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ABSTRACT
We show that sup, |f,(x) — f(x)| — 0 completely as n — o, where f is a uniformly continuous
density on R?, X,, ..., X, are independent random vectors with common density f, and f, is the
variable kernel estimate
1 n 1 X, — x
W(x) = = — K ( ) .
f ) n igl H :, H,

Here H,; is the distance between X; and its kth nearest neighbour, K is a given density satisfying some
regularity conditions, and & is a sequence of integers with the property that k/n — 0, k/log n — o
as n —> .

RESUME
Nous démontrons que sup, |f, (x) — f(x)| — 0 completement lorsque n — o, ol f représente une
fonction de densité uniformément continue sur R?, X, . . ., X, sont des vecteurs aléatoires indépen-

dants ayant f pour densité commune, et ou f, dénote I’estimateur du noyau variable, a savoir
1 & 1 X —x
f;:(x) = - v K ( ) .
n i=1 H,,,' Hni

Ici, H,: représente la distance entre X; et son k-ieme voisin le plus proche, K est une fonction de
densité donnée obéissant a quelques conditions de régularité et k est une suite d’entiers telle que
k/n — 0 et k/log n — o quand n — .

1. INTRODUCTION

We would often like to estimate a density f on R from X, ..., X,, a sample of
independent identically distributed random vectors (with density f) by a function f, which
itself is a density. Estimates which satisfy this requirement include the histogram estimate
and the kernel estimate, among others [see Wertz (1978), Wertz and Schneider (1979), or
Tapia and Thompson (1978) and Devroye and Gyorfi (1985) for references on density
estimation].

Recent work in the area of density estimation has been in the direction of improved
small-sample performance and automatization (i.e., choice of the parameters as a function
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of the data). In particular, the choice of the smoothing parameter in the kernel estimate
has drawn a great deal of attention (Duin 1976; Deheuvels 1977a, b; Scott, Tapia, and
Thompson 1977; Silverman 1978; Scott and Factor 1981; Nadaraya 1974; Devroye and
Wagner 1980; Chow, Geman, and Wu 1982; Rudemo 1982; Schuster and Gregory 1981).
The theoretical analysis of the kernel estimate indicates that in addition to data dependence
one should also let the smoothing parameter depend upon x, the point at which f is
estimated. In general, however, this leads to estimates that are not densities. For example,
for the kernel estimate

fu(x) = n—nlEl K( i, )

where K is a given density and H, is the smoothing parameter, Moore and Yackel (1977)
and Mack and Rosenblatt (1979) analyze the bias and variance of f, when H, = H,(x) is
the distance from x to its kth nearest neighbour. Note that this estimate generalizes the
k-nearest-neighbour estimate of Loftsgaarden and Quesenberry (1965):

k/n
cHy(x)’

where c is the volume of the unit sphere in R. These estimates have the appealing property
of local smoothing, which will be advantageous when the unknown density f is not
smooth. However, they consistently overestimate f in the tail regions, resulting in density
estimates which have infinite integrals.

Several techniques have been suggested for transforming the k-nearest-neighbour esti-
mate (with its infinite integral but appealing local smoothing) into an estimate that inte-
grates to one. Most of these are of the following type (which we shall call the variable-

kernel estimate):
n - x
5 L5, 1
= ni Hni ( )

where H,; is the distance from X; to its kth nearest neighbour among X;, j # i, and k =
k, is a positive integer. The estimate (1) is a simplified version of an estimate of Breiman,
Meisel, and Purcell (1977), who also propose to choose k as a function of the data,
although they report that the choice of k over a wide range has surprisingly little effect on
the performance of f,. For d = 1, (1) is similar to an estimate suggested by Wagner (1975).
Note that this estimate provides for local smoothing; however, it does yield a density.
Wertz mentions that good results with estimates similar to (1) were obtained by Professor
N. Victor of Giesen (Wertz 1978, p. 59). For experimental comparisons between (1) and
other estimates, see Raatgever and Duin (1978) and Habbema, Hermans, and Remme
(1978).

Our results do not apply to the case in which k is a function of the data. In this respect,
the estimate studied here cannot be called adaptive, or automatic.

fa(x) =

1
n

fux) =

THEOREM 1. If

K(x) = Iigy=< /e, (2)
where I is the indicator function, c is a normalization constant,
lim k_ 0, 3)
R
lim —k— = o, @
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and f is uniformly continuous, then the variable kernel estimate defined by (1) and (2)
satisfies the following; for all € > O there exists & > 0 and integer n, such that

PGup [f,(x) = f) > = e, n=n, (5)
REMARK 1. The upper bound in (5) is summable in n. Thus Theorem 1 implies that f, is
completely (and thus strongly) uniformly consistent.
REMARK 2. Since f, is a density, we note that (5) implies that
flf,=fl—=0 as. a n— o,

although the conditions of the theorem can be relaxed for the L, convergence. In fact,
if K decreases along rays, k — o, and k/n — 0, then [|f, — f| = 0 in probability for
all f (Devroye 1985).

REMARK 3. In view of the general results of Abou-Jaoude (1974), the condition that f is
uniformly continuous comes close to being necessary. For example, Abou-Jaoude has
shown that no density estimate can be weakly uniformly consistent for all continuous
densities on R?.

The theorem can be extended to other kernels. One possible extension requiring little
extra work is given in Theorem 2.

THEOREM 2. When f is uniformly continuous, and (3) and (4) hold, then the estimate (1)
satisfies the conclusion of Theorem 1 (i.e., (5)) for all kernels K of the following type:
K (x) = L(|x|) for some function L vanishing outside [0,1], bounded, nonincreasing, and

satisfying
1
f cdu’™' L(u) du =1
0
(this is equivalent to asking that [K = 1.)

2. PROOFS
LEMMA 1. When (3) and (4) hold, and f is uniformly continuous, then f: satisfies (5).

Proof. Lemma 1 follows after a careful analysis of the results in Devroye and Wagner
(1977). Q.E.D.

LEMMA 2. There exists a constant A only depending upon d such that

2 qui - I||5Hni = Ak'
i=1

Proof. Find A cones centered at x such that if y and z belong to the same cone, then
|x = yll = ||x — 2| implies |y — z|| < [|x — z||. These cones may be overlapping. Among
the X;’s in the same cone, we have | X; — x| = H,; at most k times. Q.E.D.

LEMMA 3. Let M > 0 be a constant, and let T be the set {x:|x|| = M} N support(X,).
Then sup; H,(x) — 0 exponentially when (3) holds, i.e. for all € > 0 there exist 3,
no > 0 such that P(supy H,(x) > €) < e, n = ny. This property remains valid for all
distributions of X,.

Proof. For fixed € > 0 find a finite number of points x,, . . ., xy in T such that T is covered
by the union of S,..», | =i = N, where S,, denotes the closed sphere of radius r centered
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atx. Let p = inf; w(8;,/4), Where  is the probability measure of X;. By the definition
of the support of a random variable, we have p > 0. If Z is a binomial (n, p) random
variable, we have by Hoeffding’s inequality (Hoeffding 1963)

P(sm;p H,(x) > e) = P(Q {é Iyes, o < k}) < NP(Z < k)

np
SNP(Z —np < —7)

2 2
= Nexp{—2n(§-) } =n exp(— fl—g—)

whenever k/n < p/2. This concludes the proof of Lemma 3. Q.E.D.

LEMMA 4. Let V, be the class of all closed spheres in R with diameter not greater than
r. Let w be a probability measure on the Borel sets of R? such that

sup w(4) = b = 5.
v,
If W, is the empirical measure for X,, . . ., X,, a sample of independently and identically
distributed random vectors with common probability measure ., then
P(sup [in(A) = W(A) > €) = 8Qn)!" ! OO 4 g0
v,
for all n such that n = max(1/b, 8b/€).

Proof. We refer to Devroye and Wagner (1980, pp. 64—65): use (2.3) and (2.4) in this
reference, and note that, in the notation of the reference, s(d, 2n) = 2(2n)**'. Q.E.D.

LEMMA 5. Let € > 0 be arbitrary and let B, = {x: f(x) = €}. Then (3) implies
sup H,(y)—0

y:lly-#l=H,»
xXEB,

exponentially as n — ©, for all uniformly continuous densities f.

Proof. Let 8 > 0 be so small that |f(y) — f(x)| = €/2 whenever ||x — y|| = 8. For the
supremum in Lemma 5 we have for n > &

[sup H,(y) > m] = [sup H,(y) > 8] U [sup H,(y) E(m, 8]].

Now, we introduce the notion of a tangent sphere T,5(z): it is the closed sphere with
center on S, and radius & having the property that z — x, the centre, and x are collinear.
Thus, x — x gives the “direction” of the sphere. Let x, y be points with |x — y|| < H,(y),
H,(y) > 8. Then T,;/,(y) has less than k points, because it is entirely contained in S, ).
But the center of T,5/,(y) belongs to B.,,, and thus

P{ sup H(y)>3\=P SUpH,.(x)>g .
llx = yl=H,(» B¢
x€EB,

Also, omitting the object of the supremum when ||x — y|| < H,(y), x € B, is meant, we
have
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P(sup H,(y) € (m, 8]) = P<SUP H,(x) > T)>,

Be/Z

Because x € B,, ||x — y| = H,(y) <  implies that y € B,),. Thus, for all > 0

P(sup H,(y) > m) < 2P (sup H,(x) > min (n, g)) ,

Be/2

and this tends to 0 exponentially by Lemma 3. Q.E.D.
Proof of Theorem 1. We note that
£ = f)] = 2 Uni(x),
i=1
where

Un(x) =

215

(CH,.,)_ - f(X)

lix, - x|=n, >

x| —

U@ = 1 2 [£X) = £
i=1

lix, ~ s<n, >

and

Ups(x) = f(x)‘k 2 Iy, - xj=n, — 1 \

Part 1. Since

_k k+l

*
=T (X)),

iy = A 1

K i
n (CH ni)
where f :, Hf,(') are defined as in the introduction with k replaced by £ + 1, we have

sup Uy (3) = A sup )~ f| by Lemma 2)

< A sup |f} () = f(x) + 2 sup ) > 0.

Now, the last term is o (1), and the first term satisfies (5) by Lemma 1.

Part 2. Let & > 0 be so small that [f(y) — f(x)| < € whenever ||x — y|| = 3. Let D,
be the event {supgs H,(x) > 8}, where B, is as in Lemma 5. Let (-)° denote the complement
of a set or event. Now,

sup Uz (x) = sup Un(x)Ip, + sup Una(x)Ipe + sup U, (x)
x € € B¢

€

=1+ 1 + IIL (6)

By Lemmas 2 and 3, we can conclude that / = A sup, f(x)Ip,— 0 exponential]y. The sum
in II can be split into a sum over all i with H,; < & and over all remaining i. The first
subsum does not exceed €A by Lemma 2, while the second subsum is not greater than

lx = yl=H,(»
XEB,

%supf(x)luj;, where D, = { sup H,(y)= 8}.
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But this term tends to 0 exponentially in view of Lemma 5. To treat I1I, we define the event

E, = { sup  f(x) = 26} = {sup H,(x) > 8}.

x:H,(x)>d

2e

Thus,

L= A sup () Is, + 3 2 F(K) Dy, - =ny Iy = IV + V. ™
x i=1

By Lemma 3, IV tends to 0 at an exponential rate. Next, on E, we either have H,; < §
[in which case f(X;) = f(x) + € = 2¢, since x & B.], or H,; > 8 [in which case f(X;)
=< 2e by definition of E,]. Thus, applying Lemma 2 again, we see that V < 2eA. Because
€ was arbitrary, we have shown that sup, U,,(x) — 0 exponentially.

Part 3. Consider sup, U,;(x). Let € > 0 be arbitrary, and let M, M * be constants greater
than one. Let 8 > 0 be such that [lx — y|| = & implies |f(x) — f(y)| < ¢/M*. Let B =
B., and assume that M is so large that B C T = Sy N support(X,). Let D, be the event

I = yll=Hu(y)
xEB

{sup H,(x) > 6} U { sup  H,(y) = 8}.
T

Let f, be the Loftsgaarden—Quesenberry estimate with k + 1 instead of k (see intro-
duction), and let E, be the event

fsop | o0 = 10| = 53

It is clear that supgc U,;(x) = Ae. Now, let G|, ..., Gy be a cover of T consisting of
nonoverlapping rectangles of diameter not exceeding 8. Let g; = supg, f(x). On D, E;, we
have, for all x € BG, and for all j with | X, — x| < H,;,

+|f(X) — f)] + |f(x) — gil

w (CHD™ = g = [ @)~ fx)

= 3e/M*.
Thus,
Sup Un3(x)
5 = Alp, + Alg, + Ipes max sup V,(x), 8)
sup f(x) " BGg>0
where
I n I n
V) = max (3 2l e = 11 = g 2y -ni=r)
j= j=1
and

v (cn(gi +k3e/M*))l/d’ = (Cn(gi —k3€/M*)>l/d.

This is well defined when inf;., -, g > 3e/M*. The terms Alp, and Al in (8) satisfy (5)
by Lemmas 1, 3, and 5. For the last term in (8) we consider without loss of generality only
the case i = 1, g, > 0. Choose M* large enough so that g, > 3e/M*. Let p. and ., be
as in Lemma 4. Then,
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V() = max (1 mba(S,) = 1,1 = L nba(S..))
= max (% nSy)—1,1-7 M(er+))

+ sup k B (Sxr) — w(Sir)|- ®

rsr_

For all n large enough, we have r, = r_ < 8. For such n,

(81 = ) ert = (00 = 35) er' = w5 = (£ + 555)

= (g, + #) cré, al x €EBG,, r=r._.

Thus, the supremum over BG, of the first term on the right-hand side of (9) is not greater
than

(g. + e¢/M* L8 2e/M*) _ 4e 5¢ ) (10)
max ([————— - 1,1 ——————| < max , .
g — 3e/M* g + 3e/M* (M*g, — 3¢ M*g + 3¢/ -

We can make (11) as small as desired by choosing M* large enough in view of the fact
that g, = e(1 — 1/M*).

We conclude the proof of part 3 by applying Lemma 4 to the last term of (9). The
number b in Lemma 4 is equal to sup, f(x) c(2r_)* (which is smaller than 1/4 for all n
large enough). Thus,

r=r_

P<sup % [0 (Sxr) — w(Ser)| > E)

= 8Q2ny"*! n(ek/ny ) +8 ™ an
= 8(2n expl—— nexp(— —
p( 64b + dek/n p( 10)
for all n so large that nb = 1 and n(ek/n)* = 8b. Now, b = ak/n for some constant a >
0, so that the condition lim,_,. k = % is sufficient for the applicability of the inequality
of Lemma 4 for all n large enough. The right-hand side of (11) does not exceed ¢,n*"
exp (—c,k) for some positive constants c;, c;. When k/log n — o, this is in turn bounded
by exp(—c;k) for all n large enough, and some constant c; > 0. This concludes the proof
of the theorem. Q.E.D.

Proof of Theorem 2. Assume first that Theorem 1 holds for all kernels K of the form
Kx) = ()" Iy=r, 0<t=1 (12)

Then we argue as follows: for fixed € > O find constants N, a,, ..., ay, and u, . . ., uy,
all positive, such that the function L* defined by
N
L*(u) = 2 ajlo<u=,
j=1
satisfies the inequality L(u) = L*(u) = L(u) + €, all 0 = u = 1. Note that L*(u) = 0
outside [0, 1]. When we define
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n

1 -
Fi0) =+ 2 (Huu)™ iy~ =y,

i=1
then

N
S caulf,(x) - fn(n}

ji=1

N
1) = f| = | S caulfyx) - f(x)\ +

j=1

N
> cajuf - llf(x)

j=1

U D= @

The first term on the right-hand side of (13) satisfies (5) by assumption. The second term
is not greater than ¢ sup, f(x) times

N
= > ca,-uf]f,,j(x) - f(x)| +

Jj=1

1S e
+ n;§| Hni

| i I
H du® " L*(u) du — f du® "L(u) du| = f du’"|L*(u) — L(u)| du < e.
0 o 0

The last term does not exceed cef,(x), where f, is as defined by (1) and (2). But by
Theorem 1, sup, €f,(x) < € sup, f(x) + € sup; | f,(x) — f(x)|, which is the sum of a term
that can be made arbitrarily small by choice of €, and a term satisfying (5). Thus, Theorem
2 is proved if we can show it for kernels of the form (12).

The restriction ¢ = 1 allows us to continue using the convenient Lemma 2 in which H,;
is replaced by tH,;. In the expression for U,;, U,,, U,; in the proof of Theorem 1, we
replace the indicator functions by

t—,, lix, - xj=m,; -

Parts 1 and 2 remain unaffected except for a factor 1/¢¢ in the inequalities derived there.
Part 3 too needs few changes; the most crucial one is the replacement of k in (8) [the
expression for V,;(x)] by k¢, with the same replacement throughout the remainder of
part 3. Q.E.D.
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