Classification and trees *

Luc Devroye
School of Computer Science, McGill University
Montreal, Canada H3A 2K6

September 6, 2010

This paper is dedicated to the memory of Pierre Devijver.

Abstract

Breiman, Friedman, Olshen and Stone recognized that tree classifiers
would be very valuable to practicing statisticians. Their CART algo-
rithm became very popular indeed. Designing tree-based classifiers,
however, has its pitfalls. It is easy to make them too simple or too
complicated so that Bayes risk consistency is compromised. In this
talk, we explore the relationship between algorithmic complexity of
tree-based methods and performance.

EXTENDED ABSTRACT

In scientific applications, the dual objective of a classification method is
to classify and explain. It is this argument that makes partition methods
interesting—these are methods in which the space is split up into disjoint
sets. On each set, classification is performed by a simple majority vote. More

*The author’s research was sponsored by NSERC Grant A3456.



formally, if (X,Y) € R4 x {0,1} is the unknown underlying distribution of a
datum (X) and its class (Y'), and the data consist of independent identically
distributed copies of (X,Y’), namely D, = ((X1,Y7),...,(X,,Y,)), then a
classifier is an estimator g,(X,D,) € {0,1} of Y, and the probability of
error is

L, =P{g.(X,D,) #Y|D,}.

The Bayes error L* = inf, P{g(X) # Y} is the smallest error one can hope
to obtain. If g were known, then we could consider consider the partition
into A = {z € R : g(z) = 1} (the unknown Bayes discriminant set) and
its complement. And indeed, most classifiers can be considered as partition
classifiers for the partition (A,, A¢), where A, = {x € R? : g,(z) = 1},
where A, is an approximation of A.

What matters however is the explanatory aspect—how can the partition
be described and constructed? For example, histograms based on regular
grids could be considered, but they suffer from several drawbacks—first and
foremost, they ignore the possible clustering in the data, and secondly, they
can hardly be called instructional tools for explaining data. Thirdly, even
modest dimensions quickly lead to histograms with underpopulated cells.

This has led many researchers to consider smart and simple partitions.
The linear discriminant, and the perceptron (Rosenblatt, 1962), are based
upon partitions by hyperplanes. The question is whether we have univer-
sality, i.e., does L, — L* in probability as n — oo for any distribution of
(X,Y)? The answer is negative if one linear discriminant is used—how can
it hope to get close to the unknown Bayes discriminant set A, which can
be of arbitrary form? But the answer is affirmative, provided that linear
discriminants are cleverly used as building blocks.

Buoyed by the intriguing comparison between brain function and learning
machines, early methods of classification often involved combinations of lin-
ear discriminants. For example, in the committee machine (Nilsson, 1965),
many linear discriminants are considered, each delivering a vote to each half-
space (to class “one” on one side, and to the “zero” class on the other side).
For a particular X, its votes are totalled to make a final decision. Neural
networks can be considered as smooth generalizations of this simple machine.
Grid histograms can be considered as generalizations of committee machines
in which all separating hyperplanes are aligned with the axes and regularly



spaced—they have more degrees of freedom though. While not important
in high dimensions, grid histograms do have one salient feature—they lead
to universally consistent rules provided that the grid cell sizes shrink to zero
with n and the average number of points per cell tends to infinity with n. The
question then is whether committee machines are universally consistent. For
example, we optimize k£ hyperplanes by minimizing the errors on the data,
and if £ — oo and k£ = o(n), then one would expect universal consistency.
However, this is unknown (see Problem 30.6 in Devroye, Gyorfi and Lugosi,
1996).

Partitions based on hyperplanes are called arrangements. All arrange-
ments in turn can be emulated by trees in which decisions are made by
verifying signs of linear expressions. This leads naturally to tree classifiers.
Each node in such a classifier makes a decision based on whether z is in
certain set (ball, halfspace, simplex, hyperrectangle, and so forth) or not.
Leaves in the tree correspond to sets in a partition.

Tree classifiers come in many flavors. One can cross-categorize by the style
of partition. At the top of the list are the linear partitions perpendicular to
the axes, which we shall call orthogonal cuts. They were preferred in the
popular CART method (Breiman, Friedman, Olshen, Stone, 1984) because of
the easy way in which classifiers can be explained, one variable (coordinate)
at a time. Trees obtained by consecutive orthogonal cuts are called k-d trees
in the computer science literature. Linear cuts lead to so-called hyperplane
search trees—they too were proposed in the 1970s. Occasionally, one finds
partitions by membership in simplices and rectangles.

More fundamental is the type of information used to create the tree-based
partition. If only the X;’s are used, the partition can at best attempt to
keep close points together, hoping that the joint distribution of (X,Y") shows
some smoothness. Yet, ignoring the Y;’s has its advantages. For example,
one obtains universal consistency under the following simple (and optimal)
conditions. Let C' be the cell of the partition in which a random datum X
falls, and let its diameter and cardinality be D and N, respectively. Then
D — 0 and N — oo in probability suffice (Devroye, Gyorfi and Lugosi,
1996, p. 94). An example includes the median tree partition—split each
coordinate in turn at the median of the X;’s, until each leaf cell has about &
points. Then & — oco and k£ = o(n), and the existence of a density for X are



the only conditions needed (Devroye, Gyorfi and Lugosi, 1996, p. 323).

However, ignoring the Y;’s is against human nature. For data on the real
line (d = 1), there is an optimal binary split that minimizes the error on the
data itself, which we shall call a Stoller (after Stoller, 1954). The Stoller split
can be used in any direction, and indeed, one could consider the best linear
or orthogonal split for d > 1. However, even today, we are missing simple
theorems with easy-to-check conditions for universal consistency when trees,
or partitions, are based on D, in general. There are indeed many pitfalls
that lead to inconsistency.

Thirdly, and perhaps most importantly, tree classifiers can be catego-
rized by the algorithm used in their construction. Consider first top-down
constructions, in which we keep splitting leaves until we are satisfied. One
can optimize a criterion at each step, choosing a leaf that is most promising to
split. However, selecting a leaf that yields the best orthogonal Stoller split at
each step is not good enough—it is generally not consistent (Devroye, Gyorfi
and Lugosi, 1996, p. 335). One can however, remedy this by finding the best
Stoller split of a leaf using hyperrectangles as separators (Devroye, Gyorfi
and Lugosi, 1996, chapter 20.13). This is the greedy approach to design.
At the other end of the spectrum is the one-shot design of a tree of a given
complexity (number of nodes) using optimization, such as minimization of
the error on the data. This is phenomenally expensive, but its consistency is
usually easy to guaranteee thanks to powerful inequalities for the empirical
measures of sets initially derived by Vapnik and Chervonenkis (1971).

Bottom-up strategies first make a fine partition, e.g., a partition in which
each final cell has one X;. Then, in a second step, cells are recombined in a
given fashion. CART follows this approach.

Ensemble methods, popular in machine learning, are learning algorithms
that construct a set of many individual classifiers (called base learners) and
combine them to classify new data points by taking a weighted or unweighted
vote of their predictions. It is now well-known that ensembles are often much
more accurate than the individual classifiers that make them up. The success
of ensemble algorithms on many benchmark data sets has raised consider-
able interest in understanding why such methods succeed and identifying
circumstances in which they can be expected to produce good results. These



methods differ in the way the base learner is fit and combined. For exam-
ple, bagging (Breiman, 1996) proceeds by generating bootstrap samples from
the original data set, constructing a classifier from each bootstrap sample,
and voting to combine. In boosting (Freund and Shapire, 1996) and arcing
algorithms (Breiman, 1991) the successive classifiers are constructed by giv-
ing increased weight to those points that have been frequently misclassified,
and the classifiers are combined using weighted voting. For a comprehensive
review of ensemble methods, we refer the reader to Dietterich (2000).

Breiman (2001) provides a general framework for tree ensembles called
“random forests”. Each tree depends on the values of a random vector sam-
pled independently and with the same distribution for all trees. Thus, a
random forest is a classifier that consists of many decision trees and outputs
the class that is the mode of the classes output by individual trees.

Random forests have been shown to give excellent performance on a num-
ber of practical problems. They work fast, generally exhibit a substantial
performance improvement over single tree classifiers such as CART, and yield
generalization error rates that compare favorably to the best statistical and
machine learning methods.

Different random forests differ in how randomness is introduced in the tree
building process, ranging from extreme random splitting strategies (Breiman
(2000), Cutler and Zhao (2001)) to more involved data-dependent strategies
(see Amit and Geman (1997), Breiman (2001), or Dietterich (2000)). Some
attempts to investigate the consistency of random forests are by Breiman
(2000, 2004), and Lin and Jeon (2006), who establish a connection between
random forests and adaptive nearest neighbor methods.

Many examples of Breiman-style random forests are analyzed by Biau,
Devroye and Lugosi (2008), and Biau and Devroye (2008). For example,
sample k data from D,, uniformly at random, make a random k-d tree in a
certain way and split until X has exactly one X, in its cell. Record the vote
Y;. Now repeat many times and estimate Y by a majority rule. Without
repetition, there is no consistency, but averaging the votes leads under some
conditions to consistent rules.



References

1]

2]

9]

Y. Amit and D. Geman. Shape quantization and recognition with ran-
domized trees. Neural Computation, 9:1545-1588, 1997.

G. Biau, L. Devroye, and G. Lugosi. Consistency of random forests

and other averaging classifiers. Journal of Machine Learning Research,
9:2015-2033, 2008.

G. Biau and L. Devroye. On the layered nearest neighbour estimate,
the bagged nearest neighbour estimate and the random forest method in
regression and classification. Technical Report, 2008.

L. Breiman. Bagging predictors. Machine Learning, 24:123-140, 1996.
L. Breiman. Arcing classifiers. The Annals of Statistics, 24:801-849, 1998.

L. Breiman. Some infinite theory for predictor ensembles. Tech-
nical Report 577, Statistics Department, UC Berkeley, 2000.
http://www.stat.berkeley.edu/"breiman .

L. Breiman. Random forests. Machine Learning, 45:5-32, 2001.

L. Breiman. Consistency for a simple model of random forests.
Technical Report 670, Statistics Department, UC Berkeley, 2004.
http://www.stat.berkeley.edu/ breiman .

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. CRC Press, Boca Raton, FL, 1984.

[10] A. Cutler and G. Zhao. Pert — Perfect random tree ensembles, Comput-

ing Science and Statistics, 33:490-497, 2001.

[11] L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern

Recognition. Springer-Verlag, New York, 1996.

[12] T.G. Dietterich. An experimental comparison of three methods for con-

structing ensembles of decision trees: bagging, boosting, and randomiza-
tion. Machine Learning, 40:139-157, 2000.



[13] T.G. Dietterich. Ensemble methods in machine learning. In J. Kittler
and F. Roli (Eds.), First International Workshop on Multiple Classifier

Systems, Lecture Notes in Computer Science, pp. 1-15, Springer-Verlag,
New York, 2000.

[14] Y. Freund and R. Shapire. Experiments with a new boosting algorithm.
In L. Saitta (Ed.), Machine Learning: Proceedings of the 138th Interna-
tional Conference, pp. 148-156, Morgan Kaufmann, San Francisco, 1996.

[15] Y. Lin and Y. Jeon. Random forests and adaptive nearest neighbors.
Journal of the American Statistical Association, 101:578-590, 2006.

[16] N.J. Nilsson. Learning Machines: Foundations of Trainable Pattern
Classifying Systems. McGraw-Hill, New York, 1965.

[17] F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the The-
ory of Brain Mechanisms. Spartan Books, Washington, DC, 1962.

[18] D.S. Stoller. Univariate two-population distribution-free discrimination.
Journal of the American Statistical Association, 49:770-777, 1954.

[19] V.N. Vapnik and A.Ya. Chervonenkis. On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probability
and its Applications, 16:264-280, 1971.



