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Abstract - -  Zusammenfassung 

A Note on Linear Expected Time Algorithms for Finding Convex Hulls. Consider n independent 
identically distributed random vectors from R a with common density f, and let E (C) be the aver- 
age complexity of an algorithm that finds the convex hull of these points. Most well-known 
algorithms satisfy E (C)= 0 (n) for certain classes of densities. In this note, we show that E (C)= 0 (n) 
for algorithms that use a "throw-away" pre-processing step when f is bounded away from 0 
and ~ on any nondegenerate rectangle of ~2. 
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[]ber Algorithmen mit mittlerem linearen Zeitbedarf zur Bestimmung der konvexen Hiille. Wir be- 
trachten n als unabh~ingig identisch verteilte Zufallsvektoren im ~d mit der gemeinsamen Vertei- 
lungsdichte f. Die mittlere Konvexit/it eines Algorithmus zur Bestimmung der konvexen Hiille 
dieser Punkte sei E (C). Die meisten bekannten Algorithmen geniigen fiir gewisse Klassen von 
Dichten der Bedingung E (C)= 0 (n). In dieser Mitteilung zeigen wit E (C)=0 (n) fox Algorithmen, 
die im Vorlauf einen ,,Wegwerf-Schritt" bentitzen, wenn f auf jedem nicht ausgearteten Rechteck 
des R 2 beschrfinkt ist und positiven Abstand yon 0 besitzt. 

1. Introduction 

Let X1, ..., X ,  be independent identically distributed random vectors from ~d 
with common density f ,  and let C b e  the complexity of a given convex hull 
algorithm for X1, ..., X,  (thus, C is a random variable). In this note we will 
discuss several convex hull algorithms and the conditions on f that will insure 
their linear average time behavior:  

E (C)=0  (n). (1) 

In general, the more sophisticated algorithms satisfy (1) for a larger class of 
densities than do the simple algorithms. The purpose of this note is merely to 
draw the attention to a particularly simple algorithm and prove that is satisfies 
(1) for a small but frequently encountered class of densities. We will first review 
some well-known convex hull algorithms and indicate the densities for which (1) 
holds. We will assume that d = 2. 

1. Graham's  algorithm (Graham, 1972) sorts the Xi's according to the angles 
between the x-axis and the lines joining the X~'s with an interior point. Then 
it finds the convex hull in time 0 (n). If bucket sorting is used on the angles, 
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then (1) holds whenever f is bounded and has compact support (Devroye and 
Klincsek, 1980). 

Bentley and Shamos (1978) showed that their "divide and conquer" algorithm 
satisfies (1) whenever f is such that E (No)=0 (n p) for some p < l  where Nc 
is the number of Xi's on the convex hull. Most well-known densities satisfy their 
condition. 

Jarvis' simple algorithm (Jarvis, 1973) has E (C)= 0 (n) whenever E (N~)=0 (1). 
In an interesting paper by Carnal (1970) it was pointed out that many 
heavy-tailed radial densities fall into this category. It suffices that for some 
origin Xo, X ~ - x  o has a radially symmetric distribution such that for all 
0 < c < l ,  

lim P([[ X l - x ~  I[>cr) - 1 
r-~o~ P(I] X l - x o  II >-r) c~ 

for some constant c~ > 0. For example, it suffices that 

f(x)=constant/( 11 x [I 2+~+ 1), x ~ ~2, 

for some ~ > 0, where [[ x [1 denotes the standard euclidean norm in R 2. 

4. In an indirect approach, one could first find the maximal vectors among 
X1, ..., X, and then extract the convex hull from these points using a poly- 
nomial time worst-case algorithm. Consider the first quadrant on the plane. 
A vector X is said to dominate another vector Y if X is greater than Y in 
both coordinates, i.e., x~>yx and x2>Y2. A vector X i is a maximal vector 
among a set if it is not dominated by any other vector in the set. AnalogoUs 
definitions hold for the other three quadrants with the corresponding sign 
changes. The set of maximal vectors forms a superset of the convex hull vectors. 
If the first part is executed by using the algorithm of Bentley et al. (Bentley, 
Kung, Schkolnick and Thompson, 1978), then E (C)=0 (n) whenever all the 
components of X1 are independent (i.e., f is the product of its marginal 
densities). This result remains true for d > 2. See Devroye (1980 a). 

5. In another indirect approach Shamos (1978) proposed obtaining the convex 
hull by first computing the Voronoi diagram of the set of points. The Voronoi 
diagram of a set of points X~, ..., X, is a partition of the plane into n regions 
or tiles T~ such that for any X in Ti, X is closer to X~ than to any other vector 
in the set. Such a partition consists of bounded and unbounded regions. 
The unbounded regions identify the convex hull points and can be obtained 
in 0 (n) time once the Voronoi diagram is computed. Bentley, Weide and Yao 
(1978) showed that when f is such that it has a convex compact support and 
there exist two positive constants M and m such that M > f > m ,  the Voronoi 
diagram can be computed in 0 (n) expected time. It follows that under these 
conditions Shamos' convex hull algorithm runs in linear expected time. 

The algorithm discussed in this note is very simple but extremely fast and useful 
(see Akl and Toussaint, 1978). In a first step, many points are excluded from 
further consideration in time 0 (n). The convex hull of the remaining points is 
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then found by using any of the established convex hull algorithms. More formally, 
we will consider all algorithms of the following form. 

Step 1: Find X~', ..., X~' from X~ . . . .  , X, where the X*'s are the extrema (i. e., 
the points furthest apart) in the _ x, _ y, _ (x + y), _ (x - y) directions. Some of 
the X*'s may coincide. Step 1 takes time 0 (n). 

Step 2: Eliminate from X~, ..., X, all points that do not belong to the convex 
polygon P formed by the Xi s. 

Step 3: Apply any 0 (n 2) worst-case convex hull algorithm to the points not elimi- 
nated in step 2. One should note here that all the algorithms discussed in this 
note can be used in step 3. 

This simple algorithm cannot be expected to satisfy (1) for all densities f .  When 
f is uniform on the unit circle, then on the average 0 (n) points will be left after 
steps 1 and 2, and much depends upon the algorithm used in step 3. We do not 
wish to specify an algorithm in step 3 because steps 1 and 2 should be considered 
as preprocessing steps in all generality. 

Remark 1: Eddy (1977) has proposed an algorithm that uses an idea similar to 
that of steps 1 and 2 but it repeats these steps by finding extrema in different 
directions instead of proceeding to step 3. Furthermore, after having initially 
found the X*'s in the x direction (X*~n and X*a~) they search for two points 
furthest away from and orthogonal to the line through X*i, and X*a~. This seems 
to require much more computation, in the form of multiplications, than simply 
finding the extreme points in the directions of step 1 above. Bentley and Shamos 
(1978) mention that Floyd has shown that Eddy's algorithm satisfies (1) for certain 
symmetric f .  

2. The Main Result 

Lemma: Let 0 < m <_f (x) <_ M < ~ for all x in some nondegenerate rectangle of 
~2, and let f (x)=O elsewhere. Let N be the number of points left after step 2. Then, 
for all e > O, 

P(N>e)<-klexp( k2g2)n (2) 

where k 1 and k 2 are positive constants. 

Proof: It suffices to show the lemma when the nondegenerate rectangle is [0, 1] 2. 
The proof for the general case is similar but tends to drown the argument in 
irrelevant details. 

Let (I71, Z j ,  ..., (I74, Z4) be the four extrema in the •  _+(x-y) directions 
after step 1, and draw four horizontal and four vertical lines through these 
extrema (see Fig. 1). Let T be the rectangle defined by the innermost lines (all 
extrema should lie on or outside T). Clearly, N < N r where N r is the number of 
Xi's outside T. Let T1, ..., Ts be the eight "strips" between the eight lines and 
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their corresponding parallel edges of the unit square. Also, let N1, ..., N 8 be the 
number of points in these strips, and let A1, . . . ,A 8 be the probabilities of 
T1, " " l ~ T~  " 

f 
T1 

(r4, z,) (Y3, Z3) 

I 

7/////////////, W//////A 7////Z Y/l, 
(r,, z3 r2 ~ (r2, z~) 

Fig. 1. The shaded areas illustrate two of  the eight strips T,, i =  I, . . . ,  8 

We know that 

and, 

8 

N <-NT<- ~ Ni, 
i=1 

8 

P ( N > ~ ) <  ~ P(N,>e/8) 
i=1 

8 (3) 
<- ~, [P(Ni-nAi>e/16)+P(nAi>e/16)]. 

i=1 

Let T 1 be [0, Y1] x [0, 1 ] : T  1 is the vertical strip defined by the extremum 
(I11, Z~) in the - ( x  + y) direction (closest to the origin). Let F be the distribution 
function of the x-component of Xa, and let F, be the empirical distribution 
function of the x-components of X1, ..., X,, that is, 

1 
F,  ( x ) = - -  �9 number of Xi's with x-component < x. 

n 

For any a > 0, 
P (N~ -nA~ >z/16) = P  (F, (Y~)-F (Y1)> ~/16 n) 

_<P( sup Fn(x)-F(x)>e/16n ) 
O < x < l  

2 

- k  3 exp (-e2/128 n). 

(4) 
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Here we used a result due to Dvoretzky, Kiefer, and Wolfowitz (1956) (it is known 
that k 3 < 611). Bound (4) is independent of the index i (1 _<i< 8). 

Finally, 

P (n A 1 > e/16) _< P (M Y1 > e/1 6 n) 

-<P (Z1 + I71 >e/16 nM) 

= P  triangle (0, 0), O, 16nM ' 1 6 n M '  0 is empty 

_<exp - - ~ - -  16nM 

= e x p (  ~2m 
- 512 nM ~ ] "  

Since (5) is valid for all Ai's we have from (3), (4) and (5) 

( P(N>e)<-8(k3+l)exp 51~-M2 j, 

concluding the proof of the lemma. 

(5) 

Theorem: When O<m<_f(x)<_M<~ for some constants m, M on any non- 
degenerate rectangle in ~2, and f = 0  elsewhere, then the elimination algorithm 
given above satisfies (1), i. e., E (C)=0 (n). 

Proof: It is clear that 

C < k 4 n + k  5 N 2 

where k 4 and k s are positive constants. Now, (1) follows when E (N2)=0 (n). By 
a well-known identity (see Feller, 1966), 

E (N 2) = ~ P (N 2 > t) dt 
o (6) 
c o  

= S 2t P(N>t )d t .  
0 

Substituting (2) into (6) yields 

E(NZ)<2kl  ~ t e x p (  k2t2)  

kl 

k 2 ' 

thus proving the theorem. 
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Remark 2: The Theorem applies to all elimination algorithms that use 8 equi- 
spaced directions in step 1. For some densities, the result of the Theorem can 
be obtained by using fewer equi-spaced directions. For example, when f is the 
standard normal density, then 3 equi-spaced directions suffice to conclude that 
E (C)=0 (n), provided that in step 3 an 0 (n log n) worst-case convex hull al- 
gorithm is employed (Devroye, 1980 b). 

References 

Akl, S. G., Toussaint, G. T. : A fast convex hull algorithm. Information Processing Letters 7, 219- 222 
(1978). 

Bentley, J. L., Shamos, M. I. : Divide and conquer for linear expected time. Information Processing 
Letters 7, 87--91 (1978). 

Bentley, J. L., Kung, H. T., Schkolnick, M., Thompson, C. D.: On the average number of  maxima 
in a set of vectors and applications. Journal of the ACM 25, 536--543 (1978). 

Bentley, J. L., Weide, B. W., Yao, A. C.: Optimal expected-time algorithms for closest-point 
problems. AUerton Conference, Urbana, Illinois, 1978. 

Carnal, H. : Die konvexe Htille yon n rotationssymmetrisch verteilten Punkten. Zeitschrift ftir 
Wahrscheinlichkeitstheorie und verwandte Gebiete 15, 168--176 (1970). 

Devroye, L., Klincsek, T. : Average time behavior of distributive sorting algorithms. Computing 26, 
1--7 (1980). 

Devroye, L. : A note on finding convex hulls via maximal vectors. Information Processing Letters 
I1, 53--56 (1980a). 

Devroye, L. : How to reduce the average complexity of convex hull finding algorithms. Manuscript, 
McGill University, 1980b. 

Dvoretzky, A., Kiefer, J., Wolfowitz, J. : Asymptotic minimax character of  the sample distribution 
function and of the classical multinomial estimator. Annals of Mathematical Statistics 27, 
642--669 (1956). 

Eddy, W. F.: A new convex hull algorithm for planar sets. ACM Transactions on Mathematical 
Software 3, 398--403, 411--412 (1977). 

Feller, W. : An Introduction to Probability Theory and Its Applications, Vol. 2, pp. 148. 1966. 
Graham, R. L. : An efficient algorithm for determining the convex hull of  a planar set. Information 

Processing Letters 1, 132--133 (1972). 
Jarvis, R. A. : On the identification of the convex hull of a finite set of points in the plane. Informa- 

tion Processing Letters 2, 18--21 (1973). 
Shamos, M. I. : Computational geometry. P h . D .  thesis, Yale University, May 1978. 

L. Devroye and G. T. Toussaint 
School of Computer Science 
McGill University 
805 Sherbrooke Street West 
Montreal, PQ, Canada H3A 2K6 


