be shown. [}
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Theorem 3.2.

Let X', X,,... be a sequence of 11d random vectors taking values In R ¢, and
let ACR? be a Borel set such that P (X €A )=p >0. Let Y be the first X;
taking values In A. Then Y has a distribution that 1s determined by

P(X,€ANB)

P(YEB) = , B Borel set of R ¢ .

In particular, If X, Is uniformly distributed In A , where A DA, then Y 'Is unl-
formly distributed in A4 .

Proof of Theorem 3.2.
For arbitrary _Borel sets B, we observe that

P(YEB)= NP(X\8A, ..., X ¢4 X,€BNA)

§=1

00 .
= 3 (1-p ) 'P(X,€EANB)
=1

=1
1-(1~p)

which was to be shown. If X, Is unlformly distributed in A 4, then
[ dz [ dz [ d=

P(X,€ANB)  4.4B Ao __AB
P(X,€A) [ dz ' [ dz [ d=z

Ao AA, A

P(X,€ANB),

P(YEB) =

This concludes the proof of Theorem 3.2. ||

The baslc verslon of the rejectlon algorithm assumes the existence of a den-
sity g and the knowledge of a constant ¢ >>1 such that

f(2)< cg(z) (allz).

Random varlates with density f on R ¢ can be obtalned as follows:
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The rejection method

REPEAT

Generate two independent random variates X (with density ¢ on R%) and U {(uni-
formly distributed on [0,1}).

UNTIL UT <1
RETURN X

By Theorem 3.1, (X ,cUg (X)) (where X and U are as explalned In the first line
of the REPEAT loop) 1s unlformly distributed under the curve of c¢g In R ¢+
By Theorem 3.2, we conclude that the random variate (X ,cUg (X)) generated by
thls algorithm (l.e. at time of exlt) Is uniformly distributed under the curve of f .
By the second part of Theorem 3.1, we can then conclude that its d -dimensional
projectlon X must have density [ .

The three things we need before we can apply the re)ection algorithm are (1)
a dominating density ¢ ; (11) a simple method for generating random varlates with
denslty ¢; and (111) knowledge of ¢ . Often, (1) and (111) can be satisfled by a priorl
inspection of the analytical form of f . Baslcally, ¢ must have heavler talls and
sharper Infinite peaks than f . In some situations, we can determine cg for entire
classes of denslties f . The dominating curves cg should always be picked with
care: not only do we need a simple generator for g (requirement (11)), but we
must make sure that the computation of -————7 ((‘;(()) is simple. Finally, cg must be

such that the algorithm is efficlent.

Let N be the number of iterations In the algorithm, l.e. the number of palrs
(X,U) required before the algorithm halts. We have

P(N=i)=(-p)p ; PIN2i) = (-p)* (i21),

where
p =P(f (X)2cUg (X)) = fP(U<——-—f (x))d:r
/(@) cg ()
—3 z ——____l- .._.,l
_fmg(x)dx cff(av)d:lc—’c.

Thus, E(N)=-i—=c, E(N2)=—g-2-—% and Var(N)=1—_-22=c2—c . In other

P
words, E (INV) 1s one over the probabllity of accepting X . From thls we conclude
that we should keep ¢ as small as possible. Note that the distribution of N Is

1
geometric with parameter p=—c—. This 1s good, because the probabllitles
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P(N=1) decrease monotonically, and at an exponentlal rate (note that
P(N>1)=(1-p) <e™7 ). -

The reJectlon method has an almost unlimited potential. We have given up
the principle that one uniform [0,1] random varlate ylelds one varlate X (as In

the Inversion method), but what we recelve In return Is a powerful, slmple and
exact algorithm.

Example 3.1. Bounded densities of compact support.

Let Cjr , 5 be the class of all densltles on [a,b] bounded by M. Any such
density Is clearly bounded by M. Thus, the rejection algorithm can be used with
uniform dominating denslty ¢ (z)=(b-a)™? (a <z <b), and the constant ¢
becomes M (b —a). Formally, we have

The rejection method for Cy , s

REPEAT
Generate two Independent uniform {0,1} random varlates U and V.
- Set X«—a+(b-a)V.
UNTIL UM< f (X)
RETURN X i}

The reader should be warned here that this algorlthm can be horribly lnefficlent,
and that the cholce of a constant domlnating curve should be avolded except In a
few cases.

3.2. Development of good rejection algorithms.

Generally speaking, ¢ 1s chosen from a class of easy densitles. Thils class
Includes the unlform denslty, triangular densltles, and most densltles that can be
generated qulckly by the inversion method. The situation usually dlctates which
densltles are consldered as "easy”. There are two major technliques for determin-
Ing ¢ and ¢ In the lnequallty f <cg: one could first study the form of f and
apply one of many analytical devices for obtalning Inequallitles. Many of these
are lllustrated throughout thls book (collecting them In a spectal chapter would
have forced us to dupllicate too much materlal). While this approach glves often



44 II.3.REJECTION METHOD

qulck results (see Example 3.2 below), 1t Is ad hoc, and depends a lot on the
mathematical background and Insight of the deslgner. In a second approach,
which is also lllustrated In thls sectlon, one starts with a famlly of dominating
densltles ¢ and chooses the density within that class for which ¢ s smallest.
This approach 1s more structured but could sometimes lead to difficult optimlza-
tion problems.

Example 3.2. A normal generator by rejection from the Laplace density.

Let f be the normal density. Obtalning an upper bound for f bolls down
2

to obtalning a lower bound for —‘%— But we have of course

1 e T2 1
-— 1) = ——— >0.
Lz =Tadofa) >

Thus,
z? 1
1 Ty 1 pled
Ve - Ver )
where ¢ (r) = —;-e" 2| 15 the Laplace density, and ¢ = —2-’”3 1s the rejectlon

constant. Thlis suggests the followlng algorithm:

A normal generator by the rejection method

REPEAT
Generate an exponential random variate X and two independent uniform [0,1] ran-
dom variates U and V. If U <—;-, set X «—-X (X is now distributed as a Laplace

random variate).
1 X2

2

1 3 1
UNTIL V- 2 <
-\7271' ¢ - ;27r ¢

RETURN X

The condlition In the UNTIL statement can be cleaned up. The constant \/1_

21
cancels out on left and right hand sldes. It 1s also better to take logarithms on
both sides. Filnally, we can move the sign change to the RETURN statement
because there Is no need for a sign change of a random variate that will be

rejected. The random varlate U can also be avolded by the trick implemented in
the algorithm glven below. ‘
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A normal generator by rejection from the Laplace density

REPEAT

Generate an exponential random variate X and an independent uniform [-1,1] ran-
dom variate V.,

UNTIL (X -1)*<-2log(| V |)

RETURN X +X sign (V) |}

For given densitles [ and g, the rejection constant ¢ should be at least
equal to

f (z)
@)

We cannot loose anything by settlng ¢ equal to thls supremum, because this
Insures us that the curves of f and cg touch each other somewhere. Instead of
letting ¢ be determlned by some Inequallty which we happen to come across as
In Example 3.2, It Is often wiser to take the best gg In a famlly of densitles
parametrized by 6. Here § should be thought of as a subset of R * (In which case
we say that there are £ parameters). Deflne the optimal rejectlon constant by

_ S (@)
0T ey

The optimal § 1s that for which ¢, 1s minimal, l.e. for which ¢ ¢ Is closest to 1.

We will now {llustrate thls optimlzation process by an example. For the sake
of argument, we take once agaln the normal denslty f . The famlly of domlnat-
Ing densltles Is the Cauchy famlly with scale parameter §:

(@)=L 1
g = - 92-1—272 .

There 1s no need to consider a translatlon parameter as well because both f and
the Cauchy densltles are unlmodal with peak at 0. Let us first compute the
optimal rejection constant ¢ ¢- We will prove that

92
var <2

eﬂe

Cyp = .
W5 ez
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We argue as follows: f /g, s maximal when log(f /g4) Is maximal. Setting the
derivative with respect to z of log(f /g4) equal to O ylelds the equation

2z

-z +
0>+z?

=0.

This glves the values z =0 and 7 =+V 2-§> (the latter case can only happen

when 62<2). At =0, [ /g, takes the value 6 % At z=%V2-0% ,f /g,
&

2 It Is easy to see that for < V2, the maximum of [ /g,

takes the value
€

Is attained at ==V 2-6% and the minimum at £ =0. For §>/2, the maximum
Is attalned at z =0. This concludes the verification of the expression for c .

The remalnder of the optimlzation Is simple. The function ¢, has only one

minlmum, at f=1. The minimal value Is ¢ ;= E— With thils value, the con-

ditlon of acceptance Uc 49 (X )< f (X) can be rewrlmen as

X2
27 1 1 1 .
U —_— < —e 2,
e T 14+X2%2 T Ve
or as
X2
U< (1+X2)-——-V2ee 2

A normal generator by rejection from the Cauchy density

[SET-UP]

Ve

Qe ——

[GENERATOR]
REPEAT '
Generate two independent uniform [0,1) random variates U and V.

Set X «tan(nV), §«X? (X is now Cauchy distributed).
S

UNTIL U <o(1+S)e ?
RETURN X

The algorlithm derived here, though 1t has a rejectlon constant near 1.4 1s no
match for most normal generators developed further on. The reason for this Is

that we need falrly expensive Cauchy random varlates, plus the evaluatlon of exp
in the acceptance step.
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3.3. Generalizations of the rejection method.

Some generallzations of the rejection method are important enough to war-
rant speclal treatment in thls key chapter. The first generallzation concerns the
following case: - .

f()=c g(z)¥z),

where the functlon 4 1s [0,1]-valued, ¢ 1s an easy denslty and ¢ s a normaliza-
tlon constant at least equal to 1. The rejectlon algorithm for thls case can be
rewrltten as follows:

The rejection method

REPEAT

Generate independent random variates X ,U where X has density ¢ and U is uni
formly distributed on [0,1].

UNTIL U <(z)
RETURN X

Vaduva (1977) observed that for speclal forms of 1, there Is another way of
proceeding. Thls occurs when ¥=1-¥ where ¥ Is a distributlon function of an
easy denslty.

Vaduva's generalization of the rejection method

REPEAT

Generate two independent random variates X ,Y, where X has density ¢ and Y has
distribution function .

UNTIL X <Y
RETURN X

For =¥, we need to replace X <Y In the acceptance step by X >Y.

Theorem 3.3.

Vaduva's rejectlon method produces a random varlate X with density
==cg (1-¥), and the rejectlon constant (the expected number of lteratlons) Is ¢ .
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Proof of Theorem 3.3.

‘We prove this by showing that Vaduva’s algorithm is entlrely equivalent to
the original rejection algorithm. Note that the conditlon of acceptance, X <Y 1s
with probabllity one satisfled If and only If 1-¥(X )>1-¥(Y ). But by the proba-
bility integral transform, we know that 1-¥(Y ) is distributed as U, a uniform
[0,1] random varlable. Thus, we need only verify whether U <1-¥(X ), which
ylelds the origlnal acceptance conditlon given at the beginning of this section. .

The cholce between generating U and computing 1-¥(X ) on the one hand
(the original rejection algorithm) and generating Y wilth distribution function ¥
on the other hand (Vaduva's method) depends malnly upon the relative speeds of
computing a distrlbution functlon and generating a random variate with that dis-
tributlon.

Example 3.3.
Conslder the density

f(@)=1c¢c (az* N e* 0<z<1,

where a >0 Is a parameter and ¢ s a normallzation constant. Thls denslity is

part of the gamma (a ) density, written here In a form convenlent to us. The

domlnating denslty Is ¢ (z )==az ®~?, and the function 9 Is e %. Random varlates
1

with denslty ¢ can be obtalned quite easlly by Inverslon (take V ¢ where V 1s a

uniform [0,1] random varlate). In this case, the ordilnary rejection algorithm
would be

REPEAT
1
Generate two iid uniform [0,1} random variates U,V, and set X «V 4.
UNTIL U <e™¥
RETURN X

Vaduva's modificatlon essentlally consists In generatlng X and an exponential
random varlate £ untll £ > X . It Is faster If we can generate FE faster than we
can compute e =X (this 1s sometimes the case). Of course, In thls simple example,
we could have deduced Vaduva's modification by taklng the logarithm of the
acceptance conditlon and noting that E s distributed as ~log(U ). |}
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We now proceed with another generalization found In Devroye (1984):

Theorem 3.4.
Assume that a denslty f/ on R 4 can be decomposed as follows;

f@)=fg.x)h(y,z)dy,

where f dy 1s an Integral In R*, g(y,z) s a denslty In y for all z, and there
exists a function H (z) such that 0<hk(y,z)<H{(z) for all y, and H/fH Is an
easy density. Then the following algorithm produces a random varlate with den-
sity f , and takes /N Iteratlons where IV Is geometrically distributed with param-

eter —flI—{- (and thus E (N)=[H).

Generalized rejection method

REPEAT
 Generate X with density H/ f H (on RY).
Generate Y with density g (y,X ),y ER* (X is fixed).
Generate a uniform [0,1} random variate U.
UNTIL UH(X)<h(Y .X)
RETURN X

Proof of Theorem 3.4.

We will prove that this Theorem follows directly from Theorem 3.2. Let us
define the new random vector W =(X,Y ,U) where W, refers to the triple gen-
erated In the REPEAT loop. Then, If A 1s the set of values w,==(z,y,u) for
which uH (2 )<h(y,z), we have for all Borel sets B 1n the space of w,,

P(W.,€ANB) '
p

where p=P (W €A) and W refers to the value of W, upon exlit. Take
B =(-00,z]X R * % [0,1], and conclude that

P(WEB) =

P (X (returned)<z) = %P(X_{x,UH(X)Sh(Y,X)) .

T h(y.z) H(z)
f_{og(y,z) HG) [H

dz dy
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1 X
f(z)dz .
pr—L

We note first that by setting z =oo, p =—f—1—. But then, clearly, the varlate pro-
H
duced by the algorithm has density f as required. .

3.4. Wald’s equation.
‘We will rather often be asked to evaluate the expected value of

N

> W),

f =1
where W; 1s the collectlon of all random varlables used In the ¢-th lteratlon of
the relectlon algorithm, Is some functlon, and [NV is the number of iterations of
the rejectlon method. The random varlable N is known as a stopplng rule
because the probabllitles P(N=n) are equal to the probabllitles that
W, ..., W, belong to some set B, . The Interesting fact s that, regardless of
which stopping rule 1s used (l.e., whether we use the one suggested In the relec-
tlon method or not), as long as the. W,- 's are 11d random varlables, the following
remalns true:

Theorem 3.5. (Wald’s equation.)

Assume that W,... are 1ild R %-valued random varlables, and that 1% 1s an
arbitrary nonnegative Borel measurable function on R d, Then, for all stopping
rules IV,

N
E(Y W)= EN) EYW,).

f =1

Proof of Theorem 3.5.

To simplify the notatlon we write Z; =¢(W;) and note that the Z;'s are 1id
nonnegative random varlables. The proof glven here s standard (see e.g. Chow
and Telcher (1978, pp. 137-138)), but will be given In lts entirety. We start by
noting that Z; and Iy ;) are Independent for all +. Thus, so are Z; and Iin>ip
We wlll assume that E(Z,)<oco and E(N)<oo. It Is easy to verlfy that the

chaln of equallties gilven below remalns valld when one or both of these expecta-
tions Is ©o.

N 00
E(3¥2)=E(X Z 1INz

t=1 {=1
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o
= Y E(ZIinxi)

f=1

= 2 E(Z)P(N>i)

t=1

— E(Z) 2 P(N>i)

t=1

=E(Z)E(N).

The exchange of the expectatlon and Inflnite sum ls allowed by the monotone
convergence theorem: Just note that for any sequence of nonnegative random

varlables Y ,,..., iE(Y,-):E(Zn) Y,-)—»E(% Y;)). IR

=1 f=1 =1

It should be noted that for the rejectlon method, we have a speclal case for
which a shorter proof can be given because our stopping rule /N 1s an instantane-
ous stopplng rule: we deflne a number of declslons D; , all O or 1 valued and
dependent upon W; only: D=0 Indicates that we "reject” based upon W,
etcetera. A 1 denotes acceptance. Thus, /V iIs equal to n If and only If D, =1 and
D; =0 for all + <n. Now, :

N
E(X %W;)

t =1
= E( 3 AW, )+E (W Wy))

i<N
= E(N-1)E (W) | D,=0)+E (U W) | D,=1)
L E@W)I ) E@W I )
=PV Fo=o T PO =
_ E@W))

P(D,=1)"

which proves this speclal case of Theorem 3.5.
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3.5. Letac’s lower bound.

In a profound but little publiclzed paper, Letac (1975) asks which distribu-
tlons canbe obtalned for X =Uy where N Is a stopplng time and U, Ug,...1s an
11d sequence of uniform [0,1] random varlables. He shows among other things that
all denslties on [0,1] can be obtalned In this manner. In exercise 3.14, one univer-
sal stopping time wlll be described. It does not colncide with Letac's unlversal
stopplng rule, but will do for didactical purposes.

More Importantly, Letac has obtalned lower bounds on the performance of
any algorithm of thils type. Hls maln result Is:

Theorem 3.68. (Letac’s lower bound)

Assume that X ==Upy has denslty f on [0,1], where N and the U;’s are as
deflned above. For any such stopping rule N (l.e., for any algorithm), we have

ENY2Z 11/ o>

where | |.| | o Is the essentlal supremum of f .

Proof of Theorem 3.68.

By the Independence of the events [V >n] and [U, €B] (which was also
used In the proof of Wald’s equation), we have

P(N>n,U,€B)= P(N>n)P(U,EB).
But,

P(X€B)= 3 P(N=n,U,€B)

n=1

< SYP(N>n,U,€B)

n =1

— S P(N2n)P(UEB)

n=1

= E(N)P(U,EB).

Thus, for all Borel sets B,
P(XeB)

EN) 2 55y

If we take the supremum of the right-hand-side over all B, then we obtaln

11711 W
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There are qulte a few algorithms that fall Into thls category. In particular, If
we use rejectlon with a constant domlnatlng curve on [0,1], then we use N uni-
form random variates where for continuous f ,

E(N)>sup, f ().

We have seen that In the relection algorithm, we come within a factor of 2 of this
lower bound. If the U;’'s have denslty g on the real llne, then we can construct

stopplng tlmes for all densltles f that are absolutely continuous with respect to
g , and the lower bound reads

EN) > (1L ..
g
/ /

For continuous =—, the lower bound Is equal to sup— of~ course. Agaln, with the
g

rejection method with ¢ as domlnating denslty, we come within a factor of 2 of
the lower bound. .

There Is another class of algorithms that fits the description glven here, not-
ably the Forsythe-von Neumann algorithms, which will be presented In section
IvV.2.

3.6. The squeeze principle. _
In the relectlon method based on the Inequality [ <c¢g, we need to compute

the ratlo -f— N times where N 1s the number of iterations. In most cases, this Is

a slow opegatlon because f 1s presumably not a slmple function of Its argument
(for otherwise, we would know how to generate random varlates from f by other
means). In fact, sometlmes f 1Is not known explicitly: In this book, we wlll
encounter cases In which 1t Is the Integral of another functlon or the solution of a
nonllnear equation. In all these sltuatlons, we should try to avold the computa-

tion of -j— either entlrely, or at least most of the time. For princliples leading to

the totalgavoldance of the computation, we refer to the more advanced chapter
IV. Here we will brlefly discuss the squeeze principle (a term Introduced by
George Marsaglla (1977)) deslgned to avold the computation of the ratlo with
high probabllity. One should In fact try to find functions h , and h2 that are easy
to evaluate and have the property that

hiz) < [ (2) < hyla) .

Then, we have:
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The squeeze method

REPEAT

Generate a uniform [0,1] random variate U.

Generate a random variate X with density ¢ .

Set W—Uecg (X).

Accept «—[W <h (X))].

IF NOT Accept

THEN IF W <hy(X) THEN Accept — (W < f (X))

UNTIL Accept
RETURN X

In this algorithm, we Introduced the boolean varlable "Accept” to streamline
the exlt from the REPEAT loop. Such boolean variables come In handy whenever
a program must remaln structured and readable. In the algorithm, we count on
the fact that "Accept” gets Ilts value most of the time from the comparison
between W and k(X ), which from now on will be called a quick acceptance
step. In the remalning cases, we use a quick relection step (W >h (X)), and In
the rare cases that W is sandwlched between A (X ) and h (X ), we resort to the
expenslve comparison of W with f (X ) to set the value of " Accept”.

The valldlty of the algorlithm !s not Jeopardized by dropping the quick
acceptance and qulck rejectlon steps. In that case, we slmply have the statement
Accept—[W < f (X)], and obtaln the standard rejectlon algorithm. In many
cases, the quick re)ection step I1s omltted since 1t has the smallest effect on the
efficlency. Note also that 1t Is not necessary that h;>0 or k,<cg, although
nothlng will be galned by consldering violatlons of these boundary conditions.

We note that N Is as In the rejectlon algorithm, and thus, E (N)=c. T
galn wlill be In the number of computations Nf of [, the dominating fac*
the time complexity. The computation of E (N I ) demonstrates the usefulne.
Wald’s equation once again. Indeed, we have

N
Ny = 3 Inx)<w, <agXo) -

t=1

where W, 1s the W obtalned In the i-th lteratlon, and X; Is the X used in the
1-th iteration. To this sum, we can apply Wald’'s equation, and thus,

E(Nf )=E(N) P(h (X )< W <hy(X))
_ ho@ )-hy(z)
= c fg(x)_-c—gﬂ—)_—_ dz

= [(hy(a)-h(2)) dz .
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Here we used the fact that we have proper sandwiching, l.e. 0<h, < f <h 2<cg.
If h,=0 and h,=cg (l.e., we have no squeezing), then we obtaln the result
E(Nf )=c for the réjectlon method. With only a quick acceptance step (1.e.
hy=cg), we have E(N;)=c~-[h,. When h,;>0 and/or h,<cg are violated,
equality In the expression for E (N f ) should be replaced by inequality (exercise
3.13).

Inequalities via Taylor’s series expansion.
A good source of Inequalitles for functions f In terms of simpler functions Is

provided by Taylor's serles expansion. If f has n contlnuous derlvatives
(denoted by f M, ..., f (")) then 1t 1s known that

[ @)= f ©O+Z7 W0y - +E o) Zp (n)g),
1! n-1! nl

where £ Is a number In the Interval [0,x] (or [z,0], depending upon the sign of
z ). From thls, by Inspection of the last term, one can obtaln Inequalitles which
are polynomials, and thus prime candidates for &, and h,. For example, we have

2 -1
e = 1~x+z—'—' < +(-1)" IZ +(-1)" ——e <,

From this, we see that for £ >0, ¢ * Is sandwiched between consecut;lve terms of
the well-known expansion

= (1 )'w

§ =0

In particular,

2
1-z < e < 1—x+£2—— (z>0) .

Example 3.4. The normal density.

For the normal density f , we have developed an algorithm based upon
rejection from the Cauchy density In Example 3.2. We used the Ilnequallty

[ <cg where ¢ = 2r and ¢ (z )-=—-1———. For h, and k, we should look
€ (142 2)

for simple functions of z. Applylng the Taylor serles technlque described above,

we see that

4

z? z? z
1 < V2 < e —
2 - ﬂ'f (.’L‘) - 2 * 8
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Using the lower bound for kh,, we can now accelerate our normal random varlate
generator somewhat: :

Normal variate generator by rejection and squeezing

REPEAT
Generate a uniform [0,1] random variate U.

Generate a Cauchy random variate X .

2U
——— (Note: WecUg (X )V2n.
Ve (1+X?) ( g(X)vam)

2
Accept «—[W Sl—-)-g—].

Set W

IF NOT Accept THEN Accept —[W <e 2.
UNTIL Accept
RETURN X

This algorithm can be Improved In many directions. We have already got rid of
the annoylng normallzatlon constant v2m. For | X | >v/2, the quick acceptance
step Is useless In vlew of & ,(X )<0. Some further savings In computer time result

If we work with Y<—-;—X 2 throughout. The expected number of computations of

f s
2
cdhm /Il [ 0 fE
Jhy - ”_27f|z|f<¢a( —) dz -

Example 3.5. Proportional squeezing.

It 1s sometimes advantageous to sandwich f between two functions of the
same form as In

bg < f < eg,

where g 1s an easy denslty (as In the rejection method), and b Is a positive con-
stant. When b and ¢ are close to 1, such a proportional squeeze can be very use-
ful. For example, random varlates can be generated as follows:
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The proportional.squeeze method

REPEAT
Generate a uniform [0,1] random variate U.
Generate a random variate X with density ¢ .

Accept (U S—g-].

IF NOT Accept THEN Accept —[U _<_—f—(2(—)].
cg (X)
UNTIL Accept

RETURN X

Here the expected number of computations of f Is quite slmply ¢ —b. The maln
area of application of this method 1s In the development of unlversally applicable
algorithms In which the real line Is first partitloned Into many Intervals. On each
Interval, we have a nearly constant or nearly llnear plece of denslty. For thls
plece, proportional squeezing with dominating density of the . form
g (z)=ay+a,z can usually be applled (see exercises 3.10 and 3.11 below). ]

Example 3.8. Squeezing based upon an absolute deviation inequality.

Assume that a denslty f 1s close to another density ~ In the following
sense:

| f-h| < g .

Here g 1s another function, typlcally with small Integral. Here we could Imple-
ment the relectlon method with as dominating curve ¢ +h, and apply a sueeze

step based upon f >h—g¢. After some simplifications, this leads to the following
algorithm:
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REPEAT

Generate a random variate X with density proportional to k +g¢, and a uniform [0,1]
random variate U.

X 1-U
: EX; S0
IF NOT Accept THEN Accept —[U(g (X)+h (XN (X))
UNTIL Accept
RETURN X

Accept +—|

This algorithm has rejection constant 1+ f g, and the expected number of evalua-

tlons of f 1s at most 2 f g . Algorithms of this type are malnly used when ¢ has
very small Integral. One Instance I1s when the starting absolute devlation Inequal-
i1ty Is known from the study of llmlt theorems In mathematical statistics. For
example, when f 1Is the gamma (n ) denslty normallzed to have zero mean and
unit varlance, 1t is known that f tends to the normal denslty as n —oo. This
convergence Is studled In more detall In local central llmlt theorems (see e.g.
Petrov (1975)). One of the by-products of this theory is an lnequality of the form
needed by us, where g 1s a functlon dependilng upon n, with Integral decreasing
at the rate 1/ vVn as n —oo. The rejectlon algorlthm would thus have lmproved
performance as n ~—o0. What is Intrigulng here s that this sort of inequallty is
not llmilted to the gamma density, but appllies to denslties of sums of 11d random
varlables satisfylng certaln regularity conditlons. In one sweep, one could thus

design general algorithms for this class of densitles. See also sectlons XIV.3.3 and
xiva. I

3.7. Recycling random variates.

In this section we have emphasized the expected number of iteratlons In our
algorithms. Sometimes we have looked at the number of functlon evaluatlons.
But by and large we have steered clear of maklng statements about the expected
number of uniform random varlates needed before an algorithm halts. One of the
reasons Is that we can always recycle unused parts of the uniform random varl-
ate. The recycling principle 1s harmless for our infinite precision model, but

should be used with extreme care In standard single preclsion arlthmetic on com-
puters.

For the rejection method, based upon the Inequallty f <cg where ¢ Is the
domlnating density, and c¢ 1s a constant, we note that given a random variate X
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with density ¢ and an Independent unlform [0,1] random varlate U, the halting
rule 1s Ueg (X')/f (X )<1. Gtven that we halt, then Ucg (X )/f (X ) Is agaln unl-
form on [0,1]. If we reject, then
Ueg (X)
[ (X)
g(X) ,
[ (X)

Is agaln uniformly distributed on [0,1]. These recycled uniforms can be used
elther in the generatlon of the next random varlate (If more than one random
varlate 1s needed), or In the next lteratlon of the relectlon algorithm. Thus, In
theory, the cost of uniform [0,1] random variates becomes negliglble: 1t 1s one If
only one random variate must be generated, and 1t remailns one even If n random
variates are needed. The followlng algorithm Incorporates these 1deas:

1

Rejection algorithm with recycling of one uniform random variate

Generate a uniform [0,1] random variate U.
REPEAT
REPEAT
Generate a random variate X with density ¢ .

c9X)
T~y VuUT

T_i (prepare for recycling)'

UNTIL U <0 (equivalent to V <1)
RETURN X (X has density f )
U~V (recycle)
UNTIL False (this is an infinite loop; add stopping rule)

U«

In thils example, we merely want to make a polnt about our ldealized model.
Recycllng can be (and usually 1s) dangerous on finlte-precislon computers. When
/[ s close to cg, as In most good rejection algorithms, the upper portion of U-
(l.e. (V-1)/(T -1) in the notatlon of the algorithm) should not be recycled since
T -1 1s close to 0. The bottom part Is more useful, but this Is at the expense of
less readable algorlthms. All programs should be set up as follows: a unlform
random varlate should be provided upon Input, and the output consists of the
returned random varlate and another uniform random varlate. The Input and
output random varlates are dependent, but 1t should be stressed that the
returned random varlate X and the recycled uniform random variate are
Independent! Another argument agalnst recycllng 1s that 1t requires a few multl-
plicatlons and/or divisions. Typlcally, the tlme taken by these operatlons lIs
longer than the time needed to generate one good unlform [0,1] random varlate.
For all these reasons, we do not pursue the recycling principle any further.
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3.8. Exercises.

1.

Let f/ and g be easy densities for which we have subprograms for comput-

Ing f (r) and ¢g(z) at all £ER®. These densltles can be combined into
other densitlies In several manners, e.g.

h = ¢ max(f ,g)
h = c¢ min(f ,9)
h =c¢ \/Tg—

h = ¢ fagl—a

where ¢ Is a normallzation constant (different In each case) and a€[0,1] Is a
constant. How would you generate random varlates with density A ? Glve

the expected time complexity (expected number of literatlons, comparlsons,
etc.).

Decompose the density h(z) = 2—\/ 1-z2 on [-1,1] as follows:

h(z)=1¢c¢ Vf(z)g(z)
where ¢ ——\/— f(z )——(1—x2) and ¢ (z)=—, and |z | <1. Thus, &

Is In one of the forms speclﬂed In exerclse 3.1. lee a complete algorithm
and analysls for generating random varlates with density A by the general
method of exerclise 3.1.

The algorithm

REPEAT _

Generate X with density ¢ .

Generate an exponential random variate E .
UNTIL bk (X)ZFE
RETURN X

when used with a nonnegatlve function h produces a random varlate X
with density

¢ g(z) e,

where ¢ 1s a normallzation constant. Show this.

How does ¢, the relectlon constant, change with n (l.e., what 1s its rate of
Increase as n —o0) when the rejection method !s used on the beta (n,n)
density and the dominating density ¢ 1s the uniform denslty on [0,1] ?

Lux (1979) has generalized the rejectlon method as follows. Let g be a glven
density, and let F be a given distribution function. Furthermore, assume
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that r is a fixed positive-valued monotonically decreasing function on [0,00).
Then a random varlate X with density

r(z)

[@)=9@) [ || #F@) (@>0:

f g(z) dz
0

Lux’s algorithm

REPEAT
Generate a random variate X with density g.

Generate a random variate Y with distribution function F .
UNTIL Y <r(X)
RETURN X

Also, the probabllity of acceptance of a random couple (X,Y)1n Lux’'s algo-
o0

rithm s [ F(r(z)) g(z) dz.
0

8. The following density on [0,00) has both an Infinlte peak at O and a heavy
tall:

2
— >0 .

Conslder as a possible candidate for a dominating curve ¢ g 99 Where

2 0<z <0
™™z
Cg gg(l’)= 2 '
——E' T >0
T

where ¢4 1s a constant dependlng upon 4 only and >0 1Is a design parame-
ter. Prove first that Indeed f <c, g, Then show that ¢, Is minimal for

§=2'/3 and takes the value

61 . Glve also a description of the entire rejec-
m23

tlon algorithm together with the values for the expected number of itera-

tlons, comparlsons, square root operatlons, multiplicatlons/dlvistons, and

asslgnment statements. Repeat the same exerclse when the dominating den-

sity 1s the denslity of the random varlable §U?/V where §>>0 Is a parameter

and U and V are two 11d uniform [0,1] random varlates. Prove that In this

case too we obtaln the same relectlon constant

ﬂ.23
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Optimal rejection algorithms for the normal density. Assume that
normal random varlates are generated by relectlon from a denslty g, where
6 1s a deslgn parameter. Depending upon the class of ¢g4's that Is considered,

we may obtaln different optlmal rejection constants. Complete the following
table:

gs(z) Optimal § | Optimal rejection constant ¢

0 2

Cauchy (8): —5———0- 1 \/r——
" n(0*+z%) e

6 1ol \/3:

Lapl 6): — 1 —
aplace () Lc ‘ -

ge-ﬂz
Logistic (G)W ? ?
1 8
in(—,—— ? ’ ?
min{—5—3) .

Sibuya’s modified rejection method. Sibuya (1962) noted that the
number of uniform random varlates In the rejectlon algorithm can be
reduced to one by repeated use of the same uniform random varlate. His
algorithm for generating a random varlate with density f (known not to
exceed cg for an easy denslty ¢ ) Is:

Generate a uniform (0,1} random variate U .
REPEAT

Generate a random variate X with density ¢ .
UNTIL cg (XHYULZf (X)
RETURN X

Show the following:

(1) The algorithm 1s valld If and only If ¢ =ess sup (f (X )/g (X)).

(1) If N 1s the number of X ’s needed In Slbuya’s algorithm, and N* s
the number of X 's needed In the original rejection algorithm, then

E(N) 2 E(N¥*)
and
P(N>21)> P(N*¥>¢) (allz).

(Hint: use Jensen's Inequallty.) We conclude from (1) that Slbuya's
method 1s worse than the relectlon method In terms of number of
requlred iterations.

(111) We can have P (N =00)>0 (Just take g =/ ,c >1). We can also
have P (N =00)=0,E (N )=0c0 (Just take [ (z)=2(1-z) on [0,1], ¢ =2
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10.

11.

12.

and ¢ (z)=1 on [0,1]). Glve a necessary and sufficlent condltlon for
P (/N ==00)=0, and show that thls requires that ¢ 1s chosen optimally.

See also Greenwood (19786).

There exlsts a second moment analog of Wald’s equation which you should
try to prove. Let W,, ..., and ¥>0 be as in Theorem 3.5. Assume further

that (W) has mean u and varlance 0?<co. Then, for any stopplng rule N
with E (N )<oo,

N 2
E(YX(Wi-u))=0*E(N).

§ =1
See for example Chow and Telcher (1978, pp. 139).

Assume that we use proportlonal squeezing for a density f on [0,1] which Is
known to be between 2b (1-z) and 2c¢ (1-z ) where 0<b <1<¢ <co. Then,
we need In every Iteration a uniform random varlate U and a trlangular ran-
dom varlate X (which In turn can be obtaified as min(U ,,U,) where U,,U,
are also uniform [0,1] random varlates). Prove that If UyS Uy are the
order statlistlcs of U,,U, , then

U U(‘z)*Uu))
1)

I1s distributed as (X ,U). Thus, using this device, we can "save” one unlform
random varlate per iteration. Wrlte out the detalls of the corresponding pro-
portlonal squeeze algorithm.

Assume that the density f has support on [0,1] and that we know that 1t 13
Lipschltz with constant C, l.e.

| f(y)»-f()| <Clz-y| (z,9€ER).

Clearly, we have f (0)==f (1)=0. Glve an efficlent algorithm for generating
a random varlate with density f which Is based upon an n-part equi-spaced
partition of [0,1] and the use of the proportional squeeze method for nearly
linear densltles (see previous exercise) for generating random varlates from
the n Individual pleces. Your algorithm should be asymptotically efficient,
l.e. 1t should have E (N, )=o (1) as n —oco where N; 1s the number of com-
putations of f .

Random variates with density f(x)=c(1—x2)* (| x| <1) . The famlly of
densitles treated In thls exercise colncides with the famlly of symmetric beta
densitles properly translated and rescaled. For example, when the parameter
a 1s Integer, f s the density of the medlan of 2a +1 11d uniform [-1,1] ran-
dom variates. It is also the density of the marginal distribution of a random
vector uniformly distributed on the surface of the unit sphere In R 4 where

d and a are related by a == . For the latter reason, we wlll use it later

as an Important tool in the generation of random vectors that are uniformly
distributed on such spheres. The parameter ¢ must be greater than —1. We
have
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o I‘(a+-§-)
R VrT(a +1) '

and the Inequalitles
az?

ce 7 < f(z) < e (|2 |<1).

The followlng rejection algorithm with squeezing can be used:

Translated symmetric beta generator by rejection and squeezing

REPEAT
REPEAT
Generate a normal random variate X .

Generate an exponential random variate E .
UNTL Y <1

X
— s &
X Vo

Accept <——[1~Y(1+%Y)20}.

TIF NOT Accept THEN Accept «{aY +FE +alog(1-Y)>0).
UNTIL Accept
RETURN X

A. Verlfy that the algorithm is valid.
B. The expected number of normal/exponentlal palrs needed Is

3
I'(a +—)
. Selected values are
va I'(a +1)
o =1 %\/E 1.320340...
a=2 2./T  ii74082..
16 2
= 108 I 1110263...
96

Show that this number tends to 1 as ¢ —oo and to oo as a 0.

C. From part B we conclude that It 1s better to take care of the case
0<a <1 separately, by bounding as follows: ¢ (1-z2)< [ (z)<c. The

3
expected number of iteratlons becomes 2¢ , which takes the values —2— at

a=1 and 1 at q¢ =0. Does thls number vary monotonically with a¢ ?
How does E (N, ) vary with a ?
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13.

14.

D. Wrlte a generator which works for all ¢ >-1. (Thls requires yet another
solutlon for a in the range (~1,0).)

E. Random varlates from f can also obtalned In other ways. Show that all
of the following reclpes are valld:

(1) SVB where B is beta(—;-,a +1) and S Is a random sign.

1) S4/ Yf—Z where Y ,Z are Independent gamma(-;-,l) and

gamma(a +1,1) random varlates, and S is a random slgn.
(111) 2B -1 where B Is a beta(a +1,a +1) random varlate.
Conslder the squeeze algorlthm of sectlon 3.8 which uses the lnequallty
f Zcg for the rejection-based generator, and the Inequalltles b, <[ <h,
for the qulck acceptance and rejlection steps. Even If h1 is not necessarlly

positive, and h2 Is not necessarlly smaller than cg, show that we always
have

E(N;) = [(min(hyeq)-max(h,,0)) < [(hy—h,),

where N, 1s the humber of evaluations of f .

A universal generator a la Letac. Let f be any density on [0,1], and

assume that the cumulative mass function M (t)= f f (z) dz s known.
v >t
Conslder the following algorithm:

Generate a random integer Z where P (7 =1 )=M ({)-M (i +1).
REPEAT
Generate (X, V') uniformly in [0,1}?
UNTLL Z+V <f (X)
RETURN X -

Show that the algorlthm ls valld (relate 1t to the rejectlon method). Relate
the expected number of X 's generated before halting to | | f | | o, the
essentlal supremum of f . Among other things, conclude that the expected
tlme Is oo for every unbounded denslty. Compare the expected number of
X's with Letac’s lower bound. Show also that If inversion by sequentlal
search Is used for generating 7, then the expected number of iterations in
the search before halting s finite If and only if ff 2<co. A final note: usu-
ally, one does not have a cumulative mass function for an arbltrary density

7.
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4. DECOMPOSITION AS DISCRETE MIXTURES.

4.1. Definition.
If our target density f can be decomposed Into a discrete mixture

(o9}
f@)=3p[i(z)
f=1
where the f,’s are glven densltles and the p,’'s form a probabllity vector (l.e.,

p; 20 for all ¢+ and Y)p; =1), then random varlates can be obtalned as follows:
-

The composition method.

Generate a random integer Z with probability vector py, . .., p;,... (i.e. P(Z =1t)=p;).
Generate a random variate X with density fz.
RETURN X

This algorithm Is incomplete, because it does not specify just how Z and X are
generated. Every time we use the general form of the algorithm, we will say that
the composition method is used.

‘We will show In this sectlon how the decomposition method can be applled
in the design of good generators, but we will not at thls stage address the prob-
lem of the generation of the discrete random varlate Z . Rather, we are Interested
In the decomposition ltself. It should be noted however that In many, If not most,
practical sltuations, we have a finite mixture with K components.

4.2. Decomposition into simple components.

Very often, we will decompose the graph of f Into a bunch of very simple
structures such as rectangles and triangles, malinly because random variates with
rectangular-shaped or trlangular-shaped densitles are so easy to generate (by
linear combinations of one or two uniform [0,1] random varlates). This decompo-
sitlon Is finite if f 1s plecewise linear with a finlte number of pleces (this forces
/ to have compact support). In general, one will decompose f as follows:

K-2
J (@)= p;f;(@) +pg_1f ka(z) +px [k (2)
f=1
where f g Is a tall density (It 1s zero on a central Interval [a,b]), pg s usually
very small, and all other f,'s vanish outside the central Interval [a,b]. The
structure of f vy f K - 18 silmple, e.g. rectangular. After having plcked the
rectangles In such a way that the corresponding p;'s add up to nearly 1, we
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collect the leftover plece In pK—lfK—~1' This last plece 1s often strangely shaped,
and random varlates from 1t are generated by the rejectlon method. The polnt is
that px ., and pg are so small that we do not have to generate random varlates
wlith this denslty very often. Most of the time, l.e. with probabllity
pt - +Ppg_o 1t suffices to generate one or two uniform [0,1] random varlates
and to shift or rescale them. Thls technlque will be called the jigsaw puzzle
method, a term colned by Marsaglla. The careful decomposition requires some
refined analysls, and 1s usually only worth the trouble for frequently used flxed
densltles such as the normal denslty. We refer to the sectlon on normal varlate
generatlon for several applicatlons of thls sort of decompositlon. Occaslonally, 1t
can be applled to famllles of distributions (such as the beta and gamma familles),
but the problem Is that the decomposltion itself Is a function of the parameter(s)
of the famlly. Thls wlll be lllustrated for the beta famlily (see sectlon IX.4).

To glve the readers a flavor of the sort of work that Is Involved, we will try
to decompose the normal density Into a rectangle and one resldual plece: the rec-
tangle will be called p,f ,(z), and the resldual plece p,f 5(z). It Is clear that p,
should be as large as posslble. But slnce p,f ,(z)<f (z), the largest p, must
satisfy

[ (=)
pl_<_lrxlf—f-—1-(-ﬂ.

Thus, with [ ,(z )=—;—0 , | | £6 where 6 1s the width of the centered rectangle,

we see that at best we can set

22

—— ¢
p = lnf ..20_;?__2_ —_— 2_0—_6—-2-
YUz <e Ver Ver

The function p, 1s maximal (as a function of # ) when =1, and the correspond-

: 2
Ing value Is ——. Of course, this welght Is not close to 1, and the present
Te

decomposlition seems hardly useful. The work Involved when we decompose In
terms of several rectangles and trlangles 1s baslcally not different from the short
analysls done here.

4.3. Partitions into intervals.

Many algorithms are based on the followlng principle: partition the real line
Into intervals A, . . ., Ag, and decompose [ as

K
f @)= 5[ (2) ().

If we can generate random varlates from the restricted densitles f Ly /p; (where

py = ff ), then the decomposition method s applicable. The advantages offered
A,
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by partitions Into Intervals cannot be denled: the decomposition Is so simple that
1t can be mechanlzed and used for huge classes of densltles (In that case, there
are usually very many Intervals); troublespots on the real line such as Infinite
talls or unbounded peaks can be convenlently Isolated; and most lmportantly, the
decomposition Is easlly understood by the general user.

In some cases, random varlates from the component densities are generated
by the rejection method based on the inequallties

f (@) kz),z€4; 151K .

Here the h;'s are glven dominating curves. There are two subtly different
methods for generating random varlates with density f , glven below. One of

these needs the constants p; == f f , and the other one requires the constants
A;
g; = f h;. Note that the ¢;'s are nearly always known because the h;'s are
A

chosen by the user. The p;’'s are usually known when the distribution function
for F Is easy to compute at arbitrary points.

The composition method.

Generate a discrete random variate Z with probability vector p,, ..., px on
{1,...,K}
REPEAT
Generate a random variate X with density h; /¢; on A;.
Generate an independent uniform [0,1] random variate U.
UNTIL Uk (X)< f (X)
RETURN X
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The modified composition method.

REPEAT
Generate a discrete random variate Z with probability vector proportional to
gy, ---,q¢on{1, ..., K}

Generate a random variate X with density &, /q; on A;.
Generate a uniform (0,1} random variate U.

UNTIL Uk (X)< f (X)

RETURN X

In the second algorithm we use the rejection method with as domlnating curve
hylg+ - +hgly , and use the compositlon method for random varlates from
the domlnating density. In contrast, the first algorithm uses true decomposlition.
After having selected a component with the correct probablllty we then use the
rejectlon method. A brilef comparison of both algorithms 1s In order here. This
can be done In terms of four quantitles: Nz ,Ny,N, and NV, , where N 1s the

number of random varlates requlr}gd of the type speclfled by the Index with the

understanding that IV, refers to ¥ A, l.e. it Is the total number of random varl-
=1
ates needed from any one of the X dominating densitles.

Theorem 4.1.
K .
Let ¢=13 ¢;, and let N be the number of iteratlons In the second algo-
{=1

rithm. For the second algorithm we have Ny=N; =N, =N, and N s geometrl-
cally distributed with parameter -1—. In particular,
q

» E(N)=y¢ ; E(N?) = 2¢%q .

For the first algorithm, we have N, =1. Also, Ny =N, satlsfy

K 2qi2
E(Ny)=4q ; E(Ny® = % -

i:‘l $

—-q > 2¢°%q .

Finally, for both algorlthms, E (N, ) = ¢; .
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Proof of Theorem 4.1.

The statement for the second algorithm Is obvious when we note that the
rejectlon constant Is equal to the area ¢ under the dominating curve (the sum of
the h;'s In thls case). For the first algorithm, we observe that glven the value of
Z, Ny 1s geometrically distributed with parameter p; /¢7 . From the propertles
of the geometrlc distribution, we then conclude the followling:

K q; K
ENy)= Sp(—)= Y@ =4q,
f==1 p; {=1
K K .2
ENg®) = 3 pi(—— ———) = S 2p;(=5) =g .
i=1 2L b i=1 i
a5 q;

To show that the last expression ls always greater or equal to 2¢% —¢ we use the
Cauchy-Schwarz Inequallty:

2 2

K q; K ¢ K 2
29 (—) ~¢ 22A X pi—) (TpiX1) ~¢ =2¢° ¢ .

=1 ¢ f=1 ¢ i=1
Finally, we conslder E (N, ). For the flrst algorlthm, Its expected value Is

q.
D; (=) = g; - For the second algorithm, we employ Wald's equality after noting
Py
N
that  Np = 37 Iipiece his used in the j-th iteration) L1US, the expected value Is
J=1

q.
E (N)P (plece h;1s used In the first 1teratlon), which Is equal to ¢ (-—'——) =¢;.- B
' q

In standard circumstances, ¢ Is close to 1, and discrete random varlate gen-
erators are ultra efficlent. Thus, /N; Is not a great factor. For all the other quan-
titles Involved In the comparison, the expected values are equal. But when we
examine the higher moments of the distributlons, we notice a striking difference,
because the second method has In all cases a smaller second moment. In fact, the
‘difference can be substantlal when for some ¢, the ratlo g; /p; 1s large. If we take
g;=p; for « >2 and ¢,=¢q~(1-p,), then for the first method,

2(g ~1+p,)?

E(Np?) = —— == +2(1-p,) ~¢ = (2¢°~¢) +2(g-1{(~=-1)
1 1

The difference between the two second moments In this example s
1

2(q—1)2(—p———1). Thus, lsolating a small probabllity plece in the decomposition
1

method and uslng a poor rejection rate for that particular plece 1s dangerous. In

such sltuations, one Is better off uslng a global rejectlon method as suggested In

the second algorithm.
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4.4. The waiting time method for asymmetric mixtures.

In large simulatlons, one needs !1d random varlates X |, . . . , X, ,.... If these
random varlates are generated by the composition method, then for every ran-
dom variate generated we need one discrete random varlate Z for selectlng a
component. When f 1s decomposed Into a maln component p J 1 (py s close to
1) and a small component p,f ,, then most of these selections will choose the
first component. In those cases, 1t Is useful to generate the times of occurrence of
selectlon of the second component instead. If the second component Is selected at
times T',,T,,..., then 1t 1s not difficult to see that T',,T,~T,,... are 11d geometric
random varlables with parameter p,, l.e.

P(T1=i)=(1"1’2)£—1 P (12>1).

E

log(p 2)
tlal random varlate. Of course, we need to keep track of these tlmes as we go
along, occaslonally generating a new tlme. These tlmes need to be stored locally
In subprograms for otherwlse we need to pass them as parameters. In some cases,
the overhead assoclated with passing an extra parameter 1s comparable to the
time needed to generate a uniform random varlate. Thus, one should carefully
look at how the large simulation can be organized before using the geometric
walting times.

A random varlate T, can be generated as [— where F 1s an exponen-

4.5. Polynomial densities on [0,1].
In thls section, we conslder denslties of the form

[@)= ezt (0<z<1),

§ =0

where the c;'s are constants and K Is a positive Integer. Densltles with polyno-
mlal forms are important further on as bullding blocks for constructing plecewlse
polynomlal approximations of more general densitles. If X 1s 0 or 1, we have the
uniform and triangular densitles, and random variate generation is no problem.
There 1s also no problem when the c;'s are all nonnegatlve. To see thls, we
observe that the distributlon function F is a mixture of the form

¢

._1 )xi
1

K+1
F(z)= ¥ (
§ =1

K+1¢;_
where of course 3

i=1
!mum of ¢ 1id uniform [0,1) random varlables, we can proceed as follows:

! =1. Since z' Is the distribution function of the max-
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¢
Generate a discrete random variate Z where P (Z =1{ J=—— , 1< <K+1.
7

RETURN X where X is generated as max{U,, . . ., Uz) and the U; ’s are iid uniform [0,1)
random variates.

We have a nontrivial problem on our hands when one or more of the c;’'s are
negative. The solution glven here 1s due to Ahrens and Dieter (1974), and can be
applied whenever ¢,+ Y, ¢; >0. They decompose f as follows: let A be the

1:¢; <0
collection of Integers in {0, . . ., K } for which ¢; >0, and let B the collection of
Indices In {0, . . ., K} for which ¢; <0. Then, we have
K .
f ()= T ¢z
{=0
t+1
= Pot+ 3 ——--((Z +1)z° )+ 3 (———)(—-—-(1- ‘) (0<Lz<1),
ieat T1 iep tH1 1

where pgo==cy+ 3] ¢; (which 1s >0 by assumption). If we set p; equal to
1€B

¢; /(1 +1) for t €A ,: >1, and to —i¢; /(1 +1) for 1 €B, then pgp,, ..., Px s a

probabllity vector, and we have thus decomposed f as a finlte mixture. Let us

briefly mentlon how random varlate generation for the component densitles can

be done.

Lemma 4.1.

Let UI,UQ, be 11d uniform [0,1] random varlables.
1

A. For a>1, U,%U, has denslty

— 1(1 -z*7) (052 <1).

B. Let L be the Index of the first U; not equal to max(U,, ..., U, ) for n >2.
Then U; has density

-z" ) (0<z <1).

C. The density of max(U,, ..., U,)1s nz""! (0<z <1).
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Pfoof of Lemma 4.1.

Part C Is trivially true, Part A 1s a good exercise on transformatlons of ran-
dom varlables. Part B has a particularly elegant short proof. The denslty of a
randomly chosen U; 1s 1 (all densltles are understood to be on [0,1]). Thus, when
f s the denslty of Uy, we must have

n—1

f (ac)+—1--n.7:"‘1 =1.
n

This uses the fact that with probabllity —lﬁ-' the randomly chosen U; Is the maxl-

mal U,-, and that with the complimentary probabllity, the randomly chosen U,- s
distributed as Uy . Il

‘We are now In a posltion to glve more detalls of the polynomlal density algo-
rithm of Ahrens and Dleter.

Polynomial density algorithm of Ahrens and Dieter

[SET-UP]

Compute the probability vector po,py, . . ., Px from ¢y, . . ., ¢x according to the formu-
las given above. For each t€{0,1, . . ., K }, store the membership of ¢ ({ €A if ¢; >0 and
{1 €B otherwise).

(GENERATOR]
Generate a discrete random variate Z with probability vector po.p,, . . ., Px .
IF Z€A
1
THEN RETURN X «U %*!(or X «max(U,, . .., Uz,,) where U,U,,... are iid uni-

form [0,1] random variates).

1
ELSE RETURN X<-—U,‘Z+1 Uglor X «—U, where L is the U; with the lowest index
not equal to max(U,, ..., Uz,)).
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4.6. Mixtures with negative coefficients.
Assume that the density f (z) can be written as

f@)= S1pifi(),

{=1

where the f;'s are densitles, but the p;’s are real numbers summing to one. A
general algorithm for these densltles was glven by Blgnam! and de Mattels (1971).
It uses the fact that If p; 1s decomposed Into lts posltive and negatlve parts,
P =p;+—Pp;, then

f@)<g@)= Y p /@),

f==1

Then, the followlng rejection algorithm can be used:

Negative mixture algorithm of Bignami and de Matteis

REPEAT

oo oo
Generate a random variate X with density ST p;.f:/3 pi 4
=] ==t
Generate a uniform [0,1] random variate U.
o] o]
UNTIL U3 pi o fi (X)S Y0 £ (X)
§ ] =1

RETURN X

o0
The relectlon constant here Is fg = Y p;4. The algorithm Is thus not
f==1
valld when thls constant is ¢o0. One should observe that for this algorithm, the
rejectlon constant 1s probably not a good measure of the expected time taken by
1t. This Is due to the fact that the time needed to verify the acceptance condition
can be very large. For finlte mixtures, or mixtures that are such that for every
7, only a finite number of f;(z)'s are nonzero, we are In good shape. In all cases,
1t Is often posslble to accept or reject after having computed just a few terms In
the serles, provided that we have good analytical estlmates of the tall sums of the
serles. Since thls is the maln ldea of the serles method of sectlon IV.5, 1t will not
be pursued here any further.

Example 4.1.

The density f (z )=%(1~x2), lz | <1, can . be  written as

8 1 2,z
f(x)=—;—(§-I[_1'1](w))—-;—(—%—-I[_u](x)). The algorlthm glven above 1Is then
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entirely equlvalent to ordlnary rejection from a uniform denslty, which In thls

case has a rejectlon constant of %:

REPEAT
Generate a uniform [-1,1) random variate X .
Generate a uniform [0,1] random variate U.
UNTIL U <1-X?
RETURN X |}

5. THE ACCEPTANCE-COMPLEMENT METHOD.

5.1. Definition.

Let f be a glven denslty on R ¢ which can be decomposed into a sum of
two nonnegative functions:

f(x)=f1(1‘)+f2(.'17)

Assume furthermore that there exlsts an easy denslty g such that f ,<g. Then
the followlng algorlthm can be used to generate a random varlate X with density

f:

The acceptance-complement method

Generate a random variate X with density ¢ .

Generate a uniform [0,1) random variate U .
[ (X))
9(X)

THEN Generate a random variate X with density Pl where p={[f ,.
P

r U>

RETURN X

This, the acceptance-complement method, was first proposed by Kronmal and
Peterson (1981,1984). It generalizes the composition method as can be seen If we
take f \=fI,, g=]f 1/ff rand f,=fI,. where A ls an arbltrary set of R
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and A ¢ Is 1ts complement. It 1s competitive If three conditions are met:

(1) ¢ 1s an easy density.

(1) f,/p s an easy density when p Is not small (when p 1s small, this
does not matter much). '

(1) f /g 1s not difficult to evaluate.

As with the composition method, the algorithm glven above s more a princlple
than a detalled reclpe. When we compare it with the rejectlon method, we notice
that Instead of one deslgn varlable (a dominating density) we find two deslgn
varlables, f, and g. Moreover, there Is no rejection involved at all, although

very often, It turns out that a random varlate from 2 Is generated by the
p

rejection method.

Let us first show that this method Is valld. For this purpose, we need only
show that for all Borel sets B CR ¢ the random varlate generated by the algo-
rithm (which will be denoted here by X ) satisfles P(X€B )=[F (z) dz. To

B

avold confusion with too many X 's, we will use Y for the random varlate with
density ¢ . Thus,

ff o(7) dz
P(XEB)=P(YEB,U<f1( P (U 1 )2
. g(Y) g(Y) p
ffz(x)dx
fa(z) [z )
f(x) ()dx+(1—fg(:v) ) dz )2 .

=ff 1(az:)clac+ff2(x)dac
B B

=ff (z) dz .
B

In general, we galn If we can RETURN the first X generated In the algo-

rithm. Thus, 1t seems that we should try to maximlze ts probablilty of accep-
tance,

I (Y)
PUS—=—)=[f/,=1-p
( Y ) f 1
subject of course to the constralnt f ;<g where ¢ Is an easy density. Thus, good
algorithms have ¢ "almost” equal to f .

There 1s a vilsual explanation of the method related to that of the rejectlon
method. What 1s important here Is that the areas under the graphs of g -f ; and
[ o are equal. In the next sectlon, we will glve a simplified verslon of the
acceptance-complement algorithm developed independently by Ahrens and Dieter
(1981,1983). Examples and detalls are glven In the remalnlng sections and In
some of the exerclses.
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5.2. Simple acceptance-complement methods.

Ahrens and Dleter (1981,1983) and Deak (1981) consldered the speclal case
defined by an arbitrary density ¢ on R ¢ and the following decomposltion:

J @)= [ ()] yz);
(@) =min(/ (z),g(z)) (note:f ,<g);
[og)=(f(z)g(z)), .

We can now rewrlte the acceptance-complement algorithm quite slmply as fol-
lows:
Simple acceptance-complement method of Ahrens and Dieter

Generate a random variate X with density ¢ .
Generate a uniform {0,1) random variate U,

X)
rus>LE0)
g(X)
THEN Generate a random variate X with density (f -¢),/p where p = f (f-9).
! >¢
RETURN X

Deak (1981) calls this the economical method. Usually, ¢ 1s an easy denslty
close to f . It should be obvlous that generatlon from the leftover density
(f =g)4/p can be problematic. If there Is some freedom In the deslign (l.e. In the
cholce of ¢ ), we should try to minlmize p. This simple acceptance-complement
method has been used for generating gamma and t varlates (see Ahrens and
Dieter (1981,1983) and Stadlober (1981) respectively). One of the maln technical
obstacles encountered (and overcome) by these authors was the determination of
the set on which f (z)>g(z). If we have two denslties that are very close, we
must first verlfy where they cross. Often this leads to complicated equations
whose solutlons can only be determined numerically. These problems can be
sldestepped by exploiting the added flexlbllilty of the general acceptance-
complement method.
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5.3. Acceleration by avoiding the ratio computation.

f
The time-consuming ratio evaluation - In the acceptance condition can be
g

avolded some of the time if we know two easy-to-compute functions 2 and h*
wlith the property that

hwy <229 Cheay.
g(z

The IF step In the acceptance-complement algorithm can be replaced In those
cases by

Squeeze step in acceptance-complement method
IF U>h(X)
THEN IF U 2 h*(X)

f
THEN Generate a random variate X with density —— where p = f S o
P

S (X)
g(X)

THEN Generate a random variate X with density —{—3 where p = f f o
P

ELSE IF U >

RETURN X

A simllar but more spectacular acceleration 1s possible for the Ahrens-Dleter
algorithm If one can qulckly determline whether a polnt belongs to A, where A Is
a subset of f >g¢. In particular, one will find that the set on which f >g often
is an Interval, In which case thls acceleration 1s easy to apply.

Accelerated version of the Ahrens-Dieter algorithm

Generate a random variate X with density g¢.

IF X¢A
THEN
Generate a uniform [0,1) random variate U.
IF U> LX)
g (X)
THEN Generate a random variate X with density (f —¢ )./p .
RETURN X :

With probabllity P (X €A ), no uniform random variate is generated. Thus, what
one should try to do 1s to choose ¢ such that P (X €A ) Is maximal. This In turn
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suggests choosing ¢ such that

[ g

[ 29

is large.

5.4. An example: nearly flat densities on [0,1].
We wlill develop a unlversal generator for all densitles f on [-1,1] which
satisfy the following property: sup f (z )-Inf f (m)g—;—. Because we always have
z z

o<inf f (z)_<_-§-§sup f (z), we see that sup f (z)<1. We wlll apply the
z z z

acceptance-complement method here with as simple a decompositlon as passible,
for example

g(z)= (lz|<1);

0=

F1@) = @ maxy) ([ mac=sup [ @) 3

@)= fmacy (2] <D).

The conditlon Imposed on the class of densities follows from the fact that we
must ask that f , be nonnegative. The algorithm now becomes:

Acceptance-complement method for nearly flat densities

Generate a uniform {-1,1] random variate X .
Generate 2 uniform (0,1} random variate U.

F U>2AS (X)f mart)

THEN Generate a uniform [-1,1] random variate X .
RETURN X

To this, we could add a squeeze step, because we can exlt whenever
U<2(nf f (z)-f max+—;—), and the probabllity of this fast exit increases with the
z

"flatness” of f . It 1s 1 when f Is the uniform density.

A comparlison with the rejection method 1s In order here. First we observe
that because we plcked ¢ and f, both uniform, we need only uniform random
varlates. The number N of such uniform random variates used up In the algo-
rithm s either 2 or 3. We have
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. 1
E(N)y=2+1XP(U>2(f X)-f max+—2--) ,
where X stands for a unlform [-1,1] random varlate. Thus,
1
1
E(N)= 2+f'§'2(f max—f (2)) dz
-1

=242f -1 =1+2f p.s.

In addltlon, If no squeeze step Is used, we requlre exactly one computation of f
per variate. The obvlous rejection algorithm for thls example 1s

Rejection algorithm for nearly flat densities

REPEAT
Generate a uniform [~1,1] random variate X .
Generate a uniform [0,1] random variate U.
UNTIL Uf pu< S (X)
RETURN X

Here too we could Insert a squeeze step (Uf ,.<Inf f (z)). Without 1t, the
T

expected number of uniform random wvarlates needed Is 2 tlmes the expected
number of iteratlons, l.e. 4f .. In addition, the expected number of computa-

tlons of f 1s 2f ... On both counts, this Is strictly worse than the acceptance-
complement method.

‘We have thus established that for some falrly general classes of densities, we
have a strict Improvement over the rejection algorithm. The unlversality of the
algorithms depends upon the knowledge of the Infimum and supremum of f .
This Is satisfled for example If we know that f Is symmetric unimodal In which
case the Infimum is f (1) and the supremum is f (0).

The algorithm glven above can be applled to the maln body of most sym-

metric unimodal densltles such as the normal and Cauchy densities. For the
truncated Cauchy density

[(z)=

._.;:__ T <1 ,
m(1+22) (le 1=y
2 1
our condlitlons are satlsfled because [ ,,=— and the Infilmum of f 1Is —, the
T ' m
1
difference being smaller than X In thls case, the expected number of uniform

4
random variates needed s 1+?. Next, note that if we can generate a random

varlate X with density [, then a standard Cauchy random varlate can be
obtalned by exploiting the property that the random varlate Y deflned by
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X with probabllity -i—

Y=1, 1
- Wwith probabllity —
X 2

ls Cauchy dlstributed. For this, we need an extra coin flip. Usually, extra coln
flips are generated by borrowing a random bit from U. For example, In the
universal algorithm shown above, we could have started from a uniform [-1,1]
random varlate U, and used | U | In the acceptance conditlon. Since sign(U) 1s

independent of | U |, sign(U) can be used to replace X by -;-(—, so that the
returned random varlate has the standard Cauchy density. The Cauchy generator
thus obtalned was first developed by Kronmal and Peterson (1981).

We were forced by technlcal conslderations to limit the densitles somewhat.
The rejectlon method can be used on all bounded denslties with compact support.
Thls typifies the sltuation In general. In the acceptance-complement method, once
we choose the general form of ¢ and f ,, we loose In terms of universallty. For
example, If both f, and ¢g are constant on [-1,1], then f =/ +f ,<g+/f ,<1.
Thus, no density f ~ with a peak hlgher than 1 can be treated by the method. If
unlversallty Is a prime concern, then the relection method has llttle competition.

5.5. Exercises.

1. Kronmal and Peterson (1981) developed yet another Cauchy generator based
upon the acceptance-complement method. It Is based upon the followlng
decomposjtlon of the truncated Cauchy denslty f (see text for the
definition) Into f ,+f

1
f@)=f@)r=0-12]) (lz]<D);
1
Jda)==0-1z 1) (lz|<0);
1
g(x)————z- (lz | <1).

We have:
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A Cauchy generator of Kronmal and Peterson

Generate iid uniform [-1,1] random variates X and U.

Ir | U| >2
1r
THEN IF | U | <0.7225
4 2,
THENIF |U | >————=—(1- ]| X
V1> ——m-2a- X D) |

THEN Generate iid uniform [-1,1] random variates X, U.
X—|X|-|U]|. :
ELSE Generate a uniform [-1,1] random variate U.
X—|X|-]U]|.

IF U<o
THEN RETURN X

ELSE RETURN %

The first two IF's are not required for the algorithm to be correct: they
correspond to squeeze steps. Verlfy that the algorithm generates standard
Cauchy random varlates. Prove also that the acceleration steps are valld.
The constant 0.7225 1s but an approximation of an Irrational number, which
should be determlned.



