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Abstract

Let G(n,m) be an undirected random graph with n vertices and m multiedges that may include loops, where each edge is
realized by choosing its two vertices independently and uniformly at random with replacement from the set of all n vertices.
The random graph G(n,m) is said to be k-orientable, where k ≥ 2 is an integer, if there exists an orientation of the edges such
that the maximum out-degree is at most k. Let ck = sup {c : G(n, cn) is k-orientable w.h.p.}. We prove that for k large enough,

1− 2k exp
(
−k + 1+ e−k/4

)
< ck/k < 1− exp

(
−2k

(
1− e−2k

))
, and the time ckn is a threshold for the emergence of a giant

subgraph of size 2(n) whose edges are more than k times its vertices. Other results are presented.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Consider an undirected random graph G(n,m) with n vertices and m edges where each edge connects two vertices
chosen independently and uniformly at random, one after another, with replacement from the set of all n vertices.
That is, the graph may contain multiedges or loops. An orientation of any graph is called a k-orientation, for any fixed
integer k ≥ 1, if and only if the maximum out-degree of the graph is at most k. If a k-orientation exists, we say that
the graph is k-orientable. We remark that the k-orientability is a decreasing property. This means that if G(n,m) is
k-orientable w.h.p., then G(n,m′) is also k-orientable w.h.p., for all m′ ≤ m, where w.h.p. (with high probability)
means with probability tending to one as n→∞.

Throughout, let ck = sup {c : G(n, cn) is k-orientable w.h.p.}. The purpose of this paper is to estimate ck , the
threshold of k-orientability. Clearly, ck ≤ k, because the random graph G(n, kn + 1) is not k-orientable, as each
vertex can orient outward at most k edges. On the other hand, the best known [10] lower bound is ck ≥ ak+1/2, where
ak is the threshold for the existence of the k-core (the unique maximal subgraph with minimum degree at least k). It
is shown in [33] that ak = k +

√
k log k + O(log k), for k large enough. In this paper, we show that ck ∼ k. Indeed,

we prove the following theorem.
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Theorem 1. For k sufficiently large, we have

ρk
def
= 1− 2k exp

(
−k + 1+ e−k/4

)
< ck/k < 1− exp

(
−2k

(
1− e−2k

))
.

Furthermore, ck is the threshold for the emergence of a subgraph whose edges are more than k times its vertices.
That is, if X (n, c) is the indicator that the random graph G(n, cn) contains a subgraph whose edges are more than
k times its vertices, then ck = sup {c : X (n, c) = 0,w.h.p.}. The size of the newborn subgraph that has such property
and suddenly emerges around the time m = ckn is at least ρkn, w.h.p.

For small k, a lower bound on ck can be computed by solving simultaneously two equations related to the estimation
of the upper tail of the binomial distribution. See Table 3 for these bounds.

1.1. History and motivation

Many orientation processes of the random graph G(n,m) have been introduced and studied in the context of the
historical problem of allocating balls into bins [22,23]. The edges and vertices of the random graph G(n,m) are
viewed as balls and bins, respectively. Thus, each ball has two bins chosen independently and uniformly at random—
one after another—with replacement. If a ball chooses two bins, say u and v, then inserting the ball into the bin u
means orienting the corresponding edge (u, v) toward the vertex v. This means that the out-degree of any vertex u is
equivalent to the load of the bin u which is defined to be the number of balls it contains. The maximum out-degree of
the random graph, then, represents the maximum bin load. Thus, the goal is to design an efficient strategy for inserting
the balls that minimizes the maximum bin load.

Researchers have studied many allocation processes that insert the balls sequentially and on-line into the bins.
For example, the classical allocation process totally ignores the second choice of each ball and inserts it into the bin
chosen first by the ball. In other words, each edge (u, v) is oriented on-line, i.e., upon realization, towards the vertex
v. Gonnet [19] showed that if m = 2(n), then, upon termination of this classical orientation process, the maximum
out-degree of G(n,m) is asymptotic to log n/ log log n, in probability. See also [34].

On the other hand, the greedy multiple-choice allocation process inserts each ball upon arrival into the less loaded
bin among its two bins, breaking ties randomly. This yields an on-line greedy orientation process that orients each edge
upon realization toward the vertex with the minimum out-degree, where ties are broken randomly. Surprisingly, the
maximum out-degree in this case improves dramatically. Azar et al. [3] proved that if m = 2(n), then the maximum
out-degree of G(n,m) is log2 log n + O(1), w.h.p. Other proofs are also presented in [5,29,35]. Another variant of
the greedy orientation process [36,37] improves the maximum out-degree by a constant factor. The greedy multiple-
choice paradigm is shown to be very fruitful in many applications in computer science such as load balancing and
dynamic resource allocation [3,10,28], routing and interconnection networks [8,24,27], and hashing [6,7,11,13,25].

1.2. The uniform vertex model

The random graph G(n,m), however, is designed here mainly to study the k-orientability property, the subject
of this paper, which is strongly related to the off-line version of the greedy multiple-choice allocation process. In
the off-line process—unlike the on-line version—all the choices available for the balls are known in advance. That
is, we assume that the whole random graph G(n,m) is known in advance before any orientation. The goal then
is to solve the following problem: given a constant c > 0, find the smallest integer k(c) such that the random
graph G(n, cn) is k-orientable, w.h.p. Equivalently, for any fixed k ∈ N, we would like to estimate the threshold
ck = sup {c : G(n, cn) is k-orientable w.h.p.}. The off-line analysis (or the k-orientability) can be used to measure
how good the on-line allocation process is. This is known as the competitive analysis, which has deep roots in load
balancing [2–4,10]. It also provides a useful means for designing efficient static hashing schemes that achieve constant
worst-case search time. Such schemes have been widely studied in the literature, see e.g., [31,32]. Other applications
of the k-orientability like storing graphs and edge membership queries are explained in [1].

1.3. Known results

It is known that for any constant c ∈ (0, 1/2), the uniform random graph G(n, cn) of Erdös and Rényi [14], which
has no loops or multiedges, consists of unicyclic connected components, and isolated trees, and when c > 1/2, there
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is also a unique component of size 2(n) with more than one cycle. This classical result is also true for our random
graph G(n,m), see, e.g., [21]. Clearly, any tree or unicyclic component can be oriented easily such that the maximum
out-degree is at most one, see Fig. 1. A component that has more than one cycle is not 1-orientable. This means that
c1 = 1/2.

Fig. 1. Orienting the edges in tree and unicycle components such that the maximum out-degree is at most one. In a tree, a root is fixed first and
then all the edges are oriented (in a BFS order) towards the root. In a unicycle, the edges of the cycle are oriented in any direction, and all other
edges are oriented towards the cycle.

Azar et al. [3] proved that the random graph G(n, n) is 10-orientable, w.h.p. However, Czumaj and Stemann [9]
tightened the result and proved that G(n, n) is indeed 2-orientable, w.h.p. More strongly, the authors showed in [10]
(the final version of [9]) that for any positive constant α < 1.67545943 . . . , the random graph G(n, αn) is 2-orientable,
w.h.p. The proof uses the threshold for the existence of the 3-core in random graphs [33], where the k-core is the unique
maximal subgraph with minimum degree at least k. The result in its general form says that any undirected graph that
does not contain a (k + 1)-core is k-orientable. So what is the time of the emergence of the (k + 1)-core? For k ≥ 3,
Pittel, Spencer, and Wormald [33] proved that the random birth time of the k-core in the random graph G(n,m) is
sharply concentrated around m ≈ akn/2, where

ak = min
λ>0

λ

πk−1(λ)
, and πk(λ) = P {Poisson(λ) ≥ k} =

∞∑
i=k

e−λλi

i !
.

Indeed, they showed that for any δ ∈ (0, 1/2), if m ≤ akn/2 − n1−δ , then w.h.p., G(n,m) does not contain any
k-core; and if m ≥ akn/2 + n1−δ , then w.h.p., there is a k-core that is connected and of size pkn + o(n), where
pk = πk(λk), and λk is the point at which the function λ/πk−1(λ) attains its minimum value. For large k, it is shown
that ak = k+

√
k log k+O(log k). This result can be generalized to our model of random graph G(n,m), where loops

and multiedges are allowed. All this shows that the random graph is k-orientable if it does not contain the (k+1)-core.
However, the converse is not true, i.e., there are graphs that contain the (k + 1)-core, yet they are still k-orientable,
see Fig. 2. The above analysis only implies the inequality ck ≥ ak+1/2, for k ≥ 2. This means, for instance, that,
c2 ≥ 1.67545943 . . . , c3 ≥ 2.57470137 . . . , and so on (see Table 1).

Fig. 2. The graphs in (a) and (b) are 5-cores, but, clearly, they are 4-orientable. The graph in (c) contains a 3-core, but it is still 2-orientable.

In Section 2, we recall a useful characterization of the k-orientability proved by Frank and Gyárfás [18], and we
use it to prove Theorem 1 in Section 3 and 4. We also show that for small k, a lower bound on ck can be computed
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Table 1
Numerical computations showing the thresholds of the newborn (k + 1)-core and the ratio of its (giant) size

k + 1 ak+1 ak+1/2 pk+1

3 3.35091887. . . 1.67545943. . . 0.267580655. . .
4 5.14940274. . . 2.57470137. . . 0.438061712. . .
5 6.79927548. . . 3.39963774. . . 0.538433561. . .
6 8.36534077. . . 4.18267038. . . 0.604638183. . .
7 9.87529072. . . 4.93764536. . . 0.651844404. . .
8 11.3441289. . . 5.67206445. . . 0.687379687. . .
9 12.7810996. . . 6.39054984. . . 0.715208554. . .

10 14.1923894. . . 7.09619474. . . 0.737666503. . .

The threshold ck ≥ ak+1/2.

by solving simultaneously two equations related to the estimation of the upper tail of the binomial distribution. See
Table 3 for these computed bounds which beat the (k + 1)-core thresholds except for k = 2, 3.

2. Useful characterization

Throughout, we use the following notations and definitions. For any graph G, we write V(G) to denote the set of
its vertices. For any set of vertices S ⊆ V(G), we write E(S) to denote the multiset of all edges whose endpoints
belong to S. The density of any set of vertices S is the ratio |E(S)| / |S|. If the density of a set S is strictly greater than
k, for a positive integer k, we say that S is a k-overloaded set. The maximum density 9(G) of any graph G is defined
by

9(G) = max
S⊆V(G)

d |E(S)| / |S| e .

That is, 9(G) is the smallest integer such that |E(S)| ≤ 9(G) |S|, for all S ⊆ V(G).
We begin by restating the k-orientability property in terms of the edge distribution in the graph. Obviously, if a

vertex has more than k loops, or if |E(G)| > k |V(G)|, then the graph G is not k-orientable, as each vertex can orient
outward at most k edges. The following lemma generalizes this idea; see Fig. 3.

Fig. 3. The graph G is not 2-orientable, because H is a 2-overloaded set.

Lemma 1 (Frank and Gyárfás [18]). Any graph G, possibly containing loops and multiedges, is k-orientable, where
k ∈ N, if and only if its maximum density 9(G) ≤ k, that is, |E(S)| ≤ k |S|, for all S ⊆ V(G).

This means that finding the maximum density of any graph is equivalent to finding the smallest integer k such
that the graph is k-orientable. A general form of Lemma 1 was proved in [18], see also [16,17]. A simpler proof that
uses the König–Hall theorem [12, Theorem 2.1.2] appeared in [1]. Malalla [25] gave a new constructive proof based
on an algorithm which for any given graph G, and k ∈ N, finds either a k-orientation or a k-overloaded set. The
worst-case running time of the algorithm is O(n2), if n = V(G) and the density of G is constant. However, it is worth
mentioning that Aichholzer, Aurenhammer, and Rote [1] gave an O(n3/2) worst-case running time algorithm that is
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based on Hopcroft’s and Karp’s algorithm [20] for computing a maximum matching in a bipartite graph. The authors
also presented a linear time heuristic for finding a 2k-orientation.

We use Lemma 1 to prove the upper and lower bounds on the threshold ck , in the following sections. Recall that
ck = sup {c : G(n, cn) is k-orientable w.h.p.}. Notice that the existence of a k-overloaded set is an increasing property,
i.e., if G(n,m) contains a k-overloaded set, w.h.p., then for all m′ > m, the random graph G(n,m′) also contains a
k-overloaded set, w.h.p.

3. Upper bound

We recall the following inequality.

Lemma 2 (McDiarmid [26]). Let X1, . . . , Xn be independent random variables taking values in a set A, and let f
be any real-valued measurable function defined on the set An . Suppose that for each i ∈ [n], there exists ci > 0 such
that

sup
x1,...,xn ,x̂i∈A

∣∣ f (x1, . . . , xn)− f (x1, . . . , xi−1, x̂i , xi+1, . . . , xn)
∣∣ ≤ ci ,

i.e., the function f has bounded differences. Then for any t < 0, we have

P { f (X1, . . . , Xn)− E [ f (X1, . . . , Xn) ] ≤ t} ≤ exp

 −2t2

n∑
i=1

c2
i

 .
Notice that the random graph G(n,m) is constructed by choosing 2m vertices independently and uniformly at

random, with replacement, where each two consecutive vertices represent an undirected edge. This means that each
loop is chosen with probability 1/n2, and each undirected non-loop edge is chosen with probability 2/n2. Throughout,
we define the degree of a vertex in the random graph G(n,m) to be the number of its non-loop incident edges plus
twice the number of its loops, i.e., it is the number of times the vertex is chosen during the 2m trials of drawing the
vertices. Clearly, the degree of any vertex is distributed as Bin(2m, 1/n), that is, a binomial random variable with
parameters 2m and 1/n. The next theorem bounds ck from above.

Theorem 2. For any constant integer k ≥ 2, let γk be the unique positive solution of 1 − γ − e−2γ k
= 0 on (0, 1).

Then ck ≤ γkk <
(

1− e−2k(1−e−2k )
)

k.

Proof. Suppose that m = γ kn, for some constant γ ∈ (0, 1). To prove that ck < γ k, it suffices to show that the
random graph G(n,m) contains a k-overloaded set, w.h.p. Let S be the set of all non-isolated vertices, i.e., with
degree of at least one, in the random graph G(n,m). Let X be the number of isolated vertices in the random graph
G(n,m), and observe that

E [ X ] = n P {Bin(2m, 1/n) = 0} = n

(
1−

1
n

)2m

= n

(
1−

1
n

)2γ k(n−1) (
1−

1
n

)2γ k

≥ ne−2γ k
(

1−
2k

n

)
≥ ne−2γ k

− 2k,

where we have used the fact that (1 − 1/n)n−1
≥ e−1. Notice that |E(S)| = m, and |S| = n − X . Moreover, X can

be expressed as a function of the 2m chosen vertices which are independent, and if one of the vertices is changed, X
may increase or decrease by at most one. Therefore, by McDiarmid’s inequality, we see that S is a k-overloaded set
when γ is large enough. Indeed, for sufficiently large n, we have

P {|E(S)| ≤ k |S|} = P {X ≤ (1− γ )n}
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≤ P
{

X − E [ X ] ≤
(

1− γ − e−2γ k
)

n + 2k
}

≤ exp
(
−

(
1− γ − e−2γ k

)2
n/(γ k)+ 1

)
= o(1),

which is true whenever fk(γ )
def
= 1− γ − e−2γ k < 0. In particular, if γ = 1− e−2k(1−e−2k ), then

fk(γ ) < e−2k
(

e2ke−2k
− e2ke−2k

)
= 0.

This implies that ck/k ≤ inf {γ ∈ (0, 1) : fk(γ ) < 0} < 1 − e−2k(1−e−2k ). However, fk(0) = 0, fk(1/2) > 0,
fk(1) < 0, and since f ′′k (γ ) = −4γ 2e−2γ k < 0, then f is concave on [0, 1]. This means that in fact γk =

inf {γ ∈ (0, 1) : fk(γ ) < 0}. �

Remark. Notice that the upper bound on ck is obtained by estimating the random time at which the 1-core becomes a
k-overloaded subgraph, that is, when the density of the 1-core exceeds k. One can improve this bound by considering
instead the density of the (k + 1)-core. That is, if Ck is the smallest constant c such that, w.h.p., the density of the
(k + 1)-core of the random graph G(n, cn) is more than k, then ck ≤ Ck . We know from the work of Pittel, Spencer,
and Wormald [33] that for k ≥ 2, the (k+1)-core of the uniform random graph G(n,m), where no loops or multiedges
are allowed, emerges around the time m ≈ ak+1n/2, where

ak+1 = min
λ>0

λ

πk(λ)
, and πk(λ) = P {Poisson(λ) ≥ k} .

Moreover, for any given constant c > ak+1/2, the number of vertices in the (k + 1)-core of the random graph
G(n, cn) is πk+1(λk(c))n + o(n), w.h.p., where λk(c) is the largest root of the equation 2c = λ/πk(λ). On the
other hand, Fountoulakis [15] proved that the number of edges in the (k + 1)-core of the random graph G(n, cn) is
λ2

k(c)n/(4c) + o(n), w.h.p. These results are also true in the model G(n,m) which is highly unlikely to have more
than a constant number of loops or multiedges. Thus,

Ck = inf

{
c >

ak+1

2

∣∣∣ λ2
k(c)

4c πk+1(λk(c))
> k

}
.

Table 2 shows some of the computed values of Ck compared to the upper bound of Theorem 2.

Table 2
The threshold ck ≤ Ck ≤ γkk

k Ck γkk

2 1.79402374. . . 1.960345197. . .
3 2.87746281. . . 2.992450613. . .
4 3.92147910. . . 3.998654534. . .
5 4.94775681. . . 4.999772897. . .
6 5.96443625. . . 5.999963132. . .
7 6.97541865. . . 6.999994180. . .
8 7.98282627. . . 7.999999100. . .

4. Lower bounds

We already know that ck is at least the threshold of the (k + 1)-core, which is asymptotic to k/2 [33]. In this
section, we improve this lower bound, and show that indeed ck ∼ k, as k → ∞. Observe that that for any set
of vertices S ⊆ V(G(n,m)) of size i ∈ N, the probability that we choose an edge whose both endpoints belong
to S is i2/n2, because each vertex is drawn independently and uniformly at random, with replacement. Therefore,

|E(S)| L
=Bin(m, i2/n2). Thence, by Lemma 1, the probability that the random graph G(n,m) is not k-orientable is
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not more than

bm/k c∑
i=1

∑
S:|S|=i

P {|E(S)| > ki} ≤
bm/k c∑

i=1

(n

i

)
P
{

Bin(m, i2/n2) > ki
}
.

We would like to find the maximum constant c such that if m = cn, then the above probability tends to zero as n
approaches infinity. Notice that for i = 0, . . . , n, we have(n

i

)
≤

ni

i !
≤

(en

i

)i
. (1)

Recall also the following inequalities.

Lemma 3 (Okamoto [30]). For p ∈ (0, 1), and r, t ∈ N, let β := t/r , and suppose that r > t > r p > 0. Then

P {Bin(r, p) ≥ t} ≤ ϒ(β, p)r
def
=

((
1− p

1− β

)1−β ( p

β

)β)r

(2)

≤

(epr

t

)t
e−pr . (3)

The following lemma shows that ck is at least k/
√

e, asymptotically. However, the approximations used in the
proof are not tight enough to prove that ck ≥ (1 − o(1))k. Nonetheless, the lemma is an important step towards the
main result.

Lemma 4. Let k ≥ 2 be any constant integer. The random graph G(n, kn) does not contain any k-overloaded set of
size less than or equal to ne−(k+1)/(k−1), w.h.p. Furthermore, the threshold ck is at least ke−(k+1)/(2k−1).

Proof. Let j =
⌊

ne−(k+1)/(k−1)
⌋

. Using (1) and (3), we see that for n large enough, the probability of existence of a
k-overloaded set of size of at most j in the random graph G(n, kn) is not more than

j∑
i=1

∑
|S|=i

P {|E(S)| > ki} ≤
j∑

i=1

(n

i

)
P
{

Bin(kn, i2/n2) > ki
}

≤

j∑
i=1

(en

i

)i
(

ei

n

)ki

e−ki2/n

≤

j∑
i=1

(
ek+1(i/n)k−1

)i
e−ki2/n

≤

b log n c∑
i=1

ek+1i

n
+

b j/e c∑
d log n e

(
e2( j/n)k−1

)i
+

j∑
d j/e e

e−ki2/n

≤
ek+1 log2 n

n
+

∞∑
b log n c

e−i
+ n exp

(
−e−2k j2/n

)
≤ o(1)+2(1/n)+ o(1) = o(1).

Now if m = b akkn c, where ak = e−(k+1)/(2k−1), then w.h.p., the random graph G(n,m) is k-orientable, because the
probability that there is a k-overloaded set of size greater than j is less than

dm/k e−1∑
i= j

(en

i

)i
(

emi

kn2

)ki

e−mi2/n2
≤

b ak n c∑
i= j

(
ek+1(i/n)k−1ak

k

)i
e−mi2/n2

≤

b ak n c∑
i= j

(
ek+1a2k−1

k

)i
e−mi2/n2
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=

b ak n c∑
i= j

e−mi2/n2

≤ n exp
(
−mj2/n2

)
= o(1). �

Lemma 4 clearly improves the lower bound on ck , for k large enough, but it also establishes a lower bound on
the size ratio of any k-overloaded set, where the size ratio of any set is defined to be the size of the set divided by
n. Indeed, if G(n,m), where m ≤ kn, is not k-orientable, then the size ratio of the smallest k-overloaded set in
G(n,m) is at least e−(k+1)/(k−1)

≥ e−3, w.h.p. However, we shall further improve the lower bound on ck , and see
that the size ratio of the newborn k-overloaded set grows exponentially to 1, as k →∞. We do that by tightening the
estimation of the upper tail of the binomial distribution: we shall use inequality (2). For that, we need to define the
following positive functions. Fix an integer k ≥ 2. Suppose that m = bαn c, for some α ∈ (0, k]. For p ∈ (0, α/k),
let

f (k, α, p) =

(
α(1− p2)

α − kp

)α−kp (αp

k

)kp
, (4)

and define

h(k, α, p) =


1, if p = 0;
p−p(1− p)p−1 f (k, α, p), for p ∈ (0, α/k);
(α/k)2α, if p = α/k.

(5)

The functions f and h, as we are going to see further on, are related to the function ϒ defined in Lemma 3. Notice
that h is continuous on [0, α/k], and smooth on (0, α/k).

4.1. Tight asymptotic estimations

Our main asymptotic lower bounds are stated in the following theorem. We use the notation h p(k, α, q) to denote
the partial derivative of h with respect to p evaluated at the point (k, α, q).

Theorem 3. For any fixed integer k ≥ 2, define

αk := sup
{
α > 0 : ∃δ ∈ (0, 1) such that h(k, α, p) ≤ δ,∀p ∈ (e−3, α/k)

}
,

and let ρk := 1− (2/e)ke1+e−k/4
. Then the following are true:

1. The threshold ck is at least αk; and for k large enough, αk > kρk .
2. If sk is a point at which the function h(k, αk, p) attains its maximum on the interval [e−3, αk/k], then

h(k, αk, sk) = 1, and h p(k, αk, sk) = 0.
3. For fixed k ≥ 2, and α ∈ (αk, k], the equation h(k, α, p) = 1 has two positive solutions. Let q1(k, α) and q2(k, α)

be the smallest and the largest of these solutions. The size ratio of the newborn k-overloaded set is between q1(k, ck)

and q2(k, ck), w.h.p. Moreover, q1(k, ck) > rk
def
= q1(k, k) ≥ ρk , for large k.

Theorem 3 also provides a heuristic for computing the exact value of αk . Solving the two equations h(k, α, p) = 1,
and h p(k, α, p) = 0, simultaneously, for any given k ≥ 2, one can obtain the lower bound αk . Unfortunately,
solving these two equations explicitly is somehow impossible. So we used the mathematical software Maple to solve
them numerically. The numerical computations of αk (see Table 3) suggest, indeed, a more tight lower bound on αk
than the one mentioned in the theorem. We conjecture that for all k ≥ 2,

αk

k
≥ 1−

(
2
e

)k+
√

k

.

Note that this lower bound holds for each computed αk in Table 3. The reader is invited to verify that.
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Table 3
The numerical solutions αk and sk of the equations h(k, α, p) = 1 and h p(k, α, p) = 1

k αk sk k αk sk
2 1.30343190. . . 0.323260552. . . 15 14.9863940. . . 0.989411495. . .
3 2.48312473. . . 0.533227221. . . 16 15.9899586. . . 0.992227335. . .
4 3.61901095. . . 0.668655045. . . 17 16.9925912. . . 0.994293662. . .
5 4.71902985. . . 0.761197567. . . 18 17.9945347. . . 0.995810163. . .
6 5.79256286. . . 0.826480988. . . 19 18.9959692. . . 0.996923274. . .
7 6.84673418. . . 0.873351248. . . 20 19.9970278. . . 0.997740402. . .
8 7.88671563. . . 0.907333583. . . 21 20.9978087. . . 0.998340329. . .
9 8.91625922. . . 0.932106804. . . 22 21.9983847. . . 0.998780842. . .

10 9.93810345. . . 0.950220868. . . 23 22.9988094. . . 0.999104346. . .
11 10.9542584. . . 0.963487239. . . 24 23.9991226. . . 0.999341946. . .
12 11.9662054. . . 0.973211591. . . 25 24.9993535. . . 0.999516470. . .
13 12.9750390. . . 0.980342855. . . 26 25.9995236. . . 0.999644679. . .
14 13.9815687. . . 0.985573824. . . 27 26.9996490. . . 0.999738877. . .

The threshold ck ≥ αk which is strictly greater than the threshold of the (k + 1)-core (in Table 1), except for α2 and α3.

Recall that a k-overloaded set suddenly emerges around time m = ckn. Theorem 3 reveals that one can lower bound
the size ratio of the newborn k-overloaded set by computing the smallest positive root of h(k, k, p) = 1, which we call
rk . The theorem asserts that rk ≥ 1 − (2/e)ke1+e−k/4

, for k ≥ 2. Obviously, it converges monotonically to one, as k
goes to infinity. This is also illustrated in Table 4, and Fig. 4. Notice that the newborn k-overloaded set is giant (i.e., of
size2(n)). This is expected, because it is unlikely that at the beginning of the evolution, a large number of edges land
on a very small set. However, while keeping the number of vertices fixed, and as the number of edges m increases
away from ckn (for fixed k ≥ 2), the size of the smallest k-overloaded set in G(n,m) starts to decrease to one.

Table 4
The size ratio of the newborn k-overloaded set is at least rk , the solution of the equation h(k, k, p) = 1

k rk k rk k rk
2 0.061389845. . . 11 0.910842703. . . 20 0.994142089. . .
3 0.226773619. . . 12 0.933714444. . . 21 0.995686702. . .
4 0.387019206. . . 13 0.950841371. . . 22 0.996824664. . .
5 0.522609724. . . 14 0.963613455. . . 23 0.997662747. . .
6 0.632575890. . . 15 0.973107193. . . 24 0.998279818. . .
7 0.719774099. . . 16 0.980146405. . . 25 0.998734074. . .
8 0.787849394. . . 17 0.985355668. . . 26 0.999068429. . .
9 0.840355794. . . 18 0.989205077. . . 27 0.999314504. . .

10 0.880458374. . . 19 0.992046478. . . 28 0.999495594. . .

Fig. 4. The lower bound rk on the size ratio of the newborn k-overloaded set converges exponentially to one. It is where the curve of h(k, k, p)
intersects 1.
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4.2. Four technical lemmas

Before we start the proof of Theorem 3, we need to establish some lemmas. Recall that for x ∈ (0, 1), we have

(1− x) log(1− x) > −x, or (1− x)1−x > e−x . (6)

The following lemma highlights some of the analytical properties of the function h. Fig. 5 illustrates some of these
properties.

Fig. 5. Figure (a) shows the functions h(4, 4, p), h(4, 3.8, p), and h(4, 3.62, p). It illustrates that the function h is strictly increasing on α, and for
α ∈ (αk , k], the functions h(k, α, p) intersects the line y = 1 at two positive points. Figure (b) shows the functions h(2, 2, p), h1(3, 3, p), and
h(4, 4, p). It illustrates that the function h is strictly decreasing on k and there is an ε ∈ (0, 1) such that h(k, k, p) > 1, for all p ∈ (1 − ε, 1).
Figure (c) shows the functions h(4, α4, p), h(5, α5, p), and h(6, α6, p). Clearly, the function h(k, αk , p) ≤ 1, on (0, αk/k), where the equality
holds only at one point. Figure (d) shows that the function h(2, 1, p) < 0.93 on [e−3, 1/2).

Lemma 5. Let k̃ > k ≥ 2 be integers, and α, α̃ ∈ (0, k] be such that α < α̃. The following are true:

1. For all p ∈ (0, α/k), we have h(k, α, p) < h(k, α̃, p); and if both α, α̃ > k/e, then h(k, α, α/k) < h(k, α̃, α̃/k).
2. For any constant a ∈ (0, 1], we have h(k, ak, p) > h(k̃, ak̃, p), for all p ∈ (0, a).
3. h(k, α, p) < 1, where 0 < p ≤ min(e−3, α/k).
4. There is an ε ∈ (0, 1) such that h(k, k, p) > 1, for all p ∈ (1− ε, 1).

Proof.

1. By the definition of f (k, α, p), we see that for fixed p ∈ (0, α/k),

∂

∂α
(log f ) = log(α − αp2)+ 1− kp/α − log(α − kp)− 1+ kp/α

= log
(

1− p2

1− kp/α

)
> 0,
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which is true because 1− p2 > 1− kp/α. Since f is strictly positive, then
∂

∂α
f (k, α, p) = f (k, α, p)

∂

∂α
log f (k, α, p) > 0.

This means that f (k, α, p), and hence h(k, α, p), is a strictly increasing function of α, where p ∈ (0, α/k). If
p = α/k, then

h(k, α, α/k) =
(α

k

)2α
<

(
α̃

k

)2α̃

= h(k, α̃, α̃/k),

which is true because if t (x) = 2x log(x/k), where x ∈ (k/e, k], then the derivative t ′(x) = 2 log(x/k)+ 2 > 0,
i.e., t (x) is a strictly increasing function.

2. If α = ak, for some constant a ∈ (0, 1], and p ∈ (0, a), we have

f (k, ak, p) =

(
a(1− p2)

a − p

)k(a−p)

(ap)kp.

Let g(a, p) = (a − p) log(1− p2)− (a − p) log(1− p/a), and notice that
∂g

∂a
= log(1− p2)− log(1− p/a)+ 1 > 0,

because 1− p2 > 1− p/a. This means that for fixed p ∈ (0, a), the function g(a, p) strictly increases as a function
of a. Thus, using the known inequalities: log p < p − 1 and log(1+ p) < p, we see that

∂

∂k
(log f (k, ak, p)) = (a − p) log

1− p2

1− p/a
+ p log(ap)

≤ (1− p) log
1− p2

1− p
+ p log p

< p(1− p)+ p(p − 1) = 0.

Thus, the function f (k, ak, p), and hence h(k, ak, p), strictly decreases on k.
3. We know thus far that for any integer k ≥ 2, α ∈ (0, k], and p ∈ (0, α/k), we have h(k, α, p) ≤ h(k, k, p) ≤

h(2, 2, p). However, using (6), we see that for p ∈ (0, e−3
],

h(2, 2, p) = (1− p)−(1−p)(1+ p)2(1−p) p p

< exp(p + 2p(1− p)+ p log e−3)

= exp(−2p2) ≤ 1.

4. When α = k,

h(k, k, p) =
(1+ p)k(1−p) pkp

p p(1− p)1−p
,

and hence,
∂

∂p
(log h) = −k log(1+ p)+

k(1− p)

(1+ p)
+ (k − 1) log p + k + log(1− p),

which converges to −∞ as p goes to 1. Since the derivatives of h and log h have the same sign, this means that
h(k, k, p) is strictly decreasing on (1− ε, 1) for some positive ε, i.e., h(k, k, p) > 1, for all p ∈ (1− ε, 1). �

Since h is continuous on its domain, h(k, k, e−3) < 1 (Lemma 5), and h(k, k, q) > 1 for some q ∈ (e−3, 1), the
equation h(k, k, p) = 1 must have a solution in (e−3, q). The following lemma bounds the smallest such solution from
below. The lemma helps us later on to establish the lower bound on αk , and to prove that the smallest k-overloaded
set in the random graph G(n, kn) has size ratio of at least 1− 2k exp

(
−k + 1+ e−k/4

)
.

Lemma 6. For an integer k ≥ 2, let rk be the smallest positive root of the equation h(k, k, rk) = 1. Then for k large
enough,

rk > 1−
(

2
e

)k

e1+e−k/4
.
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Proof. Let ρk = exp((log 2− 1)k + 1+ e−k/4). Since h is continuous, and by Lemma 5, we have h(k, k, p) < 1, for
all p ∈ (0, e−3

], then

rk > 1− ρk ⇐⇒ h(k, k, p) < 1, for all p ∈ (e−3, 1− ρk].

We shall show that for k large enough, the function g(p) := log h(k, k, p) < 0, for all p ∈ (e−3, 1− ρk]. First notice
that

g(p) = k(1− p) log(1+ p)+ (k − 1)p log p − (1− p) log(1− p),

g′(p) = −k log(1+ p)+
k(1− p)

1+ p
+ (k − 1) log p + log(1− p)+ k,

and

g′′(p) =
−k

1+ p
−

2k

(1+ p)2
+

k − 1
p
−

1
1− p

.

Thus,

g′′(p) = 0 ⇐⇒ −kp(1− p2)− 2kp(1− p)+ (k − 1)(1+ p)2(1− p)− p(1+ p)2 = 0

⇐⇒ (k − 1)p2
− 2(k + 1)p + k − 1 = 0

⇐⇒ p =
k + 1− 2

√
k

k − 1
def
= qk .

Evidently, g′′(p) is strictly positive on (0, qk), and negative on (qk, 1). This yields that g(p) is strictly convex on
(0, qk), and g′(p) is decreasing on [qk, 1). Moreover, using (6), we see that for p ∈ [qk, 1− ρk],

g′(p) ≥ g′(1− ρk)

> k − k log(2− ρk)+ (k − 1) log(1− ρk)+ log ρk

> (1− log 2)k −
(k − 1)ρk

1− ρk
+ (log 2− 1)k + 1

= 1−
k2k
− 2k

ek−2 − 2k
> 0,

when k ≥ 16. This means that g(p) is strictly increasing on [qk, 1− ρk]. Consequently, g(p) ≤ max(g(e−3), g(1−
ρk)), for all p ∈ [e−3, 1− ρk]. However, we know that g(e−3) < 0, and for k large enough, (k ≥ 100), we have

g(1− ρk) = kρk log(2− ρk)+ (k − 1)(1− ρk) log(1− ρk)− ρk log ρk

< kρk log 2− (k − 1)ρk(1− ρk)− (log 2− 1)kρk − ρk(1+ e−k/4)

= ρk

(
(k − 1)ρk − e−k/4

)
< 0,

which completes the proof. �

Next, we turn our attention to the definition of αk . Let

A :=
{
α > 0 : ∃δ ∈ (0, 1) such that h(k, α, p) ≤ δ,∀p ∈ (e−3, α/k)

}
,

and recall that αk = sup A. Clearly, if β ∈ A, then (0, β) ⊆ A, because h is an increasing function of α. Also, if
γ 6∈ A, then αk ≤ γ . This leads to αk ≤ k, because h(k, k, 1) = 1. The following lemma follows easily.

Lemma 7. For any fixed integer k ≥ 2, αk is well-defined and αk ∈ [k/2, k). Moreover, h(k, αk, p) ≤ 1, for all
p ∈ [0, αk/k].

Proof. First, αk is well-defined because A 6= ∅. Indeed, k/2 ∈ A because by Lemma 5-(2), we have h(k, k/2, p) <
h(2, 1, p) < 0.93, for p ∈ (e−3, 1/2) (see Fig. 5(d)). Thus, trivially, αk ≥ k/2 > e−3. Now notice that
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h(k, αk, 0) = 1, and h(k, αk, αk/k) ≤ 1. Also, by Lemma 5-(3), h(k, αk, p) < 1, for all p ∈ (0, e−3
]. So if

possible, assume that there is a point q ∈ (e−3, αk/k) such that h(k, αk, q) > 1. By the definition of h, we have
h(k, qk, q) = q2qk < 1. Therefore, since h is a continuous increasing function of α, then there is α̃ ∈ (qk, αk) such
that h(k, α̃, q) = 1. That is, α̃ 6∈ A, because q ∈ (e−3, α̃/k), and hence αk ≤ α̃ which is a contradiction. Thus,
h(k, αk, p) ≤ 1, for all p ∈ (0, αk/k). This also shows that αk 6= k because, by Lemma 5-(4), there is q ∈ (e−3, 1)
such that h(k, k, q) > 1. Consequently, αk < k. �

Finally, we have the following lemma.

Lemma 8. Let k ≥ 2 be any fixed integer. The following are true:

1. For α ∈ (αk, k], the equation h(k, α, p) = 1 has at least two positive solutions, and there exists a point
s(k, α) ∈ (e−3, α/k) such that

max
0≤p≤α/k

h(k, α, p) = h(k, α, s) > 1.

2. The equation h(k, αk, p) = 1 has at least one positive solution.
3. For α, α̃ ∈ [αk, k], if r(k, α) is the smallest positive solution of h(k, α, p) = 1, then r(k, α̃) > r(k, α), whenever
α > α̃.

Proof. First, for α ∈ (αk, k], let s(k, α) be any point at which h(k, α, p) attains its maximum on [e−3, α/k], and let
λ = h(k, α, s), which is positive. If possible, assume that λ ≤ 1. Let β = (α+αk)/2. Notice that k/2 ≤ αk < β < α.
Let q be any point at which h(k, β, p) attains its maximum on [e−3, β/k]. Then by Lemma 5-(1), we see that for all
p ∈ [e−3, β/k],

h(k, β, p) ≤ δ
def
= h(k, β, q) < h(k, α, q) ≤ λ ≤ 1.

Thus, the definition of αk yields that β ≤ αk which is a contradiction. Consequently, λ > 1. Since h(k, α, α/k) ≤ 1,
and by Lemma 5-(3), h(k, α, p) ≤ 1, for all p ∈ [0, e−3

], then s ∈ (e−3, α/k), and

max
0≤p≤α/k

h(k, α, p) = h(k, α, s) > 1.

Since h(k, α, s) > 1, and h(k, α, e−3) < 1, then there is a point q1(k, α) ∈ (e−3, s) such that h(k, α, q1) = 1, because
h is continuous. If α = k, we know that h(k, α, α/k) = 1; and if α < k, we have h(k, α, α/k) < 1, and hence—for
the same reason again—there is a point q2(k, α) ∈ (s, α/k) such that h(k, α, q2) = 1. That is, h(k, α, p) = 1 has at
least two positive solutions. Next, let

σk := lim
α↘αk

s(k, α).

and notice that

h(k, αk, σk) = lim
α↘αk

h(k, α, s) ≥ 1,

because h is continuous on each of its arguments. However, by Lemma 7, we have h(k, αk, p) ≤ 1, for all
p ∈ [0, αk/k]. Thus, h(k, αk, σk) = 1. Finally, Lemma 5(3) yields that h(k, α, p) < h(k, α, r(k, α)) = 1, for
p ∈ (0, r(k, α)). Since h(k, α, p) is an increasing function of α, then for any α̃ ∈ [αk, α), we have h(k, α̃, p) <
h(k, α, p) ≤ 1, for all p ∈ (0, r(k, α)]. This means that r(k, α̃) > r(k, α). �

4.3. Proof of Theorem 3

First, we prove that ck ≥ αk . Let ε ∈ (0, 1) be any small arbitrary constant. Let β = αk−ε. By Lemma 4 and since
ε is arbitrary, it suffices to show that the random graph G(n, bβn c) does not contain any k-overloaded set of size
≥ e−3n. For

⌊
e−3n

⌋
≤ i ≤ b (βn − 1)/k c, let pi := i/n, and notice that pi ∈ (e−3, β/k). By the definition of αk ,

there exist α > β, and a constant δ ∈ (0, 1) such that h(k, α, p) ≤ δ, for all p ∈ (e−3, α/k). Since h is an increasing
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function of α, then h(k, β, p) ≤ h(k, α, p) ≤ δ, for all p ∈ (e−3, β/k). Thus, using inequality (2) of Lemma 3, we
see that the probability that G(n, bβn c) contains a k-overloaded set of size at least e−3n is not more than

b (βn−1)/k c∑
i=b e−3n c

(n

i

)
P
{

Bin(bβn c , i2/n2) > ki
}
≤

b (βn−1)/k c∑
i=b e−3n c

nnϒ(kpi/β, p2
i )
βn

i i (n − i)(n−i)

=

b (βn−1)/k c∑
i=b e−3n c

h(k, β, pi )
n

≤ n δn
= o(1).

Secondly, by Lemma 7, h(k, αk, p) ≤ 1, for all p ∈ [0, αk/k]. Recall that sk is a point at which h(k, αk, p) attains
its maximum on [e−3, αk/k]. From Lemma 8 we know that h(k, αk, p) = 1 has a solution, and thus, h(k, αk, sk) = 1.
Since αk < k, then by definition, h(k, αk, αk/k) < 1. That is, sk ∈ (0, αk/k) which leads to h p(k, αk, sk) = 0,
because h is smooth on the open interval.

Thirdly, we know, by Lemma 8(1), that for α ∈ (αk, k], the equation h(k, α, p) = 1 has at least two positive
solutions. Notice that if ck = αk , there is at least one solution for h(k, ck, p) = 1, namely sk , and we may have
q1(k, ck) = sk = q2(k, ck). Nevertheless, the following is still true. Since h(k, ck, e−3) < 1, and h(k, ck, ck/k) < 1,
then the definition of the two points q1(k, ck) and q2(k, ck) implies that h(k, ck, p) < 1, for all p ∈ (0, q1)∪(q2, ck/k).
This means that for any arbitrary constant ε ∈ (0, 1) sufficiently small, there exists a constant δ ∈ (0, 1) such that
h(k, ck, p) < δ for all p ∈ (e−3, q1− ε]∪ [q2+ ε, α/k). Therefore, using the similar argument as above, we conclude
that the random graph G(n, d ckn e) does not contain any k-overloaded set of size less than q1(k, ck) nor greater than
q2(k, ck), w.h.p. Finally, Lemma 8-(3) and 6 lead to

αk/k > sk ≥ q1(k, αk) ≥ q1(k, ck) > q1(k, k) = rk > 1− e1+e−k/4
(2/e)k,

for k large enough. �

Remark. Recall that the lower bounds on ck recorded in Table 3 are better than the ones obtained from the (k + 1)-
core analysis in Table 1, except for k = 2, 3, where c2 ≥ 1.67545943 . . . > α2 and c3 ≥ 2.57470137 . . . > α3. We
should point out that, for k = 3, 4, 5, the lower bounds on ck can be improved a little bit as is shown in Table 5.
See [25, Sec. 3.5.2] for details.

Table 5
The threshold ck ≥ βk ≥ αk

k βk αk

3 2.61845509. . . 2.48312473. . .
4 3.65354252. . . 3.61901095. . .
5 4.71959504. . . 4.71902985. . .
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