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1 The pioneers

World War IT was a terrible event. But it can not be denied that it pushed
science forward with a force never seen before. It was responsible for the
quick development of the atomic bomb and led to the cold war, during which
the United States and Russia set up many research labs and attracted the
best and the brightest to run them. It was at Los Alamos and RAND that
physicists and other scientists were involved in large-scale simulations. John
von Neumann, Stan Ulam and Nick Metropolis developed the Monte Carlo
Method in 1946: they suggested that we could compute and predict in ways
never before considered. For example, the Metropolis chain method developed
a few years later (Metropolis, Rosenbluth, Rosenbluth, Teller and Teller,
1953) can be used to simulate almost any distribution by setting up a Markov
chain that has that distribution as a limit. At least asymptotically, that is.
But it was feasible, because the computers were getting to be useful, with
the creation of software and the FORTRAN compiler.

To drive the Markov chains and other processes, one would need large col-
lections of uniform random numbers. That was a bit of a sore point, because
no one knew where to get them. Still today, the discussion rages as to how
one should secure a good source of uniform random numbers. The scientists
eventually settled on something that a computer could generate, a sequence
that looked random.

The early winner was the linear congruential generator, driven by z,,+1 =
(az, +b)modm, which had several well-understood properties. Unfortunately,
it is just a deterministic sequence, and many of its flaws have been exposed
in the last three decades. The built-in linear-congruential generator in the
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early FORTRAN package for IBM computers was RANDU. Consecutive pairs
(Zn,Zn+1) produced by RANDU fall on just a few parallel lines, prompting
Marsaglia (1968) to write a paper with the ominous title “Random numbers
fall mainly in the plane”. But bad linear congruential or related generators
have persisted until today—the generator in Wolfram’s Mathematica had a
similar problem: their built-in generator Random uses the Marsaglia-Zaman
subtract-with-borrow generator (1991), which has the amazing property that
all consecutive triples (Z,, Tn41, Tnt2) fall in only two hyperplanes of [0, 1]3, a
fact pointed out to me by Pierre Lecuyer. Many thousands of simulations with
Mathematica are thus suspect—I was made aware of this due an inconsistency
between simulation and theory brought to my attention by Jim Fill in 2010.
The company has never apologized or offered a refund to its customers, but
it has quietly started using other methods, including one based on a cellular
automaton (the default). Hoewever, they are still offering linear congruential
generators as an option. The story is far from over, and physical methods
may well come back in force.

Information theorists and computer scientists have approached random-
ness from another angle. For them, random variables uniformly distributed
on [0,1] do not and can not exist, because the binary expansions of such
variables consist of infinitely many independent Bernoulli (1/2) random bits.
Each random bit has binary entropy equal to one, which means that its value
or cost is one. A bit can store one unit of information, and vice versa, a
random bit costs one unit of resources to produce. Binary entropy for a more
complex random object can be measured in terms of how many random bits
one needs to describe it. The binary entropy of a random vector of n inde-
pendent fair coin flips is n, because we can describe it by n individual fair
coins.

For the generation of discrete or integer-valued random variables, which
includes the vast area of the generation of random combinatorial structures,
one can adhere to a clean model, the pure bit model, in which each bit
operation takes one time unit, and storage can be reported in terms of bits.
In this model, one assumes that an i.i.d. sequence of independent perfect bits
is available. This permits the development of an elegant information-theoretic
theory. For example, Knuth and Yao (1976) showed that to generate a random
integer X described by the probability distribution

P{X =n}=py,n>1,

any method must use an expected number of bits greater than the binary
entropy of the distribution,

> palogy(1/pn).

They also showed how to construct tree-based generators that can be imple-
mented as finite or infinite automata to come within three bits of this lower
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bound for any distribution. While this theory is elegant and theoretically
important, it is somewhat impractical to have to worry about the individual
bits in the binary expansions of the p,’s. Noteworthy is that attempts have
been made (see, e.g., Flajolet and Saheb, 1986) to extend the pure bit model
to obtain approximate algorithms for random variables with densities.

For integer-valued random variables with P{X = n} = p,,n > 0, the
inversion method is always applicable:

X+0

Generate U uniform [0,1]

S < po (S holds the partial sums of the p,’s)
while U > S do : X+ X+1, S« S+px
return X

The expected number of steps here is E{X + 1}. Improvements are possible
by using data structures that permit one to invert more quickly. When there
are only a finite number of values, a binary search tree may help. Here the
leaves correspond to various outcomes for X, and the internal nodes are there
to guide the search by comparing U with appropriately picked thresholds. If
the cost of setting up this tree is warranted, then one could always permute
the leaves to make this into a Huffman tree for the weights p, (Huffman,
1952), which insures that the expected time to find a leaf is not more than
one plus the binary entropy. In any case, this value does not exceed log, N,
where N is the number of possible values X can take. The difference with
the Knuth-Yao result is that one now needs to be able to store and add real
numbers (the p,’s).

Even when taking bits at unit cost, one needs to be careful about the
computational model. For example, is one allowed to store real numbers, or
should we work with a model in which storage and computation time is also
measured in terms of bits? We feel that the information-theoretic boundaries
and lower bounds should be studied in more detail, and that results like those
of Knuth and Yao should be extended to cover non-discrete random variables
as well, if one can formulate the models correctly.

2 The assumptions and the limitations

Assume that we can indeed store and work with real numbers and that an
infinite source of independent identically distributed uniform [0,1] random
variables, Uy, Us, . .. is available at unit cost per random variable used. The
random source excepted, the computer science community has embraced the
so-called RAM (random access memory) model. While it unrealistic, designing
random variate generators in this model has several advantages. First of all, it
allows one to disconnect the theory of non-uniform random variate generation
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from that of uniform random variate generation, and secondly, it permits one
to plan for the future, as more powerful computers will be developed that
permit ever better approximations of the idealistic model. The subject of
non-uniform random generation is to generate random variables with a given
distribution—we call these random variates—, in (possibly random) finite
time. We also assume that computations can be carried out with infinite
precision, and we require that the results be theoretically exact.

For a given collection of operations (a computer language), one can define
the collection of all distributions of random variables that can be generated in
finite time using these operations. Classes of achievable distributions defined
in this manner will be denoted by D. For example, if we only allow addition
and subtraction, besides the standard move, store and copy operations, then
one can only generate the sums

N

c+ ZkiUi;

i=1

where ¢ € R, and N, kg, ..., kn are finite integers. This is hardly interesting.
An explosion occurs when one allows multiplication and division, and in-
troduces comparisons and loops as operators. The achievable class becomes
quite large. We will call it the algebraic class.

The need for non-uniform random variates in Monte Carlo simulations
prompted the post-World War II teams to seriously think about the problem.
All probabilists understand the inversion method: a random variate with
distribution function F' can be obtained as

X = Finv(U),

where U is uniform [0, 1]. This inversion method is useful when the inverse
is readily computable. For example, a standard exponential random variable
(which has density e~*,z > 0), can be generated as log(1/U). Table 1 gives
some further examples.

Table 1. Table 1: Some densities with distribution functions that are explicitly
invertible. Random variates can be generated simply by appropriate transormations
of a uniform [0, 1] random variable U.

Name Density Distribution function Random variate
Exponential e % x>0 1—e® log(1/U)
Weibull (a), a > 0 az®~ e * 2 >01—e*" (log(1/U))"/*
Gumbel e %" e " —loglog(1/U)
Logistic W lﬂ% —log((1—-U)/U)
Cauchy m 1/2 + (1/n) arctanz tan(nU)

Pareto (a),a >0 —4r,z>1 1—-1/z° 1/ut/e
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However, note that only the Pareto distribution for values of a that are
inverses of an integer is in the algebraic class. One can attempt to create
functions of a finite number of uniforms, and in this way, one notes that the
Cauchy too is in the algebraic class. We leave it as a simple exercise to show
that the following method works. Keep generating independent random pairs
of independent uniforms, (U, U’), until for the first time U? + U'? < 1 (now
(U,U") is uniformly distributed in the positive quarter of the unit circle).
Then set X = SU/U’', where S € {—1,+1} is a random sign. One can ask if
the normal distribution is in the algebraic class for example. In fact, a good
description of the algebraic class is sorely needed.

Assume now a much more powerful class, one that is based upon all
operations for the algebraic class, plus the standard mathematical functions,
exp, log, sin (and thus cos and tan). Call it the standard class. All inversion
method examples in Table 1 describe distributions in the standard class.

Since we did not add the inverse of the normal distribution function to
the allowed operations, it would appear at first that the normal distribu-
tion is not in the standard class. For future reference, the standard normal
density is given by exp(—x2/2)/v/2x. This was of great concern to the early
simulationists because they knew how to calculate certain standard functions
very well, but had to make do with approximation formulas for functions like
the inverse gaussian distribution function. Such formulas became very pop-
ular, with researchers outcompeting each other for the best and the latest
approximation.

Amazingly, it was not until 1958 that Box and Miiller showed the world
that the gaussian distribution was in the standard class. Until that year,
all normal simulations were done either by summing a number of uniforms
and rescaling in the hope that the central limit theorem would yield some-
thing good enough, or by using algebraic approximations of the inverse of the
gaussian distribution function, as given, e.g., in the book of Hastings (1955).

As in our Cauchy example, Box and Miiller noted that one should only
look at simple transformations of k¥ uniform [0, 1] random variates, where k
is either a small fixed integer, or a random integer with a small mean. It is
remarkable that one can obtain the normal and indeed all stable distributions
using simple transformations with k£ = 2. In the Box-Miiller method (1958), a
pair of independent standard normal random variates is obtained by setting

(X,Y) = (\/log(l/Ul) cos(2nUs), /1og(1/Uy) sin(27rU2)) .

For the computational perfectionists, we note that the random cosine can be
avoided: just generate a random point in the unit circle by rejection from the
enclosing square, and then normalize it so that it is of unit length. Its first
component is distributed as a random cosine.

There are many other examples that involve the use of a random cosine,
and for this reason, they are called polar methods. We recall that the beta
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(a,b) density is
IL'a‘_l(]. _ .’L‘)b_l
B(a,b)

where B(a,b) = I'(a)I'(b)/I'(a+ b). A symmetric beta (a,a) random variate

may be generated as
2 _
(1 +y1-U>" cos(27rU2))

(Ulrich, 1984), where a > 1/2. Devroye (1996) provided a recipe valid for all
a>0:

02 <1,

DN | =

1+ S ,

\/1 * (Ul_%—l)lcosz(27rU2)

where S is a random sign. Perhaps the most striking result of this kind is due
to Bailey (1994), who showed that

1
2

a (Uf% - 1) cos(2wUs)

has the Student t density (invented by William S. Gosset in 1908) with pa-
rameter a > 0: 1
=% € R.
VaB(a/2,1/2) (1 +22) %
Until Bailey’s paper, only rather inconvenient rejection methods were avail-
able for Student’s t density.

There are many random variables that can be represented as ¢(U)E?,
where 1) is a function, U is uniform [0,1], « is a real number, and E is an
independent exponential random variable. These lead to simple algorithms
for a host of useful yet tricky distributions. A random variable S, g with
characteristic function

() = exp (—[t|* exp (—i(m/2) B(a — 21a1) sign(t)))

is said to be stable with parameters a € (0,2] and |3| < 1. Its parameter a
determines the size of its tail. Using integral representations of distribution
functions, Kanter (1975) showed that for o < 1, S,,1 is distributed as

Y(U)E "=,

where

snlom)) *, (snll—em)) =

sin(mu) sin(amu)

v = (
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For general «, 3, Chambers, Mallows and Stuck (1976) showed that it suffices
to generate it as )
(U —-1/2)E'" =,

where

_ (cos(m((a = 1)u+ ab)/2) g sin(ra(u + 6)/2)
Ylw) = ( cos(mu/2) ) x (cos(w((a “1u+ ad) /2)) '

Zolotarev (1959, 1966, 1981, 1986) has additional representations and a thor-
ough discussion on these families of distributions. The paper by Devroye
(1990) contains other examples with k& = 3, including

1
Saﬂlga;

which has the so-called Linnik distribution (Linnik, 1962) with characteristic

function )

)= ——f
A0 = T3

We end this section with a few questions about the size and nature of the
standard class. Let us say that a distribution is k-standard (for fixed integer
k) if it is in the standard class and there exists a generator algorithm that uses
only a fixed number & of uniforms. The standard class is thus the union of
all k-standard classes. Even more restrictive is the loopless k-standard class,
one in which looping operations are not allowed. These include distributions
for which we can write the generator in one line of code. The gaussian and
indeed all stable laws are loopless 2-standard. We do not know if the gamma
density

O0<a<2

2;a.—le—w
I'(a)
is loopless k-standard for any finite k£ not depending upon the gamma param-
eter a > 0. Similarly, this is also unknown for the general beta family. Luckily,
the gamma law is in the standard class, thanks to the rejection method, which
was invented by von Neumann and is discussed in the next section.

It would be a fine research project to characterize the standard class and
the (loopless) k-standard classes in several novel ways. Note in this respect
that all discrete laws with the property that p,, can be computed in finite time
using standard operations are 1-standard. Note that we can in fact use the
individual bits (as many as necessary) to make all the necesary comparisons
of U with a threshold. Only a random but finite number of these bits are
needed for each variate generated. Let us define the class of distributions
with the property that only a (random) finite number of bits of U suffice
0-standard. The full use of all bits in a uniform is only needed to create an
absolutely continuous law.

Are absolutely continuous laws that are describable by standard opera-
tions k-standard for a given universal finite k7

,x >0,
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Finally, it seems that even the simplest singular continuous laws on the
real line are not in the standard class, but a proof of this fact would be
nice to have. Take as an example a random variable X € [0, 1] whose binary
expansion has independent Bernoulli (p) bits. If p = 1/2, X is clearly uniform
on [0,1]. But when p ¢ {0,1/2,1}, then X is singular continuous. It is difficult
to see how standard functions can be used to recreate such infinite expansions.
If this is indeed the case, then the singular continuous laws, and indeed many
fractal laws in higher dimensions, have the property that no finite amount of
resources suffices to generate even one of them exactly. Approximations on
the real line that are based on uniforms and standard functions are necessarily
atomic or absolutely continuous in nature, and thus undesirable.

3 The rejection method

The Cauchy method described above uses a trick called rejection. The rejec-
tion method in its general form is due to von Neumann (1951). Let X have
density f on R%. Let g be another density with the property that for some
finite constant ¢ > 1, called the rejection constant,

f(2) < cg(x),x € RY.

For any nonnegative integrable function h on R?, define the body of h as
By = {(z,y) : # € R4,0 < y < h(z)}. Note that if (X,Y) is uniformly
distributed on By, then X has density proportional to h. Vice versa, if X has
density proportional to h, then (X,Uh(X)), where U is uniform [0,1] and
independent of X, is uniformly distributed on Bj. These facts can be used
to show the validity of the rejection method:
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repeat
Generate U uniformly on [0,1]
Generate X with density g
until Ucg(X) < f(X)
return X

The expected number of iterations before halting is ¢, so the rejection con-
stant must be kept small. This method requires some analytic work, notably
to determine ¢, but one attractive feature is that we only need the ratio
f(z)/(cg(z)), and thus, cumbersome normalization constants often cancel
out.

The rejection principle also applies in the discrete setting, so a few ex-
amples follow to illustrate its use in all settings. We begin with the standard
normal density. The start is an inequality such as

6712/2 < ea2/27a\z\

The area under the dominating curve is e® /2 x 2 /@, which is minimized for
a = 1. Generating a random variate with the Laplace density e~!#l can be
done either as SE, where S is a random sign, and FE is exponential, or as
E, — E,, a difference of two independent exponential random variables. The
rejection algorithm thus reads:

repeat

Generate U uniformly on [0,1]

Generate X with with the Laplace density
until Ue'/2-1X] < e X°/2
return X

However, taking logarithms in the last condition, and noting that log(1/U)
is exponential, we can tighten the code using a random sign S, and two
independent exponentials, E;, Fs:
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Generate a random sign S
repeat Generate Fi, F»
until 2Fy > (B — 1)2
return X < SE;

Tt is easy to verify that the rejection constant (the expected number of iter-
ations) is \/2e/7m =~ 1.35.

The laws statisticians care about have one by one fallen to the rejection
method. As early as 1974, Ahrens and Dieter showed how to generate beta,
gamma, Poisson and binomial random variables efficiently. All these distri-
butions are in the standard class. However, if the density f or the probability
Pp, is not computable in finite time using standard functions, then the distri-
bution is not obviously in the standard class.

4 The alternating series method

To apply the rejection method, we do not really need to know the ratio
f(z)/(cg(z)) exactly. Assume that we have computable bounds &,(z) and
Yn(z) with the property that &,(z) 1 f(z)/(cg(x)) and ¥, (z) | f(z)/(cg(z))

as n — oo. In that case, we let n increase until for the first time, either
U <§(X)

(in which case we accept X), or
U > ¢n(X)

(in which case we reject X). This approach is useful when the precise com-
putation of f is impossible, e.g., when f is known as infinite series or when f
can never be computed exactly using only finitely many resources. It was first
developed for the Kolmogorov-Smirnov limit distribution in Devroye (1981a).
For another use of this idea, see Keane and O’Brien’s Bernoulli factory (1994).
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repeat

Generate U uniformly on [0,1]

Generate X with density g

Set n =0

repeat n < n+1 until U < &,(X) or U > ¢, (X)
until U < &,(X)

return X

The expected number of iterations in the outer loop is still ¢, as in the re-
jection method. However, to take the inner loop into account, let N be the
largest index n attained in the inner loop. Note that N is finite almost surely.
Also, N > t implies that U € [&(X),1:(X)], and thus,

E{N|X} =) P{N>X} <) (#(X) - &(X))
t=0

=0
and

E{N} <Y B{gu(X) - &(X)}-
=0

We cannot stress strongly enough how important the alternating series
method is, as it frees us from having to compute f exactly. When &, and
1, are computable in finite time with standard functions, and g is in the
standard class, then f is in the standard class.

It is indeed the key to the solution of a host of difficult non-uniform ran-
dom variate generation problems. For example, since the exponential, log-
arithmic and trigonometric functions have simple Taylor series expansions,
one can approximate densities that use a finite number of these standard
functions from above and below by using only addition, multiplication and
division, and with some work, one can see that if a law is (k-)standard, then
it is (k-)algebraic. Both gamma and gaussian are algebraic if one invokes the
alternating series method using Taylor series expansions. To the program-
mer, this must seem like’ a masochistic approach—if we have the exponential
function, why should we not use it? But for the information theorist and com-
puter scientist, the model of computation matters, and lower bound theory
is perhaps easier to develop using more restricted classes.

But one can do better. Assume that a given density is Riemann integrable.
Then it can be approximated from below by histograms. It takes only a
moment to verify that such densities can be written as infinite mixtures of
uniforms on given intervals. The mixture weights define a discrete law, which
we know is O-standard. A random variate can be written as

az +bzU,
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where Z is a discrete random variable, and [a;,b;], @ > 1, denote the inter-
vals in the mixture decomposition. So, given one uniform random variable,
first use a random number of bits from its expansion to generate Z, and then
note that the unused bits, when shifted, are again uniformly distributed. This
shows that Riemann integrable densities are 1-standard if we can compute
the density at each point using only standard functions. In particular, the
gamma and normal laws are 1-standard. This procedure can be automated,
and indeed, several so-called table methods are based on such mixture de-
compositions. See, e.g., Devroye (1986a), or Hormann, Leydold and Derflinger
(2004).

5 Oracles

Oracles are a convenient way of approaching algorithms. Engineers call them
“black boxes”. One can imagine that one has an oracle for computing the
value of the density f at x. Armed with one or more oracles, and our infinite
source of uniforms, one can again ask for the existence of generators for
certain dustributions.

For example, given a density oracle, is there an exact finite time method
for generating a random variate with that density? Is there such a method
that is universal, i.e., that works for all densities? The answer to this question
is not known. In contrast, when given an oracle for the inverse of a distribution
function, a universal method exists, the inversion method.

Given that we do not know the answer for the density oracle, it is perhaps
futile at this point to ask for universal generators for characteristic function,
Laplace transform or other oracles. It is perhaps possible to achieve success
in the presence of two or more oracles. In the author’s 1986 book, one can
find partial success stories, such as a density oracle method for all log-concave
densities on the line, or a combined density / distribution function (not the
inverse though) moracle method for all monotone densities.

Complexity is now calculated in terms of the numbers of uniforms con-
sumed and as a function of the number of consultations of the oracle. This
should allow one to derive a number of negative results and lower bounds as
well.

6 Open questions

We discussed the need for descriptions of operator-dependent classes, and
the creation of models that can deal with singular continuity. The rejection
and alternating series methods enable us to generate random variates with
any distribution provided two conditions hold: we have an explicitly known
finite dominating measure of finite, and we can approximate the value of the
density or discrete probability locally by convergent and explicitly known
upper and lower bounds. This has been used by the author, for example,
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to deal with distributions that are given by infinite series (Devroye, 1981a,
1997, 2009), distributions specified by a characteristic function (Devroye,
1981b, 1986b), Fourier coefficients (Devroye, 1989), a sequence of moments
(Devroye, 1991), or their Laplace transforms. It should also be possible to
extend this to laws whose Mellin transforms are known, or infinitely divisible
laws that are specified in terms of Lévy or Khinchin measures (see Sato
for definitions; Bondesson (1982) offers some approximative solutions). In
all these examples, if a density exists, there are indeed inversion formulae
that suggest convergent and explicitly known upper and lower bounds of the
density.

It is hopeless to try to remove the requirement that a dominating measure
be known—a characteristic function of a singular continuous distribution is a
particularly unwieldy beast, for example. Some distributions have asymptotic
distributional limits. As an example, consider

=0

where the &; are independent Bernoulli (p), and § € (—1,1). When p =
1/2,0 = 1/2, X is uniform [0, 1], while for p ¢ {0,1/2,1},8 = 1/2, X is

singular continuous. Using £ for distributional identity, we see that

X £¢ +6X.

It seems unlikely that the distribution of X is in the standard class for all
parameter values.

This leads to the question of determining which X, given by simple dis-
tributional identities of the form

X £ $(X,U)

are in the standard class. Note that the map X «+ ¢(X,U) defines in some
cases a Markov chain with a limit. Using CFTP (coupling from the past; see
Propp and Wilson (1996), Asmussen, Glynn and Thorisson (1992), Wilson
(1998), Fill (2000), Murdoch and Green (1998)) or related methods, some
progress has been made on such distributional identities if one assumes a
particular form, such as

X E2U*X +1)

(its solutions are known as Vervaat perpetuities, Vervaat, 1979). We refer to
Kendall and Thonnes (2004), Fill and Huber (2009), Devroye (2001), and
Devroye and Fawzi (2010) for worked out examples.

Identities like

X£A4X+B
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occur in time series, random partitions, fragmentation processes, and as indi-
rect descriptions of limit laws. Solutions are in the form of general perpetuities

o0 i—1
X£B,+ Y B [[ 4
i=1  j=0

where (4;, B;) are i.i.d. pairs distributed as (A4, B). Necessary and sufficient
conditions for the existence of solutions are known (Goldie and Maller, 2000;
see also Alsmeyer and Tksanov, 2009, for further discussion). It suffices, for
example, that

E{log | 4]} € (~00,0), E{log" |B|} < .

Yet one needs to describe those perpetuities that are in the standard class,
and give algorithms for their generation.
Even more challenging are identities of the form

X £4(x,X,U),

where X and X' on the right-hand-side are independent copies of X. Such
identities do not lead to Markov chains. Instead, the repeated application of
the map 9 produces an infinite binary tree. One should explore methods of
random variate generation and constructively determine for which maps v,
there is a solution that is in the standard class. A timid attempt for linear
maps 1 was made by Devroye and Neininger (2002).
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