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Abstract - -  Zusammenfassung 

Grid Methods in Simulation and Random Variate Generation. Points can be generated uniformly in a 
compact set A of  R d by constructing a fine rectangular grid covering A, selecting a grid rectangle, and 
performing an acceptance test if the rectangle in question is not entirely contained in A. For very fine 
grids, the acceptance test is needed with very small probability. We look at the storage requirements and 
expected time performance of this method, and apply it in avoidance problems and in the design of fast 
generators for random variates with a bounded density on [0, 1]. 

Gittermethoden fiir Simulation und Erzeugung yon Zufallsveriinderlichen. Punkte, die in einer komplexen 
Teilmenge A yon R d gleich verteilt sind, k6nnen auf folgende Weise erzeugt werden : Wir tiberdecken A 
mit einem engmaschigen Rechteckgitter und fiihren einen Annahmetest aus, wenn das betrachtete 
Rechteck nicht zur G/inze in A enthalten ist. Ftir sehr engmaschige Giner wird dieser Annahmetest mit 
sehr kleiner Wahrscheinlichkeit aufgerufen. Wir untersuchen den Speicherbedarf und die mittlere 
Zeitkomplexit~t dieser Methode und wenden das Verfahren auf Probleme mit verbotenen Teilmengen 
und auf schnelle Generatoren for Zufallsverfinderliche mit beschr~inkter Dichte in [0, I] an. 

1. Introduction 

Grids of equi-sized rectangles have a variety of uses as a data structure. They are a 
valuable tool in data manipulation (bucket sorting and searching), in large volume 
storage problems (storage of large data bases, storage of satellite picture data), and 
in operations research (approximate solutions of difficult problems such as the 
travelling salesman problem can be obtained by a grid method). In this paper, we 
would like to indicate the value of the grid structure in random variate generation 
and simulation. Some of the material is not new. What is important is the connection 
between the performance of a certain algorithm in terms of time and space 
requirements versus the size of the grid. We will give valuable rules for selecting the 
grid size as a function of certain performance characteristics. In some cases, such as 
simulation of the car parking problem, it is shown that the grid method is simply not 
a good choice. In general however, grid methods are very fast, and the performance 
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improves with increasing size of the grid. We will consider three prototype 
problems: 

1. Generating a point uniformly in a compact set A of R d. 
2. Avoidance problems. 
3. Non-uniform random variate generation. 

It is perhaps helpful to collect most of the important symbols in a short list for easy 
reference: 

A compact set of R d 
/-/ hyperrectangle of R d 
C grid 
Cn grid of size n 
D directory 
k number of good rectangles in directory 
1 number of bad rectangles in directory 
N~ number of grid intervals for i-th coordinate axis 
f density 
M bound on dens i ty f  
Z random integer (usually on 1,..., k+l)  
X random variable (usually possessing a density) 

2. Generating a Point Uniformly in a Compact Set 

Let us enclose the compact set A ofR e by a hyperrectangle H with sides ha, h2,..., hd. 
hi 

Divide each side up into equal intervals, N~ intervals of length - -  for side h~. Now, 
N; 

there are three types of grid rectangles, the good rectangles (entirely contained in A), 
the bad rectangles (those partially overlapping with A), and the useless rectangles 
(those entirely outside A). Before we start generating, we need to set up an array of 
addresses of rectangles, which we shall call a directory. For the time being, we can 
think of an address of a rectangle as the coordinates of its leftmost vertex (in all 
directions). The directory (called D) is such that in positions 1 through k we have 
good rectangles, and in positions k + 1 through k + l, we have bad rectangles. Useless 
rectangles are not represented in the array. Then, the informal algorithm for 
generating a uniformly distributed point in A is as follows: 

REPEAT 
Generate an integer Z uniformly distributed in 1,2 . . . . .  k + 1. 
Generate X uniformly in rectangle D [Z] (D [Z] contains 
rectangle Z). 
Accept ~ I-Z_< k] (Accept is a boolean variable.) 
IF NOT Accept THEN Accept +- [X ~ A]. 

UNTIL Accept 
RETURN X 

the address of 
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See Fig. 1 for an example  of a grid and corresponding directory in R z. 
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h) 

Fig. 1. a) Good rectangles in black; bad rectangles in white; useless rectangles (not stored) in gray. 
b) Directory of Addresses: 5 good rectangles (black); 35 bad rectangles (white); 48 useless rectangles 

shown in gray need not be stored 

The  expected number  of i terations is equal to 

area (C) 

area  (A) 

where C is the union of the good and bad  rectangles (if the useless rectangles are not  
discarded, then C =/-/). If  the area  of one rectangle is a, then area (C) = a (k + 1). For  
most  bounded  sets A, this can be made  to go to 1 as the grid becomes finer. Tha t  this 
is not  always the case follows from this simple example:  let A be [0, 1] d union all the 
rat ional  vectors in [1 ,2]  d. Since the rat ionals  are dense in the real line, any grid cover 
of A must  necessarily cover [0, 1] d and [0, 21 d, so that  the ratio of the areas is always 
at least 2 d. For tunate ly ,  for all compac t  (i.e., closed and bounded)  sets A, the given 
rat io of areas tends to one as the grid becomes finer (see Theorem 1). 
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The speed of the algorithm follows from the fact that when a good rectangle is 
chosen, no boundary checking needs to be done. Also, there are many more good 
rectangles than bad rectangles, so that the contribution to the expected time from 
boundary checking is small. Of course, we must in any case look up an entry in a 
directory. This is reminiscent of the urn or table look-up method and its 
modifications (such as the alias method (Walker, 1977) and the alias-urn method 
(Peterson and Kronmal, 1982)). Finer grids give faster generators but require also 
more space. 

One of the measures of the efficiency of the algorithm is the expected number of 
iterations. We must make sure that as we let the grid become finer and finer, this 
expected number tends to one. 

T h e o r e m  1 : 

Let  A be a compact set o f  nonzero area (Lebesgue measure), and let us consider a 
sequence of  grids G1, G2, ... which is such that as n ~  o% the diameter of  the prototype 
grid rectangle tends to O. I f  C, is the 9rid cover o f  A defined by G,, then the ratio 

area(C,,) 

area (A) 
tends to 1 as n ~ o e  

Proof of  Theorem 1 

Let H be an open rectangle covering A, and let B be the intersection of H with the 
complement of A. Then, B is open. Thus, for every x e B, we know that the grid 
rectangle in G, to which it belongs is entirely contained in B for all n large enough. 
Thus, by the Lebesgue dominated convergence theorem, the Lebesgue measure of 
the "useless" rectangles tends to the Lebesgue measure of B. But then, the Lebesgue 
measure of C, must tend to the Lebesgue measure of A. 

The directory itself can be constructed as follows: define a large enough array (of size 
n = N1 Nz ... Nd), initially unused, and keep two stack pointers, one for a top stack 
growing from position 1 down, and a bottom stack pointer growing from the last 
position up. Thus, the two stacks are tied down at the ends of the array and grow 
towards each other. Travel from grid rectangle to grid rectangle, identify the type of 
rectangle, and push the address onto the top stack when it corresponds to a good 
rectangle, and onto the bottom stack when we have a bad rectangle. Useless 
rectangles are ignored. After this, the array is partially full, and we can move the 
bottom stack up to fill positions k+  1 through k+l .  If the number of useless 
rectangles is expected to be unreasonably large, then the stacks should first be 
implemented as linked lists and at the end copied to the directory of size k + I. In any 
case, the preprocessing step takes time equal to n, the cardinality of the grid. 

It is important to obtain a good estimate of the size of the directory. We must have 

area (A) area (A) 
k+l>_ n. 

a area (H) 



Grid Methods in Simulation and Random Variate Generation 75 

We know from Theorem 1 and the fact that area (C,) = (k + l) a, that 

k + 1 area (A) 
lim 
, ~  n area(H) ' 

provided that as n ~ ,  we make sure that in fNi~oo  (this will insure that the 
i 

diameter of the prototype rectangle tends to 0). Upper  bounds on the size of the 
directory are harder to come by in general. Let us consider a few special cases in the 
plane, to illustrate some arguments. If A is a convex set for example, then we can 
look at all N1 columns and N 2 rows in the grid, and mark the extremal bad 
rectangles on either side, together with their immediate neighbors on the inside. 
Thus, in each row and column, we are putting at most 4 marks. Our claim is that 
unmarked rectangles are either useless or good. For ifa bad rectangle is not marked, 
then it has at least two neighbors due north, south, east and west that are marked. By 
the convexity of A, it is physically impossible that this rectangle is not completely 
contained in A. Thus, the number of bad rectangles is at most 4 (N 1 + N2). Therefore, 

area (A) 
k+l<_n - -  t-4 (N 1 + N 2 ) .  

area(H) 

If A consists of a union of K convex sets, then a very crude bound for k + l could be 
obtained by replacing 4 by 4 K (just repeat the marking procedure for each convex 
set). We summarize: 

Theorem 2: 

The size o f  the directory is k + l, where 

area(A) k + l  
- - <  

a r e a ( H ) -  n 

area (A) 

area (H) " 

The asymptotic result is valid whenever the diameter o f  the grid rectangle tends to O. 
For convex sets A on R 2, we also have the upper bound 

k + l a r e a  (A) .N 1 + N 2 
< t-4 

n - area(H) N1 N2 

We are left now with the choice of the NTs. In the example of a convex set in the 
plane, the expected number of iterations is 

(k + l) a area (H) 4 
< 1 § - -  (N1 + N2). 

area(A) - area(A) n 

The upper bound is minimal for N1 = N2 = ] ~  (assume for the sake of convenience 
that n is a perfect square). Thus, the expected number of iterations does not exceed 

area(H) 8 

areaIX) 
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This is of the form 
constant 

1-4 

where n is the cardinality of the enclosing grid. By controlling n, we can now control 
the expected time taken by the algorithm. Note that the algorithm is fast if we can 
avoid the bad rectangles very often. It  is easy to see that the expected number of 
inspections of bad rectangles before halting is the expected number of iterations 
times 

1 

k + l  ' 

which is equal to 
I area (H) 1 

o(1) since ~ 0  
n area (A) n 

(as a consequence of Theorem 1). Thus, asymptotically, we spend a negligible 
fraction of time inspecting bad rectangles. In fact, using the special example of a 

convex set in the plane with N 1 = N2 = ~/~, we see that the expected number of bad 
rectangle inspections is not greater than 

area(H) 8 

area(A) ] / n '  

3. Avoidance Problems 

In some simulations, usually with geometric implications, one is asked to generate 
points uniformly in a set A but not in w A i where the A/s are given sets of R ~. For 
example, when one simulates the random parking process (cars of length one park at 
random in a street of length L + 1 but should avoid each other), it is important  to 
generate points uniformly in [0, L] minus the union of some intervals of the same 
length. 

Fig. 2. Car parking problem: there is no room left on this street 

Towards the end of one simulation run, when the street fills up, it is not feasible to 
keep generating new points until one falls in a good spot. Here a grid structure will 
be useful. In two dimensions, similar problems occur: for example, the circle 
avoidance problem is concerned with the generation of uniform points in a circle 
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given that the point cannot belong to any of a given number of circles (usually, but 
not necessarily, having the same radius). See Fig. 3. 

Fig. 3. Circle avoidance problem: generate a point uniformly in the gray area 

We could use the grid method in all these cases, but there is an additional ingredient 
because our problems are dynamic, and we cannot afford to recompute the directory 
each time. Thus, we also need a fast method for updating the directory. For this, we 
will employ a dual data structure (see e.g. Aho, Hopcroft and Ullman, 1983). The 
operations that we are interested in are "Select a random rectangle from among the 
good and bad rectangles", and "Update the directory" (which involves changing the 
status of good or bad rectangles to bad or useless rectangles, because the avoidance 
region grows continuously). Also, for reasons explained above, we would like to keep 
the good rectangles together. Assume that we have a d-dimensional table for the 
rectangles containing three pieces of information: 

(i) The coordinates of the rectangle (usually of vector of integers, one per 
coordinate). 

(ii) The status of the rectangle (good, bad or useless). 

(iii) The position of the rectangle in the directory (this is called a pointer to the 
directory). 

The directory is as before, except that it will with time shrink in size as more and 
more rectangles are declared useless. The update operation involves changing the 
status of a number of rectangles (for example, if a new circle to be avoided is added, 
then all the rectangles entirely within that circle are declared useless, and those that 
straddle the boundary are declared bad). Since we would like to keep the time of the 
update down to the number of cells involved times a constant, it is obvious that we 
will have to reorganize the directory. Let us use two lists again, a list of good 
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rectangles tie&down at i and with top at k, and a list of bad rectangles tied down at n 
and with top at n - l +  1 (it has 1 elements). There are three situations: 

(A) A good rectangle become bad: transfer from one list to the ohter. Fill the hole in 
the good list by filling it with the top element. Update k and l. 

(B) A good or bad rectangle becomes useless: remove the element from the 
appropriate list, and fill the hole as in case (A). Update k or I. 

(C) A bad rectangle remains bad: ignore this case. 

For generation, there is only a problem when Z > k: when this happens, replace Z by 
Z + n - 1 - k, and proceed as before. This replacement makes us jump to the end of 
the directory. 

Let us turn now to the car parking problem, to see why the grid structure is to be 
used with care, if at all, in avoidance problems. At first, one might be tempted to 
think that for fine enough grids, the performance is excellent. Also, the number of 
cars (N) that are eventually parked on the street cannot exceed L, the length of the 
street. In fact, E(N),,~2L as L--, oo where 

_2 i (  1 e-~)/udu 
2=  e ~ d t=0 .748 . . .  

0 

(see e.g. Renyi (1958), Dvoretzky and Robbins (1964) or Mannion (1964)). What 
determines the time of the simulation run is of course the number of uniform [-0, 1] 
random variates needed in the process. Let E be the event 

[Car 1 does not intersect [0, 1]]. 

Let T be the time (number of uniforms) needed before we can park a car to the left of 
the first car. This is infinite on the complement of E, so we will only consider E. The 
expected time of the entire simulation is at least equal to P (E) E (TJ E). Clearly, 
P (E) = ( L -  1)/L is positive for all L > 1. We will show that E (TI E) = o% which leads 
us to the conclusion that for all L > 1, and for all grid sizes n, the expected number of 
uniform random variates needed is oo. Recall however that the actual simulation 
time is finite with probability one. 

Let W be the position of the leftmost end of the first car. Then 

L L dt 
E ( T I E ) = L ~  ! E(TI W = t ) ~  

L ~+~ dt 
> -  S E(TI W=t) 
- L - 1  1 L 

1 1+~ 1 
>-- ( d t  = oo.  

L - 1  t - 1  

Similar distressing results are true for d-dimensional generalizations of the car 
parking problem, such as the hyperrectangle parking problem, or the problem of 
parking circles in the plane (Lotwick, 1984) (the circle avoidance problem of Fig. 3 is 
that of parking circles with centers in uncovered areas until the unit square is 
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covered, and is closely related to the circle parking problem). Thus, the rejection 
method of Ripley (1979) for the circle parking problem, which is nothing but the grid 
method with one giant grid rectangle, suffers from the same drawbacks as the grid 
method in the car parking problem. There are several possible cures. Green and 
Sibson (1978) and Lotwick (1984) for example zoom in on the good areas in parking 
problems by using Dirichlet tessellations. Another possibility is to use a search tree. 
In the car parking problem, the search tree can be defined very simply as follows: the 
tree is binary; every internal node corresponds to a parked car, and every terminal 
node corresponds to a free interval, i.e. an interval in which we are allowed to park. 
Some parked cars may not be represented at all. The information in one internal 
node consists of: 

p~: the total amount of free space to the left of the car for that node; 

Pr: the total amount of free space to the right of the car. 

For  a terminal node, we store the endpoints of the interval for that node. To park a 
car, no rejection is used at all. Just travel down the tree taking left turns with 
probability equal to pz/(p~ + pr), and right turns otherwise, until a terminal node is 
reached. This can be done by using one uniform random variate for each internal 
node, or by reusing (milking) one uniform random variate time and again. When a 
terminal node is reached, a car is parked, i.e. the midpoint of the car is put uniformly 
on the interval in question. This car will cause one of three situations to occur: 

1. The interval of length 2 centered at the midpoint of the car covers the entire 
original interval. 

2. The interval of length 2 centered at the midpoint of the car forces the original 
interval to shrink. 

3. The interval of length 2 centered at the midpoint of the car splits the original 
interval in two intervals, separated by the parked car. 

In case 1, the terminal node is deleted, and the sibling terminal node is deleted too by 
moving it up to its parent node. In case 2, the structure of the tree is unaltered. In 
case 3, the terminal node becomes an internal node, and two new terminal nodes are 
added. In all cases, the internal nodes on the path from the root to the terminal node 
in question need to be updated. It  can be shown that the expected time needed in the 
simulation is O (L log (L)) as L--, oo. Intuitively, this can be seen as follows: the tree 
has initially one node, the root. At the end, it has no nodes. In between, the tree 
grows and shrinks, but can never have more than L internal nodes. It is known that 
the random binary search tree has expected depth O (log (L)) when there are L nodes, 
so that, even though our tree is not distributed as a random binary search tree, it 
comes as no surprise that the expected time per car parked is bounded from above by 
a constant time log(L). We will report on the properties of the car parking tree 
elsewhere. 
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4. Fast Random Variate Generators 

It is known that when (X, U) is uniformly distributed under the curve of a density j ;  
then X has density f .  This could be a density in R d, but we will only consider d = 1 
here. All of our presentation can be extended to R a. Assume that f is a density 
on [0, 1], bounded by M. The interval [0, 1] is divided into N 1 equal intervals, and 
the interval [0, M] for the y-direction is divided into N2 equal intervals. Then, a 
directory is set up with k good rectangles (those completely under the curve off),  and 
1 bad rectangles. For all rectangles, we store an integer i which indicaters that the 
rectangle has x-coordinates [i i§ 

NI' N, / 
Thus, i ranges from 0 to Na - 1. In addition, for the bad rectangles, we need to store a 
second integer j indicating that the y coordinates are 

J , M J + I ~  

Thus, 0 < j  < N 2. It is worth repeating the algorithm now, because we can re-use 
some uniform random variates. 

Generator for Density f on [0, 1] Bounded by M 

(NOTE: D [ 1 ] , . . . , D [ k + l ]  is a directory of integer-valued x-coordinates, and 
Y [ k + l ]  . . . . .  Y[k+l] is a directory of integer-valued y-coordinates for the bad 
rectangles.) 
REPEAT 

Generate a uniform [-0, 1] random variate U. 
Z ~ [ ( k +  l)UJ (Z chooses a random element in D) 
A ~(k  + l) U - Z (A is again uniform [0, 1]) 

D [Z] 
X ~  +A 

N1 
Accept ~ [Z < k] 
IF NOT Accept T H E N  

Generate a uniform [0, 1] random variate V. 
Accept ~- [ M ( Y[ Z] + V) < f ( X) N2] 

UNTIL  Accept 
RETURN X 

This algorithm uses only one table-look-up and one uniform random variate most of 
the time. It should be obvious that more can be gained if we replace the D [/]entries 
by 

D [i] 

N1 ' 

and that in most high level languages we should just return from inside the loop. The 
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awkward structured exit was added for readability. Note further that in the 
algorithm, it is unimportant whether f is used or cf where c is a convenient constant. 
Usually, one might want to choose c in such a way that an annoying normalization 
constant cancels out. 

In Fig. 4, a 31 by 19 grid is used for a jagged density: 377 cells are stored, of which 
more than 78~o are good cells, i.e. cells for which one table look-up is all that is 
needed. 

Fig. 4. 31 by 19 grid for density. 81 bad rectangles (white); 296 good rectangles (gray); 212 useless 
rectangles (black); probability of immediate acceptance is 296/377 =0.7851 ...; storage: 377 cells 

When f is nonincreasing (an important special case), the set-up is facilitated. It 
becomes trivial to decide quickly whether a rectangle is good, bad or useless. Notice 
that when f is in a black box, we will not be able to declare a particular rectangle 
good or useless in our lifetime, and thus all rectangles must be classified as bad. This 
will of course slow down the expected time quite a bit. Still, for nonincreasing f ,  the 
number of bad rectangles cannot exceed N 1 + N2. Thus, noting that the area of a grid 

M 
rectangle is - - ,  we observe that the expected number of iterations does not exceed 

n 

N1 +N2 
I + M - -  

Taking N1 = Nz = ~ffn, we note that the bound is 

1 + O  . 

6 Computing 37/1 
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We can adjust n to off-set large values of M, the bound onf .  The expected number of 
computations of f for monotone densities does not exceed 

l / ( k+l )M'~  1M M ( N I + N 2 )  

k + l  n n - n 

For unimodal densities, a similar discussion can be given. Note that in the case of a 
monotone or unimodal density, the set-up of the directory can be automated. 

It is also important to prove that as the grid becomes finer, the expected number of 
iterations tends to 1. This is done below. 

Theorem 3: 

For all Riemann integrable densities f on [0, 1] bounded by M, we have, as 
inf(N1, N2)--+ 0% the expected number of iterations, 

M 
(k + l) - -  

n 

tends to 1. The expected number of evaluations o f f  is o (1). 

Proof of Theorem 3" 

Given an n-grid, we can construct two estimates of ~ f ,  

N I - 1  1 

i = 0  

and 

N1 1 1 

N1 i = 0  

sup f (x), 
i i+1  

< x <  
N 1 -  _ N: 

inf f (x) .  
i i+1  

- - < x <  
N z -  _ N1 

By the definition of Riemann integrability (Whittaker and Watson, 1927, p. 63), 
these tend to ~ f as N I ~  c~. Thus, the difference between the estimates tends to 0. 
But, by a simple geometrical argument, it is seen that the area taken by the bad 
rectangles is at most this difference plus 2 N1 times the area of one grid rectangle, 
that is, 

2 M  
o(1)+ =o(1).  

N2 

Densities that are bounded and not Riemann integrable are somehow peculiar, and 
less interesting in practice. Let us close this section by noting that extra savings in 
space can be obtained by grouping rectangles in groups of size m, and putting the 
groups in an auxiliary directory. If we can do this in such a way that many groups are 
homogeneous (all rectangles in it have the same value for D [-i] and are all good), 
then the corresponding rectangles in the directory can be discarded. This, of course, 
is the sort of savings advocated in the multiple table look-up method of Marsaglia 
(1963). The price paid for this is an extra comparison needed to examine the 
auxiliary directory first. 
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A final remark is in order about the space-time trade-off. The storage requirements 

are for at most N1 + N2 bad rectangles and ~ good rectangles when f i s  monotone. 

The bound on the expected number of iterations on the other hand is 

M 
1 + - -  (N 1 + N2). 

n 

If N a =N2 = l /n ,  then keeping the storage fixed shows that the expected time 
increases in proportion to M. The same rate of increase, albeit with a different 
constant, can be observed for the ordinary rejection method with a rectangular 
dominating curve. If we keep the expected time fixed, then the storage increases 

in proportion to M. The product of storage (1 + 2 M / ~ )  and expected time 

(2 ]/n + n/M) is 4 ] /n + n/M + 4 M. This product is minimal for n = 1, M = 1~/2, and 
the minimal value is 8. Also, the fact that storage times expected time is at least 4 M 
shows that there is no hope of obtaining a cheap generator when M is large. This is 
not unexpected since no conditions on f besides the monotonicity are imposed. It is 
well-known for example that for specific classes of monotone or unimodal densities 
(such as all beta or gamma densities), algorithms exist which have uniformly 
bounded (in M) expected time and storage. On the other hand, table look-up is so 
fast that grid methods may well outperform standard rejection methods for many 
well known densities. 
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