
Random dynamic fonts

Random dynamic fonts

Bernard Desruisseaux

School of Computer Science
McGill University, Montreal

October 1996

A thesis submitted to the Faculty of Graduate
Studies and Research in partial fulfilment of the
requirements of the degree of Master of Science

Copyright © 1996 by Bernard Desruisseaux

À ma mère,
qui aurait sûrement
trouvé cela amusant

À mon père,
sur qui je peux

toujours compter

Contents

Abstract vi

Résumé vii

Acknowledgments viii

1 Introduction 1

2 Digital Fonts 5
2.1 Font Formats 5
2.2 Bézier Curves 6

3 Random Dynamic Fonts 11
3.1 Font Classes 11
3.2 Survey of the Field 11
3.3 PostScript and Random Dynamic Fonts 18

4 Method Proposed 21
4.1 Making Random Letterforms 21
4.2 Cubic Spline Curves 25
4.3 Font Program Organization 29
4.4 Parametrization 34

5 Font Samples 39
5.1 MetamorFont 39
5.2 Methodology 39
5.3 Character Sets 40
5.4 Technical Samples 45

6 PostScript Fonts with TEX and LATEX 48
6.1 TEX and LATEX 48
6.2 Font Metrics 49
6.3 Font Encodings 49
6.4 Virtual Fonts 50
6.5 Adobe File Metrics to TEX File Metrics 50
6.6 Device Independent Drivers 51
6.7 Interfacing PostScript Parametric Fonts 51

7 Conclusion 53

iv

Contents v

A PostScript Type 3 Font 55

B Adobe Font Metrics 60

C Modifications to Parameters 61

D MetamorFont with LATEX2ε 62

E MetamorFont Gallery 64

Bibliography 72

Abstract

This thesis presents a general method and structure for storing, represent-

ing and reproducing random dynamic fonts, i.e., fonts whose each rendi-

tion of each letterform differs. Such fonts allow, e.g., to come closer to

simulating true handwriting, by rendering its freedom, spontaneity, and

unpredictability.

This method allows the generation of random letterforms with different

overall shapes, derived from single letterform descriptions, according to

specified parameters and constraints. Letterforms generated in this man-

ner remain closely related—to a certain extent—to the original letterforms,

and preserve the continuity and thickness of the strokes.

Several examples of a typeface family designed with this method, im-

plemented as PostScript Type 3 font programs, are presented. A survey of

the literature on random dynamic fonts is also proposed.

vi

Résumé

Ce mémoire présente une méthode et structure générales pour mémoriser,

représenter et reproduire des fontes dynamiques aléatoires, c’est-à-dire,

des fontes dont chaque rendu de chaque caractère diffère. De telles fontes

permettent, par exemple, une meilleure simulation de l’écriture manuscrite

en traduisant sa liberté, sa spontanéité et son imprévisibilité.

Cette méthode permet la génération de caractères aléatoires de formes

générales différentes, dérivés d’une seule description de caractère, selon

des paramètres et contraintes spécifiés. Les caractères ainsi générés de-

meurent liés — dans une certaine mesure — aux caractères originaux et

préservent la continuité et l’épaisseur des traits.

Plusieurs exemples d’une famille de fonte conçue avec cette méthode et

implémentée sous forme de programmes de fontes PostScript Type 3 sont

présentés. Un tour d’horizon de la littérature sur les fontes dynamiques

aléatoires est aussi proposé.

vii

Acknowledgments

First, I wholeheartedly thank my supervisor, Luc Devroye, for his invaluable

comments, wisdom and enthusiasm for the subject. Thanks for keeping me

on the right track, it has been a pleasure working with you.

I wish to thank Jacques André, at INRIA Rennes, who provided con-

structive criticism on the design of MetamorFont.

I also wish to thank the Fonds pour la formation de chercheurs et l’aide

à la recherche (FCAR) for their financial support.

My deepest appreciation goes to my father, Gilles Desruisseaux, who

kindly reviewed drafts of this thesis. Your editorial criticism was always to

the point. Thank you for helping me.

Above all, I deeply thank my girlfriend, Sophie Gagné, for her love, un-

derstanding, and encouragement she has given me, especially during the

writing of this thesis. Thanks for being who you are.

viii

1 Introduction

In the early days of movable type, letter shapes were designed to seem

handwritten, as all published material was then produced by hand. Johann

Gutenberg (1398–1468), a pioneer∗ in movable type, worked 10 years to

create a product that would reproduce nicely the Gothic handwriting of his

day [43]. To reinforce the impression of original hand lettering as well as

to blur the characteristics of the new technology, Gutenberg made several

slightly different versions of the same letter.

Scribes, nevertheless, were trained to reproduce letters with identical

shapes, so that the constant shapes of printed letters soon became accep-

ted. The concept of characters as fixed geometrical objects was simply

strengthened by the spreading of the movable type technology. As this

concept is in accordance with most theories on legibility and readability,

it comes as no surprise that typefaces, including script typefaces, are still

used with fixed letterforms.

Nowadays type foundries offer extensive collections of script typefaces

that simulate handwriting. Unfortunately, most of these typefaces lack

the life and spirit of true handwriting. Letters with constant shape are

simply inadequate to render the freedom, spontaneity, and unpredictabil-

ity of handwriting.

The advent of computer technology brought new avenues to type design.

The use of computers and digital devices led to new methods and tools

∗ Bí Sheng, a Chinese engineer, should be credited as the inventor of movable type, in
preference to Gutenberg [15].

1

1. Introduction 2

for the creation of typefaces. Generation of letterforms by mathematical

means has become easier as computers carry out all computations.

Donald E. Knuth’s font-design system, METAFONT [30], defines letter-

forms with sets of mathematical formulas from which their exact shapes

are derived. Through the use of parameters, many shapes can be extracted

from a single letterform description. If one of these parameters is a ran-

dom variable, a random font is produced, i.e., every time the font is defined

as a whole, a new set of letterform shapes is generated.

PostScript Type 3 font programs can define fonts in a parametric way

and generate random fonts, but they can also vary these parameters dy-

namically. Therefore, each instantiation of each character differs from the

last. Such fonts are called dynamic or random dynamic.

In general, script typefaces are used to bring elegance and simplicity

to text. They are mainly used to draw the reader’s attention and to create

interesting contrast when used with conventional typefaces. Handwriting

types can bring life to a page by suggesting the movement of the human

hand. Random dynamic fonts reflect these movements more closely than

do the conventional static fonts.

Although the use of random dynamic fonts may seem limited, these

fonts are well fitted to a broad range of applications—announcements,

brochures, greeting cards, restaurant menus, invitations, handwriting on

posters, graffiti, comic strips (particularly for those published in many

languages)—and wherever a touch of humor and warmth is desired.

Other fields might also benefit from such fonts: computer graphics, test

samples for handwriting character recognition systems [46], and graphic

design. Indeed, through experimentation with random dynamic fonts, in-

teresting new letterforms may be discovered [25].

Random dynamic fonts could also be put to profit with the whole new

class of typefaces that render the irregularities of printing tools such as

1. Introduction 3

smudged typewriter machines, rubber stamps and hand-held label makers.

Other effects, such as overprinting, inkspreading [6], and hand-sketched

pressure brushstrokes [41] can also be achieved.

Finally, the economic advantage of random dynamic fonts over the ser-

vices of lettering artists is obvious. The typeface has to be paid for only

once, and it can be used as much and as long as the buyer wants, and at

any time of the day!

Random dynamic fonts have already been explored by other computer

scientists [11, 9, 18] and graphic designers [47, 48, 25]. This thesis presents

another vision, while going much deeper at the programming and concep-

tual levels. The method presented here goes further than simply adding

random perturbations to character outlines or interpolating character rep-

resentatives. It allows alterations to the overall letterform shapes within

predetermined limits.

While the technical and conceptual aspects are the primary concern of

this research, the creation of beautiful, functional and inconspicuous ran-

dom dynamic fonts is nevertheless its main intent. Random dynamic fonts

should, however, be used sparingly as they are less legible and readable

than conventional fonts. As Robin Williams [50, p. 89] puts it, “Scripts are

like cheesecake—they should be eaten sparingly. I mean, used sparingly.”

The versatility of the method described allows the design of conven-

tional fonts as well as fonts that can be grouped in what has been called

radical or grunge typography (see [51]) or part of the Broken Art move-

ment, fonts mainly targeted at Generation X, or so-called experimental. It

should be noted that the method is not limited to the creation of fonts but

could also be applied to ornaments or any kind of drawing.

In the next chapter, the different digital font formats are discussed, and

the mathematics of Bézier curves are introduced. Chapter 3 surveys several

random dynamic fonts methods, and explains how the PostScript language

1. Introduction 4

can be used to implement such fonts. The following chapter, the heart

of this thesis, covers the proposed method in detail. Chapter 5 presents

several technical examples of a typeface designed with the method. Finally,

the interaction between PostScript random dynamic fonts, TEX and LATEX,

is considered. Complementary technical information can be found in the

appendices.

This thesis has been formatted with LATEX 2ε [35] using fonts from the Lucida family [13].

2 Digital Fonts

This chapter gives a quick overview of the different representations of di-

gital fonts, and introduces the mathematical foundations of Bézier curves,

commonly used in such fonts. The whole area of digital fonts is covered

at length in [26, 27, 43], and a comprehensive introduction can be found

in [7].

2.1 Font Formats

Digital fonts are complex data structures used to store, represent, and re-

produce sets of characters in a form suitable for digital output devices.

Several coding methods are applied to represent such fonts: bitmaps, run

lengths, vectors, circles, g-conics, splines and spirals [26]. They differ

mostly in their storage usage, efficiency, accuracy, and convenience to scale

up and down.

Bitmaps and run lengths simply specify which picture elements or pixels

must be painted and therefore are tuned to a particular size and resolution.

Although practically no computation is involved, a sizable amount of stor-

age space is used. Other methods store the letterform shapes as outlines

and provide collections of points used to describe different graphical con-

structs mathematically. The latter are more prone to scaling and occupy

less storage space, but they require significant computations to generate

the letterform shape at each size and resolution.

Nowadays, most digital fonts store the letterform shapes as outlines

5

2. Digital Fonts 6

(a) (b) (c)

Figure 2.1. Various digital font formats: (a) bitmap, (b) run lengths, and
(c) outline using cubic Bézier curves.

mathematically expressed by splines, and more precisely as collection of

smoothly joined Bézier curves. All the curves drawn by METAFONT [30] and

PostScript [3] are based on cubic Bézier curves, and those by TrueType [12]

on quadratic Bézier curves.

2.2 Bézier Curves

Bézier curves were independently developed by two French automobile en-

gineers, Paul de Casteljau of Citroën, in 1959, and Pierre Bézier of Renault,

around 1962. Although de Casteljau preceded Bézier in his discovery,

these curves have been named after Bézier, whose work was published

first. Bézier curves are now widely used in computer aided design (CAD)

systems. A comprehensive treatment of the basic methods in curve design

can be found in [19, 16, 37].

The de Casteljau Algorithm

Paul de Casteljau developed an algorithm to construct curves of arbitrary

degree n from a sequence of points b0, . . . , bn, the control points, that form

a polygon, called the characteristic polygon. The algorithm can be formu-

2. Digital Fonts 7

lated recursively as follow:

bri (t) = (1− t)br−1
i (t) + tbr−1

i+1 (t)











r = 1, . . . , n

i = 0, . . . , n− r

in which t varies from 0 to 1 and b0
i (t) = bi .

b0

b1

b2

b3

b0
1

b1
1

b2
1

b0
2

b1
2

b0
3

(a)

b0

b1

b2

b3

b0
1

b1
1

b2
1

b0
2

b1
2

b0
3

(b)

Figure 2.2. The de Casteljau algorithm: (a) cubic Bézier curve with t = 0.5,
(b) scheme for cubic Bézier curve.

De Casteljau also discovered an interesting and simple way, somewhat

related to his algorithm, to construct Bézier curves. By geometric subdivi-

sion of the control polygon of a curve, two new control polygons, as well as

a new point on the curve, are obtained. The remaining points of the curve

are found recursively with the same process being repeated ad infinitum

on each new control polygons. In practice, this process converges quickly

and is simply carried out until the curve is actually drawn, some execution

efficiency being gained at the expense of accuracy.

2. Digital Fonts 8

Bézier Form

Pierre Bézier suggested that curves be defined as a linear combination of a

certain class of functions fi , referred to as blending or basis functions. A

curve B of arbitrary degree n could be described by a parametric function

of the form:

B(t) =

n
∑

i=0

bifi(t), 0 ≤ t ≤ 1.

As blending functions, Bézier chose the density functions of the binomial

distribution. It was later discovered, by A. R. Forrest, that Bézier curves

could be written in terms of Bernshtĕın polynomials:

Bni (t) =

(

n

i

)

t i (1− t)n−i , 0 ≤ i ≤ n.

B0
3

B1
3 B2

3

B3
3

0

1

1

Figure 2.3. Bézier cubic blending functions: third degree Bernshtĕın poly-
nomials.

2. Digital Fonts 9

Cubic Bézier Curves

Cubic Bézier curves are so widely used that they deserve expanded atten-

tion. Mathematically, a cubic Bézier curve is derived from a pair of para-

metric cubic equations:

x(t) = axt
3 + bxt

2 + cxt + x0

y (t) = ay t
3 + by t

2 + cyt + y0

where t ranges from 0 to 1, and the curve end points (x0, y0), (x3, y3) and

intermediate control points (x1, y1), (x2, y2) are defined as:

x1 = x0 + cx/3

x2 = x1 + (cx + bx)/3

x3 = x0 + cx + bx + ax

y1 = y0 + cy/3

y2 = y1 + (cy + by)/3

y3 = y0 + cy + by + ay

which can be converted into the equivalent Bernshtĕın polynomial format:

x(t) = x0(1− t)3 + 3x1t(1− t)
2 + 3x2t

2(1− t) + x3t
3

y (t) = y0(1− t)3 + 3y1t(1− t)
2 + 3y2t

2(1− t) + y3t
3.

Cubic Bézier curves provide the necessary flexibility to obtain satisfact-

ory approximations to a large number of curves. The figure below illus-

trates the various shapes cubic Bézier curves can take.

(a) (b) (c) (d)

Figure 2.4. Various shapes of Bézier cubic curves: (a) convex, (b) with an
inflection point, (c) with a loop, and (d) with a cusp.

2. Digital Fonts 10

Properties

Any Bézier curve share the following important geometrical properties:

• It begins at (x0, y0), heading in the direction from (x0, y0) to (x1, y1);

• It ends at (x3, y3), heading in the direction from (x2, y2) to (x3, y3);

• It lies entirely within the convex hull (see, e.g., [40]) defined by the

characteristic polygon;

• It is invariant under affine maps, i.e., affine maps applied to the con-

trol points of the curve or to the computed points of the curve yield

the same result;

• It is variation-diminishing, i.e., it never oscillates wildly away from its

control points.

3 Random Dynamic Fonts

This chapter presents the two classes of digital fonts, and surveys different

approaches to random dynamic fonts. Then, the PostScript language and

its different font types are introduced, and the use of the PostScript lan-

guage for the implementation of random dynamic fonts is explained and

justified.

3.1 Font Classes

Digital fonts can be divided in two classes, static fonts and dynamic fonts

[9]. Letterforms from static fonts can be viewed as fixed geometrical ob-

jects. First, they are designed by an artist, then digitized in some way, and

finally used in a printing process. This results in letterforms of constant

shape. Almost all fonts belong to this class.

Dynamic fonts are fonts whose letterform shape is defined every time

the corresponding letterform is printed rather than when the font is de-

fined as a whole.

3.2 Survey of the Field

Many font parameters can be controlled, randomized, and rendered dy-

namically. The main approaches worked out by others are presented ac-

cording to an informal classification.

11

3. Random Dynamic Fonts 12

Random Perturbation of Control Points

The first steps towards random fonts involved random perturbations of

the character shape descriptors. In The METAFONTbook [30, chap. 21], Don-

ald E. Knuth explains how to use METAFONT to produce random fonts by

carefully adding noise to the characters’ control points. Knuth basically

used this approach to implement his Punk typeface [32], illustrated below.AAA AAA AAA
(a) (b) (c)

Figure 3.1. The Punk family: (a) roman, (b) slanted, and (c) bold.

Dynamic Fonts and PostScript

Being a batch font design system, METAFONT does not allow the creation

of dynamic fonts. On the other hand, the PostScript font machinery allows

on-line changes through the use of its Type 3 font programs (see, e.g.,

André and Borghi [9] or Sherman [44, p. 164]). André and Ostromoukhov

[11] converted the Punk typeface to a PostScript Type 3 font program to

make it dynamic. Packard [38] applied this technique to ransom fonts.

The use of the PostScript Type 3 font format does not imply the use

of any specific method. On the contrary, it provides a general mechanism

for the creation of random dynamic fonts. Furthermore, it is the format

used in most cases for the implementation of the following methods. More

details on the PostScript language [3] and its font machinery are given in

section 3.3.

3. Random Dynamic Fonts 13

Outline Texture

Texture is an aspect of fonts that can be experimented with. Nowadays,

most software applications can use fonts to define clipping paths (see Mc-

Gilton and Campione [36]) that can be filled with special pattern defin-

ing textures, thus leaving texture handling separated from font design.

However, the texture of the outlines used to define these clipping paths

should be part of the font design.

Graphic designers Erik van Blokland and Just van Rossum developed

several methods to produce rough and lively outlines [48]. Their first

method is similar to the one used by Knuth for the Punk typeface, but

the random perturbations are applied directly at the control points of the

character outlines and in a carefree way.

Figure 3.2. Random perturbation of the control points in LucidaBright [13,
52].

The result of this method is closely related to the number of control

points in the outline, in other words, to the length of each graphical com-

ponent. Small perturbations can sometimes cause large differences in

weight and yield uneven strokes. Thus, a second method was developed

to achieve smoother roughness in the outlines. Basically, the original out-

lines are simply converted into a sequence of short straight lines prior to

the random perturbations. Their Beowolf family [47] was implemented as

PostScript Type 3 font programs using this method.

More complex algorithms can also be used to produce texture effect.

Erik van Blokland and Just van Rossum present samples of simulated un-

3. Random Dynamic Fonts 14

Figure 3.3. Random perturbation of the control points—after conversion
into sequence of short straight lines—in LucidaBright [13, 52].

der- and over-exposure of type in [48], and Jacques André developed a

method for inkspreading simulation [6].

Multiple Caching

In order to speed up the rendition process, Erik van Blokland and Just van

Rossum [48] proposed a method that trades memory for speed. The solu-

tion is to maintain multiple caches of randomized outlines, each cache con-

taining a different instance of each character, and to randomly select one

cache whenever a character is requested. Although limited, this method

may be adequate under certain circumstances.

Geometrical Transformations

The appearance of characters can be controlled, as well as their position

and orientation on a page. Random geometrical transformations can be ap-

plied to the whole characters to achieve interesting effects. Vertical trans-

lations produce a variable baseline [48], as observed in some handwriting.

Rotation can be used, as shown by André in his Scrabble font [5], to move

each tile by a randomly defined angle. Lastly, variations in the character

size can also be achieved with scaling, provided a uniform character thick-

ness is ensured.

3. Random Dynamic Fonts 15

Simulation of Handwriting

Luc Devroye and Michael McDougall presented three methods for the sim-

ulation of handwriting using random dynamic fonts [18]. The first one

used the random interpolation and extrapolation of multiple representat-

ive characters. Easy to implement and robust, this method is also fast since

little computation is required.

The drawback of this method is that all the representative characters

must be designed a priori. Furthermore, every representative must have

the same number of control points, and each of them should play the same

role in the letterform shape than its counterparts in the other represent-

atives. A simple solution used by Margo Johnson [25], and Luc Devroye

(in unpublished work), is to generate the representative characters from a

single master character using special transformations.

Figure 3.4. Random interpolation of multiple representative characters.
(This figure is taken from [18], and is provided by Luc Dev-
roye, McGill University.)

The second method, random selection of points from the minimal span-

ning tree, guarantees the production of points that are always uniformly

3. Random Dynamic Fonts 16

distributed inside the convex hull of the data points. This condition is not

met in the first method when the number of representatives exceeds the

dimension of the space by more than one. In a nutshell, once the minimal

spanning tree of the data points has been determined (see, e.g., Cormen

et al. [17, chap. 24]), an edge of the tree should be picked at random, a

point should be generated uniformly at random on the edge, and then the

interpolation should be performed to render the character.

KKKKKKKKKKKKKKK

Figure 3.5. Random selection of points from the minimal spanning tree.
(This figure is taken from [18], and is provided by Luc Devroye,
McGill University.)

The last method presented, the kernel method, is the controlled random

perturbation of Bézier control points in order to preserve C1 continuity

(see, e.g., Su and Liu [16] or Farin [19]) given a smoothing factor. The goal

of this method is to generate new points with the same distribution as the

original data points, as opposed to previous methods which exclusively use

uniform distributions.

Contextual Fonts

Characters can also vary dynamically according to their context, e.g., the

preceding and succeeding letters, beginning or end of words. Contextual

3. Random Dynamic Fonts 17

fonts, as they are called, are simple dynamic fonts where the context is

used as a parameter. Randomness is not always involved in such fonts.

Kokula developed a method to smoothly link script font characters on-

the-fly [34]. Great attention has been paid to the natural appearance of the

curves joining characters. Details are given on how the proposed algorithm

can be integrated into PostScript Type 3 font programs.

Signature Software [45] sells personalized contextual (cursive) hand-

writing fonts based upon samples from a person’s own hand. Although

their products are mainly targeted toward the TrueType technology, con-

textual PostScript Type 3 font programs are also made available. Their

solution is somewhat similar to the multiple caching method, although the

selection process is deterministic and depends only on the context. Un-

like Kokula, the context handling is not integrated into the font program,

but PostScript primitives such as show are redefined, which may lead to

unexpected results.

Po´ìÑô c∏ v¢Ñîó w°àíäò aî j»Ü∏ b•éßÉ qîà fîåÑ. (a)

P®´ìÑô c∏ v¢Ñîó w°àíäò aî j»Ü∏ b•éßÉ qîà fîåÑ. (b)

Pé´ìÑô c∏ v¢Ñîó w°àíäò aî j»Ü∏ b•éßÉ qîà fîåÑ. (c)

Úo´ìÑô cÑ v¢Ñîó w°àíäò aî jîÜÑ b•éßÉ qîà fîåÑ. (d)

Úo´ìÑô cÑ v¢Ñîó w°àíäò aî j»Ü∏ b•éßÉ qîà fîåÑ. (e)

Figure 3.6. Signature Software SUPERscripts: (a) SigJocelyn, (b) SigLisa, (c)
SigTsui, (d) SigVictoria, and (e) SigWilson.

Other interesting contextual fonts have also been developed. André

and Borghi [9, Fig. 7] present a simple contextual font that adapts itself

to its graphical environment. André and Delorme [10] and [7, pp. 87–95]

developed the Delorme typeface, which offers interesting features for logo

design.

3. Random Dynamic Fonts 18

3.3 PostScript and Random Dynamic Fonts

PostScript is a powerful graphical page description language, introduced

by Adobe Systems in 1985. Although PostScript’s primary application is to

describe the appearance of text, graphics, and images on a printed page or

display, it is, nevertheless, a full-featured, interpreted, programming lan-

guage. Like most high-level programming languages, PostScript provides

a conventional set of data types, control primitives, and general-purpose

operators. However, PostScript differs from most languages by incorporat-

ing a postfix notation, in which operators are preceded by their operands,

and by the extensive use of stacks and dictionaries, which form the heart

of PostScript. The complete specification of the PostScript language ap-

pears in the PostScript Language Reference Manual [3], and comprehensive

introductions can be found in [1, 36].

Font Dictionaries

PostScript unifies text and graphics by treating letter shapes as general

graphic shapes that may be manipulated by any of the language’s graph-

ics operator. However, since letters are used so frequently, the PostScript

language provides higher-level facilities to describe, select and render char-

acters conveniently and efficiently.

In the PostScript language, sets of characters are organized into fonts,

which in turn are nothing but PostScript dictionaries that conform to spe-

cific conventions and are registered with the font machinery. PostScript

currently has three font types, each with its own conventions for organiz-

ing and representing font information.

• Type 0, known as composite fonts, are combinations of other fonts,

base fonts or descendant fonts, that in turn may be any kind of font—

Type 1, Type 3, or even another Type 0. This font type was created

3. Random Dynamic Fonts 19

to meet the needs of Asian languages that use large character sets—

much larger than the 256 characters limit of the other font types. This

format is described in [3].

• Type 1, sometimes referred to as standard fonts, define character

shapes in a compact way using a subset and an extension of the Post-

Script language, following a much stricter syntax, and a rigorously

defined structure. Type 1 font programs can include special inform-

ation, called hints, to improve the appearance of characters rendered

at small sizes and low resolutions. The official specification for this

format appears in Adobe Type 1 Font Format [2].

• Type 3, or user-defined fonts, define character shapes as ordinary

PostScript language procedures. Unlike Type 1 fonts, Type 3 fonts

do not provide a hinting mechanism, although one could be imple-

mented. There are very few restrictions on this format, as the font

developer is free to use whatever method and structure to supply

the character descriptions. Not as efficient and convenient as Type 1,

Type 3 fonts come in handy whenever complex graphic constructions,

color setting operators, image operators, or font cache control oper-

ators are involved. This format is described in [3].

Font Cache

Since letters are used repeatedly, the PostScript interpreter’s font machin-

ery includes a font cache to optimize the character rendering process. The

font cache stores the results of a character scan conversions (see, e.g., [22])

in an internal data structure. Thus, when a character is requested again

the font cache provides the character bitmap without any computation.

The font cache does not retain color information and disallows the ex-

ecution of the image operator. PostScript provides two operators to con-

3. Random Dynamic Fonts 20

trol the behavior of the font cache mechanism within Type 3 fonts. The

setcachedevice operator is used to declare the character metrics and

requests the font machinery to store the computed bitmap into the font

cache, and setcharwidth is simply used to declare the character metrics,

bypassing the font cache mechanism. The use of setcharwidth is mandat-

ory when dynamic fonts are called for, otherwise the font cache mechanism

would prevent the differentiation of characters.

A Sensible Choice

As a device- and resolution-independent page description language, Post-

Script provides a common software interface to deal with the general class

of raster output devices. Since its introduction, many PostScript inter-

preters have been developed to control a wide variety of output devices.

Through the years, the PostScript language has become the industry stand-

ard for imaging high-quality graphics and text.

Since the PostScript language is currently supported by many software

applications and hardware platforms, and as it provides a flexible devel-

opment environment as a full-featured programming language, it seems a

sensible choice for the implementation of random dynamic fonts, which is

the topic of the following chapter.

4 Method Proposed

This chapter presents a general method and structure for storing, repres-

enting and reproducing random dynamic fonts. The first section is a gen-

eral description of the method—the letterform description and the ran-

domization process. Subsequent sections discuss the implementation of

the method using the PostScript Type 3 font format, the organization of

font dictionaries, and the parametrization of fonts.

4.1 Making Random Letterforms

The method developed here allows the generation of random letterforms

with different overall shapes, derived from single letterform descriptions,

according to specified parameters and constraints. Letterforms generated

in this manner remain closely related—to a certain extent—to the original

letterforms, and preserve the continuity and thickness of the strokes.

Letterform Description

Letterform description is the heart of any font program. Letterforms de-

scribed directly as collections of connected and unconnected Bézier curves

are inadequate, as many letterform shapes are to be derived from single

descriptions. Preserving the continuity of smoothly connected curves im-

poses constraints too severe to yield any interesting results. Indeed, a

greater abstraction is required in the letterform description if pleasing let-

terforms are called for.

21

4. Method Proposed 22

Figure 4.1. Simple continuity-preserving transformations: tension vari-
ations on control points, in the spirit of the tension parameter
in METAFONT [30, pp. 15–16] (increasing from top to bottom);
and rotations of control points around junction points (angles
varying counterclockwise from left to right). Original letter-
forms, shown in bold, are from the Birke typeface designed by
Luc Devroye, McGill University.

Complete letterforms can be described at a higher level with spline

curves, i.e., continuous curves composed of several polynomial segments.

Splines provide more flexibility and can easily yield continuous curves of

complex shapes. Spline curves are described by polygons, referred to as

spline characteristic polygons.

X Y Z
Figure 4.2. Letterforms described by spline characteristic polygons.METAFONT provides an algorithm, due to Hobby [23], for smooth inter-

polating splines, i.e., splines that smoothly pass through the data points.

On the other hand, PostScript does not support splines directly, thus, a

spline interpolation or approximation algorithm has to be implemented.

4. Method Proposed 23

The algorithm selected to convert spline characteristic polygons into se-

quences of continuous cubic Bézier curves is described in section 4.2.

To ensure a uniform thickness of the strokes, letterforms are defined

inline, i.e., they are created by inking along a path, instead of filling outlines

(see Fig. 2.1c). The method provides a calligraphic pen effect, controlled by

several parameters, to create more interesting shapes. Otherwise, all let-

terforms would look as if they were drawn by a felt-tip pen with a perfectly

round nib. e e
Figure 4.3. Calligraphic pen (on the right) creates more interesting shapes.

Randomization Process

Working with spline characteristic polygons greatly simplifies the random-

ization process. Indeed, random letterforms can be obtained by simply

applying perturbations to each vertex of the polygons in a carefree way.

Unfortunately, only small perturbations yield interesting letterforms, as

large perturbations simply destroy the nature of the original letterforms,

even though continuity is preserved.

In order to preserve the shapes of certain parts of the letterforms, for

the sake of decipherability, polygons can be divided into sections at design

time. Sections are lists of consecutive vertices that shall preserve their

relative position among themselves through the randomization process,

and thus preserving the shape they describe in an affine manner.

For better control over the randomization process, constraints, such as

4. Method Proposed 24

e e e
Figure 4.4. Large perturbations simply destroy the nature of the original

letterforms.ee ee ee
Figure 4.5. Sections, shown delimited by black squares, preserve the

shape they describe.

the maximum perturbations allowed, can added to each vertex of the spline

characteristic polygon.

After the randomization process it is possible to restore the original

height or width or both of the spline characteristic polygon, by applying

simple scaling and translation operations to the polygon. This allows to

preserve a uniform letterform height, as well as the original letterform

width. Preserving the letterform width is particularly important when type-

setting text with systems, such as TEX, that rely on static metric informa-

tion.

Lastly, small random vertical translations can be applied to the whole

spline characteristic polygon to break the monotonous baseline that would

be produced otherwise.

4. Method Proposed 25

Figure 4.6. Distortion of a single section: all vertices are transformed in
an affine manner.

4.2 Cubic Spline Curves

Cubic Bézier curves cannot model every possible curve. Curves with com-

plex shapes could be best approximated by Bézier curves of higher de-

gree but with significant computational complexity increase. Such complex

curves can, however, be modeled using composite Bézier curves, also known

as piecewise polynomial curves, or simply called spline curves. Spline curves

can be represented in terms of B-spline functions, in which case they are

called B-spline curves. Bézier curves of degree n are special cases of B-

spline curves of degree n. This section focuses on cubic spline curves.

Continuity of Connected Curves

Connected curve segments are characterized by their order of differentiab-

ility, or say continuity. A spline curve is a continuous map of a collection

of intervals u0 < . . . < uL, where each interval [ui, ui+1] is mapped onto a

polynomial curve segment. In the following, the length of an interval shall

be noted as ∆i = ui+1 − ui .

Two Bézier curve segments with polygons b0, . . . , bn and bn, . . . , b2n, i.e.,

sharing a common end point, are said to have at least C0 continuity. Fur-

thermore, if the curve segments also share a common tangent line at their

4. Method Proposed 26

e→e→e→e→e
e→e→e→e→e
e→e→e→e→e
Figure 4.7. Randomization process: original letterform, randomization

of letterform, restoration of height and width, generation of
Bézier control points, stroke with calligraphic pen.

junction point, i.e., bn−1, bn, bn+1 are collinear, and moreover are in the ratio

(u1 − u0) : (u2 − u1) = ∆0 : ∆1, that is

bn =
∆1

∆0 + ∆1
bn−1 +

∆0

∆0 + ∆1
bn+1,

then C1 continuity is obtained. Lastly, if the two curves possess equal

curvature at their joint, or on the geometrical view, an auxiliary point d

exists such that the points bn−2, bn−1, d and d, bn+1, bn+2 are in the same

ratio, that is

bn−1 =
∆1

∆0 + ∆1
bn−2 +

∆0

∆0 + ∆1
d,

bn+1 =
∆1

∆0 + ∆1
d +

∆0

∆0 + ∆1
bn+2.

then C2 continuity is obtained.

4. Method Proposed 27

d

b n-
2

∆ 0

b n-
1

∆ 1 ∆
0

b
n+1

∆
1

b
n+2

∆
0

b
n

∆
1

Figure 4.8. Geometric conditions required for C2 continuity.

Böhm Construction Algorithm

Wolfgang Böhm [14] derived a simple algorithm, based on the continuity

conditions stated above, to determine the location of the Bézier control

points of a spline curve such that the C2 constraints are satisfied. Thus,

the well known representation of curves in Bézier form is carried over to

splines.

Given a spline characteristic polygon with vertices dj ; 0 ≤ j ≤ L, the

Bézier control points for a C2 continuous spline are calculated as follows:

Divide dj−i, dj by b3j−2, b3j−1 in the ratio ∆j−1 : ∆j : ∆j+1,

divide b3i−1, b3i+1 by b3i in the ratio ∆i : ∆i+1.

If the points dj describe a closed polygon, these operations simply need to

be performed in modulo L. On the other hand, if the points dj describe

an open polygon, the process gets a little more complicated near the ends.

The spline polygon is defined to have vertices d−1, d0, . . . , dL, dL+1 and then

the extreme Bézier control points are sets as follows:

b0 = d−1,

b1 = d0,

4. Method Proposed 28

b2 =
∆1

∆0 + ∆1
d0 +

∆0

∆0 + ∆1
d1,

b3L−2 =
∆L−1

∆L−2 + ∆L−1
dL +

∆L−1

∆L−2 + ∆L−1
d0 +

b3L−1 = dL,

b3L = dL+1.

dj-1

dj

dj+1

b
3i-2

b
3i-1

b
3i

b
3i+1

b
3i+2¹⁄³

¹⁄³

¹⁄³ ¹⁄³

¹⁄³

¹⁄³

¹⁄²
¹⁄²

Figure 4.9. Special case of equidistant partition, as used in the implement-
ation.

d
-1

d
0

d
1

d
2

d
3

d
4

d
5

d
6

(a)
d

0

d
1

d
2

d
3

d
4

d
5

d
6

d
7

(b)

Figure 4.10. Böhm construction: (a) open-end polygon, (b) closed poly-
gon.

4. Method Proposed 29

Properties

Spline curves share most properties of Bézier curves (see Sect. 2.2). Spline

curves provide a better local control than Bézier curves. Perturbing a single

vertex of the characteristic polygon produces only a local perturbation of

the curve in the vicinity of that vertex.

Yet another useful property in the design of letterforms is the multi-

plicity of vertices of spline characteristic polygons. It is possible to refine

the shape of a curve by repeating a vertex once of more times in the se-

quence of vertices of a characteristic polygon. Repeating a vertex increase

its multiplicity by one.

(a) (b) (c)

Figure 4.11. Polygons with all vertices having multiplicity: (a) 1, (b) 2, and
(c) 3.

4.3 Font Program Organization

The method has been implemented into PostScript Type 3 font programs.

A PostScript Type 3 font program is a collection of procedures describing

letterform shapes, organized into a PostScript dictionary. Unlike Type 1

font programs, there is no such thing as a “typical Type 3 font program”

as very few restrictions are put on their structure and format. This section

describes the organization of the font programs used to implement the

method. To facilitate support with most software applications, and under-

4. Method Proposed 30

standing by Type 1 font designers/programmers, conventions pertaining

to Type 1 font programs have been followed whenever possible.

Font Dictionnaries

The following table describes the entries of a font dictionary implememen-

ted with the method.

Key Type Semantics

FontType integer Indicates where the information for the character

descriptions is to be found and how it is

represented.

FontMatrix array Transforms the character coordinate system into

the user coordinate system.

FontName string The name of the font.

FontInfo dictionary Provides information about the font, for the

benefit of programs using the font. Entries are

described in a separate table.

LanguageLevel integer Minimum language level required for correct

behavior of the font.

Encoding array Array of names that maps character codes to

character names.

FontBBox array Array of four numbers in the character coordinate

system giving the overall font bounding box.

UniqueID integer Integer in the range 0 to 224 − 1 that uniquely

identifies the font.

(FID) fontID Font identifier generated by the definefont

operator for internal purposes in the font

machinery.

4. Method Proposed 31

Key Type Semantics

CharProcs dictionary Provides a procedure for each letterform defined

in the font. Letterform procedure can also call

subroutines.

FontMetrics dictionary Contains the computed left sidebearing and

width of each letterform.

BBox dictionary Contains the computed bounding box of each

character in the font, taking into account the

specified left sidebearings.

RealBBox dictionary Contains the bounding box of each character in

the font.

FontParams dictionary Contains global font parameters. Entries are

described in the following section.

CharParams dictionary Contains individual characters parameters.

Entries are described in the following section.

SideBearings dictionary Contains the left and right sidebearings of each

letterform.

KerningPairs dictionary Contains all kerning pairs value. See Fig. 4.15 for

example of kerning.

Ligatures dictionary Contains all ligatures. See Fig. 4.16 for example of

ligatures.

The CharProcs dictionary provides the description of each letterform.

4. Method Proposed 32

/e {
[

[
[

[42 313 << 25 50 25 25 box >>]
[63 250]
[188 229]
[333 292]
[396 417 << 25 75 50 25 box >>]

] [
[333 500]
[167 479]
[63 354]
[63 146 << 50 75 25 75 box >>]

] [
[146 -17]
[354 -17]
[417 146 << 50 100 50 50 box >>]

]
]

]
} def

e
Figure 4.12. Example of a typical letterform description. The << and >>

operators are the PostScript Level 2 short-cut dictionary con-
structors. box is a short-hand operator to define the four
parameters -dx, -dy, +dx and +dy according to its four oper-
ands.

→

→→
→

-dx +dx

+dy

-dy

Figure 4.13. Perturbation of the vertices of spline characteristic polygons
are done according to the four parameters -dx, -dy, +dx and
+dy.

4. Method Proposed 33

character
origin

ց ւ
baseline

next
character
origin

bounding
box

→← left side bearing

←character width →

Figure 4.14. Character metrics.AVATAR AVATAR
(a) (b)

Figure 4.15. Comparaison between (a) kerned text and (b) unkerned text,
using the Computer Modern Roman typeface designed by
Donald E. Knuth [31].� �
 � � ff fi fl ffi ffl

(a) (b)

Figure 4.16. Comparaison between (a) the ligatures and (b) simple char-
acters in the Computer Modern Roman typeface designed by
Donald E. Knuth [31].

4. Method Proposed 34

The FontInfo dictionary provides font information to programs. The

format documented in the PostScript Language Reference Manual [3] has

been preserved and is described here for the sake of completeness.

Key Type Semantics

FamilyName string Specifies the font family to which the font

belongs.

FullName string Unique name for an individual font.

Notice string Trademark or copyright notice.

Weight string Name for the weight, or boldness, attribute of the

font.

version string Version number of the font program.

ItalicAngle number Angle in degrees counterclockwise from the

vertical of the dominant vertical strokes of the

font.

isFixedPitch boolean Indicates if the font is a fixed-pitch (monospaced)

font.

UnderlinePosition number Recommended distance from the baseline for

positioning underlining stroke.

UnderlineThickness number Recommended stroke width for underlining.

4.4 Parametrization

It is only through parametrization that one really get some control over

random dynamic fonts. Some parameters influence every characters of

a font, while some are specified for each characters. Furthermore, some

parameters can greatly influence the metric of characters, in which case

the UseMetrics parameters should be set to false.

4. Method Proposed 35

Font Parameters

Font parameters are specified in two dictionaries: FontParams for global

parameters, and CharParams for individual character parameters. The fol-

lowing table summarize the font and character parameters currently sup-

ported by the method.

Key Type Semantics

DynamicFont boolean Indicates if the font cache should be disabled, i.e.,

use setcharwidth rather than setcachedevice.

RandomFont boolean Indicates if random perturbations should be

applied to letterforms.

UseSections boolean Indicates if sections should be used.

UseConstraints boolean Indicates if constraints dictionaries should be

used.

UseMetrics boolean Indicates if provided metrics should be used or

computed on-the-fly.

JumpyFont boolean Indicates if vertical translations should be

applied to letterforms.

JumpyFactor number Specifies the degree of vertical haphazard

variation.

JumpsRelative boolean Indicates if jumps should be relative.

LastJump number Contains value of last jump.

PaintType integer Painting method (0 = outline filled, 1 = path

stroked, 2 = outline stroked, 3 = no painting).

StrokeWidth number Line width.

LineCap integer Shape of line ends for stroke (0 = butt, 1 = round,

2 = square).

LineJoin integer Shape of corners for stroke (0 = miter, 1 = round,

2 = bevel)

4. Method Proposed 36

Key Type Semantics

MiterLimit number Miter length limit.

UsePen boolean Indicates if the calligraphic pen should be used.

ThickThinRatio number Thick thin ratio for the calligraphic pen.

StressAngle number Stress angle for the calligraphic pen.

-dx number Degree of horizontal haphazard variation

(downward).

+dx number Degree of horizontal haphazard variation

(upward).

-dy number Degree of vertical haphazard variation (towards

the left).

+dy number Degree of vertical haphazard variation (towards

the right).

Craziness number Degree of haphazard variation in all directions.

RestoreWidth boolean Indicates if the width of the original letterform

should be restored.

RestoreHeight boolean Indicates if the height of the original letterform

should be restored.

UsePTM boolean Indicates if the PTM transformation matrix should

be applied to the polygon.

PTM array Transformation matrix for the spline

characteristic polygon. Usually a procedure that

returns an array defined in terms of the five

following parameters.

XScale number Horizontal scaling factor in the PTM.

YScale number Vertical scaling factor in the PTM.

XSquashAngle number Horizontal squash angle factor in the PTM.

XShearAngle number Horizontal shear angle factor in the PTM.

4. Method Proposed 37

Key Type Semantics

YShearAngle number Vertical shear angle factor in the PTM.

ShowBBox boolean Draws the letterform bounding box.

ShowPolygon boolean Draws the spline characteristic polygon.

ShowBezier boolean Draws the Bézier control points.

ShowBounds boolean Draws the sections’ end points’ constraints.

ShowSections boolean Draws the sections’ end points in spline

characteristic polygon.

Modifications to Font Parameters

Although the PostScript font machinery has no intented mechanism to

modify or pass parameters to existing fonts, i.e., fonts registered in the

font machinery, it is nevertheless possible to do so. The most common

modification to existing fonts is installing a different encoding vector. As

font dictionaries are made read-only once registered to the font machinery,

it is not possible to modify this value directly. The usual way is to make

a copy of the font dictionary, install the new encoding vector, and register

the modified font under another name.

Although registered font dictionaries are made read-only, their sub-

dictionaries are not. Thus, entries in sub-dictionaries, such as FontParams

and CharParams, can be modified directly. To simplify the process of

modifying these dictionaries two procedures are provided: SetFontParams,

merges the entries of a dictionary supplied as operand with the ones in the

FontParams dictionary of current font; and SetCharParams which merges

the entries of a dictionary supplied as operand with the ones of a specified

character in the CharParams dictionary of current font. Changes to the

FontParams and CharParams dictionaries are cumulative, i.e., the proced-

ures SetCharParams and CharParams simply add new entries to the ones

4. Method Proposed 38

already present, or override their previous value. Source code for these

new procedures is given in Appendix C.

5 Font Samples

Typeface design is an art. As the American type designer Frederic Goudy

[21, p. 155] warned, “Letters should be designed by an artist and not by an

engineer.” This chapter presents, nevertheless, a typeface designed exclus-

ively by a computer scientist, with the sole purpose of better illustrating

the applicability of the method presented in Chapter 4. This presentation

is limited to technical examples to show the capabilities of the method

through parameters variations. Readers are referred to Appendix E for

sample usage of MetamorFont.

5.1 MetamorFont

MetamorFont is a random dynamic font family implemented using the

method presented in Chapter 4. Its name comes from the fusion of the

word metamorphose, which means to change into a different form, and of

the word font, for obvious reasons. It is also a wink at Donald E. Knuth

font-design system METAFONT, as some metaness is also involved in the

fonts.

5.2 Methodology

This typeface design was developed directly on-screen, painstakingly trans-

lated into digital form manually from hand drawn sketches. Despite its

hand-drawn appearance, MetamorFont has been carefully worked to en-

39

5. Font Samples 40

sure easy reading and yet an informal appearance. Furthermore, some

attention was paid to letterspacing as well as to kerning.

5.3 Character Sets

MetamorFont is available under two variations, Regular and BoldExtended,

which contain all the necessary glyphs to fully support the following en-

codings: CorkEncoding, TEX Text encoding, TEXBase1Encoding, Standard-

Encoding, ISOLatin1Encoding, ISOLatin2Encoding, and WinLatin1Encoding.

5. Font Samples 41

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0 ` “ 0 @ P ‘ p Ă Ř ă ř À Ð à ð
1 ´ ” ! 1 A Q a q Ą Ś ą ś Á Ñ á ñ
2 ˆ „ " 2 B R b r Ć Š ć š Â Ò â ò
3 ˜ « # 3 C S c s Č Ş č ş Ã Ó ã ó
4 ¨ » $ 4 D T d t Ď Ť ď Ņ Ä Ô ä ô
5 ˝ – % 5 E U e u Ě ł ě Ń Å Õ å õ
6 ˚ — & 6 F V f v Ę Ű ę ű Æ Ö æ ö
7 ˇ � ’ 7 G W g w Ğ Ů ğ ů Ç Œ ç œ
8 ˘ � (8 H X h x Ĺ Ÿ ĺ ÿ È Ø è ø
9 ¯ ı) 9 I Y i y Ľ Ź ľ ź É Ù é ù
A ˙  * : J Z j z Ł Ž ł ž Ê Ú ê ú
B ¸ ff + ; K [k { Ń Ż ń ż Ë Û ë û
C ˛ fi , < L \ l | Ň Ĳ ň ĳ Ì Ü ì ü
D ‚ fl - = M] m } � İ ­ ¡ Í Ý í ý
E ‹ ffi . > N ^ n ~ Ő ñ ő ¿ Î Þ î þ
F › ffl / ? O _ o - Ŕ § ŕ £ Ï ß ï ß

Table 5.1. MetamorFont-Regular following the Cork encoding vector.

5. Font Samples 42

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0 ˇ 0 @ P ‘ p ° À Ð à ð
1 ˙ ı ! 1 A Q a q ¡ ± Á Ñ á ñ
2 fi  " 2 B R b r ‚ ¢ ² Â Ò â ò
3 fl ff # 3 C S c s ƒ “ £ ³ Ã Ó ã ó
4 ⁄ ffi $ 4 D T d t „ ” ¤ ´ Ä Ô ä ô
5 ˝ ffl % 5 E U e u … • ¥ µ Å Õ å õ
6 Ł & 6 F V f v † – ¦ ¶ Æ Ö æ ö
7 ł ’ 7 G W g w ‡ — § · Ç × ç ÷
8 ˛ (8 H X h x ˆ ˜ ¨ ¸ È Ø è ø
9 ˚) 9 I Y i y ‰ ™ © ¹ É Ù é ù
A * : J Z j z Š š ª º Ê Ú ê ú
B ˘ + ; K [k { ‹ › « » Ë Û ë û
C − , < L \ l | Œ œ ¬ ¼ Ì Ü ì ü
D - = M] m } - ½ Í Ý í ý
E Ž ` . > N ^ n ~ ® ¾ Î Þ î þ
F ž ' / ? O _ o Ÿ ¯ ¿ Ï ß ï ÿ

Table 5.2. MetamorFont-Regular following the TEXBase1 encoding vector.

5. Font Samples 43

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0 ` “ 0 @ P ‘ p Ă Ř ă ř À Ð à ð
1 ´ ” ! 1 A Q a q Ą Ś ą ś Á Ñ á ñ
2 ˆ „ " 2 B R b r Ć Š ć š Â Ò â ò
3 ˜ « # 3 C S c s Č Ş č ş Ã Ó ã ó
4 ¨ » $ 4 D T d t Ď Ť ď Ņ Ä Ô ä ô
5 ˝ – % 5 E U e u Ě ł ě Ń Å Õ å õ
6 ˚ — & 6 F V f v Ę Ű ę ű Æ Ö æ ö
7 ˇ � ’ 7 G W g w Ğ Ů ğ ů Ç Œ ç œ
8 ˘ � (8 H X h x Ĺ Ÿ ĺ ÿ È Ø è ø
9 ¯ ı) 9 I Y i y Ľ Ź ľ ź É Ù é ù
A ˙  * : J Z j z Ł Ž ł ž Ê Ú ê ú
B ¸ ff + ; K [k { Ń Ż ń ż Ë Û ë û
C ˛ fi , < L \ l | Ň Ĳ ň ĳ Ì Ü ì ü
D ‚ fl - = M] m } � İ ­ ¡ Í Ý í ý
E ‹ ffi . > N ^ n ~ Ő ñ ő ¿ Î Þ î þ
F › ffl / ? O _ o - Ŕ § ŕ £ Ï ß ï ß

Table 5.3. MetamorFont-BoldExtended following the Cork encoding vec-
tor.

5. Font Samples 44

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0 ˇ 0 @ P ‘ p ° À Ð à ð
1 ˙ ı ! 1 A Q a q ¡ ± Á Ñ á ñ
2 fi  " 2 B R b r ‚ ¢ ² Â Ò â ò
3 fl ff # 3 C S c s ƒ “ £ ³ Ã Ó ã ó
4 ⁄ ffi $ 4 D T d t „ ” ¤ ´ Ä Ô ä ô
5 ˝ ffl % 5 E U e u … • ¥ µ Å Õ å õ
6 Ł & 6 F V f v † – ¦ ¶ Æ Ö æ ö
7 ł ’ 7 G W g w ‡ — § · Ç × ç ÷
8 ˛ (8 H X h x ˆ ˜ ¨ ¸ È Ø è ø
9 ˚) 9 I Y i y ‰ ™ © ¹ É Ù é ù
A * : J Z j z Š š ª º Ê Ú ê ú
B ˘ + ; K [k { ‹ › « » Ë Û ë û
C − , < L \ l | Œ œ ¬ ¼ Ì Ü ì ü
D - = M] m } - ½ Í Ý í ý
E Ž ` . > N ^ n ~ ® ¾ Î Þ î þ
F ž ' / ? O _ o Ÿ ¯ ¿ Ï ß ï ÿ

Table 5.4. MetamorFont-BoldExtended following the TEXBase1 encoding
vector.

5. Font Samples 45

5.4 Technical Samples

The goal of this section is to show concretely the impact of parameters on

the typeface appearance.

Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Figure 5.1. Variation on the Craziness parameter with UseConstraints

sets to true.

Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Figure 5.2. Variation on the Craziness parameter with UseConstraints

sets to false.

Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Figure 5.3. Variation on the Craziness parameter with RestoreHeight

and RestoreWidth set to false.

5. Font Samples 46

Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Figure 5.4. Variation on the Craziness parameter with UseSections and

UseConstraints set to false.

Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Figure 5.5. Variation on the JumpyFactor parameter with JumpsRelative

sets to true.

Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Fifi was stiffly sniffing the flowery fragrance of her fine coffee.
Figure 5.6. Variation on the JumpyFactor parameter with JumpsRelative

sets to false.

se se se se se se se
Figure 5.7. Variation on the XShearAngle parameter within the PTM.

se se se se se se se
Figure 5.8. Variation on the YShearAngle parameter within the PTM.

se se se se se se se
Figure 5.9. Variation on the ThickThinRatio parameter.

5. Font Samples 47

s ss
sssss e ee

eeeee
Figure 5.10. Variation on the calligraphic pen stress angle.

6 PostScript Fonts with TEX and LATEX

This chapter provides an introduction to the origin and use of the TEX and

LATEX typesetting systems. The following sections deal with the set up and

use of PostScript parametric fonts, as well as the interfacing with these

systems. More details on the interaction between PostScript fonts, TEX and

LATEX can be found in [49, 20].

6.1 TEX and LATEX

TEX is a powerful text-processing system for creating professional qual-

ity typeset text—and especially text containing mathematics. Developed

in the late 1970s and early 1980s by Donald E. Knuth, TEX still ranks

among the best typesetting systems, notably for its careful line and page

breaking, skilfulness for setting mathematics, high-quality hyphenation,

and multilingual capabilities—not to mention its portability across a wide

range of computer platforms. The definitive guide to the use of TEX is The

TEXbook [29].

LATEX is document preparation system [35] developed by Leslie Lamport.

Roughly speaking, LATEX is a collection of TEX commands designed to sim-

plify the typesetting of a document by allowing the user to concentrate on

the content and structure of the document rather than on the exact appear-

ance of the finished product. LATEX2ε is the newly revised LATEX standard,

and is described in [20].

48

6. PostScript Fonts with TEX and LATEX 49

6.2 Font Metrics

As a typesetting system, TEX exhibits a primitive knowledge of fonts. TEX

regards fonts as ordered sets of rectangular boxes; it does not consider

the actual shapes of the characters. In order to set the characters into

their proper position, TEX only requires the font metrics information—the

widths, heights, and depths of characters—as well as extra information

such as ligatures, kerning pairs, and italic correction. This information

must be stored in external files called TEX font metric (.tfm) files.

Adobe Systems adopted a similar solution to specify the font metrics

information of their PostScript font programs. To each PostScript font

corresponds an Adobe Font Metric (.afm) file [4] that describes both global

metrics for the font and the metrics for each character. The .afm files are

practically equivalent to TEX’s .tfm.

To use PostScript fonts with TEX, .tfm files containing the same in-

formation as the .afm must be provided. Fortunately, many programs can

convert .afm into .tfm files. More details on such programs are given in

section 6.5.

6.3 Font Encodings

The encoding vector describes the order and position of characters within

a font. It can be viewed as a one-dimensional array indexed by character

code, usually an integer in the range 0 to 255, to which corresponds a

character glyph.

Operating systems and software applications make use of several differ-

ent encoding vectors. TEX Text, Cork, and Adobe Standard are all examples

of encoding vectors. In practice, the encoding vector is usually chosen

according to the hardware or software used.

6. PostScript Fonts with TEX and LATEX 50

Unless specified, TEX assumes that fonts use the TEX Text (OT1) encod-

ing, a primitive 7–bit encoding, thus with space for only 128 characters.

In 1990, the TEX User’s Group adopted a new encoding scheme, the Cork

Encoding (T1), that contains all the characters required by more than 20

languages using the Latin alphabet. Among other things, this new encod-

ing enables the use of true accented characters instead of relying on TEX’s

accenting mechanism. Font encodings are discussed at length in [8]

6.4 Virtual Fonts

The virtual font mechanism provides a general interface to change the en-

coding vector of a font. Virtual fonts are defined in terms of characters

from one or more fonts, and possibly from other virtual fonts, including

themselves. They can map a character to another character in a different

font (composite font), a different character in the same font, a character to

multiple characters (composite character), or even an arbitrary sequence

of DVI commands.

Although virtual fonts can serve many purposes, they are commonly

used to interface PostScript fonts to TEX. They can change the encoding

vector, gather glyphs missing in the base font from so-called expert sets,

as well as construct composite characters. A discussion on the virtual font

mechanism can be found in [33].

6.5 Adobe File Metrics to TEX File Metrics

While some .afm to .tfm conversion programs only perform a crude trans-

lation of the original .afm file, others can specify different encodings, or

carry out special manipulations. The afm2tfm program, distributed with

the dvips driver, provides re-encoding facilities as well as special effects

6. PostScript Fonts with TEX and LATEX 51

to construct synthetic fonts—faked small caps, obliqued, expanded, and

condensed variants—through the use of virtual fonts.

Alan Jeffrey’s fontinst package [24]—a font installation software for

TEX—provides a better support for LATEX2ε users. While providing all the

facilities supported by afm2tfm, it also allows the generation of the files

required by the New Font Selection Scheme (NFSS), extension of LATEX2ε ,

such as the font definitions (.fd) files.

6.6 Device Independent Drivers

As output, TEX produces a DeVice Independent (.dvi) file that is not dir-

ectly printable. The .dvi file describes the typeset document in a simple

stack language that can be rendered on any device. The task of translating

the .dvi file into printable or viewable form is left to a DVI driver. A DVI

driver is a special program that translates the DVI commands into a form

suitable for a particular device, and it also provides all the required fonts.

Thus, TEX can be used for almost any kind of output device, if an ap-

propriate DVI driver is available. Moreover, DVI drivers free TEX of any de-

pendency on printing technologies. Only DVI drivers will require updates

as the technology evolves.

6.7 Interfacing PostScript Parametric Fonts

Tomas Rokicki’s DVI driver for PostScript, dvips [42], allows for the in-

clusion of native PostScript code within a TEX document via the \special

primitive. TEX’s \special command is provided to transmit special in-

structions directly to the DVI driver, usually to take advantage of special

features offered by a particular output device.

In the context of parametric fonts, this feature can be put to profit as

6. PostScript Fonts with TEX and LATEX 52

the user can select fonts and also set parameters of selected fonts. As there

are currently no standards for parametric fonts, each parametric font must

provide an interface to set the parameters. An interface written for the

MetamorFont family is provided in the package metamorfont.sty, shown

in Appendix D.

7 Conclusion

This thesis presents a general method and structure for storing, repres-

enting and reproducing random dynamic fonts. The generated letterform

shapes are guaranteed to be C2 continuous and to preserve a uniform

thickness.

The intent of this thesis is to create beautiful, functional and incon-

spicuous random dynamic fonts. In order to illustrate the versatility of

the method proposed, a new typeface, MetamorFont, is designed and im-

plemented. The result, more than a simple typeface, is nothing less than

a software workbench dedicated to the development of random dynamic

font programs.

Indeed, new random dynamic fonts could easily be designed with the

tools developed for the creation of MetamorFont. Although, on the prac-

tical side, a graphical user interface would be more than welcome to auto-

mate the input process.

The current implementation offers many parameters to achieve a wide

range of special effects. Furthermore, the structure proposed is developed

in an extensible way so that new parameters and random transformations

may easily be added in the future.

There is still room for improvements. As an alternative to outlines, a

calligraphic pen effect is proposed. Currently, the implementation only

supports constants stroke width, stress angle and thick-thin ratio within

each glyph. Variation of these parameters within a glyph, as can be done

in METAFONT, would certainly allow the generation of more interesting

53

7. Conclusion 54

shapes. The use of variable width splines [28] might also be considered.

Connected random dynamic fonts, i.e., fonts in which all characters are

smoothly linked might be a good direction to pursue research. Although

context handling could be done within fonts, it is clear that this is more

the responsibility of the typesetting system.

Random dynamic fonts derived from true handwritten characters pose

a serious challenge. A careful attempt in this direction is given in Devroye

and McDougall [18]. It would be interesting to look at the mathematical

models of human handwriting used in the field of optical character recog-

nition [46, 39].

While random dynamic fonts allow to come closer to simulating true

handwriting, it is clear that the fonts alone aren’t sufficient to simulate

true handwriting, randomness should also be involved in the typesetting

process as the position of the characters on the page also play an important

role in the final result.

From the creative point of view, random dynamic fonts present a new

challenge to artists and typographers. Indeed, the design of random dy-

namic fonts is much more difficult than that of static fonts. One not only

has to think in terms of letterform shapes but rather in terms of sets of

letterform shapes that depend on random parameters.

A PostScript Type 3 Font

This appendix exhibits the structure of a PostScript Type 3 font program,

MetamorFont, designed with the method proposed. Many dictionaries and

procedures have been left out to save space.

%!PS-Adobe-3.0 Resource-Font
%%Title: ($ RCSfile: MetamorFont-Regular.ps,v $)
%%Creator: ($ Author: bernard $)
%%CreationDate: ($ Date: 1996/10/22 15:02:40 $)
%%Version: ($ Revision: 1.1 $)
%%Copyright: (c) 1995, 1996 by Bernard Desruisseaux. All rights reserved.
%%For: Bernard Desruisseaux (bernard@cs.mcgill.ca)
%%EndComments
%%BeginProlog
%%BeginResource: font MetamorFont-Regular

%%
% Type 3 Font : MetamorFont-Regular
%---
% Description : MetamorFont is a random dynamic font.
%---
% Copyright : (c) 1995, 1996 by Bernard Desruisseaux.
% All rights reserved.
%%
100 dict begin

/FontName /MetamorFont-Regular def
/FontType 3 def
/FontMatrix [0.001 0 0 0.001 0 0] readonly def
/FontBBox [0 0 0 0] readonly def % (atend)
/Encoding StandardEncoding def
/UniqueID 1314159 def
/XUID [1000000 1314159] readonly def
/LanguageLevel 2 def

%%
% Dictionary : FontInfo
%---
% Description : Font Information conforming to Type 1 format.
%%
/FontInfo 9 dict dup begin

/version (001.000) readonly def
/Notice (Copyright (c) 1995, 1996 by Bernard Desruisseaux) readonly def
/FamilyName (MetamorFont) readonly def
/FullName (MetamorFont Regular) readonly def

55

A. PostScript Type 3 Font 56

/Weight (Regular) readonly def
/ItalicAngle 0.0 def
/isFixedPitch false def
/UnderlinePosition -150 def
/UnderlineThickness 50 def % [Bold: 80]

end readonly def

%%
% Dictionary : FontParams
%---
% Description : Global font parameters.
%%
/FontParams 100 dict dup begin

%--[Generals]---
/DynamicFont true def % setcharwidth or setcachedevice
/RandomFont true def % Use DistortCharPolygon?
/UseConstraints true def % Use constraints dictionary?
/UseSections true def % Use sections?
/UseMetrics dup where % Use FontMetrics dictionary?

{ pop UseMetrics } %
{ true } ifelse def %

/NullGlyph false def % Most glyphs are non-null

%--[JumpyFont]--
/JumpyFont false def % Characters go up and down
/JumpyFactor 50 def % by +- JumpyFactor
/JumpsRelative true def % Relative jumps?
/LastJump 0 def % Last jump value

%--[Painting Parameters]--
/PaintType 1 def % 0:fill,1:stroke,2:stroke,3:null
/StrokeWidth 50 def % Stroke width [Bold: 80]
/LineJoin 1 def % Line join
/LineCap 1 def % Line cap
/MiterLimit 2.5 def % Miter limit

%--[Pen Parameters]---
/UsePen true def % Use calligraphic pen effect?
/ThickThinRatio 5 def % Pen Ratio of thick to thin
/StressAngle 120 def % Pen Stress Angle

%--[Randomization Parameters]-------------------------------------
/Craziness 0 def % Haphazard variation
{ /-dx /-dy /+dx /+dy } % Independant haphazard var.

{ Craziness def } forall %
/RestoreWidth true def % Restore Width after trans.
/RestoreHeight true def % Restore Height after trans.

%--[Polygon Transformation]---------------------------------------
/UsePTM false def % Use the PTM ? [Bold: true]
/XShearAngle 0 def % X Shear (xtilt) the polygon
/YShearAngle 0 def % Y Shear (ytilt) the polygon
/XSquashAngle 0 def % Squash the polygon
/XScale 1 def % [Bold: 1.05]
/YScale 1 def % [Bold: 0.95]
/PTM { [% Polygon Transformation Matrix

XSquashAngle cos XScale mul
YShearAngle sin
XShearAngle sin YScale mul
YScale 0 0

A. PostScript Type 3 Font 57

] } def

%--[Debugging Parameters]---
/ShowBBox false def % Show Character Bounding Box?
/ShowBounds false def % Show Coordinate Bounds?
/ShowSections false def % Show Sections?
/ShowPolygon false def % Show Character Polygon?
/ShowBezier false def % Show Bezier Polygons?

end def

%%
% Dictionary : CharParams
%---
% Description : Character parameters.
%%
/CharParams 400 dict dup begin

/.notdef << /NullGlyph true >> def
/acute << /StressAngle 60 /RestoreWidth false >> def
/asciicircum << /StressAngle 90 /RestoreWidth false >> def
/at << /StressAngle 90 >> def
/backslash << /StressAngle 90 >> def
/bar << /StressAngle 60 /RestoreWidth false >> def
/breve << /StressAngle 90 >> def
/brokenbar << /StressAngle 60 /RestoreWidth false >> def
/bullet << /StressAngle 90 /StrokeWidth 150

/ThickThinRatio 1 >> def
/caron << /StressAngle 90 >> def
/cedilla << /StressAngle 110 >> def
/circumflex << /StressAngle 90 /RestoreWidth false >> def
/currency << /StressAngle 90 >> def
/cwm << /NullGlyph true >> def
/compwordmark cwm def
/compworkmark cwm def
/divide << /StressAngle 60 >> def
/emdash << /StressAngle 0 /RestoreHeight false >> def
/endash << /StressAngle 0 /RestoreHeight false >> def
/equal << /StressAngle 60 >> def
/exclam << /RestoreWidth false >> def
/exclamdown << /RestoreWidth false >> def
/grave << /RestoreWidth false >> def
/greater << /StressAngle 90 /RestoreWidth false >> def
/guillemotleft << /StressAngle 90 >> def
/guillemotright << /StressAngle 90 >> def
/guilsinglleft << /StressAngle 90 >> def
/guilsinglright << /StressAngle 90 >> def
/hyphen << /StressAngle 60 /RestoreHeight false >> def
/hungarumlaut << /StressAngle 80 >> def
/less << /StressAngle 90 /RestoreWidth false >> def
/logicalnot << /StressAngle 135 >> def
/macron << /StressAngle 60 /RestoreWidth false >> def
/minus << /StressAngle 60 /RestoreHeight false >> def
/multiply << /StressAngle 90 >> def
/numbersign << /StressAngle 135 >> def
/ogonek << /RestoreWidth false /RestoreHeight false >> def
/parenleft << /StressAngle 90 >> def
/parenright << /StressAngle 90 >> def
/percent << /StressAngle 90 >> def
/perthousand << /StressAngle 90 >> def
/plus << /StressAngle 60 >> def
/plusminus << /StressAngle 60 >> def

A. PostScript Type 3 Font 58

/quotedbl << /StressAngle 110 >> def
/quotesingle << /StressAngle 110 >> def
/ring << /RestoreWidth false /RestoreHeight false >> def
/slash << /StressAngle 90 /RestoreWidth false >> def
/space << /NullGlyph true >> def
/three << /StressAngle 140 >> def
/tilde << /RestoreWidth false >> def
/underscore << /StressAngle 60 /RestoreHeight false >> def
/yen << /StressAngle 90 >> def
/z << /StressAngle 110 >> def
/Z << /StressAngle 110 >> def

end def

%%
% FontMetrics dict -- Horizontal Left Sidebearing and Width [LSBx Wx]
%%
/FontMetrics 400 dict def

%%
% BBox dict -- Bounding boxes [llx lly urx ury]
%%
/BBox 400 dict def

%%
% RealBBox dict -- Defined for computation if we don’t UseMetrics.
%%
FontParams /UseMetrics get not { /RealBBox 400 dict def } if

%%
% Procedure : BuildGlyph
%---
% Description : Interfaces the font machinery to the font’s
% PostScript procedures for drawing the shapes.
% Called by the PostScript interpreter.
%---
% Caveats : This procedure is enclosed between a save/restore
% pair since memory is allocated during the
% construction of glyphs.
%---
% Operand Stack : font name => _
%%
/BuildGlyph { % font name

save 3 1 roll exch % name font
begin FontParams begin % name
dup CharProcs exch known not{ pop /.notdef } if % name
dup GetMetrics 0 % name LSBx Wx 0
DynamicFont { setcharwidth }{ 3 index GetBBox setcachedevice } ifelse
ShowBBox {

1 index % name LSBx name
DynamicFont { currentgray 0 setgray exch } if
GetBBox DrawBBox
DynamicFont { setgray } if

} if % name LSBx
JumpyFont {

JumpyFactor dup neg exch Uni
JumpsRelative { LastJump add dup /LastJump exch def } if

} { 0 } ifelse translate % name
mark exch dup CharProcs begin load exec end % mark name [...]
{

counttomark 0 eq { exit } if

A. PostScript Type 3 Font 59

exch CharParams exch 2 copy known
dup 5 1 roll { get begin } { pop pop } ifelse
dup xcheck { CharProcs begin exec end } if
ShowBounds { dup { DrawBounds } false MarkCharPolygonSection } if
RandomFont {

RestoreWidth RestoreHeight or
{ dup GetCharPolygonBBox 5 -1 roll } if

UseSections { DistortCharPolygon }
{ CharPolygon2Polygon DistortPolygon } ifelse

RestoreWidth RestoreHeight or {
dup GetPolygonBBox 5 -1 roll 9 1 roll
RestoreWidth RestoreHeight GetRestoreMatrix
TransformPolygon

} if
} { CharPolygon2Polygon } ifelse
UsePTM { PTM TransformPolygon } if
ShowPolygon { dup } if
PaintType 3 ne ShowBezier or {

BuildBohmConstruction DrawBohmConstruction
ShowBezier { gsave } if
//PaintProcs PaintType get exec
ShowBezier { grestore false LabelPath } if

} { pop } ifelse
ShowPolygon {

DynamicFont { 1 setgray } if
{ DrawSquare } true MarkPolygon

} if
{ end } if

} loop pop
end end
restore

} bind def

%%
% Procedure : BuildChar
%---
% Description : BuildGlyph ancestor. Required for PS Level I.
% Called by the PostScript interpreter.
%---
% Operand Stack : dict code => _
%%
/BuildChar {

1 index /Encoding get exch get
1 index /BuildGlyph get exec

} bind def

currentdict
end
dup /FontName get exch definefont pop
%%EndResource
%%EndProlog

B Adobe Font Metrics

This is a generalized example for a typical Adobe Font Metrics (AFM) file. It

is derived from the AFM file generated for MetamorFont-Regular. Because

many parts of an AFM are repetitive, much of the repetition in the following

example has been omitted. The omitted portions are documented with

comments. The technical specification of the AFM format is covered in [4].

StartFontMetrics 4.1
Comment This file was automatically generated by:
Comment $ Id: t3gen.ps,v 1.4 1996/10/16 11:27:38 bernard Exp $
Comment Bernard Desruisseaux (bernard@cs.mcgill.ca)
FontName MetamorFont-Regular
Weight Regular
Notice Copyright (c) 1995, 1996 by Bernard Desruisseaux
UnderlinePosition -150
Version 001.000
FamilyName MetamorFont
ItalicAngle 0.0
UnderlineThickness 50
IsFixedPitch false
FullName MetamorFont Regular
FontBBox -167 -298 970 1138
EncodingScheme AdobeStandardEncoding
CapHeight 739
XHeight 514
Ascender 840
Descender -261
StartCharMetrics 314
C 97 ; WX 548 ; N a ; B 40 -14 528 508 ;
C 102 ; WX 331 ; N f ; B 30 -14 341 846 ; L l fl ; L i fi ; L f ff ;
Comment *** many character metrics omitted ***
C -1 ; WX 535 ; N ff ; B 30 -14 545 846 ; L l ffl ; L i ffi ;
C 171 ; WX 423 ; N guillemotleft ; B 20 203 393 463 ;
EndCharMetrics
StartKernData
StartKernPairs 72
KPX T o -150
Comment *** many kerning pairs omitted ***
KPX r a -60
EndKernPairs
EndKernData
EndFontMetrics

60

C Modifications to Parameters

PostScript source code to two procedures used to modify the FontParams

and CharParams dictionaries of random dynamic fonts designed with the

proposed method.

%%
% Procedure : SetFontParams
%---
% Description : Merge the entries of the operand dictionary in the
% FontParams dictionary of the current font.
%---
% Example : << /Craziness 100 >> SetFontParams
%---
% Operand Stack : paramsdict => _
%%
/SetFontParams {

currentfont begin FontParams begin
{

1 index /Craziness eq {
def { /-dx /-dy /+dx /+dy } { Craziness def } forall

} { def } ifelse
} forall

end end
} bind def

%%
% Procedure : SetCharParams
%---
% Description : Merge the entries of the operand dictionary in the
% ‘name’ dictionary in the CharParams dictionary of
% the current font.
%---
% Example : /guillemotright << /StressAngle 90 >> SetCharParams
%---
% Operand Stack : name paramsdict => _
%%
/SetCharParams {

currentfont begin CharParams dup begin
2 index known {

exch load begin
{ def } forall

end
} { def } ifelse

end end
} bind def

61

D MetamorFont with LATEX2ε

The LATEX2ε MetamorFont package, metamorfont.sty, provides a simple

front-end to the SetFontParams operator listed in Appendix C.

%%
% $ Id: metamorfont.sty,v 1.1 1996/10/22 15:02:48 bernard Exp $
%---
% Description : Package to use the new family MetamorFont.
% Option ‘rmdefault’ sets MetamorFont as the
% default roman family.
%---
% Note : This package make use of the driver definition files
% part of the Standard LaTeX ‘Graphics Bundle.’
%---
% Caveat : Parameter changes are only valid for the current
% page, as pages are embedded in a save/restore pair.
%---
% Author : Bernard Desruisseaux (bernard@cs.mcgill.ca)
%---
% Copyright : (c) 1996 by Bernard Desruisseaux.
% All rights reserved.
%%
\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{metamorfont}[1996/10/01 v1.0 LaTeX2e MetamorFont package]
\providecommand\Gin@driver{}
\DeclareOption{rmdefault}{\renewcommand{\rmdefault}{fmf}}
\DeclareOption{dvips}{\def\Gin@driver{dvips.def}}
\DeclareOption{xdvi}{\ExecuteOptions{dvips}}
\DeclareOption{dvipsone}{\def\Gin@driver{dvipsone.def}}
\DeclareOption{dviwindo}{\ExecuteOptions{dvipsone}}
\DeclareOption{emtex}{\def\Gin@driver{emtex.def}}
\DeclareOption{dviwin}{\def\Gin@driver{dviwin.def}}
\DeclareOption{oztex}{\def\Gin@driver{oztex.def}}
\DeclareOption{textures}{\def\Gin@driver{textures.def}}
\DeclareOption{pctexps}{\def\Gin@driver{pctexps.def}}
\DeclareOption{pctexwin}{\def\Gin@driver{pctexwin.def}}
\DeclareOption{pctexhp}{\def\Gin@driver{pctexhp.def}}
\DeclareOption{dvi2ps}{\def\Gin@driver{dvi2ps.def}}
\DeclareOption{dvialw}{\def\Gin@driver{dvialw.def}}
\DeclareOption{dvilaser}{\def\Gin@driver{dvilaser.def}}
\DeclareOption{dvitops}{\def\Gin@driver{dvitops.def}}
\DeclareOption{psprint}{\def\Gin@driver{psprint.def}}
\DeclareOption{pubps}{\def\Gin@driver{pubps.def}}
\DeclareOption{ln}{\def\Gin@driver{ln.def}}
\InputIfFileExists{metamorfont.cfg}{}{}
\ProcessOptions

62

D. MetamorFont with LATEX2ε 63

\if!\Gin@driver!
\PackageError{metamorfont}
{No driver specified}
{You should make a default driver option in a file \MessageBreak
metamorfont.cfg\MessageBreak
eg: \protect\ExecuteOptions{dvips}%
}

\else
\PackageInfo{metamorfont}{Driver file: \Gin@driver}
\@ifundefined{ver@\Gin@driver}{\input{\Gin@driver}}{}

\fi
\DeclareRobustCommand{\fmffamily}{\fontfamily{fmf}\selectfont}
\DeclareTextFontCommand{\textfmf}{\fmffamily}
\newcommand*{\fmfr}{\usefont{\encodingdefault}{fmf}{m}{n}}
\newcommand*{\fmfx}{\usefont{\encodingdefault}{fmf}{bx}{n}}
\newcommand*{\fmfrp}{\usefont{U}{fmf}{m}{n}}
\newcommand*{\fmfrparams}[1]{\Gin@PS@raw{/MetamorFont-Regular

findfont setfont <<#1>> SetFontParams}}
\newcommand*{\fmfxparams}[1]{\Gin@PS@raw{/MetamorFont-BoldExtended

findfont setfont <<#1>> SetFontParams}}
\newcommand*{\fmfrpparams}[1]{\Gin@PS@raw{/MetamorFont-Ornaments

findfont setfont <<#1>> SetFontParams}}
\endinput
%%
%% End of file ‘metamorfont.sty’.

The MetamorFont LATEX2ε font definition .fd file, T1fmf.fd, for the

Cork (T1) encoding. More information on font definition .fd file can be

found in [49, 20].

%%
% $Id: back.tex,v 1.15 1996/10/24 12:25:52 bernard Exp $
%---
% Description : MetamorFont font definitions for Cork (T1) encoding.
%%
\ProvidesFile{T1fmf.fd}[1996/10/15 MetamorFont font definitions.]
\DeclareFontFamily{T1}{fmf}{}
\DeclareFontShape{T1}{fmf}{m}{n}{<-> fmfr8t}{}
\DeclareFontShape{T1}{fmf}{bx}{n}{<-> fmfx8t}{}
\DeclareFontShape{T1}{fmf}{l}{n}{<->ssub * fmf/m/n}{}
\DeclareFontShape{T1}{fmf}{db}{n}{<->ssub * fmf/bx/n}{}
\DeclareFontShape{T1}{fmf}{b}{n}{<->ssub * fmf/db/n}{}
\endinput
%%
%% End of file ‘T1fmf.fd’.

E MetamorFont Gallery

The following pages present texts and arrangements specially selected to

show off the MetamorFont family.

 Affranchir
suffisamment

C
on

ce
pt

io
n

gr
ap

hi
qu

e
: B

er
na

rd
 D

es
ru

is
se

au
x

Le Gwen ha du a été créé en 1923 par l’architecte
Morvan Marchal. Il a flotté pour la première fois
à l’exposition des arts décoratifs de Paris en 1925.

 Sophie Gagné

3095, av. Linton, app. 12

 Montréal (Québec)

 H3S 1S4

Un petit mot de Bretagne :

 bihan .

 À bientôt !
 Bernard XXX

Figure E.1. MetamorFont on a personal postcard.

64

E. MetamorFont Gallery 65

MetamorFont
by Bernard Desruisseaux

Inspiring Typeface
Personal Look
Dynamic Feel
Eye Opening
Beyond Cool
Simply Lovely

aA bB cC dD eE fF gG hH iI jJ kK lL mM
nN oO pP qQ rR sS tT uU vV wW xX yY zZ

Figure E.2. MetamorFont specimen page.

E. MetamorFont Gallery 66

MetamorFont
by Bernard Desruisseaux

A B C D E F G H I J
K L M N O P Q
R S T U V W X Y Z
Æ Œ Ø & § ¶

a b c d e f g h i j k l m n
o p q r s t u v w x y z

æ œ
fi fl ß £ ƒ ¥ $

ł ø
(ď , : ; ?) ~ @ * „ ” » «
1 2 3 4 5 6 7 8 9 0
Figure E.3. MetamorFont specimen page.

E. MetamorFont Gallery 67

Montréal, le 20 mars 1996

Señor Presidente
Alberto Fujimori
Palacio de Gobierno
Plaza de Armas
Lima 1 Pérou

Monsieur le Président,
J’ai appris par Amnistie internationale que Myriam Guadalupe

Galvez Vargas, accusée de « terrorisme », a été condamnée, en 1994, à
vingt ans de réclusion.

Selon Amnistie internationale, les charges pesant contre cette étu-
diante de trente ans, mère de deux enfants, reposent sur des déclarations
peu fiables faites par la police, selon laquelle Myriam Guadalupe Galvez
Vargas aurait entretenu des liens avec le Sentier lumineux.

Aucune preuve de culpabilité n’ayant pu être établie contre madame
Galvez Vargas, détenue actuellement à la prison de haute sécurité de
Chorillos, à Lima, je vous prie d’intervenir rapidement en sa faveur et de la
faire libérer immédiatement et inconditionnellement.

Persuadé que vous saurez entendre mon appel, je vous prie de
croire, Monsieur le Président, à l’expression de ma haute considération.

Bernard Desruisseaux

c.c. Son Excellence Hernan Couturier Mariategui, ambassadeur

Figure E.4. MetamorFont for personal letter.

E. MetamorFont Gallery 68

Basilic

Feuilles de
laurier

Estragon

Poivre de
cayenne

Bâtons de
cannelle

Cerfeuil

Ciboulette

Clous de
girofle

Poudre de
curcuma

Muscade
moulue

Marjolaine

Romarin

Graines de
moutarde

Safran

Sauge

Cardamome
moulue

Figure E.5. MetamorFont for spice and herb bottle labels.

Coffee makes a bad man cheerful; a languourous man, active;
a cold man warm; a warm man, glowing; a debilitated man,
strong. It intoxicates, without inviting the police; it excites a
flow of spirit, and awakens mental powers thought to be
dead . . . When coffee is bad, it is the wickedest thing in town;
when good, the most glorious. When it has lost its aromatic
flavor and appeals no more the eye, smell, or taste, it is fierie;
but when left in a sick room, with the lid off, it fills the room
with a fragrance only jacqueminots can rival. The very smell
of coffee in a sick room terrorizes death.

—John Ernest McCann, in Over the Black Coffee (1902)

Figure E.6. MetamorFont used to typeset a quote.

E. MetamorFont Gallery 69

Gâteau du diable
Préparation : 30 minutes
Cuisson : 25 minutes

50 mL Beurre
250 mL Sucre

2 Œufs battus
300 mL Farine tout usage

5 mL Poudre à pâte
75 mL Lait caillé
125 mL Café noir bouillant
100 mL Chocolat mi-sucré fondu
5 mL Bicarbonate de soude
5 mL Essence de vanille

1 – Battre le beurre en crème avec le sucre.
2 – Ajouter un à un les œufs sans cesser de battre

le mélange.
3 – Tamiser la farine et la poudre à pâte. Incorporer

au mélange en alternant avec le lait caillé.
Terminer avec la farine.

4 – Verser le café bouillant sur le chocolat fondu, et y
ajouter le bicarbonate de soude. Laisser refroidir
quelque peu, puis ajouter au premier mélange.

5 – Parfumer avec l’essence de vanille.
6 – Verser dans un moule de 25 × 15 × 5 cm.
7 – Faire cuire au four à 190°C, durant 25 minutes.

Figure E.7. Recipe taken from Cuisine du Québec, Institut de tourisme et
d’hôtellerie du Québec. Les Éditions TransMo, 1985, p. 54.

E. MetamorFont Gallery 70

DON’DON’DON’DON’DON’DON’TTTTTTbebebebebebeaaaaaa
WIMPWIMPWIMPWIMPWIMPWIMP!!!!!!

Figure E.8. Overprint effect used with MetamorFont. A general guiding
principle of Design (and of Life) from graphic designer Robin
Williams.

E. MetamorFont Gallery 71

What did you bring
that book that you
know I don’t like to
be read to out of up

for?

Figure E.9. Sentence allegedly produced by a young child . . .probably after
too much PostScript programming! The child’s father had
brought a book upstairs, to read the child a bedtime story.
However, it was a book the child did not like.

Bibliography

[1] Adobe System Incorporated. PostScript Language Tutorial and Cook-
book. Addison–Wesley, Reading, Mass., 1985.

[2] Adobe System Incorporated. Adobe Type 1 Font Format, version 1.1.
Addison–Wesley, Reading, Mass., 1990.

[3] Adobe System Incorporated. PostScript Language Reference Manual.
Addison–Wesley, Reading, Mass., second edition, 1990.

[4] Adobe System Incorporated, Mountain View, Calif. Adobe Font Met-
rics File Format Specification, October 1995. Version 4.1, Technical
Specification 5004.

[5] Jacques André. The Scrabble font. The PostScript Journal, 3(1):53–55,
1990.

[6] Jacques André. Random fonts and inkspreading simulation. Research
note, INRIA, projet Opéra, Rennes, November 1992.

[7] Jacques André. Création de fontes en typographie numérique. Docu-
ments d’habilitation, IRISA + IFSIC, Campus de Beaulieu, Rennes, Sep-
tember 1993.

[8] Jacques André. Cahiers GUTenberg, Codage des caractères d’ASCII à
UNICODE, 1995.

[9] Jacques André and Bruno Borghi. Dynamic fonts. In Jacques André
and Roger Hersch, editors, Raster Imaging and Digital Typography,
pages 198–204, Cambridge, England, October 1989. Cambridge Uni-
versity Press.

[10] Jacques André and Christian Delorme. Le Delorme : un caractère
modulaire et dépendant du contexte. Communication et langage,
86:65–76, 1990.

[11] Jacques André and Victor Ostromoukhov. Punk : de METAFONT à Post-
Script. Cahier GUTenberg, 4:23–28, 1989.

[12] Apple Computer. The TrueType Font Format Specification, July 1990.

[13] Charles Bigelow and Kris Holmes. The design of Lucida®: an inte-
grated family of types for electronic literacy. In J. C. van Vliet, editor,

72

Bibliography 73

Text Processing and Documentation Manipulation: Proceeding of the
International Conference, University of Nottingham, pages 3–17, New
York, April 1986. Cambridge University Press.

[14] Wolfgang Böhm. Cubic B-Spline Curves and Surfaces in Computer
Aided Geometric Design. Computing, 19:29–34, 1977.

[15] Robert Bringhurst. The Elements of Typographic Style. Hartley &
Marks, Vancouver, 1992.

[16] Su Bu-qing and Liu Ding-yuan. Computational Geometry—Curve and
Surface Modeling. Academic Press, San Diego, Calif., 1989.

[17] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro-
duction to Algorithms. McGraw–Hill, Cambridge, Mass., 1989.

[18] Luc Devroye and Michael McDougall. Random fonts for the simulation
of handwriting. Electronic Publishing, 1996. To appear.

[19] Gerald E. Farin. Curves and Surfaces for Computer Aided Geometric
Design: A Practical Guide. Academic Press, Boston, third edition, 1993.

[20] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX
Companion. Addison–Wesley, Reading, Mass., 1994.

[21] Frederic W. Goudy. Typologia: Studies in Type Design & Type Making.
University of California, Berkeley, Calif., 1940.

[22] Roger D. Hersch, editor. Visual and Technical Aspects of Types. Cam-
bridge University Press, Cambridge, England, 1993.

[23] John D. Hobby. Smooth, easy to compute interpolating splines. Dis-
crete and Computational Geometry, 1:123–140, 1986.

[24] Alan Jeffrey. fontinst: Font installation software for TEX, September
1995. Version 1.500.

[25] Margo Johnson. Hybrid Digital Typefaces. Emigre, 38:47–58, 1996.

[26] Peter Karow. Digital Typefaces: Description and Formats. Springer–
Verlag, Berlin, 1993.

[27] Peter Karow. Font Technology: Methods and Tools. Springer–Verlag,
Berlin, 1994.

[28] R. Victor Klassen. Variable width splines: a possible font representa-
tion? Electronic Publishing, 6(3):183–194, 1993.

[29] Donald E. Knuth. The TEXbook, volume A of Computers and Typeset-
ting. Addison–Wesley, Reading, Mass., 1984.

[30] Donald E. Knuth. The METAFONTbook, volume C of Computers and
Typesetting. Addison–Wesley, Reading, Mass., 1986.

Bibliography 74

[31] Donald E. Knuth. Computer Modern Typefaces, volume E of Computers
and Typesetting. Addison–Wesley, Reading, Mass., 1986.

[32] Donald E. Knuth. A Punk meta-font. TUGboat, 9(2):152–168, August
1988.

[33] Donald E. Knuth. Virtual Fonts: More Fun for Grand Wizards. TUG-
boat, 11(1):13–23, April 1990.

[34] Michael Kokula. Automatic generation of script font ligatures based
on curve smoothness optimization. Electronic Publishing, 1994. To
appear.

[35] Leslie Lamport. LATEX: A Document Preparation System—User’s Guide
and Reference Manual. Addison–Wesley, Reading, Mass., 1986.

[36] Henry McGilton and Mary Campione. PostScript by Example. Addison–
Wesley, Reading, Mass., 1992.

[37] Michael E. Mortenson. Geometric modeling. Wiley & Sons, New York,
1985.

[38] T. Packard. Ransom fonts. The PostScript Journal, 2:44–45, 1989.

[39] Réjean Plamondon, Ching Y. Suen, and Marvin L. Simner, editors. Com-
puter Recognition and Human Production of Handwriting. World Sci-
entific, Singapore, 1989.

[40] Franco P. Preparata and Michael Ian Shamos. Computational Geome-
try: An Introduction. Springer–Verlag, New York, 1985.

[41] Thierry Pudet. Realtime fitting of pressure brushstrokes. Research
Report 29, Digital, Paris Research Laboratory, March 1993.

[42] Tomas Rokicki. Dvips: A DVI-to-PostScript Translator, January 1995.
Version 5.58f, Edited for Dvipsk by Karl Berry.

[43] Richard Rubinstein. Digital Typography: An Introduction to Type and
Composition for Computer System Design. Addison–Wesley, Reading,
Mass., 1988.

[44] John F. Sherman. Taking Advantage of PostScript. Wm. C. Brown Pub-
lishers, Dubuque, Iowa, 1992.

[45] Signature Software Incorporated. SUPERscripts: Cursive Handwriting
Fonts. Windows Version 2, 1994. 489 North 8th Street, Suite 201,
Hood River, Oregon 97031.

[46] Ching Y. Suen, Marc Berthod, and Shunki Mori. Automatic recognition
of handprinted characters: the state of the art. Proceedings of the IEEE,
68(4):469–487, April 1980.

[47] Erik van Blokland and Just van Rossum. Random code—the Beowolf
random font. The PostScript Journal, 3(1):8–11, 1990.

Bibliography 75

[48] Erik van Blokland and Just van Rossum. Different approaches to lively
outlines. In Robert A. Morris and Jacques André, editors, Raster Imag-
ing and Digital Typography II, pages 28–33, Cambridge, England, Oc-
tober 1991. Cambridge University Press.

[49] Norman Walsh. Making TEX Work. O’Reilly & Associates, Sebastopol,
Calif., 1994.

[50] Robin Williams. The Non-Designer’s Design Book. Peachpit Press,
Berkeley, Calif., 1994.

[51] Robin Williams. A Blip in the Continuum. Peachpit Press, Berkeley,
Calif., 1995.

[52] Y&Y. LucidaBright + LucidaNewMath, 1992. 106 Indian Hill, Carlisle,
Mass. 01741.

