
Computing 37, 7l - 84 (1986) Computing
�9 by Springer-Verlag 1986

Grid Methods in Simulation and Random Variate Generation

L. Devroye, Montreal

Received July 1, 1985

Abstract - - Zusammenfassung

Grid Methods in Simulation and Random Variate Generation. Points can be generated uniformly in a
compact set A of R d by constructing a fine rectangular grid covering A, selecting a grid rectangle, and
performing an acceptance test if the rectangle in question is not entirely contained in A. For very fine
grids, the acceptance test is needed with very small probability. We look at the storage requirements and
expected time performance of this method, and apply it in avoidance problems and in the design of fast
generators for random variates with a bounded density on [0, 1].

Gittermethoden fiir Simulation und Erzeugung yon Zufallsveriinderlichen. Punkte, die in einer komplexen
Teilmenge A yon R d gleich verteilt sind, k6nnen auf folgende Weise erzeugt werden : Wir tiberdecken A
mit einem engmaschigen Rechteckgitter und fiihren einen Annahmetest aus, wenn das betrachtete
Rechteck nicht zur G/inze in A enthalten ist. Ftir sehr engmaschige Giner wird dieser Annahmetest mit
sehr kleiner Wahrscheinlichkeit aufgerufen. Wir untersuchen den Speicherbedarf und die mittlere
Zeitkomplexit~t dieser Methode und wenden das Verfahren auf Probleme mit verbotenen Teilmengen
und auf schnelle Generatoren for Zufallsverfinderliche mit beschr~inkter Dichte in [0, I] an.

1. Introduction

Grids of equi-sized rectangles have a variety of uses as a data structure. They are a
valuable tool in data manipulation (bucket sorting and searching), in large volume
storage problems (storage of large data bases, storage of satellite picture data), and
in operations research (approximate solutions of difficult problems such as the
travelling salesman problem can be obtained by a grid method). In this paper, we
would like to indicate the value of the grid structure in random variate generation
and simulation. Some of the material is not new. What is important is the connection
between the performance of a certain algorithm in terms of time and space
requirements versus the size of the grid. We will give valuable rules for selecting the
grid size as a function of certain performance characteristics. In some cases, such as
simulation of the car parking problem, it is shown that the grid method is simply not
a good choice. In general however, grid methods are very fast, and the performance

72 L. Devroye:

improves with increasing size of the grid. We will consider three prototype
problems:

1. Generating a point uniformly in a compact set A of R d.
2. Avoidance problems.
3. Non-uniform random variate generation.

It is perhaps helpful to collect most of the important symbols in a short list for easy
reference:

A compact set of R d
/-/ hyperrectangle of R d
C grid
Cn grid of size n
D directory
k number of good rectangles in directory
1 number of bad rectangles in directory
N~ number of grid intervals for i-th coordinate axis
f density
M bound on dens i ty f
Z random integer (usually on 1,..., k+l)
X random variable (usually possessing a density)

2. Generating a Point Uniformly in a Compact Set

Let us enclose the compact set A ofR e by a hyperrectangle H with sides ha, h2,..., hd.
hi

Divide each side up into equal intervals, N~ intervals of length - - for side h~. Now,
N;

there are three types of grid rectangles, the good rectangles (entirely contained in A),
the bad rectangles (those partially overlapping with A), and the useless rectangles
(those entirely outside A). Before we start generating, we need to set up an array of
addresses of rectangles, which we shall call a directory. For the time being, we can
think of an address of a rectangle as the coordinates of its leftmost vertex (in all
directions). The directory (called D) is such that in positions 1 through k we have
good rectangles, and in positions k + 1 through k + l, we have bad rectangles. Useless
rectangles are not represented in the array. Then, the informal algorithm for
generating a uniformly distributed point in A is as follows:

REPEAT
Generate an integer Z uniformly distributed in 1,2 k + 1.
Generate X uniformly in rectangle D [Z] (D [Z] contains
rectangle Z).
Accept ~ I-Z_< k] (Accept is a boolean variable.)
IF NOT Accept THEN Accept +- [X ~ A].

UNTIL Accept
RETURN X

the address of

Grid Methods in Simulation and Random Variate Generation

See Fig. 1 for an example of a grid and corresponding directory in R z.

73

\

a)

. ' " ~ ~ ~:!~'~ ; ~ ~ N , : ~ , ~ . { , : ' . ~ ? : , ~ ' ~

h)

Fig. 1. a) Good rectangles in black; bad rectangles in white; useless rectangles (not stored) in gray.
b) Directory of Addresses: 5 good rectangles (black); 35 bad rectangles (white); 48 useless rectangles

shown in gray need not be stored

The expected number of i terations is equal to

area (C)

area (A)

where C is the union of the good and bad rectangles (if the useless rectangles are not
discarded, then C =/-/). If the area of one rectangle is a, then area (C) = a (k + 1). For
most bounded sets A, this can be made to go to 1 as the grid becomes finer. Tha t this
is not always the case follows from this simple example: let A be [0, 1] d union all the
rat ional vectors in [1 ,2] d. Since the rat ionals are dense in the real line, any grid cover
of A must necessarily cover [0, 1] d and [0, 21 d, so that the ratio of the areas is always
at least 2 d. For tunate ly , for all compac t (i.e., closed and bounded) sets A, the given
rat io of areas tends to one as the grid becomes finer (see Theorem 1).

74 L. Devroye:

The speed of the algorithm follows from the fact that when a good rectangle is
chosen, no boundary checking needs to be done. Also, there are many more good
rectangles than bad rectangles, so that the contribution to the expected time from
boundary checking is small. Of course, we must in any case look up an entry in a
directory. This is reminiscent of the urn or table look-up method and its
modifications (such as the alias method (Walker, 1977) and the alias-urn method
(Peterson and Kronmal, 1982)). Finer grids give faster generators but require also
more space.

One of the measures of the efficiency of the algorithm is the expected number of
iterations. We must make sure that as we let the grid become finer and finer, this
expected number tends to one.

T h e o r e m 1 :

Let A be a compact set o f nonzero area (Lebesgue measure), and let us consider a
sequence of grids G1, G2, ... which is such that as n ~ o% the diameter of the prototype
grid rectangle tends to O. I f C, is the 9rid cover o f A defined by G,, then the ratio

area(C,,)

area (A)
tends to 1 as n ~ o e

Proof of Theorem 1

Let H be an open rectangle covering A, and let B be the intersection of H with the
complement of A. Then, B is open. Thus, for every x e B, we know that the grid
rectangle in G, to which it belongs is entirely contained in B for all n large enough.
Thus, by the Lebesgue dominated convergence theorem, the Lebesgue measure of
the "useless" rectangles tends to the Lebesgue measure of B. But then, the Lebesgue
measure of C, must tend to the Lebesgue measure of A.

The directory itself can be constructed as follows: define a large enough array (of size
n = N1 Nz ... Nd), initially unused, and keep two stack pointers, one for a top stack
growing from position 1 down, and a bottom stack pointer growing from the last
position up. Thus, the two stacks are tied down at the ends of the array and grow
towards each other. Travel from grid rectangle to grid rectangle, identify the type of
rectangle, and push the address onto the top stack when it corresponds to a good
rectangle, and onto the bottom stack when we have a bad rectangle. Useless
rectangles are ignored. After this, the array is partially full, and we can move the
bottom stack up to fill positions k+ 1 through k+l . If the number of useless
rectangles is expected to be unreasonably large, then the stacks should first be
implemented as linked lists and at the end copied to the directory of size k + I. In any
case, the preprocessing step takes time equal to n, the cardinality of the grid.

It is important to obtain a good estimate of the size of the directory. We must have

area (A) area (A)
k+l>_ n.

a area (H)

Grid Methods in Simulation and Random Variate Generation 75

We know from Theorem 1 and the fact that area (C,) = (k + l) a, that

k + 1 area (A)
lim
, ~ n area(H) '

provided that as n ~ , we make sure that in fNi~oo (this will insure that the
i

diameter of the prototype rectangle tends to 0). Upper bounds on the size of the
directory are harder to come by in general. Let us consider a few special cases in the
plane, to illustrate some arguments. If A is a convex set for example, then we can
look at all N1 columns and N 2 rows in the grid, and mark the extremal bad
rectangles on either side, together with their immediate neighbors on the inside.
Thus, in each row and column, we are putting at most 4 marks. Our claim is that
unmarked rectangles are either useless or good. For ifa bad rectangle is not marked,
then it has at least two neighbors due north, south, east and west that are marked. By
the convexity of A, it is physically impossible that this rectangle is not completely
contained in A. Thus, the number of bad rectangles is at most 4 (N 1 + N2). Therefore,

area (A)
k+l<_n - - t-4 (N 1 + N 2) .

area(H)

If A consists of a union of K convex sets, then a very crude bound for k + l could be
obtained by replacing 4 by 4 K (just repeat the marking procedure for each convex
set). We summarize:

Theorem 2:

The size o f the directory is k + l, where

area(A) k + l
- - <

a r e a (H) - n

area (A)

area (H) "

The asymptotic result is valid whenever the diameter o f the grid rectangle tends to O.
For convex sets A on R 2, we also have the upper bound

k + l a r e a (A) .N 1 + N 2
< t-4

n - area(H) N1 N2

We are left now with the choice of the NTs. In the example of a convex set in the
plane, the expected number of iterations is

(k + l) a area (H) 4
< 1 § - - (N1 + N2).

area(A) - area(A) n

The upper bound is minimal for N1 = N2 =] ~ (assume for the sake of convenience
that n is a perfect square). Thus, the expected number of iterations does not exceed

area(H) 8

areaIX)

76 L. Devroye:

This is of the form
constant

1-4

where n is the cardinality of the enclosing grid. By controlling n, we can now control
the expected time taken by the algorithm. Note that the algorithm is fast if we can
avoid the bad rectangles very often. It is easy to see that the expected number of
inspections of bad rectangles before halting is the expected number of iterations
times

1

k + l '

which is equal to
I area (H) 1

o(1) since ~ 0
n area (A) n

(as a consequence of Theorem 1). Thus, asymptotically, we spend a negligible
fraction of time inspecting bad rectangles. In fact, using the special example of a

convex set in the plane with N 1 = N2 = ~/~, we see that the expected number of bad
rectangle inspections is not greater than

area(H) 8

area(A)] / n '

3. Avoidance Problems

In some simulations, usually with geometric implications, one is asked to generate
points uniformly in a set A but not in w A i where the A/s are given sets of R ~. For
example, when one simulates the random parking process (cars of length one park at
random in a street of length L + 1 but should avoid each other), it is important to
generate points uniformly in [0, L] minus the union of some intervals of the same
length.

Fig. 2. Car parking problem: there is no room left on this street

Towards the end of one simulation run, when the street fills up, it is not feasible to
keep generating new points until one falls in a good spot. Here a grid structure will
be useful. In two dimensions, similar problems occur: for example, the circle
avoidance problem is concerned with the generation of uniform points in a circle

Grid Methods in Simulation and Random Variate Generation 77

given that the point cannot belong to any of a given number of circles (usually, but
not necessarily, having the same radius). See Fig. 3.

Fig. 3. Circle avoidance problem: generate a point uniformly in the gray area

We could use the grid method in all these cases, but there is an additional ingredient
because our problems are dynamic, and we cannot afford to recompute the directory
each time. Thus, we also need a fast method for updating the directory. For this, we
will employ a dual data structure (see e.g. Aho, Hopcroft and Ullman, 1983). The
operations that we are interested in are "Select a random rectangle from among the
good and bad rectangles", and "Update the directory" (which involves changing the
status of good or bad rectangles to bad or useless rectangles, because the avoidance
region grows continuously). Also, for reasons explained above, we would like to keep
the good rectangles together. Assume that we have a d-dimensional table for the
rectangles containing three pieces of information:

(i) The coordinates of the rectangle (usually of vector of integers, one per
coordinate).

(ii) The status of the rectangle (good, bad or useless).

(iii) The position of the rectangle in the directory (this is called a pointer to the
directory).

The directory is as before, except that it will with time shrink in size as more and
more rectangles are declared useless. The update operation involves changing the
status of a number of rectangles (for example, if a new circle to be avoided is added,
then all the rectangles entirely within that circle are declared useless, and those that
straddle the boundary are declared bad). Since we would like to keep the time of the
update down to the number of cells involved times a constant, it is obvious that we
will have to reorganize the directory. Let us use two lists again, a list of good

78 L. Devroye:

rectangles tie&down at i and with top at k, and a list of bad rectangles tied down at n
and with top at n - l + 1 (it has 1 elements). There are three situations:

(A) A good rectangle become bad: transfer from one list to the ohter. Fill the hole in
the good list by filling it with the top element. Update k and l.

(B) A good or bad rectangle becomes useless: remove the element from the
appropriate list, and fill the hole as in case (A). Update k or I.

(C) A bad rectangle remains bad: ignore this case.

For generation, there is only a problem when Z > k: when this happens, replace Z by
Z + n - 1 - k, and proceed as before. This replacement makes us jump to the end of
the directory.

Let us turn now to the car parking problem, to see why the grid structure is to be
used with care, if at all, in avoidance problems. At first, one might be tempted to
think that for fine enough grids, the performance is excellent. Also, the number of
cars (N) that are eventually parked on the street cannot exceed L, the length of the
street. In fact, E(N),,~2L as L--, oo where

_2 i (1 e-~)/udu
2= e ~ d t=0 .748 . . .

0

(see e.g. Renyi (1958), Dvoretzky and Robbins (1964) or Mannion (1964)). What
determines the time of the simulation run is of course the number of uniform [-0, 1]
random variates needed in the process. Let E be the event

[Car 1 does not intersect [0, 1]].

Let T be the time (number of uniforms) needed before we can park a car to the left of
the first car. This is infinite on the complement of E, so we will only consider E. The
expected time of the entire simulation is at least equal to P (E) E (TJ E). Clearly,
P (E) = (L - 1)/L is positive for all L > 1. We will show that E (TI E) = o% which leads
us to the conclusion that for all L > 1, and for all grid sizes n, the expected number of
uniform random variates needed is oo. Recall however that the actual simulation
time is finite with probability one.

Let W be the position of the leftmost end of the first car. Then

L L dt
E (T I E) = L ~ ! E(TI W = t) ~

L ~+~ dt
> - S E(TI W=t)
- L - 1 1 L

1 1+~ 1
>-- (d t = oo.

L - 1 t - 1

Similar distressing results are true for d-dimensional generalizations of the car
parking problem, such as the hyperrectangle parking problem, or the problem of
parking circles in the plane (Lotwick, 1984) (the circle avoidance problem of Fig. 3 is
that of parking circles with centers in uncovered areas until the unit square is

Grid Methods in Simulation and Random Variate Generation 79

covered, and is closely related to the circle parking problem). Thus, the rejection
method of Ripley (1979) for the circle parking problem, which is nothing but the grid
method with one giant grid rectangle, suffers from the same drawbacks as the grid
method in the car parking problem. There are several possible cures. Green and
Sibson (1978) and Lotwick (1984) for example zoom in on the good areas in parking
problems by using Dirichlet tessellations. Another possibility is to use a search tree.
In the car parking problem, the search tree can be defined very simply as follows: the
tree is binary; every internal node corresponds to a parked car, and every terminal
node corresponds to a free interval, i.e. an interval in which we are allowed to park.
Some parked cars may not be represented at all. The information in one internal
node consists of:

p~: the total amount of free space to the left of the car for that node;

Pr: the total amount of free space to the right of the car.

For a terminal node, we store the endpoints of the interval for that node. To park a
car, no rejection is used at all. Just travel down the tree taking left turns with
probability equal to pz/(p~ + pr), and right turns otherwise, until a terminal node is
reached. This can be done by using one uniform random variate for each internal
node, or by reusing (milking) one uniform random variate time and again. When a
terminal node is reached, a car is parked, i.e. the midpoint of the car is put uniformly
on the interval in question. This car will cause one of three situations to occur:

1. The interval of length 2 centered at the midpoint of the car covers the entire
original interval.

2. The interval of length 2 centered at the midpoint of the car forces the original
interval to shrink.

3. The interval of length 2 centered at the midpoint of the car splits the original
interval in two intervals, separated by the parked car.

In case 1, the terminal node is deleted, and the sibling terminal node is deleted too by
moving it up to its parent node. In case 2, the structure of the tree is unaltered. In
case 3, the terminal node becomes an internal node, and two new terminal nodes are
added. In all cases, the internal nodes on the path from the root to the terminal node
in question need to be updated. It can be shown that the expected time needed in the
simulation is O (L log (L)) as L--, oo. Intuitively, this can be seen as follows: the tree
has initially one node, the root. At the end, it has no nodes. In between, the tree
grows and shrinks, but can never have more than L internal nodes. It is known that
the random binary search tree has expected depth O (log (L)) when there are L nodes,
so that, even though our tree is not distributed as a random binary search tree, it
comes as no surprise that the expected time per car parked is bounded from above by
a constant time log(L). We will report on the properties of the car parking tree
elsewhere.

80 L. Devroye:

4. Fast Random Variate Generators

It is known that when (X, U) is uniformly distributed under the curve of a density j ;
then X has density f . This could be a density in R d, but we will only consider d = 1
here. All of our presentation can be extended to R a. Assume that f is a density
on [0, 1], bounded by M. The interval [0, 1] is divided into N 1 equal intervals, and
the interval [0, M] for the y-direction is divided into N2 equal intervals. Then, a
directory is set up with k good rectangles (those completely under the curve off), and
1 bad rectangles. For all rectangles, we store an integer i which indicaters that the
rectangle has x-coordinates [i i§

NI' N, /
Thus, i ranges from 0 to Na - 1. In addition, for the bad rectangles, we need to store a
second integer j indicating that the y coordinates are

J , M J + I ~

Thus, 0 < j < N 2. It is worth repeating the algorithm now, because we can re-use
some uniform random variates.

Generator for Density f on [0, 1] Bounded by M

(NOTE: D [1] , . . . , D [k + l] is a directory of integer-valued x-coordinates, and
Y [k + l] Y[k+l] is a directory of integer-valued y-coordinates for the bad
rectangles.)
REPEAT

Generate a uniform [-0, 1] random variate U.
Z ~ [(k + l)UJ (Z chooses a random element in D)
A ~(k + l) U - Z (A is again uniform [0, 1])

D [Z]
X ~ +A

N1
Accept ~ [Z < k]
IF NOT Accept T H E N

Generate a uniform [0, 1] random variate V.
Accept ~- [M (Y[Z] + V) < f (X) N2]

UNTIL Accept
RETURN X

This algorithm uses only one table-look-up and one uniform random variate most of
the time. It should be obvious that more can be gained if we replace the D [/]entries
by

D [i]

N1 '

and that in most high level languages we should just return from inside the loop. The

Grid Methods in Simulation and Random Variate Generation 81

awkward structured exit was added for readability. Note further that in the
algorithm, it is unimportant whether f is used or cf where c is a convenient constant.
Usually, one might want to choose c in such a way that an annoying normalization
constant cancels out.

In Fig. 4, a 31 by 19 grid is used for a jagged density: 377 cells are stored, of which
more than 78~o are good cells, i.e. cells for which one table look-up is all that is
needed.

Fig. 4. 31 by 19 grid for density. 81 bad rectangles (white); 296 good rectangles (gray); 212 useless
rectangles (black); probability of immediate acceptance is 296/377 =0.7851 ...; storage: 377 cells

When f is nonincreasing (an important special case), the set-up is facilitated. It
becomes trivial to decide quickly whether a rectangle is good, bad or useless. Notice
that when f is in a black box, we will not be able to declare a particular rectangle
good or useless in our lifetime, and thus all rectangles must be classified as bad. This
will of course slow down the expected time quite a bit. Still, for nonincreasing f , the
number of bad rectangles cannot exceed N 1 + N2. Thus, noting that the area of a grid

M
rectangle is - - , we observe that the expected number of iterations does not exceed

n

N1 +N2
I + M - -

Taking N1 = Nz = ~ffn, we note that the bound is

1 + O .

6 Computing 37/1

82 L. Devroye:

We can adjust n to off-set large values of M, the bound onf . The expected number of
computations of f for monotone densities does not exceed

l / (k+l)M'~ 1M M (N I + N 2)

k + l n n - n

For unimodal densities, a similar discussion can be given. Note that in the case of a
monotone or unimodal density, the set-up of the directory can be automated.

It is also important to prove that as the grid becomes finer, the expected number of
iterations tends to 1. This is done below.

Theorem 3:

For all Riemann integrable densities f on [0, 1] bounded by M, we have, as
inf(N1, N2)--+ 0% the expected number of iterations,

M
(k + l) - -

n

tends to 1. The expected number of evaluations o f f is o (1).

Proof of Theorem 3"

Given an n-grid, we can construct two estimates of ~ f ,

N I - 1 1

i = 0

and

N1 1 1

N1 i = 0

sup f (x),
i i+1

< x <
N 1 - _ N:

inf f (x) .
i i+1

- - < x <
N z - _ N1

By the definition of Riemann integrability (Whittaker and Watson, 1927, p. 63),
these tend to ~ f as N I ~ c~. Thus, the difference between the estimates tends to 0.
But, by a simple geometrical argument, it is seen that the area taken by the bad
rectangles is at most this difference plus 2 N1 times the area of one grid rectangle,
that is,

2 M
o(1)+ =o(1).

N2

Densities that are bounded and not Riemann integrable are somehow peculiar, and
less interesting in practice. Let us close this section by noting that extra savings in
space can be obtained by grouping rectangles in groups of size m, and putting the
groups in an auxiliary directory. If we can do this in such a way that many groups are
homogeneous (all rectangles in it have the same value for D [-i] and are all good),
then the corresponding rectangles in the directory can be discarded. This, of course,
is the sort of savings advocated in the multiple table look-up method of Marsaglia
(1963). The price paid for this is an extra comparison needed to examine the
auxiliary directory first.

Grid Methods in Simulation and Random Variate Generation 83

A final remark is in order about the space-time trade-off. The storage requirements

are for at most N1 + N2 bad rectangles and ~ good rectangles when f i s monotone.

The bound on the expected number of iterations on the other hand is

M
1 + - - (N 1 + N2).

n

If N a =N2 = l /n , then keeping the storage fixed shows that the expected time
increases in proportion to M. The same rate of increase, albeit with a different
constant, can be observed for the ordinary rejection method with a rectangular
dominating curve. If we keep the expected time fixed, then the storage increases

in proportion to M. The product of storage (1 + 2 M / ~) and expected time

(2]/n + n/M) is 4] /n + n/M + 4 M. This product is minimal for n = 1, M = 1~/2, and
the minimal value is 8. Also, the fact that storage times expected time is at least 4 M
shows that there is no hope of obtaining a cheap generator when M is large. This is
not unexpected since no conditions on f besides the monotonicity are imposed. It is
well-known for example that for specific classes of monotone or unimodal densities
(such as all beta or gamma densities), algorithms exist which have uniformly
bounded (in M) expected time and storage. On the other hand, table look-up is so
fast that grid methods may well outperform standard rejection methods for many
well known densities.

References

Aho, A. V., Hopcroft, J. E., Ullman, J. D. : Data Structures and Algorithms. Reading, Mass. : Addison-
Wesley 1983.

Chen, H. C., Asau, Y.: On generating random variates from an empirical distribution. AIIE
Transactions 6, 163-166 (1974).

Dvoretzky, A., Robbins, H. : On the parking problem. Publications of the Mathematical Institute of the
Hungarian Academy of Sciences 9, 209-225 (1964).

Lotwick, H. W.: Simulation of some spatial hard core models and the complete packing problem.
Journal of Statistical Computation and SimuIation 15, 295-314 (1982).

Mannion, D. : Random space-filling in one dimension. Publications of the Mathematical Institute of the
Hungarian Academy of Sciences 9, 143-153 (1964).

Marsaglia, G. : Generating discrete random variables in a computer. Communications of the ACM 6,
3 7 - 3 8 (1963).

Neumann, J. von: Various techniques used in connection with random digits. Collected Works, vol. 5,
pp. 768 - 770, Pergamon Press, 1963. Also in: Monte Carlo Method, National Bureau of Standards
Series 12, 3 6 - 3 8 (1951).

Norman, J. E., Cannon, L. E. : A computer program for the generation of random variables from any
discrete distribution. Journai of Statistical Computation and Simulation 1, 3 3 1 - 348 (1972).

Peterson, A. V., KronmaI, R. A. : On mixture methods for the computer generation of random variables.
The American Statistician 36, 184-191 (1982).

Renyi, A. : On a one-dimensional problem concerning random space-filling. Publications of the
Mathematical Institute of the Hungarian Academy of Sciences 3, 109-127 (1958).

Ripley, B. D. : Simulating spatial patterns : dependent samples from a multivariate density. Journal of
the Royal statistical Society, series C 28, 109-112 (1979).

6*

84 L. Devroye: Grid Methods in Simulation and Random Variate Generation

Walker, A. J. : An efficient method for generating discrete random variables with general distributions.
ACM Transactions on Mathematical Software 3, 253-256 (1977).

Whittaker, E. T., Watson, G. N. : A Course of Modern Analysis. Cambridge: Cambridge University
Press 1963.

L. Devroye
McGill University
School of Computer Science
Burnside Hall
805 Sherbrooke Street West
Montreal, PQ, Canada H3A 2K6

