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ABSTRACT

The optimization of a function of many va-
riables is investigated.A new algorithm is
proposed : the compound random search algo-
rithm (CRSA).This algorithm combines the
features of random search and non-random
"direct search.Each part of the algorithm

is discussed in detail.The CRSA is compared
with several other direct search methods

in many different problems.The results are
promising.Some modifications of the basic
search scheme make the CRSA particularly
.useful and efficient.

1, INTRODUCTION

"It is often desired to minimize a function
Q(w ,...,wn) of several variables wi.This
function is denoted by Q{(w).This paper
only deals with unimodal functions.Although
only local search algorithms are treated,
perhaps the most promising application of
randon search is found in multimodal opti-
mization.Further,assume that this criteriocn
Q(g) is not analytically known and that it
can only be measured or computed at the ex-
pense of much effort.Obviously,the beha-
viour of Q(w) is rather unknown.The condi-
tion of unimodality isn't always fullfilled
and cannot be controlled a pricri ! How-
ever,suppose for simplicity that noisefree .
measurements of a unimodal function Q(w)
are available.The generalization towards
multimodal functions can be found in [15] .

Several authors have shown that random
search compares very well with other direct
search techniques([3]1,[5] in high-dimensio-
nal problems with costly function evalua-
tions.The number of function calls needed
to solve a problem is roughly spoken pro-
portional to n.A survey of the most com-
monly used random search algorithms can be
found in[61,[81,19],[14] .The simple ran-
dom search [1-2] and the fixed step size
random search [5] have been improved many
times [4-5]1,[7].This paper is a trial to
improve some of these algorithms and to
broaden their field of application.

Because the cost of a function evaluation éﬁl
is more important thar the cost of search !

effort,we may not be refrained from using
more sophisticated search schemes.So,it is
quite normal to use all the a priori avail-:
able information about Q{(w) in order to

‘accelerate and control the search.Moreover;
‘new information must bhe gathered during the

search and transformed into useful data.
There is a remarkable resemblance between
this search and a learning process or a
game against nature.

A new algorithm is developed which performs

much better,even under the worst circum-

stances,than the powerful methods of Gucker
[13] or Rosenbrock {11l.Moreover,this met-
hod is one of the fastest random optimiza-
tion methods when an optimum must be loca-
lized guite accurately.In our discussion,
the rate of convergence 1is determined in
terms of the number of function calls need-
ed to find a solution.The number of iter-
a*ions is irrelevant.The CRSA combines the
features of random search with the advanta-
ges of non-random search.

2.DEVELOPMENT CF A NEW METHOD

Assume that the region W,in'which Q(w) is
defined,is closed and bounded,Further,let
w{i) denote the best estimate of the mini-
mum after j iterations.Many random seavych
algorithms are built uwp as follows:a point

wX(j+1) ,which will be called "trial",is ge--

nerated using the probability density fun-
ction £(wx(j+1)/w(j)).This distribution may
be fixed as in the method of Brooks [11 .
In general,however,this distribution is ad-
aptive .Most commonly used is the gauszian
distribution with mean w(j).Let the covgri-
ance matrix be T(3j) or,for simplicity,
The trial point is compared with the old
“pbest estimate" (or:basepoint) w(j) on the
base of the measured or computed values ‘
Q(w(j)) and Q(wx(j+1)) .Obviously,w*(j+1) is
a better estimate if Q(w*(j+1)) <Q(w(3)).
This yields that an auxiliary variable
yiw(j) ,wx(j+1)) ,which denotes the outcome
of the comparison,is put to one.If,on the
cther hand,Q(w*(j+1)) > Q(w(j)) or wx(j+1)
vioclates an inequality constraint or :
Q(wx(j+1)) isn't even measurable,then : ‘
y(9(3) ,w*(j+1))=0 .The trial is considered
as a failure.Notice that the comparison is
a success if Q(wx(3j+1)})=Q(w(j)),in order to:
allow random basepcint displacements when
¢0(w) has staircase parts,for instance.With-!
out this sign,each point of such a level i
region would be an isolated local minimum.
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ABSTRACT

The optimization of a function of many va-
riables is investigated.A new algorithm is
proposed : the compound random search algo-
rithm (CRSA).This algorithm combines the
features of random search and non-random
‘direct search.Each part of the algorithm

is discussed in detail.The CRSA is compared
with several other direct search methods

in many different problems.The results are
promising.Some modifications of the basic
search scheme make the CRSA particularly
.useful and efficient.

1. INTRODUCTION

"It is often desired to minimize a function
Q(w ,...,wn) of several variables w,.This
function is denoted by Q(w).This paper
only deals with unimodal functions.Although
only local search algorithms are treated,
perhaps the most promising application of
randon search is found in multimodal opti-
mization.Further,assume that this criterion
Q(w) is not analytically known and that it
can only be measured or computed at the ex-
pense of much effort.Obviously,the beha-
viour of Q(w) is rather unknown.The condi-
tion of unimodality isn't always fullfilled
and cannot be controlled a pricri ! How-
ever,suppose for simplicity that noisefree .
measurements of a unimodal function Q(wj
are available.The generalization towards
multimodal functions can be found in [15] .

Several authors have shown that random
search compares very well with other direct
search techniques([3],[5] in high-dimensio-
nal problems with costly function evalua-
tions.The number of function calls needed
to solve a problem is roughly spoken pro-
portional to n.A survey of the most com-
monly used random search algorithms can ke
found in[61,[81,[9],[14] .The sirple ran-
dom search [1-2] and the fixed step size
random search [5] have been improved many
times [4-51,[7].This paper is a trial to
improve some of these algorithms and to
broaden their field of application.

Because the cost of a function evaluation

is more important thar the cost of search k.

effort,we may not be refrained from usiag
more sophisticated search schemes.So,it is
quite normal to use all the a priori avail-:
able information about Q{w) in order to

‘accelerate and control the search.Moreover,
‘new information must be gathered during the

search and transformed into useful data.
There 1s a remarkable resemblance between
this search and a learning process or a
game against nature.

A new algorithm is developed which performs

nmuch better,even under the worst circum-

stances,than the powerful methods of Gucker
[13] or Rosenbrock {11l.Moreover,this met-
hod is one of the fastest random optimiza-
tion methods when an optimum must be loca-
lized gquite accurately.In our discussion,
the rate of convergence is determined in
terms of the number of function calls need-
ed to find a solution.The number of iter-
a*ions is irrelevant.The CRSA combines the
features of random search with the advanta-
ges of non-random search.

2.DEVELOPMENT OF A NEW METHOD

Assume that the region W,in'which Q(w) is
defined,is closed and bounded.Further,let
w{i) denote the best estimate of the mini-
mum after j iterations.Many random seavych
algorithms are built vwp as follows:a point

wX(j+1) ,which will be called "trial",is ge--

nerated using the probability density fun-
ction £(wx(j+1)/w(j)).This distribution may
be fixed as in the method of Brooks [11 .
in general ,however,this distribution is ad-
aptive .Most commonly used is the gauszian
distribution with mean w(j).Let the covgri-
ance matrix be T(3j) or,for simplicity,
The trial point is compared with the old
“pest estimate" (or:basepoint) w(j) on the
base of the measured or computed values '
Q(w(j)) and Q(wx(j+1)) .Obviously,w*(j+1) is
a better estimate if Q(w*(3+1)) <Q(w(3)).
This yields that an auxiliary variable
yiw(j) ,wx(j+1)) ,which denotes the outcome
of the comparison,is put to one.If,on the
cther hand,Q(w*(j+1)) > Q(w(J)) or wx(j+1)
violates an inequality constraint or
Q(wx(j+1)) isn't even measurable,then :
y(9(j) ,w*(j+1))=0 .The trial is considered
as a failure.Notice that the comparison is
a success if Q(wx(3j+1)})=0Q(w(j)) ,in order to:
allow random basepcint displacements when
0(w) has staircase parts,for instance.With-!
out this sign,each point of such a level i
region would be an isolated local minimum.
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or best estimate moves to-
when y(w(3) x(3+1))=1,

The basepoint
wards w¥(j+1)

aw(3) if yiw(3) ,wx(j+1))=0C
wx(j+1l} otherwise

2+ (L

Let us briefly recall the advantages of
this random search :

x ease of implementation

% large field of application since _
f(yx(j+l)/w(j)) can be made adaptive.The
variance j) or the covariance matrsix
T(j) are often updated during the search
[i3 ].Sometimes,an adaptive preferable di-
rection d(j) is introduced,which denotes
that the mean of the distribution of
w¥(3+1) is no longer w(j) but w{j)+d(j)
[41 .Special schemes can be found in [3 ],
[61andf7] .

when o(j) is fixed,a great variety of
functions Q(w) may be treated,such as

- staircase functions or highly nonlinear
~functions.By virtue of algorithm (1),a
global optimum of a multimodal function
will be localized.Convergence is guaran-
teed under rather general conditions on
Q(w) .

when o(j) is fixed,the rate of convergen-—
ce doesn't depend upon the size of the
gradient in each point.

when n is large,this method compares well
with other direct search techniques if
the number of function calls,that is nee-
ded to solve the probiem,is *taken as tha
criterion of comparison [3],15].

In the sequel,we shall assume that w¥{j+1)
is generated according to a normal gauszian
distribution with mean w(j) gnd with an
‘adaptive covariance matrix o¢“(3j).I .Uncc: -
tunately,the performance of this s‘mple
method is not quite excellent when w(j) is
near the optimum [3] .Some authors sugges-
ted that the ideal optimization technigque
perhaps consisted of a combination of ran-
dom search and non—random direct seaxrch.
Therefore,a somewhat different algorithm is:
proposed which combines the features of ram
dom search and ron-random direct search
(accuracy of the solution).

In each 1teratlon two tlldls are made :a 1
- random trial in ;

w*(j+1)
hnd a non-random trial in §
P Wx*(j+1) w(i) + €(3).b(j+1)

where €(j) and b(j+1) are deterministical-’
ly cetermined.The algorithm (1) is modified:
now.Indeed,the new best estimate w(j+1) is
the best among the points w(;),w*(3+1) ard
wx¥(j+1)lClearly,three special problems mus it
be solved:the control of o(j),the control |
pf €(j) and the estimation of b({j+1) .This
iatter n-dimensional vector has” the meaning’
of a "preferable direction” .It will be

on line computed.This computation necessi-
tates the gathexlng of Some informatlon a-=

wi{i) + p(§) ' P

ERTIN

i
A
i

bout Q(w).Since a function call is rather
gxpensive in the class of problems with
which we deal,the necessary information
must be provided by the "first stage"
search.In general .b{(j+1) depends upon bij),
3 ,0(w(3)) Q(wx\le)) and the auxiliary
variable y(i(J),E*(J+1))o

Therefore,define
Siwe ¥ p(wue) .0 .au (2)

where u is an n-dimensional random vector
and p(ﬁ/w;ﬁ) denctes a normal gauszian pro-
bability density f ction with mean w and
covariance matrix I Q(w;y) is a smoothed
form of Q(w;.The gradient of (2) with res-
pect to w equals :

Q(w o) =/ _wp(U/w,o) Q(u) .du
(3)

-g -J(U‘W) P(u/Wlo) Q{u) .du

(3) can,for each w,be estlmateg by averag-
ing the measurements p.Q(u). over all
the realizations u,that are generated ac-
cording to plu/w,q) and when o denotes (u-w).(3)
can be estimated tog by averaging the expressions

o2 0. Q-0 W) ' {4)

since the average over all p ofc: . 0.0(wW) equals
zero.Assume that b(3j) continuously tracks the nega-
tive gradient.The camputation may be performed by
5) s

= b{j) +-l {o (3 .0(3).
[é(w(:))-o(w Gan] -}

An exponential filter is proposed with adaptation
time 1>1 iInstead of a simple "averaging” filter
since the problem is nonstationary : indeed,on the
one hand,the basepoint continuously moves.Clearly, -
the gradient continuously changes too ! On the oth-
er hand,the parameter o (j) is often variable tco.

This method is only useful,therefore,when the sta- -
tistics of p(§) are nearly stationary,when the base
point moves slowly,and when the sequence OQ(w{(3j))-
Q(wx(§+1)) behaves well.Thus,highly nenlinear
finctions Q(w),staircase functions and finmctions
with many imposed inequality constraints cannot be
treated.

Another "preferable direction estimator” is defined

b5+

b+ = b() + % 0 (3)-b(§))

1 yw(§) wx(5+1) ) =1
B(3+1) = b($) + L. (h*0(3) b (9))
ctherwise

with > h>0 and T>1 ;b(j+l) is a weighted aver-
age of all the vectorsp (I),....,0(3) .The two main
advantages of (6) over (5) are that b(j+1) doesn't
depend upen the size of the gradient and that a
broader class of functions Q(w) can be allowed.

[

(6)
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Let us now investigate the g(j)~controller.
Obviously,there may be no interference or
correlation between the information gather-
ing process (wx{j+1)) and the information
handling process (5-6).This condition of
independence is best satisfied when the
control of the statistics of p(j) is perfo-
rmed only on the base of the outcomes
Y(w{3) ,wx(j+1)) .No feedback from the stage,.
in which w¥¥(j+1) is generated and '
Q(wxx{j+1)) is computed,is allowed.Further,
the statistics of p(j) are best only slowly
varying.

One scheme is proposed here.It is discussed

i 238

increasing p

in detail in [7]?

Col(3+1) = o(3) . (ita) o

1f y(w(3) ,wx(j+1))=1 :

G(3+1) = o{3).(1-p) -
otherwise .
with : g» O ; 1>8> 0 ; g(O)=arbitrary ;

Péés/(a+s)<0,5 or o ¥

It is shown in [12] that,if W is closed

and bcunded,and under general conditions on

Q(w) , o(j) tracks a nonzero positive fini-

te value o,(w(j)) which satisfies :
S p(uw/w(3),o).y(w(j),u).du = Py (8)

uewW :

Unfortunately,the root of (8) is nonstatio-

nary since w(ij) continuously moves.Never-
theless,a stable nonnegative finite root
always exists if o>0 ,1>8>0,and pg<0.5 .

Thus,100 p_ denotes the expected percent of
times thatgzx(j+1) is better than w(j).By
;the value of oo(ﬂ(j)) will,
generally spoken,decrease: p_ is often
chosen between 0,15 and 0,35.Itg may be
compared with "the probability of a success
ful trial",which was first used in [5].

The condition of independence implies that
d and B have to be small.Notice further
that most of the search parameters become
adaptive : o(3),e(j) and b(j) .The search
becomes more "selfi-organizing".No a priori
knowledge about Q{w) is aony longer reguized
except for the localization and the bcun-
dedness of W.The constants h(6),q(7),8(7),
1(5-6) have no such important influence on
the performance of the algorithm.Experimen-
tal results have shown thkat there exists
some optimal compromise between h and p_ :
a small value h necessitates a great g
value p_ ,since,roughly spoken,the informa=-
tional gmount,received by the estimators
(5) or (6) increases for increasing h and

‘decreases for increasing p_.A value of h .

near 0,1 .. ¥,3 is often guccessful when.
p_ varies from 0,35 +to 0,15 .The constant
T;on the other hand,is best chosen larger
‘when n increases or when Q(w) isn't a well-

:benaved function.

s

Let us investigate ¢(j),defined in:
- wrX§+1) = w(3j) +e(3).b(j+1) (9)

The coefficient ¢(j) perhaps has the grea-
test influence on the rate of convergence.
A similar adaptation scheme is used as in

A7)

'

e(3+1) = e(3).(1+n) .
1f y(w(3) ,we%(j+1))=1
e(3+1) = e(3).(1-0) (10)
otherwise
where
n> 0 ; 1>6>0 ;e(0)=arbitrary ;




The values nand 6§ may be greater than aand -«
B gince they determine the speed of the a-
daptation of € (j) to new situations.Typical
values are 1 and 0,4 It can further be
jverified that € (j) is a measure of the ef-

i ficiency of the non-rangem part in the ,

! search.Indeed, || Q(j+1)"2 is,on the average,
"proportional to n.o (j)” when the statist-
ics of p(3j) are almost stationary.The dis-
placement 2
Jexxi+1) -w ) |

is then,on tae average ,prxoportional to
n.e(j)“.0(j)“.0n the contrary,the displace-

ment 2
| wxt3+n - wid) |

grows as n.g(j)“.When ¢ (j) is much greater
than one,the displacement of the basepoint,
caused by (9) is by far more important than
the displacement obtained by means of the
first trial w¥(j+1) .Consequently,a large
value of ¢ (j) often corresponds to the exi-
stence of long straight valleys or ridges
in that region of W where w(j) belongs to.

Let us conclude that the random stage,e.g.
the first stage,assures the convergence

for the global algorithm since only the
best trial of both w¥(j+1l) and wx*(j+1) is
taken into account as a candidate for the
new "best estimate" w(j+l).When accidently
wX#(j+1) is always worse than w#(j+1),
the performance of the algorithm is ccinpa-
rakle with that of creeping random search,
The second -non-random- stage.on the con-
‘trary,determines the rate of convergence.
The information,gathered in the first stage
is efficiently used in order to speed up
the rate of convergence.

3.COMPARISON WITH. OTHER ALGORITHMS

Several authors tried yet to combine ran-
dom search and non-random direct search in .
a single algorithm : ‘

Schumer and Steiglitz [5] made a second
trial in each iteration in w¥X(j+1) which
was defined as -

WXX(J+1) = w(3j) + (1+a).p(3)

with —a>0 . 5
‘This reduces to the CRSA when :
€(3) = 1+a '

| b(3+1) = p(3)

iHowever,the statistics of p(j) and the con-
‘trol of these statistics were somewhat dif-
.ferent in their,so called,adaptive step
‘size random search : ASSRS .

qucker [121 in his compound stochastic gra-
dient algorithmm,defined the quantities e(j)
and b(j+1) as : T

£(3) = A(J)

GBI =0(3) T2 (3)) ~QwR(3+1))). g (§)

‘which reduces to (5) when 1=1 .Although he
uses the same statistics for p(j) ,his con-
;trol section differs from the one,proposed
:in this paper.The experiments have shown

that his algorithm is quite useful in accu-
rate s2arch problems.

-4 ,MODIFICATIONS OF THE BASIC SEARCH SCHEME

The principal modification concerns the use
of more function calls per iteration.When
the function calls are not too costly,some
additional evaluations could be spent in
the information gathering stage.However, the
most promising results were obtained when
the additional calls were made in the non-
random stage.Many trials w.¥¥(j+1) ,i=l,..K
cculd be made on a straigh% line through
w(j) in the direction b(j+1) .The non-ran-
dom part reduces to a linear search.A prop~
er control of the search parameters is ne-
Cessary [12] in crder tc minimize the num-
ber of function calls in each iteration
without slowing down the rate of convergen-
ce.

Random search is extremely useful in multi-
modal optimization.By adding one supplemen-
tary device,the CRSA can get global search
properties.Several schemes were developed
in {12] and [15]lwhich work fairly well in
the presence of several minima.Unfortunate-~
ly,this goes beyound the size of this pa-
per.

In some problems,the initialization of o (j)
becomes cumbersome.Indeed,the CRSA is sense-
less when 0(3j) is mismatched: the randon
stage will fail when ¢ (j) is by far too
great ;the estimators (5) and (6) will de-
teriorate andthe non-rahdom stage is clear-
ly superfluous.Therefore,a fast initiali-
zation of o0(j) is desired,e.g.an auxiliaxy
search is performed in the beginning of the
optimization without spending many function
calls.The initialization ofe{j) and b(j) ,-
on the contrary, is quite simple :

€ {0)
b(0)

1
Y

,Finally,when ridges or narrow valleys can’
be expected,an acceleration technique could
‘be used,which is similar to an iterated
partan method.After a fixed number of iter-
:ations and periodically an "acceleration-
iiteration" is introduced,just as in the pat
tern search (Hooke and Jeeves ;Rosenbrock ;
‘Powell ; Zangwill) .It has to be pointed
‘out however,that a too large basepoint mdve
sabotages the CRSA‘since the degree of non-~
stationarity of the parameters to be esti-
mated,increases. - :

5 .EXPERIMENTS

The resulis of the experiments are averaged
over many runs and many values for the
search parameters h,o,8 ,n,and ¢ .Most of the
results of other authors concern only the
best set of search parameters.The reader is
in that case completely ignorant about the
sensitivity of this algorithms to changes
in search parameters.This incited us to av-
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- erage the recults over a wide range of va-
lues for the search parameters.The experi-
mental load clearly increases,but the com=-
parison between several techniques becomes
more sensefull12] .The following clrect

' search techniques were compared ¢ - S

1°)Adaptive creeping random search (CREEP).
The first stage (1) of the CRSA is teg~
ted using a similar O-control section as
in (7).The comparison with the CRSA,when
a non-random second stage is added,will
be interesting.

2°)The method of Matyas [4] whigh is com-
pletely random too.It makes use,however,
of a preferable direction.

3°)The adaptive creeping random search with
an acceleration device of the type "pat-
tern search". (CREEP-AC) .The algorithm
is described in [12].

'4°)The CRSA.The performance of thje algo-
rithm with or without linear search sys-
tem is almost the same.

-5°)The compound stochastic gradient algo-
rithm of Gucker (CSGA :[131]).

6°)Pattern: search of Hocke and Jeeves[10].
"7°)The algorithm of Rosenbrock [11]

These technigues were ccmpared on the base
of several functiocns Q(w).The results are
given in Table 1 .,he tests are now briefly
descrihed

1°)The function of Rosenbrock [1il]is chosen
as first test function.The starting
point was always (-1,2 ; +1,0).The sym~
bols ACl and AC2 in mable 1 denote the
mean value of Q(w(3j)) over a lot of runs
after 600 and 2000 function calls res-
pectively.A small value ACl or AC2 indi-
cates that the algorithm is capable of
localizing anr optimum guaite accurately
with almost no effort.

2°)Under CS (coarse searc@)in'Table 1, the
mean number of function calls is given
that was needed for the rough localiza—
tion of the minimum of a six~dimensional
coavex and well-behaved test function.

3°)Under CO (optimization in the presence
of constraints) in Table 1,the mean num-—
ber of function calls is given that was
needed to get Q(w(3j)) less than a cer- . |
tain threshold value Q .The test fune-
tion was quite simple and n was i2.The
constraints are highly nonlincar and are
not a priori known,e.g. they define a
region in W ,in which Q(w) isn't measu-
rable.Each trial in this region is r@gan';
ded as a function ¢all.

4°)The same test functicn and the same rr1~
terion as under <CO were used in the
test "PS"(see Table 1).The a priori un-
known constraints,however,are tighter
and define a narrow nonlinear pipeline

109

!
ir which the gradient of Q(w) 1is almost
pérpendicular to the boundaries of the
forbidden region for each w .The optimi-

zation is guite difficult.”

S°)Multimodal performance (MM) : + means
that a global minimum will be found any=
way ; 0 denotes that this global minimum

. ©f the multimodal test function will on-
ly be reached when the variance in the
random part is bounded from below ; -
means that the convergence to a global
Iinimun isn't guaranteed at all.

.From table 1,we see that the method of Ma-

tyas performs better in all the situations-
than CREEP since more informaticn is used
during the search,although the general
Structure of the algo“ithmu was the same.
The accelerated creeping random search per-
only performe better than the simple CREEP
when narrow ridges or valleys are met,as
near the optimum of the Rosenbrock- fupctlon
(AC2) or in the pipeline search (PS).

The partially non-random methods (CRSA,
method of Gucker) are superior in "accura-

‘te search" problems (AC1l,AC2) with respect

to the completely random technigques (CREEP,
M: tvas).,

Furthermore,the CRSA needs much less fun-
ction evaluations in the probiem of Rosen-
brock than the powerful methods of Rosen-~
brock,Gucker cor the pattern search of Hoo-
ke and Jecves, )
When the expected number of function calls,
that are needed to solve the problem,is not
quite large ,as in coarse search (CS),the
CRSA obviously is inferior in comparison
with the other techniques.Indeed,this met-
hod needsa long zdaptation time before an
appropriate ¢(j) and a useful b(Jj) are
computed.

ACl AC2 MM
0,34.10° |¢,67.107%| o | creEp
0,54.10 10,17.107%2 | o | Matyas
0,11.107%0,47.107% | o | creEP-AC

0,20.10°°{0,10.207° | o0 |crsa

0,82.1072{0,30.10™° | + | CSGA-Gucker

0,10.10‘1 ) - | Hocke-Jeeves
0,22.10"% | - | Rosenbrock

Table 1l,part A
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40,1 | 182,6 401,4 | CREEP -
37,8} 154,6 249,3 Matyas v
40,11 192,9 158,4 | CREEP-AC
105,31 152,9 | 237,9 | CRsSA
f Table 1l,part B
CONCLUSION ’

The problem was to design a suitable methcd
which deals with the optimization of a uni-
modal function Q(w) on the condition that
the function evaluations are very costly.
This function may contain anomalities.Ilt
can be regarded as' an unknown environment

" in which the basepoint tries to find its

optimal value.The convergence to the mini-
mum must be assured,the sought method muct
be rather insensitive to the search para-
meter choice and needs only a few fuaction
calls to reach the purpose.

It was quite normal to use a random search
technique.But until now,these techniques
weren't able to localize an optimum quite
accurately.The features of non~random
search{its accuracy) and random search are
cocrmbined in a new algorithm :
random search algorithm (CRSA).
Durlng the search,information about Q(w)

is gathered in order to accelerate and con-
trol the search.

The experimental results confirmed our .ide-
as.A comparison with other random search
techniques and direct search methods is
made.The CRSA turns out to be superior in

a large class of problems.Finally,some sug-=
gestions are made about the use of the CRSA
in special problems.Some auxiliary devices '

o PY P e LR L - |
T COpound

may be added for this purpose.
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