ASYMPTOTIC PROPERTIES OF CLUSTERING ALGORITHMS L.P. Devroye and T.J. Wagner* Department of Electrical Engineering The University of Texas at Austin Austin, Texas 78712 ## Abstract Suppose a sample of size n is observed from the d-dimensional density f. Conditions are given which insure that a single-linkage clustering algorithm can asymptotically find the decomposition of the support of f into connected closed sets. Clustering is the process of grouping similar objects. For our purposes the objects to be grouped can be thought of as a set of d-dimensional vectors and a clustering algorithm can be thought of as any scheme for partitioning this set into subsets called clusters. Our paper analyzes the asymptotic performance of clustering algorithms for a simple probabilistic model with the result that versions of a single-linkage clustering algorithm are shown to be asymptotically effective. Excellent summaries of previous work in clustering are contained in Hartigan and Dorofeyuk^{1,2}, while a more technical and thorough description of our results may be found in Devroye and Wagner³. Let X be a random vector with values in ${\rm I\!R}^d$ and a probability density $$f = \sum_{i=1}^{M} \pi_{i} f_{i}$$ (1) where $\pi_i > 0$, $1 \le i \le M$, $\sum_{1}^{M} \pi_i = 1$ and f_1, \dots, f_M are probability densities. If f_i has support C_i , $1 \le i \le M$, then we assume that - (a) C_i is connected, $1 \le i \le M$, - (b) C_1, \dots, C_M are disjoint, and (2) - (c) C_i is bounded, $1 \le i \le M$. The supports C_1,\ldots,C_M may be thought of as the clusters chosen by nature. In particular, if independent observations are made on (1) then C_1,\ldots,C_M determine a natural partition of these observations. However, suppose that the statistician assumes only that (1) and (2) hold for some M, π_1,\ldots,π_M and f_1,\ldots,f_M and, in place of specific knowledge of f, has a sample size n from (1), say X_1,\ldots,X_n . The question that concerns us here is how the statistician can asymptotically obtain the same grouping of observations on (1) as he would if he knew C_1,\ldots,C_M . From the sample X_1,\ldots,X_n , the statistician will, for his clustering algorithm, construct a partition A_1,\ldots,A_L of \mathbb{R}^d . Future observations, that is, observations from (1) which are independent of those in his sample, will then be grouped together if they fall in the same set $A_{\mathfrak{L}}$. For this reason, we shall *Supported in part by AFOSR Grant 72-2371. also refer to the sets A_1,\ldots,A_L as clusters. In the vast clustering literature, concentration is focused on grouping the sample X_1,\ldots,X_n and the sets of the partition of X_1,\ldots,X_n determined by A_1,\ldots,A_L are usually referred to as clusters. Concentrating on partitioning X_1,\ldots,X_n seems warranted, for example, in clustering problems arising in paleontology studies where new observations are not expected. However, in medical situations, such as trying to cluster the types of shock for emergency care purposes, the statistician is interested in the performance of the algorithm on future observations. Our model is directed toward this type of situation. Referring to Figure 1 there are three natural clusters but the algorithm with the sample x_1,\ldots,x_n has yielded four clusters in (a), three in (b) and two in (c). How does one measure the performance of the algorithm on future observations? Agreeing that what we call each cluster $\mathbf{C_i}$ is unimportant as long as we give one unique label to each $\mathbf{C_i}$ we see that the probability of misclassification becomes $$L_{n} = \min_{g} \sum_{i=1}^{M} \pi_{i} \int_{A_{\alpha(i)}^{c}} f_{i}(x) dx$$ (3) where the minimum is taken over all one-to-one functions g: $\{1,\ldots,M\} \to \{1,\ldots,Max(M,L)\}$ and, if M > L, we put $A_{L+1} = \ldots A_M = \varphi$. In particular, if C_i is contained in some A_j and each A_j contains at most one C_i then $L_n = 0$. It should be stressed that L_n is a random variable which depends on X_1,\ldots,X_n and whose value is just the frequency of observations misclassified when a large number of new observations are classified with the partition A_1,\ldots,A_L . Our interest here is finding what properties are necessary for clustering algorithms to insure that $\mathsf{L}_n \to 0$ with probability one. The following clustering algorithm, a version of the familiar single-linkage algorithms, has this property with some slight additional assumptions on f. More extensive results for other algorithms and assumptions may be found in Devroye and Wagner³. If r>0 connect the two points X_i, X_j if $d(X_i, X_j) < r$, $1 \le i, j \le n$. Call two points X_k, X_k connected if there exists a sequence Y_0, \dots, Y_m from $\{X_1, \dots, X_n\}$ with $Y_0 = X_k, Y_m = X_k$, and Y_{i-1}, Y_i , connected, $1 \le i \le m$. The set $\{X_1, \dots, X_n\}$ is then partitioned into connected subsets K_1, \dots, K_k . A partition A_1, \dots, A_k of \mathbb{R}^d is obtained from K_1, \dots, K_k by putting the point $X \in \mathbb{R}^d$ into A_j if the closest point to X_1, \dots, X_n is in X_j (ties are broken arbitrarily). Theorem. If $r = r_n$ satisfies (i) $$nr_n^d/\log n \to \infty$$ (ii) $r_n \to 0$ and if, for some a,b > 0, $$\inf_{\substack{M \\ x \in UC_1}} \int_{S(x,\rho)} f(x) dx \ge a\rho^d, \ 0 \le \rho \le b, \tag{5}$$ where $S(x,\rho)$ is the sphere centered at x with radius ρ , then $$L_n \rightarrow 0$$ w.p.1. <u>Proof.</u> We recall that the support C of a density f is the smallest closed set with the property that $\int_{C} f(x) dx = 1.$ In particular, the C_i are closed sets. Because the C_i are bounded, $$\inf_{x \in C_{\mathbf{j}}, y \in C_{\mathbf{j}}} ||x-y|| \ge \delta > 0$$ whenever $i \neq j$. We assume that n is so large that $r_n < \delta$ (use (4(ii))). Suppose that X_1, \ldots, X_n is such that every sphere $S(x, r_n/3)$ contains at least one of the X_i for $x \in C = \bigcup_{i=1}^{M} C_i$. If we can show that - (i) whenever $C_i \cap A_j \neq \phi$ and $X_{\ell} \in C_i$, then $X_{\ell} \in A_j$, and - (ii) whenever $C_i \cap A_j \neq \phi$ and $X_g \notin C_i$, then $X_g \notin A_i$, then we know that M = L and $U C_i = U (C_i \cap A_g)$, for some one-to-one mapping $g: \{1, \ldots, M\} \rightarrow \{1, \ldots, M\}$, which in turn implies that $$0 \le L_n \le \sum_{i=1}^{M} \pi_i \int_{A_{g(i)}^c} f_i(x) dx = 0$$ and $$P\{L_n > 0\} \le P\{\inf_{x \in C} \mu_n(S(x,r_n/3)) = 0\}$$ (6) where μ_n is the empirical measure for X_1, \dots, X_n . Let us now prove (i) and (ii). Property (ii) is M trivial since $\mathbf{r_n} < \delta$ and $\mathbf{X_j}^\varepsilon \cup \mathbf{U} \cup \mathbf{C_i}$ for all j with probability one. For property (i), we need only show that for any x in $\mathbf{C_i}$, and any $\mathbf{X_j}^\varepsilon \in \mathbf{C_i}$, there exists a sequence $\mathbf{Y_1}, \dots, \mathbf{Y_k}$ from $\mathbf{X_1}, \dots, \mathbf{X_n}$ with $\mathbf{Y_1} = \mathbf{X^{(1)}}$, $Y_{\ell} = X_{j}, ||Y_{k+1} - Y_{k}|| \le r_{n}, 1 \le k < \ell$, where $X^{(1)}$ is the nearest neighbor to x among X_{1}, \dots, X_{n} . Since $S(x,r_n/3)$ contains one X_k , and since $r_n < \delta$, we know that $X^{(1)}$ belongs to C_i as well, no matter what x is picked in C_i . By the connectedness of C_i , we can find $\{x_1,\ldots,x_k\}\subseteq C_i$ with $x_1=X^{(1)}$, $x_k=X_j$, and $\|x_{k+1}-x_k\|< r_n/3$, $1\le k<\ell$. Thus, since every $S(x_i,r_n/3)$ contains one of the X_k 's, we know that there are $Y_k\epsilon S(x_k,r_n/3)$, $1\le k\le \ell$, $Y_1=X^{(1)}$, $Y_\ell=X_j$. Also, $\|Y_{k+1}-Y_k\|\le \|Y_{k+1}-x_{k+1}\|+\|x_k-x_k\|+r_n$. This concludes the proof of (i). As for (6), because the C_i are bounded, we can find a grid $\{y_1,\ldots,y_N\}\subseteq C$ with the property that for every xeC there exists an y_i with $||y_i-x||\leq r_n/12$. Such a grid contains at most γ/r_n^d points where $\gamma>0$ is a constant depending upon d, $||\cdot||$, and the diameter of C. If $r_n/12 < b$, then $$\inf_{i} \int_{S(y_{i},r_{n}/6)} f(z)dz \ge \inf_{x \in C} \int_{S(x,r_{n}/12)} f(z)dz$$ $$\ge \alpha \left(\frac{r_{n}}{12}\right)^{d}.$$ Also, if $\inf_{x \in C} \mu_n(S(x,r_n/3)) = 0$, then $\mu_n(S(y_i,r_n/6)) = 0$ for all i so that $$\begin{split} & P\{L_{n} > 0\} \leq P\{\inf_{x \in C} \mu_{n}(S(x, r_{n}/3)) = 0\} \\ & \leq \sum_{i=1}^{N} P\{\mu_{n}(S(y_{i}, r_{n}/6)) = 0\} \\ & \leq \left(\gamma/r_{n}^{d}\right) \left(1 - \inf_{\substack{M \\ x \in \ U \ C_{i}}} \int_{S(x, r_{n}/12)} f(z)dz\right)^{n} \\ & \leq \left(\gamma/r_{n}^{d}\right) \left(1 - r_{n}^{d} \alpha/12^{d}\right)^{n} \\ & \leq \frac{\gamma}{r_{n}^{d}} e^{-\alpha n r_{n}^{d}/12^{d}} \end{split}$$ By the Borel-Cantelli lemma and (4)(i), we have that $\Sigma P\{L_n>0\}<\infty$, completing the proof of the Theorem. Q.E.D. ## References - 1 J.A. Hartigan, <u>Clustering Algorithms</u>, John Wiley, N.Y., 1975. - 2 A.A. Dorofeyuk, "Automatic classification algorithms (review)," <u>Automation and Remote Control</u>, 32, pp. 1928-1958, 1971. - 3 L.P. Devroye and T.J. Wagner, ""Asymptotic Properties of Hierarchical Clustering Algorithms," Technical Report, January 1977, Dept. of Electrical Engineering, University of Texas, Austin, TX.