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Assume that we wish to generate two samples of n independent identically distributed random variables, (XI, ..., X.)
and (y" ..., Y.), where XI and YI have densitiesfand g, respectively. If these samples are used in a simulation, andf
is close to g, it is sometimes desirable to have close simulation results. This can be achieved by insisting that both samples
agree in most of their components, that is, Xi = Yi for as many i as possible under the given distributional constraints.

Samples with this property are said to be optimally coupled. In this paper, we propose and study various methods of
coupling two samples, a sequence of samples and an infinite family of samples.

W e call a sequence of n i.i.~. random variables not.restricte~ to univari~te distributions, .while multi-
XI, ..., Xn a sample. In thIS paper, we explore VarIate maxImal correlatIons are not ObVIOUS.

the possible uses and limitations of coupled samples As a simple comparison of the m~imal coupling
in simulation, where the coupling between two sam- and maximal correlation methods referred to above,
pies XI, ..., Xn and Y1, ..., Y n can be measured suppose that we have a random variable X and we are
roughly by N = I7=1 I[x,..Y;J. If the two samples have interested in the probability that X belongs to a given

the same distribution, it is clearly possible to have set A. Repeated i.i.d. observations XI, ..., Xn are
N = 0, but for unequal distributions, there is a liIi1i- made and the unknown quantity p = P(X E A) is

tation as to how small N can be. N can be interpreted estimated by the proportion of Xi's falling in A, which
as the number of Xi's we have to replac~ by other we denote by Pn. Assume that we wish to estimate the
values (Yi 's) to obtain a sample of Yi's with the correct probability of the set A when there is a slight change
distribution. N is proportional to the amount of sur- in the distribution of X. Let the new random variable
gery we have to perform on the Xi sample in order to be Y, and let the new probability and estimate be q
obtain a Yi sample. Not surprisingly, the magnitude and qn. We want to keep Epn = P and Eqn = q, while
of N (or the amount of coupling) is related to the correlating the results. For example we could ask
closeness of the distributions of XI and YI. that Var(p -q ) be small. If we wer~ to draw a new

.W~en.we p~e~nt ex~rimen~ results for varying sample fo; qn,n then Var(Pn -qn) = Var(Pn) +
dlstnbutIons, It IS.SO~etI.mes desIrable to ~ave close Var(qJ = p(1 -p)jn + q(1 -q)jn. Importantly, this

outcomes when dlstnbutIons are close. ThIS leads to ..
ffi ct d b th I f th tVarIance IS una e eye c oseness 0 e wo

smooth nonosclilatory expenmental plots. ThIS pomt di t .b t. A .f X d Y.
11be . k d . d .1. Sec . 6 o s n u Ions. s an extreme case, 1 an are

WI pIC e up m more eta! m tIon. ne . d . II di . b d h V r( ) 2 ( I..1 entIca y stn ute t en a p -q = p -
way to strongly connect two expenmental results IS to ' n. n .

I d I I fi h . h N . all p)jn. We make the example more specIfic by lettIng
use coup e samp es or samp es or w IC IS sm Schmeiser and Kachitvichyanukul (1986) present X be unIformly dlstnbuted ~~ [0, I] and settIng Y. =

another method. Whitt (1976) has pointed out that (I + c)X for some small posItIve c. Defi~e the SpeCIal
maximally correlated samples can be obtained as fol- set A as (-00, a] U [I, 00) w?ere ~ <.1/2 IS a constant.
lows: let F, G be the distribution functions for XI and Let N B be the number of Vi s fallIng m a set B. Then,
X2, let VI, ..., Vn be i.i.d. uniform [0, I] random the maximum correlation method just described uses
variables, and define Xi = F-I(Vi) and Yi = G-I(Vi) the Vi's as the sample drawn from the distribution of
for I :e; i:e; n. When F ~ G at every point, it is clear X, and uses (I + c)Vj,..., (I + c)Vn as the Y-sample.
that this method yields N = n. However, when the Thus

samples are used to estimate a quantity such as the
kth moment, both maximal correlation and coupling -~ -N[O,a/(I+.») + N1I/(I+.),I)

. d I Al h I .' Pn -, qn-
may gIve goo resu ts. so note t at our coup mg IS n n

Subject classifications: Probability: Kolmogorov entroy. Simulation, random variable generation: generating dependent samples. Statistics, correlation:
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so that EPn = P = a, Eqn = q = a + (1 -a)(ej(1 + e» prove useful in simulations in which distributions
and change slightly from simulation run to simulation run.

N; -AT In Section 5, we introduce the coupling coefficient,
[a/(I+e).l] l~[./(l+e)..) .

Pn -qn = WhICh tells us how far we are removed from optimal
n coupling with suboptimal methods. Another example

Var(Pn -qn) of continuity in reporting experimental results is given

1
( ( )2) (1 in Section 6. Sections 7 through 9 establish the con-

= -(1 + a) --.!! -(1 -a)2 --.!! --2!!J!!- nection between the time and space complexities of
n 1 + e 1 + e n th d 1. hod ~ ~ .1. f d .

e propose coup mg met lor lamlles 0 ensl-

as e ! O. In other words, we have achieved continuity ties, and a measure of the richness of these families,
in our experimental results; this is especially important the metric entropy.
when these results are graphically reported. In this paper, we hope to show the utility of coupled

The method we are analyzing in this paper reduces samples in simulation. The idea of coupling random
in this simple example to the following technique: for variables, samples, or processes has been used in var-
each Vi, flip a coin which comes up heads with ious other contexts as well. A partial listing of appli-
probabilityej(l + e). The ith element of the Ysample cations is given ~low.
is taken to be Vi (the ith element of the X-sample) Doeblin (1937) and later Pitman (1974, 1976),
when the ith coin comes up tails, and is defined as Griffeath (1975), Goldstein (1979) and Thorisson
Vi, a newly generated uniform random variable on (1986) looked at coupled discrete time stochastic pro-
[1, 1 + e], otherwise. It is easy to see that Pn and qn cesses. The idea here is to consider two simultaneous
are individually distributed, as in the previous maxi- realizations of these processes on the same probability
mal correlation example. However, the samples agree space so that the processes eventually agree. This has
in all but about nej( 1 + e) of their elements, and this been useful in proving ergodic theorems for these
is beneficial when estimating probabilities of certain processes.
sets. Indeed, Pn -qn is equal to -ljn times the number Consistency proofs in nonparametric density esti-
of heads that correspond to Vi's with Vi> a. First, it mation are rendered very simple by the judicious use
is guaranteed to be negative, which was not the case of coupled samples, by replacing a sample of an arbi-
in the previous example. Furthermore, from proper- trary density by a coupled sample of a close density
ties of the binomial distribution with nice properties (e.g., a density with infinitely

many bounded derivatives and compact support). See,
Var(Pn -qn) = (1 -a)e ( l -(1 -a)e ) -(1 -a)e for example, Devroye (1985).

.n(1 + e) 1 + e n Coupling inequalities such as Doeblin's have been
as e ! O. used extensively by probabilists in the study of approx-

imations of sums of independent discrete random
For all e < 1 and a < 1/2, the variance is smaller than variables by Poisson random variables, with key
for the maximal correlation case; as e -+ 0, the asymp- results reported in Lecam (1960), Serfling (1975) and
totic ratio of the variances is (1 -a)j(l + a). Deheuvels and Pfeifer (1986).

The main body of the paper is concerned with the In simulation, one is sometimes given a sample
generation of coupled samples. In Section 1, we pre- drawn from an unknown density f and asked to gen-
sent lower bounds for E(N), the amount of coupling, erate a new sample with this density. This, of course,
in terms of the distance between the distributions. is an impossible task. Yet, in the study of how well
When the lower bound is achieved by a certain one can do, the concept of coupled samples pops up
method, we say that the coupling is optimal (Section again. See, for example, Devroye (1986a).
2). Optimally coupled samples can be generated by
the methods introduced in Section 3. In Section 4, we 1. LOWER BOUNDS FOR THE AMOUNT
propose a method for the generation of coupled sam- OF COUPLING
pIes for all densities in infinite families of densities
(such as the family of all Lipschitz densities on [0, 1], We begin with the following lower bound.

or the family of all gamma densities with a shape Theorem 1 LetX X d Y "IT b f,be ..l,...,nan .,...,.lnesampes
parameter tween 1. and. 1,000). InterestIngly, ev~n with marginal probability measures JL and JI, and let
though there are an mfimte number of members m
these families, we can deduce all the samples from N -i I,
one data pool of the size O(n). This device could -i=1 [X".y,j'
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Then, if P is the collection of all distributions of XI, The construction is based on n independent 4-tuples
..., Xn, Yl, ..., Yn such that the Xi's and Y;'s are (U, V, W, Z) where V, W, Z are three independent
samples with the given marginals (i.e., P covers all random variables, one from each probability measure,
possible dependencies between the samples) and U is an independent Bernoulli random variable
in! E(N) = n su I (A) -v(A) I that take~ ~he value I with probability 0 and the value
P. AP /L Oprobabll1ty l-o.lfU= 1, we set (X, Y)=(W,Z),

where A ranges over all Borel sets on the real line. and if U = 0, we set (X, Y) = (V, V). It is easy to see
that if U = I, we have X ~ Y with probability one.

Proof. Note that Also, the marginal probability measures of the samples
thus obtained are correct because X has probability

nE(N) = L P(X; ~ Y;) measure /Ll + /L2 = v and Y has probability measure

;=1 /L1+/L3=/L.
We observe that

n
~ L sup P(X; EA, Y;~A) sup I /L(A) -v(A)1

/-1 A A

n = sup I /L2(A) -/L3(A) I
~ L SUp(P(X;EA)-P(Y;EA» A

;=1 A

n = sup I f (1 -f) d/L -v(A n Z) I
= L sup (/L(A) -v(A» A AnZc

;=1 A

-
( (A) (A» =SUp I r (l-f)+d/L-v(AnZ)

-n sup /L -V A JAnzc
A

which shows one half of the inequality. For the other f Ihalf, we need only construct a particular dependence -c (f -1)+ d/L
Anz

structure for which equality can be obtained. Note
that there exists a unique measure U on the Borel sets rof R such that U and /L are mutually singular and ~Jzc(l-f)+d/L (take A = If~ II U ZC)

v(A) = Ifd/L + u(A) =/L3(R)=0=P(U= 1)=P(X~Y)

= EI[x,;o'Y,] = E(N)/n
for all Borel sets A (see e.g., Wheeden and Zygmund
1977, p. 181), wherefis the Radon-Nikodym deriva- the last because N is binomial (n, 0). Thus, this con-
tive of v relative to /L on the set where /L « v. In fact, struction yields
by the Lebesgue decomposition theorem, u(A) =
v(A n Z) where Z is a set for which /L(Z) = 0 and E(N) ~ n s~p I /L(A) -v(A)1

v(ZC) = 0 (ZC is the complement of Z). We can
construct three measures on the Borel sets of R, and, since the first part of the proof shows that the
defined as reverse inequality always holds, the construction gives

equality as claimed.
/Ll(A) = r min(l f) d/L .

JAnzc ' USIng SchetTe's theorem (SchetTe1947), we have

r r the following important corollary.
/L2(A) = J.. dv + J.. (f -1)+ d/L

Anz Anzc Corollary 1. When two samples are required to havef marginal densitiesf and g, respectively, then
/L3(A) = (1 -f)+ d/L.

Anzc r~
Ifwe divide /L;(A) by /L;(R) for each i, we obtain three i'f E(N) = i J-~ If(x) -g(x) I dx.

probability measures. Note that /LI + /L2 = v and
/LI + /L3 = /L, so that we must have /L2(R) = /L3(R) = From now on, we will write f If -g I and so forth
1 -/L I (R) = 0 for some 0 E [0, 1]. when integration with respect to the Lebesgue measure
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is meant. The bounds of this section should guide us Bernoulli-Based Construction
in deciding the optimality ofa coupling scheme, where FOR i:= 1 TO n DO
two samples are said to be optimally coupled when Generate a uniform [0 1] random variable U.
E(N) = n SUPA I JL(A) -v(A) I. Hidden in the proof of IF U < fI '

Theorem 1 is a construction that will allow us to THEN
optimally couple two samples. Generate (W Z) where W has density

In Theorem 1, we in fact reprove Doeblin's coupling (f -g )+lfI a~d i has density (g -f)+lfI
inequality which states that for any two random vari- RETURN (Xi, Yi) -(W, Z)
abIes X, Y, P(X ¥ Y) ~ SUPA I JL(A) -v(A) I. ELSE

Generate V with density min(f, g)/(l -fI)
RETURN (Xi, Yi)-(V, V).

2. OPTIMAL COUPLING OF TWO SAMPLES
Th d tal be f d .

bl fe expecte to num r 0 generate vana es 0

The construction given here is based upon the proof the type V, Wor Z is n(l + 1/2 f If -gl). For two
of Theorem 1. Instead of treating the general case of independent samples, we need 2n such random vari-
arbitrary probability measures JL and v, we elected to ables, n for each sample. The algorithm requires n
deal with the more specific case when JL and v have random variables of the type U. Using the waiting
densitiesfand g, respectively. We can deal with the time method (see p. 522 of Devroye 1986b), we can
general case with equal ease. reduce this somewhat; the expected number of ran-

Consider a 4-tuple (U, V, W, Z) that consists of dom variables needed when generating all the times
four independent random variables: U is Bernoulli until the next occurrence of a (W, Z) pair is 1 + on.
with P(U = 1) = 1 -P(U = 0) = fI, V has density
min(f, g)/(1 -0), Whas density (f -g)+lo and Z has
density (g -f)+lo, and 0 = 1/2 f If -gl (as in 3. GENERATING A SEQUENCE OF COUPLED
the proof of Theorem 1). We construct (X, Y) from SAMPLES
(U, V, W,Z)as .

Assume next that we WIsh to generate a sequence of
- { ( V, V) if U = 0 coupled samples of ~ize n ~th margi~~ densities j;,

(X, Y) -(W, Z) if U = 1. .1;, ...where the h s are given densItIes. In many

experiments, researchers wish to see how the variation
It is easy to verify that X has density f and Y has of one or more parameters in a given model influences
density g; for example, X has the mixture density certain key quantities. In those situations, consecutive

h's are close to each other, reflecting a gradual change
(1 -0) min(f, g) + 0 (f- g)+ =j in one or a few descriptors of the density. The first

1. ..,. 0 0 question here is that of the construction of a sequence

..of pairwise optimally coupled samples, that is, a
F~rthermore,1fwedefin~Xand Ysamples by creatmg sequence of samples such that for any i ¥j, the ith
n mdependent (X, Y) paIrs, we have and j th samples are optimally coupled. The Bernoulli-

f based construction of the previous section is simply
E(N) = nP(X ¥ Y) = no = i If -g I. not applicable here. It is, however, possible to con-

struct a sequence of samples such that two consecutive
In other words, the samples thus obtained are opti- samples in the sequence are optimally coupled, that
mally coupled. A similar construction exists for dis- is, the ith and i + 1st samples are optimally coupled
crete distributions; for general probability measures, for all i. Another construction, in which all (infinite)
the construction is only slightly more complicated, pairs of samples are almost optimally coupled is pre-
but requires knowledge of the Radon-Nikodym deriv- sented in another section.
ative dJLI dv on the set on which JL « v (JL is absolutely The idea is borrowed from the rejection method in
continuous with respect to v). random variate generation (see Bratley, Fox and

The construction given above is wasteful because Schrage 1987 or Devroye 1986b for general discus-
we use only part of each 4-tuple, depending upon the sions): we associate with each X a random variate ~
value otU. Although it is rather trivial to give parsi- where ~ is uniformly distributed on [0, f(X)] and f is
monious constructions, we will do so, nevertheless, the density of X. The point (X, ~) is uniformly distrib-
for the sake of future generalization. uted under the curve of f, i.e., it has the uniform
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distribution on the set {(x, y): x E R, 0 ~ y ~ f(x)} therefore
(see Figure 1). The sample for}; is obtained as follows. ( f )k-1 1

Original Sample 2n 1 + L 2 1.1: -.1:+11 .
,-I

FOR i.-l TOn DO In fact, for the expected number of replacements
Generate Independent random vanables X and U between the ith and kth samples (with i < k arb.tra )where X has density}; and U is uniformly distrib- we have 1 ry

uted on [0, 1].
RETURN (Xi, ~i) +- (X, U};(X». k~1 1f n fE(N)= ~ n- IJj-Jj+II~- 1.I:-hl.To construct the i + 1st sample from the ith sample, j=i 2 2

we proceed as follows. Hence, for a sequence of densities with no repetitions,
C t t. f . + 1 t S I f .th S I optimal coupling is only guaranteed to occur between

ons ruc Ion 0 I S amp e rom I amp e . 1consecutive samp es.
[We are given the ith sample (XI, ~1)' ..., (Xn, ~n).] It is helpful to compare the expected number of
FORj:= 1 TO n DO generated random variables for};, ...,h obtained by

IF ~j > .1:+ I (~ ) the given coupling method with that for independent
THEN samples (kn). The comparison is nearly always in

Generate ~ with density (.1:+1 -.1:>+/0; where favor of coupling because consecutive densities are
Oi £ 1/2 J 1.1: -.1:+1 I. usually close to each other. To illustrate this point,
Generate ~j uniformly on [.I:(~),.I:+ I (~ )]. consider a gamma family with.l: equal to the gamma

RETURN (~, ~j). density with parameter i. By the local central limit
Since only a binomial (n, 1/2 J 1.1: -.1:+11) number of theorem (see e.g., Pet~ov ~975, p. 213), it is known
couples (Xj, ~j) is changed between the ith and i + that J 1.1::- <Pi I -c/J"i as I ~ 00 f~r some constant c,
1st samples, we see that these samples are optimally where <P: IS the normal densIty With the same mean
coupled. In the construction of the i + 1st sample with and .vanance as.l:. Hence, we have J ).1: -.1:+11 ~
i > 0, we need on the average n J 1.1: -.1:+1 I new c/J"i for s.ome other constant c, and alII ~ 1. Thus, a
random variables, two per affected couple. The conservative upper bo~nd fo~ the expected number of
expected total number of random variables generated generated random vanables IS

in the course of the generation of random samples k l k

with densities};, ..., h (with possibly k = 00) is 2n L ~ ~ 2n ~ du = 4ncJk.
i-I J"i 0 ~

This is about Jk times less than for independent
f sampling. Nevertheless, the effort still tends to 00 as

k -00. For some nice classes of densities, there is a
way of constructing nearly optimal coupled samples
based upon one original sample of size cn where c is
some universal constant, despite the fact that the given
classes may have an uncountably infinite number of
members. This is dealt with in the next section.

....
0 4. LARGE FAMILIES OF DENSITIES

0
: 0 .In this section, we deal with the problem of the

0 0 0' .construction of nearly optimal coupled samples for
00 0 , given families of densities F. One of the conditions

that will be imposed is that the class F be LI totally
Figure 1. Two densitiesfand g are shown where the bounded, that is, for every t > 0, we can find a finite

sample size is n = 120. (Sample from f number of densities};, ...,fm such that
consists of all x-coordinates of points under
curve o~ f; sample.from g consists of all sup inf f If -.I: I ~ t.
x-coordinates of pOInts under curve of g.) fEF I cicm
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To put it differently, F can be covered with a finite Retrieving a Sample for Density f
number of ~-balls, regardless of how small ~ > 0 ~s. i, j +- 0 (i, j are counters)
We will discuss several totally bounded classes m WHILE i < n DO
Section 9. For example, it suffices to consider all the j +- j + 1
Lipschitz densities with support on [0, 1], where a IF j > m THEN STOP (the algorithm fails to return
Lipschitz density 1 satisfies SUpx,y 1 I(x) -I( y) 1 ~ C a sample)
for some finite constant C. However, the class of all IF ~ </(X,) THEN i +- i + 1, RETURN X.
densities on [0, 1] that are bounded by 2 is not totally } } }

bounded. Also, the class of all normal densities with It is easy to see that the Xj's thus returned form an
zero mean is not totally bounded. The Frechet- i.i.d. sequence drawn from 1 (see Figure 2). Further-
Kolmogorov theorem (see p. 275 of Yosida 1980) more, when we require a sample from a density f*
provides us with easy-to-verify necessary and sufficient that is close to 1 in the Ll sense, it is very likely that
conditions for total boundedness: most of the Xj's in one sample also will be present in

the other sample. We will see that the samples are
1) 1. f I/( ) f( )1 dx 0 nearly optimally coupled.Imsu x+t -x =. ../~o fEr ' The more senous problem we have to address IS

that of the choice of m. It is possible to choose m suchf that 2) lim sup I(x) dx = O.

t~~ fEF Ixl>/
P(m does not suffice for some IE F) ~ e-cn

The first of these conditions is satisfied, for example, fi ta t d d . th . h for some cons n c epen mg upon e nc ness 0

If every 1 IS ummodal, and there IS a global fimte th 1 F 1 I Th 6 1.. t b d .
b dfi 11 ecass ony. n eorem ,anexplCI oun IS

oun ~r.a f. ..derived in which c depends upon G and another
In addItion, we assume that there exIsts a dommat- f th 1 .t f F 1 th t .. h h measure 0 e comp eXI yo, name y e me nc

mg curve g suc t at f h. h .11be. d d . S .
7entropy 0 F, w lC WI mtro uce m ectIon .

sup 1 (x) ~ g(x) for all x In any case, if during the construction of a sample, we
fEF exhaust the data pool, it is always possible to generate

f g(x) dx = G < 00;
Dolled top curve is g.

The latter condition is necessary to be able to employ some rejection-like method. Note that the existence : --:-

of such a g automatically implies that condition 2 in. ---

the Frechet-Kolmogorov theorem is satisfied.
As in the previous section, we store pairs (Xi, ~i)'

but the difference is that we now store one large array --
of pairs in a preprocessing step, and that all the Xi's -

needed for any 1 E F at some point in the future will
be drawn from this large pool.

Generation of Data Pool

NOTE: the size of the pool is m (which is slightly
larger than Gn, see below).

FOR i := 1 TO m DO
Generate Xi with density giG.
Generate a uniform [0, 1] random variate U.
Set ~i -Ug(Xi).

Figure 2. Four densities 1 and a data pool of 300
We note that the (Xi, ~i) pairs are uniformly distrib- points are shown where first n points falling
uted under the curve of g. under 1 define a sample for f.
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additional (Xi, i;i) pairs, which should be appended in both samples when we stop, and that
to the data pool. Preferably, the data pool should
be implemented as a linked list, We will call M the D(f,J*)=~=E(max(LT,MT»
(random) minimal number of pairs needed so that for nb nb

e~ery fE F, the number of points under the curve of E(LT + M T) 2E(LT) 2E(L, , )
flS at least n. ~ = ~

.nb nb no
There are a number of ways to deal wIth the rare

event if the algorithm fails. It is possible, for example, where T' is defined by the first occurrence of Lk +
to reject the entire collection of samples, and restart Nk = n. Clearly, LT, is binomial (n, 0), so that the
the algorithm, and to repeat this until the algorithm upper bound of Theorem 2 is obtained without further
successfully halts, If necessary, m can be increased ado.
after each rejection, so as to increase the probability
of success. The situation is much better than predicted by

Theorem 2, in view of the following.

5. AMOUNT OF COUPLING Theorem 3. For any f,J* with 0 = 1/2 f If -f* I > 0,

we have
We will measure the goodness of a certain method of
obtaining twocoupl~d samples with ~robability meas- ( "\ /2 )ures JL and v, respectively, by the ratio D(f,J*) ~ 1 + min 1, V ~ .

d E(N) ,. ,D(JL, v) = n SUPA I JL(A) -v(A)1 Proof. We rnhent the notation of the proof of Theo-

rem 2. We begin with
which we shall call the coupling coefficient. For any
method, the coupling coefficient is a number at least D(f,J*)=~=E(max(LT,MT»
equal to one. We are interested in the coupling coef- ' no no

ficient with the data pool method described in the
previous section. We can assume without loss ofgen- ~ E(max(LT" MT, »
erality that m = 00 if the suggestion to use a linked list no

is followed, E(LT,) E(max(O, MT, -LT,»
~-+

.nb noTheorem 2. For the data pool method with m = 00

1 ,.:: D(f, f * ) ,.::2 - 1 E(max(O, MT, -LT, »~ sup, +
j:j'EF,j,.j* no

Proof. The infinite data pool model allows us to ~ 1 + v'E«MT, -LT, )2)
ignore all (Xi, i;i )'s that do not fall under the curve of nb
max(f,f*). Thus, we assume without loss of generality
that the index i refers to the ith pair that falls under (by the Cauchy-Schwarz inequality).

max(f,f*). Let us introduce the cardinalities Lk, Mk U ' h ' d d fM d L h ~ h' ., SlOg tern epen ence 0 T' an T" t e lact t at

and Nk, where Lk IS the number of (Xi, i;i) pairs With ' b" " , ,
1 ~ .~ k h ' h d t ~ 11 d th ff * LT'IS rnomlal (n, 0), and thatMT, IS negative brnomlal

...I... W lC 0 no la un er e curve 0 .
b t d th fj. S.' I 1 M ~ t th (n, 1/(1 + 0» mrnus n, we have as upper bound

u un er e curve 0 .Iml ar y, k relers 0 ose
pairs that fall under f* but not under f, and finally,
Nk counts the number of pairs that lie under 1+~(EMT,-EL!,)2+~Var(MT,)+V~(LT'~
min(f, f*). For fixed k, it is easy to see that (Lk, Mk, no no
Nk) is multinomially distributed with parameters k,
0/(1 + 0), 0/(1 + 0), and (1 -0)/(1 + 0) where 0 = = 1 + v'no(l +o)+nb(l-o)

1/2f If-f*l. no
Let T be the stopping time defined by the first

occurrence ofmax(Lk, Mk) + Nk = n, Then it is easy = 1 +~
to see that NT is equal to the number of common pairs no .
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Here we use well known formulas for the moments of If the coupling coefficient is uniformly bounded over
the negative binomial distribution (see e.g., Johnson all f, f*, the experimental results are continuous with
and Kotz 1969, pp. 124-126). respect to the L1 norm.

6. CONTINUITY IN REPORTING EXPERIMENTAL Proof. The first statement is obvious by the independ-
RESULTS ence of the samples. For the second part of the theo-

rem, we have
When we report experiments in the form of a finite
number of data points plotted in an xy-diagram, where ( In 1 n )2
the x-axis represents a change in distribution (such as E ~ L (h(X;)- Eh(X;»-~ L (h(Y;)- Eh(Y;»
a different parameter setting), it is to our advantage 1= 1 ,-1

to use coupled samples rather than independent sam- ( n
pIes (one per repo~ed data point).. One limited e~- =E ! L «h(X;)-Eh(X;»
ample was reported rn the Introduction. To make thIS n ;=1

case in all generality is rather difficult, so let us con-
sider a particular situation in which we associate with -(h(Y;) -Eh(Y;»)Irx..YJ

)2

each sample an average 1 1

-1 ~ ( n )2 hf = -
n £.. h(X;) ~ (411 h II )2 E ! ~ I,;= I ~ 00 £.. [x,.. Y,]

n;~1

where the Xi's are i.i.d. random variables with a
certain density fE F and h is a fixed bounded function. ( ( 1 n ) (1 n ))It is more aesthetically pleasing, a~d the experimental = (411 h II oof E2 ~ ~ Irx,..Y,J + Var ~ ~ I(x,..Y,J
curves come across as more belIevable, when close ' 1 I-I

densities yield close data points. Let us measure the
closeness of data ~oin~ for densitiesfandf* by ~(411 h II oo)2( (~J If- f* 1 D(f,f*»)2

Z(f, f*) ~ Var(hf -hi")

where the Xi's form a sample with density f, and hi" 1(1
J f f* ))-+- -1 -ID(f,f*)is defined as hi, based upon an i.i.d. sample (Y1, ..., n 2 ,.

Yn) with marginal density f*. Notice that in the defi-
nition of Z(f,f*) we have automatically compensated '.
for the fact that h(XI) and h(YI) ma have different N~te that for the maXImum correlatI.on method,

.y. no sImple upper bound for Z(f, f*) rn terms of
means. The expenmental results reported are contm- f 1 f f* 1 b . 1 t th 1..-can e given un ess a e very east
uous with respect to the L1 norm If for fixed f and. ' ,

. bl f * f If - f * 1 O . 1. Z(f, f * ) 0 some assumptions about the smoothness of hvana e , -'}o Imp Ies , -'}o
d N h di ..

fi all b d d ~ t . h W h th fi 11 .are ma e. 0 smoot ness con tIons are present rn

or oun e lunCIons. eave e 0 oWIng Th 4eorem .
theorem.

Theorem 4. When the X; and Y; samples are inde-
pendent, then 7. SIZE OF THE DATA POOL AND METRIC

1 ENTROPY

Z(f,f*)=-(Var(h(XI)+Var(h(YI». n It IS convenIent If we choose m, the SIze of the data

When the samples have coupling coefficient D(f, f*) pool, such that the probability that some f has less
we have ' , than n points under its curve is small. This probability

cannot be evaluated by Bonferroni's inequality be-((1J )2 cause F can have an infinite number of member
Z(f,f*) ~ (411 h II 00)2 2 If- f* 1 D(f,f*) densities. If Afis the set of all (x, y) with 0 ~ y ~f(x),

x E R, and #l.m is the empirical measure defined by the

+! (! J lf-f*ID(f,f*» )) .data pool (X;, Y;), 1 ~ i~ m.(theempiricalme~u.re
n 2 puts mass 11m at each data pornt), then the probabuuy
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of eventual failure is Hz, ~ D, where D, is the minimum number of e-balls

needed to cover F (either in L1 or L.,). This tool is

P
( .f A ) useful in obtaining upper bounds for Hz..

}~F mJLm( f) < n The idea of using the metric entropy in the study of

the uniform deviation of empirical measures goes back

= pI inf A -A < ~ -.!. ) to Blum (1955) and Dehardt (19:1) in the. Blum-
\iEF (JLm( f) JL( f)) m G Dehardt law of large numbers, which generalizes the

.Glivenko-Cantelli lemma. Applied to the situation at

where JL is the uniform measure under the curve of g hand, it implies that if the metric entropy ofF is finite

(i.e., the set I(x, y): 0 ~ y ~ g(x), x E R}), and where for all e > 0, then

we use the obvious fact that JL(Af) = If I I g = I/G.

Thus, we need to bound a uniform deviation of an sup I JLm(Af) -JL(Af) I -'j. 0 almost surely as n -'j. 00.
empirical measure from its mean in such a way that fEF

the given probability tends to zero as m -'j. 00, regard- We want a bit more information in the form of an

less ~fhow large n is. Unfortunately, this is not always explicit inequality. The inequality of Theorem 5 is

possibl~. ..obtained by standard techniques found for example
Consider, for example, the class of all densities on in Dudley (1984), Gine and Zinn (1984) and Yukich

[0, 1] that are bounded by 1 + e where e > 0 is (1985).

arbitrary. For every m, n, it is possible to find a density

in this class (for example, a density of height 1 + e with support on a set of Lebesgue measure 1 I( 1 + e)) Theorem 5. Let F be a family with finite memc en-

that has no (Xi, Yi) under its curve. Hence, the prob- tropy, and assume that every f E F .is bounded b? g
ability of eventual failure is 1 for all m, n. where I g = G < 00. Let JL be the uniform probability

The previous example illustrates the need to limit measure under the curve of g. For everye > 0

the size of the class F. It seems that one appropriate

( )measure of the size of F is the metric entropy (with p sup I JLm(Af) -JL(Af) I ~ !-
bracketing) defined as follows. We fix e > 0 and find fEF G

the minimum number of pairs of functions gi, hi with ( ( ) z)I ~ i ~ H, such that for every fE F ..:
4N exp -~ m !-,/6 9 G .

gi ~f~ hi for some i

d Proof. Let us introduce the sets Bf and Cf which are
an defined as follows. For fixed e > 0, consider a collec-

J tion of H,/6 pairs of functions (gi, hi) with the prop-

I hi -gi I ~ e. erties laid out in the definition of the metric entropy

for F. For f E F, we find the first pair for which

In other words, each density is close to a sandwiching gi ~ f ~ hi, and call the sets of points that fall ~nder

pair of functions in the L1 sense. The logarithm of H" the curves of hi and gi, Bf an~ Cf, respectively.
the minimal number of such pairs for a fixed e, is the Thus, Cf~ Af~ Bffor all/. In partIcular JL(Cf- Bf) =

metric entropy. It is important to note that the metric I (hi -gi)/G ~ el(6G). Clearly

entropy is a function of e and the class F. The N, balls
with center hi and radius e cover F in the Ll sense. I JLm(Af) -JL(Af) I

Hence, F is L1 totally bounded if H, < 00. We will only
consider classes that have H, < 00 for all e > O. Note ~ I JLm(Af) -JLm(Bf) I

that this excludes some simple classes such as those
defined by mere translations or rescalings of a fixed + I JLm(Bf) -JL(Bf) I + I JL(Bf) -JL(Af) I

density.
Also, if we work on [0, 1], and the centers of the ~ JLm(Bf -Cf) + JL(Bf -Cf) + I JLm(Bf) -JL(Bf) I

e-balls that cover a totally bounded set are j;, ..., h,

then the pairs (j; -e, j; + e), ..., (h -e, h + e) can ~ (JLm(Bf -Cf) -JL(Bf -Cf))

be used in the definition of the metric entropy

with bracketing with 2e instead of e. In other words, + 2JL(Bf -Cf) + I JLm(Bf) -JL(Bf) I.
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Thus, for all I: > 0 by the rejection constant G and the metric entropy
( ) log(N'/'2). It is also possible to let I: vary with m in

P sup I JLm(Af) -JL(Af) I ~ ::.- such a way that I: -0, so that asymptotically m -nG.
fEF G This amounts to moderate savings spacewise.

( ) Finally, with the maximum correlation method dis-

~ P sup I JLm(Bf- Cf) -JL(Bf- Cf) I ~ -.!!.- cussed in the Introduction, a data pool of size O(n) is

fEF 3G d d H k .
nee e. owever, samples requIre kn (often expen-

( ) sive) inversions of a distribution function. The method
+ P sup I JLm(Bf) -JL(Bf) I ~"iG described by us requires a data pool of size O(n) (with

fEF a larger constant hidden in the big oh), but k samples

~ 4Ne/6exp(-2m(l:j(3G»2) are obtained at a cost of kn evaluations of a density.

by Hoeffding's inequality (Hoeffding 1963) and the
fact that there are at most Ne/6 different pairs of sets 8. EXPECTED VALUE OF THE SIZE OF THE
(Cf, Bf). DATA POOL

For some classes F, it is advantageous to use Vapnik- Assume that we run the algorithm starting with
Chervonenkis type inequalities (see e.g., Vapnik and m = 0, and that we enlarge the data pool as required.
Chervonenkis 1971 a, b, 1981, Devroye 1982 or If we continue to do this ad infinitum, then the
Alexander 1984), but doing so will add little to the number of data pairs in the pool eventually reaches a
ideas developed here. random (but finite) limit M with probability one. If

We are ready to apply Theorem 5 to the problem we knew M beforehand (that is, if we could peek at
at hand, the choice of m. In particular, we have the the future), then we would not be stuck with the
following. problem of choosing m. Nevertheless, M is vitally

important for storage purposes. Its size is again related
Theorem 6. Let F be a class of densities with finite to n, ? and the metric entropy of F. We have the
metric entropy, and let sUPfEFf ~ g with f g = G < 00. folloWIng upper bound for E(M).

Let m > n and I: E (0, 1) be related via the equality
nG Theorem 7. Assume that F has finite metric entropy

m = -.for all I: > 0, and that G < 00. Then E(M) -nG as
1 -I: n -00. Furthermore

Then
E(M) -nG

P( inf mJLm(Af) < n) ~ 4Ne/6exP(--
92m(::.-)2).

( n )fEF G ~ 72G2 N1/12exp --+ 2
9G

Proof. Theorem 6 follows without work from Theo- . { nGI: ( 4m2 )}rem 5 and some inequalities obtained at the top of + mf -1 -+ 36G2Ne/6exp --
9G .

h..eE(O.I) I:

t IS sectIon.
Th 6 h th . f taki G If Nil ~ exp(Cu -b) for u > 0 for some finite C, b > 0,

eorem sows e Importance 0 ng as th th . ht h d .d .. .en e rig -an Sl e IS
small as possIble. Ideally, we put g = SUPfEFf, so that
G is minimal, but such a function g is often not easy O( (b+I)/(b+2»d ...n asn-oo.
to enve m practIce.

For a good choice of I: in m = nGj(l -1:), we need
some good estimate or bound for Ne/6. One can play Proof. Clearly, for any constant K

it conservatively and take I: constant, unrelated to m.~ '" '"
For example, .Mth I: = 0.5 (m = 2nG), the probability E(M) = }:: P(M> k) ~ K + }:: P(M> k).
of eventual faIlure of the method does not exceed k=O k-K

( m ) For fixed very small I: > 0, the first term can be made
4N'/12exp -18G2 .arbitrarily close to nG in the relative sense, and the

second term tends to zero since K -00. This concludes
This tends to zero exponentially fast with n, with the the first part of the proof of Theorem 7.
coefficients in the rate of decrease directly affected Taking K = rnGj(l -1:)1 for I: E (0, 1), we can
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apply the estimate of Theorem 6, and obtain The expected size of the final data pool is roughly
r G 1 of the order of nG whenever the class has finite G and

E(M) ~ ~ finite metric entropy" In fact, for most classes of
I -e densities, we have Nu ~ exp( Club) for some constants

'" ( 2 (I -nGlk )2) C, b> 0 (see the next section), so that E(M) -nG =

+ k~K4N(I-nGlk)/6exp -9 k G O(n~b+I)/(b+2»)" The ric~ness of the class has a direct

beanng upon the requIred storage"

nG
~-+2

I -e 9. EXAMPLES OF FAMILIES OF DENSITIES

+ r'" 4N. -exp (-.:?: U

(~~ ) 2) du Explicit estimates of the metric entropy have been

JK (I nGlu)/6 9 G obtained by Kolmogorov and Tikhomirov (1961),

(b S N d i ) Lorentz (1966), Dudley (1974, 1984) and others. Fam-
ecau e , ecreases as e "I ." h fi ... I d . lIes Wit Imte metric entropy mc u e those shown m

--!!S!- 2 Table I.
~ I -e + Table I shows that manageable classes of densities

can be obtained by introducing smoothness conditions
+ I I ~ N exp( -.:?:-.!!!!--( l:.-)2) dv (such as in the first example), by drawing densities

" (I -V)2 ,,/6 9 I-v G from a restricted parametric class (such as in the

( h * t " fi K - G/(l *)) second example), or by imposing monotonicity
were e sa IS les -n -I: d ." ( . h h " d d fi h I )con luons as m t e t lr an ourt examp es .

nG 2 The various functions c(.) shown in the bounds
~ h + can be obtained explicitly by analyzing the proofs

of the original papers. For the Lipschitz class, see
+ J I 4nG N ( 2 nG

( V )2)d Kolmogorov and Tikhomirov, Devroye (1987) or
6exp v, (1 -v)2 "I 91 -v G Dudley (1984). For the monotone class, we refer to

G Dudley (1984), who reports computations done by
~ ~ + 2 Birge. Finally, for the bounded variation class, and

1-1: general smoothness classes, the reader can consult

J I/2 4nG ( 2 nG ( V )2) Cleme~ts (1963). ~e note th~t f?r the parametric
+, ~N"/6exp -9h G dv class given above N, IS ~Olynomlal"l~ 111:, where~ f?r

the larger nonparametric classes, It IS exponential m
\.I I ( ( )2)4nG 2 nG v

+ 1/2~N"/6exp -9h G dv Table I

Families With Finite Metric EntropyJ I/2 ( 2),,:: nG +2+ 16 GN 4nv d F UpperBoundforN,
~- n "/6exp --v

1 -I:, 9G All densities! on [0, I] with exp(c(a + k, C)/el/(a+kl)
k -I absolutely continuousI I 4nG ( n ) derivatives, andfk) satisfying a

+ 1/2 (l-=-;")2 NI/12exp 18G(1-v) dv Lipschitz condition with con-

stanis C, a:J'" ( 2)nG 4nv sup Ifj)(x) I
~1=-+2+16nGN'/6 exp 9G dv x,j~k

1:, IFk)(x) -FkJ(y) I
+sup~Cr'" ( ) xo'y I X -y I a

+ 4nGNI/12 J2 exp -~ dv All gamma densities with shape c(a, b)/e
parameter contained in a finite

G ( 4 2) interval[a,b]witha>O n nl: ~ h + 2 + 36G2Nel6exp -9G All nonincreasing nonnegative exp(c(M)/c)

functions on [0, I] bounded
( ) byM

+ 72G2 NI/12exp -~ .All densities on [0, I] bounded exp(c(M, B)/e)
by M and of total variation at

Finally, the minimization of the right-hand side with most B, where Band M are finite
respect to e is a simple exercise in analysis. constants,t.ki:;:F, ,,;~
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lie. There are also classes that hover "in between" in GRIFFEATH, D. 1975. A Maximal Coupling for Markov

richness, such as some classes of analytic functions, Chains. Zeitschrifi fur Wahrscheinlichkeitstheorie

for which Nt is exponential in log2(1/e) (see e.g., undverwandteGebiete31,95-l06.
Lorentz or Kolmogorov and Tikhomirov). HOEFFDING, W. 1963. Probability Inequalities for Sums

" For the monotone and bounded variation classes, of Bounded Random Variables. J. Am. Stat. Assoc.

wehaveE(M) = nG+ O(n2/3), while for the Lipschitz 58,13-30. .." .

I bta . E(M) = G + O( (l+a+k)/(1+2(a+k») ) JOHNSON, N. L., AND S. KOTZ. 1969. Dlstnbutlons In
c ass, we 0 m n n . S .. D " D ." b " J h W . ltatlstlcs: Iscrete Istn utlons. 0 n 1 ey, New

York.
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