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Abstract -Zusammenfassung ";'

A Simple Generator for Discrete Log-Concave Distributions. We give a short algorithm that can be used
to generate random integers with a log-concave distribution (such as the binomial, Poisson,
hypergeometric, negative binomial, geometric, logarithmic series or Polya-Eggenberger distributions).
The expected time is uniformly bounded over all these distributions. The algorithm can be implemented
if a few lines of high level language code.

AMS Subject Classifications: 65CIO, 65C05, 68C55.
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Ein einfacher Generator fUr diskrete log-konkave Verteilungen. Wir geben einen raschen Algorithmus an,
der Zufallszahlen mit log-konkaver Verteilung (z. B. binomisch, Poisson, hypergeometrisch, negativ
binomisch, geometrisch, logarithmisch, Polya-Eggenberger) erzeugt. Die mittlere Rechenzeit ist
beziiglich all dieser Verteilungen gleichmiiBig beschriinkt. Der Algorithmus kann in wenigen Zeilen einer
h6heren Programmiersprache implementiert werden.

1. Introduction

A distribution on the integers is said to be log-concave when the probabilities Pk
satisfy the inequality

2
Pk~Pk-1Pk+l

for all k. This class of distribution is so vast that it includes nearly all distributions
mentioned in Johnson and Kotz (1969), including for example those given in the
following table:

Distribution rameter(s)

~ i"IA
Binomial (n,p) , n~ 1, perij, 1]

,.,

Poisson (J.) J.>O

Negative binomial (n,p) n~1, pe(O,1] ,.,
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Distribution Pt Parameter(s) ge
cl:

Geometric (P) (1- pt P (k~O) pe(O,1] e:x
k al.Logarithmic series (P) P (k~ 1) pe(O, 1)

-log(1-p)k!
1 TI

Rectangular (a, b) (a~k~b) a~b, both integer
b,-4+1 F c

).t hG
Hyper-Poisson (6,).) CA.Bk-l (k~O) ),>0,6>0

I1 ().+j)
J=O PI

Polya-Eggenberger see Johnson and Kotz (1968, p.230) W

c'

The normalization constant C ;',/1 for the hyper-Poisson distribution is given in
Johnson and Knotz (1969, p.248). For the four-parameter Polya-Eggenberger
distribution defined e.g. on p. 230 of Johnson and Kotz (1969), log-concavity only
follows if the parameter s of Johnson and Kotz is zero or negative (special cases If
include the hypergeometric, binomial and rectangular distributions). It should be Pit
mentioned that for all the distributions in the table shown above, fast algorithms are eq
available. For the binomial distribution, see Devroye and Naderisamani (1980),
Ahrens and Dieter (1980) and Devroye (1986) for various uniformly fast methods.
For the Poisson distribution, we refer to Schmeiser and Kachitvichyanukul (1981), fo
Ahrens and Dieter (1980, 1982), Ahrens, Kohrt and Dieter (1983), and Devroye nc
(1981,1986). The logarithmic series distribution can be dealt with by the methods of k-
Kemp (1981). The negative binomial is best obtained as a Poisson random variable
in which the Poisson parameter is gamma-distributed (see Devroye, 1986). For the
hyper geometric distribution, one could use the algorithm of Kachitvichyanukul and
Schmeiser (1985) (see also Devroye (1986, p.545)). For the Polya-Eggenberger U
distribution, it is possible (for some parameter choices) to generate a binomial (n, Y) fo]
random variate where Y is beta distributed with certain parameters (see e. g. Kemp eq
and Kemp (1956), Bosch (1963) or Johnson and Kotz (1969)).

The algorithm presented in this paper is a discrete counterpart of an algorithm
developed by the author (Devroye, 1984) for log-concave densities. This implies that
it is a "black box" algorithm requiring no a priori knowledge (except that the wi
distribution is log-concave with a mode at integer m), that it is conceptually
straightforward, and that. the expected time per random variate is uniformly
bounded over all log-concave distributions. Le

ffil

2. Properties of Discrete Log-Concave Distributions

01
From the fact that thl

...~-.!!!!-~~~ ...m:
Pk-l Pk ml

we can easily see that the distribution is unimodal. We will assume without loss of
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generality that one of the modes is at m. As we will see in the proof of Theorem 1, the
chain of inequalities also implies that the Pk'S tend to zero as k-+::!: 00 at an
exponential or subexponential rate. Hence, all moments exist; in fact, the moments
also satisfy interesting inequalities, see e.g. Keilson (1972). We will need

Theorem 1:
For any discrete log-concave distribution with a mode at m and probabilities Pk, we
have . (p 1 -p I k I) 11kPm+k~mm m,Pme m, a .

Proof of Theorem 1:,
We need only consider the case k~O. By the definition of log-concavity, putting
c=e-a=Pm+l/Pm, we have

~= Ii Pm+i~(~ )k=e-ak.
Pm i=l Pm+i-l Pm

If we keep Pm fIXed, the value of Pm+k is maximized when we force Pm+k+l =0,
Pm-l =0 (i.e., the distribution is concentrated on {m,m+ 1, ...,m+k}), and have
equality in the defining chain of inequalities, i.e.

-aiPm+i=Pm e

for all 0 ~ i ~ k, and some a ~ O. The constant a can be determined by a simple
normalization. One quickly realizes that for k + 1 ~ 1/Pm, we can take a = 0, while for
k + 1 > l/Pm, we need a> O. In the latter case, the normalization equation is

k k. 1-e-a(k+l)
1 ~ P - p ~ e-1a_ p= ~ m+i- m i... -m 1 --a .

i=O i=O e

Unfortunately, the solution of this equation is not available in a convenient explicit
form. Of course, we are allowed to take a smaller than the solution a* of the
equation. In fact, any a for which

l-e-'a(i+1.)
1~Pm 1 -a ..

-e

will do. In view of 1-e-a~a, it also suffices to take any a for which

a~Pm 1-e-a(k+l).

Let us now define u = a/Pm and 1 + z = Pm (1 + k) where z > 0 by assumption. The
inequality we should try to achieve is rewritten as

u~ 1-e-(1+z)u (z>O,u>O).
One possible u-value can be obtained by taking the point uo with the property that .

the tangent of 1-e-(1 +z)u at u=uo takes the value 1 at u= 1. Indeed, if uo would
make the inequality fail, then the tangent in question would have to be at an angle of
more than 45 degrees, which is impossible. The tangential line is

1-e-(1 +Z)uo +(u -uo) (1 + z)e-(l +z)uo.
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Equating this with 1 at u = 1 yields r values
1 i consistuo = 1-t"+;. ~ appro~

Thus, we can take table r
1 When

a=Pmuo=Pm-W. can be
Hence for for k ~

1+ k> l ip P < p e-Pmk~/(k+l) algoril m' m+k- m ,

which concludes the proof of Theorem 1. .

3. A Rejection Algorithm

1 1 .
Suppose that Pm+k~g(X) for all k-2~x~k+2 and all xER, where g IS a

nonnegative integrable function (hence, proportional to a density). Then, a random
variate with probability vector {Pk} can be generated as follows:

REPEAT
Generate a uniform [0, I] random variate U.
Generate Y with density proportional to g, Ahren
X --round (Y). CO

UNTIL Ug(Y):O;Pm+x' Ahren
RETURN m+X, .A

AhrenThis algorithm will be used here with d
Bosch

g(x)=min(Pm,Pmel-Pm(lxl-t»). Devrc
(The validity of g as a dominating function follows from Theorem 1. Observe that g is Devr(

a mixture of a rectangular function on [- wi Pm' wi Pm] (of integral 2 w where Devr(
w= 1 + Pm/2) and two antisymmetric exponential tails outside [ -wlPm, wlPm] (of ~
integral 2). When g is used in the rejection algorithm, the rejection constant (or, Devr(
expected number of iterations before halting) is 2w+2=4+Pm. We summarize as Johru
follows: Kach

w--1 + p.j2 (computed once)
I K '

IREPEAT el s
Generate lid uniform [0, I] random variates U. Wand a random sign S,

Kem w
IF U<-

-I+w Kern
THEN Y --Vw/Pm (where V is uniform [0, I])
ELSE Y--(w+E)/Pm (where E is exponential) Schn

X--S round(Y)
UNTIL Wmin(l.ew-PmY):O;Pm+x/Pm'
RETURN m+X,

The expected number of iterations is 4 + Pm. The algorithm should be implemented
with care; several shortcuts can be used to reduce the actual time taken by the -
algorithm; a part of the uniform random variate U can be recovered to generate W;
additional speed-ups are possible if bounds are used that depend upon Pm and other

./
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of the probability vector at carefully picked integers. Typically, such bounds
Insist of piecewise exponential pieces, and the area under the upper bound,proaches 

one as the number of pieces grows large. This is not unlike some general

ble methods for monotone distributions discussed in Devroye (1986).

'hen the distribution is monotone (on Em, 00)), the expected number of iterationsLn 

be reduced to 2+Pm, if we use rejection based upon the inequality Pm+k~g(X)

Ir k~O, k~x~k+1, where g(x)=min(Pm,Pme1+Pm-PmX). The corresponding

gorithm is shown below:

w+-1 + Pm (computed once)
REPEAT

Generate iid uniform [0,1] random variates U, w.
w

IF U~-
1+w

THEN Y +- VwfPm (where V is uniform [0,1])
ELSE Y+-(w+E)fPm (where E is exponential)

X +-[Y].
UNTIL Wmin(1,ew-P"'Y)~Pm+xfpm'
RETURN m+X.
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