
CUCKOO HASHING: FURTHER ANALYSIS

Luc Devroye and Pat Morin

School of Computer Science

McGill University

Montreal, Canada H3A 2K6

November 9, 2001

Abstract. We consider cuckoo hashing as proposed by Pagh and Rodler in 2001. We show that the

expected construction time of the hash table is O(n) as long as the two open addressing tables are each

of size at least (1 + ε)n, where ε > 0 and n is the number of data points. Slightly improved bounds are

obtained for various probabilities and constraints. The analysis rests on simple properties of branching

processes.

Keywords and phrases. Open addressing, hashing, cuckoo hashing, worst-case search time, collision

resolution, probabilistic analysis of algorithms.

CR Categories: 3.74, 5.25, 5.5.

1991 Mathematics Subject Classifications: 60D05, 68U05.

Authors’ address: School of Computer Science, McGill University, 3480 University Street, Montreal,
Canada H3A 2K6. The authors’ research was sponsored by NSERC Grant A3456 and FCAR Grant
90-ER-0291. FAX number: 1–514–398-3883. Email of first author: luc@cs.mcgill.ca.



Introduction

Cuckoo hashing is a new hashing method with very interesting worst-case properties. Introduced

by Pagh and Rodler (2001), it hashes n data points into two tables of size m in expected time O(n) as

long as m/n > 1 + ε1 for some ε1 > 0. Once the table is constructed, each search takes at most two

probes.

In hashing with chaining with a table of size m = bαnc, where α > 0 is a constant, the worst-case

search time is equal to the length of the longest chain. If the hash values are independent and uniformly

distributed over the table, then the maximum chain length is asymptotic to logn/ log log n in probability

(Gonnet, 1981; Devroye, 1985), for any fixed value of α.

Consider now open addressing with a table of size m again, with α > 1 fixed. If the elements

have a choice of two randomly picked positions, and are placed into the slot with the least number of

elements (at the time of insertion), then the maximum slot occupancy is in probability asymptotic to

log2 log2 n (Azar, Broder, Karlin and Upfal, 1994, 1999; Broder and Karlin, 1990; Czumaj and Stemann,

1997; Mitzenmacher, 1997).

There has been interest in obtaining O(1) expected worst-case performance, or even O(1) de-

terministic worst-case performance for search in hash tables. For static hash tables, Fredman, Komlós

and Szemerédi (1984) proposed a solution. Czumaj and Stemann (1997) showed that if each element has

two randomly chosen hash positions, then with high probability, a static (off-line) chaining hash table

can be constructed that has worst chain length 2, provided that the table size is at least αn for some

threshold constant α. For dynamic hash tables, the early research was in the direction of dynamic perfect

hash functions (Dietzfelbinger and Meyer auf der Heide (1990), Dietzfelbinger, Gil, Matias and Pippenger

(1992), Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der Heide, Rohnert and Tarjan (1994), Brodnik and

Munro (1999)). Cuckoo hashing (Pagh and Rodler, 2001) is also an attempt in this direction. It stands

out though through its simplicity and the promising experimental results reported by Pagh and Rodler.

The present paper only attempts to clarify the probability theoretical properties of cuckoo hashing

for an abstract setting, in which all hash values are independent and uniformly distributed. For surveys

on hashing, see Knuth (1973) or Vitter and Flajolet (1990).

Raw cuckoo hashing

In a raw cuckoo hash, each data point gets two destinations, one in each table. Let Xi and Yi
denote the target destinations for the i-th data point, obtained by hashing. We will assume throughout

that X1, Y1, . . . , Xn, Yn are independent uniform random integers drawn from {1, . . . ,m}. Data points

are inserted sequentially, and are placed in one slot in one table by the following mechanism. Data point

i is placed in position Xi in table one. If this slot was empty, the insertion is complete. If the slot

was previously occupied by data point k, then k is “kicked out” (hence the name “cuckoo hash”) and is

placed in slot Yk in table two. If that is empty, we are done. Otherwise, if that slot was occupied by data

2



point `, then ` in turn is kicked out and is placed in slot X` in table one, and so forth. Clearly, there

are situations in which this procedure loops forever. Pagh and Rodler set a limit C logn on the number

of allowed iterations, that is, on the maximal consecutive number of element removals. If at any point

during the insertion of n elements, C logn is attained, we declare the raw cuckoo hash a failure.

If a raw cuckoo hash succeeds, then searching is very efficient. Indeed, element i is either at

location Xi in table 1 or at location Yi in table 2, so that the search time is uniformly bounded. We will

show the following:

Theorem 1. If m = (1 + ε)n, for ε ∈ [ε1,M ] for fixed ε1 > 0 and M < ∞ (with ε possibly depending

upon n and m), and if C > 2/R(ε1) where R(t)
def
= log(1 + t)− t/(1 + t), then the probability that a raw

cuckoo hash fails is less than p = O((log n)4/n). Furthermore, the expected time taken by a raw cuckoo

hash is O(n).

Full cuckoo hashing

In first instance, cuckoo hashing can be used to create a good static hash table at little cost.

Indeed, if a raw cuckoo hash fails, a new raw cuckoo hash is attempted, with a new collection of 2n

hash values, picked independently from the previous bunch, and so on until a successful raw cuckoo

hash is observed. One may argue that the requirement that for each element i, an infinite sequence of

independent hash values be available, is unreasonable. There are ways of creating, for each i, sequences

that are nearly independent, following the example of double hashing, and thus, having noted this caveat,

we will just maintain our assumption. If T1, T2, . . . denote the computation times for the various hashing

and rehashing steps, and if N denotes the total number of steps, we have by Wald’s lemma,

E

{
N∑

i=1

Ti

}
= E{N}E{T1} =

1

1− p ×O(n) .

Therefore, in linear expected time, we can find and complete a successful raw cuckoo hash. This set-up

time is very reasonable, and makes the method interesting.

The purpose of the remainder of this short note is to prove Theorem 1. Our approach is different

from that of Pagh and Rodler (2001), as we appeal more directly to a graph-theoretic interpretation, and

use standard arguments from branching processes.

3



The cuckoo graph

Consider the bipartite graph on {1, . . . ,m}×{1, . . . ,m} with n edges, where each edge is chosen

uniformly at random (and repetitions are thus possible). The graph thus obtained represents the hash

value pairs for a raw cuckoo hash. Consider the graph’s connected components. If one connected com-

ponent is not a tree or unicyclic [note: a cycle is a path that begins and ends at one node, such that

no edge is traversed twice; a graph is unicyclic if it has exactly one cycle], then it is impossible that the

raw cuckoo hash is successful, as that connected component has k nodes and k + 1 or more edges for

some integer k. Vice versa, if a component is a tree or is unicyclic, then an infinite loop in the cuckoo

heuristic is impossible—in fact, if the component has k nodes, then the insertion of one element can

always be carried out in at most 2k iterations. To prove this, consider the walk W in the cuckoo graph

that corresponds to the table cells visited during an insertion. If W has no repeated vertices then it has

length at most k and the proof is complete. So, let u be the first vertex of W that is repeated. Then the

cuckoo graph contains a cycle C involving u. Furthermore, the edge used by W immediately following

the second occurrence of u is not an edge of C. Now consider the walk W ′ that begins just after the first

occurrence of u in W and then follows W . Suppose there is a vertex that is repeated in W ′ and let w

be the first such vertex. Then, either w is a vertex of C or not (see figure). In either case, the cuckoo

graph contains a cycle that uses an edge not in C and is not unicyclic. Therefore, the walk W ′ contains

no repeated vertices. By construction, W \W ′ also contains no repeated vertices. We conclude that W

contains at most 2k vertices, as required.

�����

�

� �

�

	



�

The possible values of w: (a) w = u, (b) w 6= u on C, (c) w

not on C.

If the 2n nodes in the graph are generically denoted by u, and if S(u) denotes the size of the

connected component to which u belongs, the time taken by a raw cuckoo hash (regardless of success or

failure) is bounded from above by
∑

u

min(2S(u), C logn) .

4



Lemma 1 (a bound for the largest connected component). Let m > n, c > 0.

P
{

max
u

S(u) ≥ c logn
}
≤ 2mec log n((m−n)/m−log(m/n)) .

In particular, with m = (1 + ε)n and ε > 0, we have

P
{

max
u

S(u) ≥ c logn
}
≤ 2(1 + ε)n1−cR(ε) .

Proof. Consider each of the 2m nodes in our bipartite graph, and fix a node u. Let Z1 be the neighbors

of u in the graph, where neighbors may be repeated. Clearly, Z1 has a binomial (n, 1/m) distribution.

These neighbors act independently and have in turn Z ′2 neighbors not among nodes already counted.

Stochastically, Z ′2 is bounded from above by Z2, a sum of Z1 i.i.d. binomial (n, 1/m) random variables.

In other words, S(u) is bounded from above by the size of a Galton-Watson branching process for the

binomial (n, 1/m) distribution. For definitions and basic results, see Grimmett and Stirzaker (1992). As

we have n/m ≤ 1/(1 + ε1) < 1, this process is subcritical and thus extinct. Also,

E{S(u)} ≤ 1 + (n/m) + (n/m)2 + · · · = 1

1− n/m =
m

m− n .

Thus,

E

{∑

u

S(u)

}
≤ 2m2

m− n .

We are interested in tail bounds on S(u). The easiest way to proceed from here is to consider the random

walk presentation of such branching processes, which is equivalent to generating and visiting the Galton-

Watson tree in preorder. As a node is “considered” (expanded), it receives a binomial (n, 1/m) number

of children, which are placed in a queue of nodes to be expanded. This process continues until no further

nodes can be expanded (the queue is empty). Thus, set N0 = 1, B1, B2, . . . i.i.d. binomial (n, 1/m), and

Nk+1 =

{
0 if Nk = 0

max (Nk +Bk+1 − 1, 0) otherwise.

Then

S(u) ≤ max{k > 0 : Nk > 0} = max



k > 0 : 1 +

k∑

j=1

(Bj − 1) > 0





In particular,

P{S(u) ≥ k} ≤ P



1 +

k∑

j=1

(Bj − 1) ≥ 1





= P





k∑

j=1

Bj ≥ k





= P {binomial(nk, 1/m) ≥ k}
≤ E

{
eλbinomial(nk,1/m)−λk

}

(by Chernoff’s bound (Chernoff, 1952), where λ > 0)

5



=
(

1− 1/m+ (1/m)eλ
)nk

e−λk

≤ e
(
eλ−1

)
nk/m−λk

≤ e(m−n)k/m−k log(m/n)

(upon taking λ = log(m/n)) .

We note that

P{max
u

S(u) ≥ c logn} ≤ 2mec log n((m−n)/m−log(m/n)) .

If m = n(1 + ε), we obtain

P{max
u

S(u) ≥ c logn} ≤ 2(1 + ε)n1−cR(ε) .

Remark 1. Observe that R(ε) ≥ ε2(1−ε)
2(1+ε)

> 0 for ε ∈ (0, 1), and that R(ε) is increasing.

Next we offer the following result regarding the structure of the graph.

Lemma 2. Let m be as in Theorem 1. Let r denote the probability that a given cuckoo graph has at

least one connected component that is not a tree or unicyclic. Then r = O((log n)4/n).

Proof. We argue as in Lemma 1, considering the component obtained starting from a node u. We grow

this component from u by adding edges of the cuckoo graph as they are discovered. Assume that u is in

the first table, and that k vertices of the second table have already been discovered, and that ` edges have

already been processed. Then the number of already discovered vertices in the second table that are hit

by a new edge emanating from u is distributed as a binomial (n− `, k/m2) random variable, because each

new random edge must independently select u in the first table and one of the k discovered vertices in the

second table. This is stochastically less than a binomial (n,K/m2) random variable if k ≤ K. Let D(u)

be the number of edges that find already discovered vertices when we run this process to its completion,

i.e., when the entire component of u has been visited. Note that D(u) ≤ 1 if and only if the component

of u is acyclic or unicyclic. Given that S(u) ≤ K, D(u) is thus stochastically bounded by a sum of K

independent binomial (n,K/m2) random variables, that is, by a binomial (Kn,K/m2) random variable,

which we call B. Thus,

P{D(u) ≥ 2|S(u) ≤ K} ≤ P{B ≥ 2} ≤ (Kn)2(K/m2)2 =
K4n2

m4 .

6



Therefore, if u0 is the first node of the first table, and if c > 0 is a given constant,

P{max
u

D(u) ≥ 2} ≤ P{max
u

D(u) ≥ 2,max
u

S(u) < c logn}+ P{max
u

S(u) ≥ c logn}

≤ mP{D(u0) ≥ 2|max
u

S(u) < c logn}+ 2(1 + ε)n1−cR(ε)

≤ (c logn)4n2

m3
+ 2(1 + ε)n1−cR(ε).

For ε > 0, we find c so large that cR(ε) ≥ 2. Then the upper bound is O((log n)4/n).

Completion of the proof of theorem 1. The first part follows immediately from Lemmas 1 and 2.

If all components are trees or unicyclic, and if all components are smaller than or equal to (C/2) logn,

then the time of a raw cuckoo hash is bounded by

2
∑

u

S(u).

Otherwise, the time is bounded by

Cn logn .

Let us use q for the upper bound of Lemma 1, with c = C/2. The expected time is thus bounded by

(r + q)Cn logn+ 2E

{∑

u

S(u)

}
.

We have rn logn = O(log5 n) by Lemma 2, and qn logn = o(n) by Lemma 1 provided that C/2 > 1/R(ε).

Using an estimate from the proof of Lemma 1, the second term is bounded by

4m2

m− n = O(n) .

References

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced allocations (extended abstract),” in: Pro-

ceedings of the 26th ACM Symposium on the Theory of Computing, pp. 593–602, 1994.

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced allocations,” SIAM Journal on Comput-

ing, vol. 29, pp. 180–200, 1999.

A. Z. Broder and A. R. Karlin, “Multilevel adaptive hashing,” in: Proceedings of the First An-

nual ACM-SIAM Symposium on Discrete Algorithms, pp. 43–53, SIAM, Philadelphia, 1990.

A. Z. Broder and M. Mitzenmacher, “Using multiple hash functions to improve IP lookups,” in: INFO-

COM 2001, pp. 0–0, 2001.

A. Brodnik and I. Munro, “Membership in constant time and almost-minimum space,” SIAM Jour-

nal on Computing, vol. 28, pp. 1627–1640, 1999.

H. Chernoff, “A measure of asymptotic efficiency of tests of a hypothesis based on the sum of observa-

tions ,” Annals of Mathematical Statistics, vol. 23, pp. 493–507, 1952.

7



A. Czumaj and V. Stemann, “Randomized Allocation Processes,” in: Proceedings of the 38th IEEE Sym-

posium on Foundations of Computer Science (FOCS’97), October 19-22, 1997, Miami Beach, FL, pp. 194–

203, 1997.

L. Devroye, “The expected length of the longest probe sequence when the distribution is not uni-

form,” Journal of Algorithms, vol. 6, pp. 1–9, 1985.

M. Dietzfelbinger and F. Meyer auf de Heide, “A new universal class of hash functions and dynamic hash-

ing in real time,” in: Proceedings of the 17th International Colloquium on Automata, Languages and Pro-

gramming (ICALP ’90), vol. 443, pp. 6–19, Lecture Notes in Computer Science, 1990.

M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger, “Polynomial hash functions are reliable (ex-

tended abstract),” in: Proceedings of the 19th International Colloquium on Automata, Languages and Pro-

gramming (ICALP ’92), vol. 623, pp. 235–246, Lecture Notes in Computer Science, 1992.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf de Heide, H. Rohnert, and R. E. Tarjan, “Dy-

namic perfect hashing: upper and lower bounds,” SIAM Journal on Computing, vol. 23, pp. 738–

761, 1994.

M. L. Fredman, J. Komlós, and E. Szemerédi, “Storing a sparse table with O(1) worst case ac-

cess time,” Journal of the ACM, vol. 31, pp. 538–544, 1984.

G. H. Gonnet, “Expected length of the longest probe sequence in hash code searching,” Jour-

nal of the ACM, vol. 28, pp. 289–304, 1981.

G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, Oxford University Press, 1992.

W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of the Ameri-

can Statistical Association, vol. 58, pp. 13–30, 1963.

S. Janson, Poisson Approximation, Oxford University Press, 1992.

D. E. Knuth, The Art of Computer Programming, Vol. 3 : Sorting and Searching, Addison-Wesley, Read-

ing, Mass., 1973.

M. Mitzenmacher, “Studying balanced allocations with differential equations,” Technical Note 1997024,

Digital Equipment Corporation Systems Research Center, Palo Alto, CA, 1997.

M. Mitzenmacher, A. W. Richa, and R. Sitaraman, “The power of two random choices: a survey of tech-

niques and results,” Technical Report, 2000.

R. Pagh and F. F. Rodler, “Cuckoo hashing,” BRICS Report Series RS-01-32, Department of Com-

puter Science, University of Aarhus, 2001.

J. S. Vitter and P. Flajolet, “Average-case analysis of algorithms and data structures,” in: Hand-

book of Theoretical Computer Science, Volume A: Algorithms and Complexity, (edited by J. van

Leeuwen), pp. 431–524, MIT Press, Amsterdam, 1990.

8


