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Abstract

Suppose a sample of size n is observed from the
d-dimensional density f. Conditions are given which
insure that a single-linkage clustering algorithm
can asymptotically find the decomposition of the
support of f into connected closed sets.

Clustering is the process of grouping similar
objects. For our purposes the objects to be grouped
can be thought of as a set of d-dimensional vectors
and a clustering algorithm can be thought of as any
scheme for partitioning this set into subsets called
clusters. Our paper analyzes the asymptotic perfor-
mance of clustering algorithms for a simple probabi-
Tistic model with the result that versions of a single-
linkage clustering algorithm are shown to be asymp-
totically effective. Excellent summaries of previous
work in clustering are contained in Hartigan and
Dorofeyuk!>2, while a more technical and thorough
description of our results may be found in Devroye
and Wagner3.

Let X be a random vector with values in B!d and
a probability density

M
MRS (1)
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where n, > 0, 1 <1 2 M’%;"i =1and f,...,fy are

probability densities. If fi has support C,,
1 < i <M, then we assume that

(a) C; is connected, 1 < i < M,
(b) Cl,_...,CM are disjoint, and (2)
(c) €; is bounded, 1 < i < M.

The supports C;,...,Cy may be thought of as the clus-

ters chosen by nature. In particular, if independent
observations are made on (1) then Cl,...,CM determine

a natural partition of these observations. However,
suppose that the statistician assumes only that (1)
and (2) hold for some M, m,...,my and fl""’fM

and, in place of specific knowledge of f, has a sample
size n from (1), say xl,...,xn. The question that

concerns us here is how the statistician can asymp-
totically obtain the same grouping of observations on
(1) as he would if he knew Cl,...,CM.
From the sample xl,...,xn, the statistician will,
for his clustering algorithm, construct a partition
Mot R

observations from (1) which are independent of those
in his sample, will then be grouped together if they
fall in the same set AE. For this reason, we shall
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Future observations, that is,
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also refer to the sets Aj,....A as clusters. In the

vast clustering literature, concentration is focused
on grouping the sample xl,...,xn and the sets of the

partition of Xl,...,Xn determined by Al,...,AL are

usually referred to as clusters. Concentrating on
partitioning xl,...,xn seems warranted, for example,

in clustering problems arising in paleontology studies
where new observations are not expected. However,

in medical situations, such as trying to cluster the
types of shock for emergency care purposes, the statis-
tician is interested in the performance of the-algo-
rithm on future observations. Our model is directed
toward this type of situation.

Referring to Figure 1 there are three natural
clusters but the algorithm with the sample Xl,...,x

has yielded four clusters in (a), three in (b) and
two in (c). How does one measure the performance of
the algorithm on future observations? Agreeing that
what we call each cluster Ci is unimportant as long as

n

we give one unique label to each Ci we see that the
probability of misclassification becomes

= A M
L m;n 1Z=1 LF -/A-;“) fi(x)dx (3)

where the minimum is taken over all one-to-one func-
tions g: {1,...,M} » {1,...,Max(M,L)} and, if M > 1L,
we put AL"l = ... AM = ¢. In particular, if C_i is

contained in some Aj and each Aj contains at most one
Ci then Lrl = 0. It should be stressed that Ln is a
random variable which depends on xl,...,xn and whose

value is just the frequency of observations misclassi-
fied when a large number of new observations are
classified with the partition Al,...,AL.

Qur interest here is finding what properties are
necessary for clustering algorithms to insure that
Ln + 0 with probability one. The following clustering

algorithm, a version of the familiar single-linkage
algorithms, has this property with some slight addi-
tional assumptions on f. More extensive results for
other algorithms and assumptions may be found in
Devroye and Wagner?3.

If r > 0 connect the two points Xi'xj if
d(Xi,Xj) <r,1<i,j<n. Call two points XXy
connected if there exists a sequence Yo""'Ym from
{xl,...,xn} with Y0 = Xk, Ym = xl, and Yi-l’ Yi’
connected, 1 < i <m. The set {Xl,...,xn} is then
partitioned into connected subsets Kl""’KL' A
partition Aj,...,A of RY is obtained from Kj....K

into A. if the closest
is in Kj (ties are broken

by putting the point XED{d

point to x from xl,...,xn

g sl ol



arbitrarily).

Theorem. If r = Lot satisfies 1

(i) nrnd/1og n e

o (4)
(i1) (i
and if, for some a,b > 0,
inf f(x)dx > apd, 0<p<b, (5)
M S(K,p) -
xelC.
1]

where S(x,p) is the sphere centered at x with radius
p, then

Ln +0 w.p.l.

Proof. We recall that the support C of a density f is
the smallest closed set with the property that

ff(x)dx = 1. In particular, the Ci are closed sets.
C

Because the Ci are bounded,

inf lx-yll> 8 >0
xeci,yscj

whenever i # j. We assume that n is so large that
< & (use (4(ii))). Suppose that Xl’ R . is such

that every sphere S(x,r /3) contains at 1east one of

=

the X for xeC = U C1.

—

If we can show that

(i) whenever c; N Aj # ¢ and Xleci,
thep XEEAj’ and

(i1) whenever C. N Aj # ¢ and K ¢C,
then XliAj,

M M
then we know that M = L and U Cs U (C1 n A 5
i=1 ' =1 9(4)
for some one-to-one mapping g: {1,...,M}+ {1,...,M},
which in turn implies that
<t < }: f f.(x)dx = 0
==n= AC i
' (1)
and
P{L > 0} < P{inf y (S(x 1 /3)) (6)

xeC
where u, is the empirical measure for X;,...,X .

Let us now prove (i) and (ii). Property (ii) is
M

trivial since g § and Xje ] Ci for all j with

1
probability one. For property (i), we need only show
that for any x in C , and any x eC , there exists a

sequence Yl’ ..,Y from xl ,X W]th Yia = X(l)

1
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Y, = Xj,|]Y Yl s v 1< k<ag, where x(1)

£ k+l ©
is the nearest neighbor to x among xl,...,xn.
Since S{x,rn/3) contains one X, and since ra< &
we know that X(l) belongs to C as well, no matter
what x is picked in C
we can find {XpseneaXy } Cic with x
andl[xk+1 - ka < rn/3 1 f k< 4.
every S(x LT /3) contains one of the X 's, we know
that there are Y eS{xk,r‘ /3), 1< k< il =,
Yo = XJ Also, || Y

By the connectedness of C1

o o1y
X s Xy F XJ
Thus, since

1

k+l ~ “ §§|Yk+1 k+1“ w
fi%es1 - ka ||Yk - xkﬂ <r.. This concludes the
proof of (i).

As for (6), because the Ci are bounded, we can
,yN} C C with the property that for
- x|| < r/12.
points where ¥y > 0
|, and the diameter

find a grid {yl,.“
every xeC there exists an y, withjiyi
Such a grid contains at most Y/rn

|

is a constant depending upon d,

ofiC. L rn/12 < b, then
inf f(z)dz > inf f(z)dz
i 7S(y;.r,/6) xe€ 7S(x,r /12)

r \d
o
Also, if inf u (S(x r f3))

xeC
for all i so that

.0, then u (S(y;.r /6)) =0
P{L_> 0} < P{inf u _(S{x,r /3)) =
n - xeC n n

N
Z% Plu (S(y;.1,/6)) =

1A

< inf f(z)dz)n
'(Y )( M 'é(x,rn/12) I
xe U C.
1 1
)=o)y
: d :
. _I__e—anrn /12 -
- l"d
n

By the Borel-Cantelli lemma and (4)(i), we have that
zP{Ln > 0} < =, completing the proof of the Theorem.

n
Q.E.D.
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