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We analyze the expected time penonnance of two versions of the thinning algorithm of
Lewis and Shedler for generating random variates with a given hazard rate on [0,00). For
thinning with fixed dominating hazard rate g(x) = c for example, it is shown that the
expected number of iterations is cE(X) where X is the random variate tQat is produced.
For DHR distributions, we can use dynamic thinning by adjusting the dominating hazard
rate as we proceed. With the aid of some inequalities., we show that this improves the
penonnance dramatically. For example, the expected number of iterations is bounded by
a constant plus E(log+(h(O)X)) (the logarithmic moment of X).

1. INTRODUCTION

We consider the problem of the computer generation of random variables with given
hazard rate h on [0,00). If X is a random variable with density f and distribution function
F, the hazard rate h and the cumulative hazard rate H are related by:

f(x) (xh(x) = 1 -F(x) , H(x) = Jo h(y)dy = -log(l -F(x)),

F(x) = 1 -e-H(x), f(x) = h(x)e-H(x).

The main principles of random variate generation when f and/or F are given can be
extrapolated to the case that only hand/or H are given. For example, inversion,
composition, and rejection have straightforward generalizations, developed by several
authors. In this article we would like to give some results regarding the expected time
~rformance of these methods, and to discuss a fast method (called dynamic thinning)
for generating random variates with decreasing hazard rate.

1.1. The Inversion Method

FACT: If E is exponentially distributed, then H-'(E) has hazard rate h. Conversely,
if X has hazard rate h, H(X) is exponentially distributed.

I PROOF: If H is strictly increasing,

P(H-l(E) :S x) = P(E :S H(x)) = 1 -e-H(x) = F(x), all x> O.
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If H is not strictly increasing, the chain of equalities remains valid for any way of
defining H-I.

This method was mentioned in the context of nonhomogeneous Poisson point process
simulation by Cinlar [3], Kaminsky, and Rumpf {6] and Lewis and Shedler [8], and
more directly by Gaver [5}.

EXAMPLES: Let a> 0 be a parameter. For the Weibull (a) density axa-le-x' on
[0,00), we have

h(x) = axa-l, H(x) = ,xo.

Thus, Weibull (a) random variates can be obtained as Ella. The Pareto (a) density a/
(I + x)a+ 1 on [0,00) has

h(x) = a/(1 + x), H(x) = a log(l + x),

and random variates can be obtained as exp(E / a) -I. For the power function [or
beta (a, I)] density on [0,1], f(x) = axa-l, we obtain

h(x) = axa-I/(1 -,xo),

and H is easily invertible in the cases a = I (uniform density), and a = 2 (triangular

density).

1.2. The Composition Method

FACT: If h = hI + ...+ hn where hi, I ~ i ~ n, are individual hazard rate

functions, then the random variable

min(X1, ...,Xn)

has hazard rate h when XI, ...,Xn are independent random variables with the given
hazard rates.

PROOF: Since the cumulative hazard rates follow the same decomposition,
H = HI + ...+ Hn, we have for all x,

n n

P(min Xi ~x) = 2: (I -Fi(x» = 2: e-H,{x) = e-H(x),
i~1 i=1

which was to be shown.

We note that composition is usually an expensive operation since the cost incurred
is the sum of the costs for the individual His.

1.3. The Thinning Method

FACT: Assume that h ~ g, where g is another hazard rate on [0,00). If 0 < YI <
Yz < ...ics a nonhomogeneous Poisson point process with rate functiong, and UI,Uz, ...
is a sequence of independent uniform [0,1] random variables, independent of the Yis,
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and if i is the smallest index for which Ujg(YJ .5 f(YJ, then the random variable
X = Yj has hazard rate h.

PROOF: The statement follows from the following facts: (I) the subsequence of
the Yjs for which Ujg(YJ .5 f(Yj) is a nonhomogeneous Poisson point process with
rate function h (see Lewis and Shedler [8]); and (2) the first realization of such a
process is a random variable with hazard rate h.

Lewis and Shedler [7], [9] discuss random variate generation for rate functions of
the form h(x) = exp(ao + a\x + azxZ), and illustrate the methods outlined above.
We note here that the thinning method needs a nonhomogeneous Poisson point process
generator for rate function g. If G is the cumulative rate function corresponding to g,
this can be done as follows: let EI,Ez, ...be independent exponential random vari-
ables, and letZj be the partial sumE\ + ...+ Ej. Then the sequence Yj = G-1(Zj),

1 .5 i, has the property needed for the thinning method.

2. EXPECTED TIME ANALYSIS OF THE THINNING METHOD

THEOREM I: Let N be the number of Yjs needed in the thinning method. Then

E(N) = fo'" g(x)(1 -F(x))dx = fo'" f(x)G(x)dx.

PROOF: Therandomvectors(Y1,U\g(YJ),(Yz,Uzg(Yz)),... form a homogeneous
Poisson process in the area bounded by the y-axis, the x-axis and the curve g. Thus,
if X is the random variate generated by the thinning method, we have

E(N) = f + E(foX (g(y) -h(y))dY) =..1 + EVox g(y)dy) -E(H(X))

= EVox g(y)dy) since H(X) is exponentially distributed

= fo'" f(x)G(x)dx

= fo'" g(x)(1 -F(x))dx by a change of integrals

Because E(N) is a fair measure of the expected time taken to generate a random
variate by the thinning method, the expressions of Theorem I can be used in the design
of the "best" dominating hazard rate g within a class of dominating hazard rates.

The formula for E(N) is very simple for most particular choices for g. For example,
if g(x) = }:7=0 CjXj, we have

n

E(N) = L (Cj/.(i + 1))E(Xj+\).
j=O

Thus, for g(x) = c, the most important dominating hazard rate, we obtain

E(N) = cE(X), I

I

~
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where X is a random variable with density f. To get a feeling for the efficiency of the
thinning method when g is close to h, we offer the following inequalities:

( ) g(x)(1) EN :5 sup-;
x>o h(x)

1 -F(x) h F*. th d.. b . fu . Ii(2) E(N) $ sup were IS e Ism ution nction or g
x>o 1 -F*(x)

Inequality (I) follows fu>m E(N) = fag(x)/h(x)f(x)dx, while (2) follows fu>m E(N) =
fa f*(x) (1 -F(x»/(1 -F*(x»dx where f* is the density corresponding to g.

3. DHR DISTRmUTIONS AND DYNAMIC THINNING

Distributions with decreasing hazard rate (DHR) are necessarily monotone on [0,00)
(because f = he-H, h ! and Hi). For example, the Pareto distribution, or the
Weibull and gamma.distributions with parameter a :5 1 are DHR.

A brute force method based upon the numerical solution of the equation H (X) = E
for X (where E is exponentially distributed) has a particularly elegant implementation
for DHR distributions: indeed, because H is concave (Barlow, Marshall, and Proschan,
[2)), Newton-Raphson iterations started with 0 converge when h(O) < 00:

Y+-O.

E -H(X) .RepeatX+-Y, Y+-X + Until X = Y.
h(X)

This algorithm takes, strictly speaking, infinite time, but will in some cases yield
variates with reasonable accuracy after just a few it~rations.

If a DHR distribution has a bounded density (i.e., f(O) = h(O) < 00), the following
algorithm (called dynamic thinning) can be employed:

(Initialize) T +- O.
(Main body) Repeat Top +- h(T);

Generate E exponential, and Uuniform [0,1],
independent of E;

T +- T + E/Top
Until U.Top:5 h(T).

(Exit) Exit with X +- T.
(

Here the top bound varies dynamically as we progress. t
The method of dynamic thinning is only applicable when h(O) is finite. We should

point out that the general algorithms given in Devroye [4] remain applicable here since
f = h(1 -F) is ! when the distribution has the DHR property (see Barlow and tI
Proschan [1] for more properties). Thus, when h and either For H are given, we can II
handle the case h(O) = 00 as well. tl

The dynamic thinning algorithm can of course be considered as a special case of al
Lewis' and Shedler's thinning algorithm with piecewise constant dominating curve.
Unfortunately, because the dominating curve is not a priori fixed, the analysis of
Theorem 1 is not applicable. In fact, the value of E(N) is a complicated function of
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Id is only explicitly known in a few situations (such as for the exponential or
0 distributions; see Section 4). In Section 4, we will give useful inequalities for

I in terms of simple or easy-to-compute quantities.

4. INEQUALITIES FOR E(N) IN DYNAMIC TWNNING1 

this section we offer upper bounds for E(N) in terms of several quantities related
Ile distribution of X. Each of these bounds has its use, and except for one case, nond 

is inadmissible (i.e., is totally dominated by another bound).
f we were to use standard thinning with constant dominating curve h(O), we wouldam

E(N) = l1. = E(h(O)X).
Ie value for E(N) in dynamic thinning is thus always bounded from above by IJ.. It

also helpful to compare the inequalities against values for E(N) that are exactlytOwn: 
perhaps the two most prominent cases are the exponential distribution (h(x) =

0), all x), in which case dynamic thinning gives us E(N) = 1, and the Pareto (a)

:stribution (h(x) = al(x + 1)), for which

E(N) = V: e~z( 1 + ~)~I dZ)-1see 

Section 4.1 for its derivation).

4.1. A Translation of -h Inequality

THEOREM 2: Let X have a DHR distribution with h(O) < 00. Then

1
E(N ) ~ -

1 -~'

where
~ = sup J~ e-yh(x)(h(X) -h(x + y))dy.

x~o 0

(Note that in any case, ~ E {O,l], and that the right-hand side of the inequality should

be read as "00" when ~ = 1.)
PROOF: Let E1,E2, ...be independent exponential random variables, and defme

the sequence YO,Yj,Y2, ...by the recursive rule: Yo = 0, Yi+1 = Yi + Ei+llh(YJ. \Note that the Yi sequence corresponds to the sequence of values of "T" in the dynamic I

thinning algorithm if the stopping rule were ignored. If we take the stopping rule into

account, we note that for i 2: 1,

~.i

( h(Y) ) \1 P(N> IIYo, ...,YJ = n 1 -~ .

j=1 h(Yj-J ,
II~

---~
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h, and is only explicitly known in a few situations (such as for the exponential or
Pareto distributions; see Section 4). In Section 4, we will give useful inequalities for
E(N) in tenns of simple or easy-to-compute quantities.

4. INEQUALITIES FOR E(N) IN DYNAMIC THINNING

In this section we offer upper bounds for E(N) in tenns of several quantities related
to the distribution of X. Each of these bounds has its use, and except for one case, no
bound is inadmissible (i.e., is totally dominated by another bound).

If we were to use standard thinning with constant dominating curve h(O), we would
obtain

E(N) = IJ. = E(h(O)X).

The value for E(N) in dynamic thinning is thus always bounded from above by IJ.. It
is also helpful to compare the inequalities against values for E(N) that are exactly
known: perhaps the two most prominent cases are the exponential distribution (h(x) =
h(O), all x), in which case dynamic thinning gives us E(N) = 1, and the Pareto (a)
distribution (h(x) = al(x + 1», for which

E(N) = (Jo'" e-z( 1 + ~)~I dZ)-1

(see Section 4..1 for its derivation).

4.1. A Translation of -h Inequality

THEOREM 2: Let X have a OHR distribution with h(O) < 00. Then

1
E(N) :5~,

where

13 = sup r'" e-yh(x)(h(x) -h(x + y»dy.
x~o Jo

(Note that in any case, 13 E [0,1], and that the right-hand side of the inequality should
be read as "00" when 13 = 1.)

PROOF: Let E1,E2, ...be independent exponential random variables, and define
the sequence YO,Y1,Y2, ...by the recursive rule: Yo = 0, Yi+1 = Yi + Ei+llh(Y;).
Note that the Yi sequence corresponds to the sequence of values of "T" in the dynamic
thinning algorithm if the stopping rule were ignored. If we take the stopping rule into
account, we note that for i ;=: 1,

.-i ( -~ )P(N> ,IYo, ...,Y;) -n 1 h( . ) . j=1 Yj-1



286 Naval Research Logistics Quarterly, Vol. 33 (1986)

Thus, for i ~ 2,

P(N> i]Yo, ...,Yi-J
i-I ( h(Y,) )i ~ = n 1 ---L- e-Yh(Yi-J(h(Yi-J -h(Yi-1 + y»dy

j=1 h(Yj-J 0
i-I ( h(Y,)):5 ~ n -1 -~ ,

j=1 h(Yj-J

and we obtain, by a simple induction argument on i, thatP(N > i) :5 ~j, i ~ O. Thus,
~ 1

E(N) = 2 P(N > i) :5 -.
j=O 1 -~

This concludes the proof of Theorem 2.

EXAMPLE: The Pareto (a) distribution. When h(x) = a/(1 + x), a > 0, we note
that the integral in the definition of ~ is independent of x:

J e-Ya/(I+X)( ~ -a )dYl+x l+x+y

= Je-z(i- (1 + ~)-I)dZ (byatrariSfOrmatiOnz = ~).

Thus, by carefully checking the induction argument in the proof of Theorem 2, we
note that

P(N > i) = ~j, i ~ 0,

and

E(N) = (Jo~ e-z( 1 + ~)-ldZ )-1 = ~,

where

~ = 1 -i~ e-z( 1 +,~)-ldZ.

Thus, the bound in Theorem 2 is sharp for all values of ~. In the case of the Pareto
(a) distribution, a comparison with standard thinning [with constant dominating curve
at h(O)] is in order. We have the following chain of inequalities:

E(N) = (i~ e-z( 1 + ~)-ldZ )-1

:5 7 (use Jensen's inequality, after noting that (I' + ~)-I is convex in z)

a
< -(for all a > 1)

a-I
= ~ = E(h(O)X) (the expected number of iterations for thinning with constant

dominating curve).
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For 0 < a ::; 1, the comparison is even more dramatic, since IJ. = oo! We can put the
expected time performance of the dynamic thinning algorithm differently: for the Pareto
distribution with mean IJ. (note: IJ. = a/a -1), we have:

sup E(N)::; 2.
mean.,.<"'

EXAMPLE: The exponential distribution. Our bound is sharp too for the expo-
nential distribution h(x) = h(O), since ~ = 0, and thus E(N) = 1.

4.2. A Ratio-of-h Inequality

THEOREM 3: Let X have a DHR distribution with h(O) < 00. Then

e
E(N ) ::; -

'Ye -1 '

and, when h is convex,

E(N) ::; 'Y,

where

h(x)'Y = sup .
x;"o ( 1)hx+h(:;5 I

PROOF: The inequalities can be obtained by bounding ~, defined in Theorem 2,
from above. Let c E R be a constant, and let x be fixed. Then

,
i

I1"' f 1Clh(X) i

e-yh(x)(h(x) -h(x + Y»dy ::; + i
0 y>clh(x) 0 !

f "' rClh(x) ::; C e-zdz + Jo e-yh(x)(h(x) -h(x + c/ h(x»)dy

== e-c + (1 -eCC)( 1 -h( x + ~) / h(x) )

= 1 -(1 -e-C)h(x + ~) / h(x).

The flfst inequality follows upon taking c = 1. The second inequality follows by a
straightforward application of Jensen's inequality:

r"' e-Yh(x)h(x)(1 -h(x + Y»)dy
Jo h(x)

::; 1 -~ h( X + r"' e-Yh(X)h(x)y dY
)h(x) Jo

= 1 -~h(X+ ~).

This concludes the proof of Theorem 3.
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EXAMPLES: For the convex hazard rate h(x) = a/(1 + i-b), 0 < b ~ 1, a > 0,

we obtain with a little work, the inequality

E(N) ~ 'Y = 1 + a-b.

For the Pareto (a) distribution, this yields a bound already obtained in Section 4.1 (set
b = 1). We also note that for the exponential distribution, the inequality is sharp,
since E(N) = 'Y = 1.

The in~uality of Theorem 3 is always weaker than or ~ual to the inequality of
Theorem 2, but the parameter'Y has the advantage that it is in most cases much easier
to evaluate, numerically and analytically, than 13.

4.3. A Moment Inequality

Theorems 2 and 3 do not directly show what the relation is between the tail of X
(as measured for example by the moments of X) and E(N). Since standard thinning
has the property that E(N) = IJ. = E(h(O)X) when a constant dominating curve is

used for a DHR distribution we expect that there should be inequalities linking E(N)
for dynamic thinning and IJ., that improve over E(N) ~ IJ.. Without attempting to obtain
a "sharp" in~uality, we are able to show that E(N) cannot increase faster than YIJ.:

THEOREM 4: Let X have a DHR distribution with H(O) < 00. Then

E(N) ~ Min(IJ.,(81J.)I/Z + 4(81J.) 1/4),

where

IJ. = E(h(O)X)

(note that IJ. ~ 1 in all cases).
The proof is based upon the following Lemma:

LEMMA I: Let x E R, p > 2, and mE {O,l, ...,n}. Then

P(N> n) ~ P(X > x) + h(O)x/pn-m + (I -~)m, all n > O.

PROOF OF LEMMA 1: Let U1,UZ, ...be independent uniform [0,1] random
variables, and let EI,Ez, ...be independent exponential random variables. Set Y1 -
EI/h(O), ..., Yn+1 -Yn + En+l/h(Yn). LetX = YN be the f11'St Y; for which h(Yi-JUi ~

h(YJ. Clearly, X is a random variable with density f and hazard rate h obtained by
dynamic thinning. Let Yo be O. Then, if

n

Nz = L Ih(Yu>h(Yi-J'P (lis the indicator function),
;=1

and
n

N1 = L Ih(Yush(Yi-JIP'
i=1

then we can write the following inclusion of events:

[N> n] ~ [X> x] U [X ~ x,N1 ~ 1{ -m,N> n] U [Nz ~ m,N >n].
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Now,

P(X :5 x,N1 ?; n -m,N> n) :5 P(E1/(h(O)/pn-m) :5 x)

:5 h(O)x/pn-m,

and

P(N2?; m,N > n) :5 P(N > n1N2?; m) :5 (1 -~)m.

PROOF OF THEOREM 4: In Lemma 1, we will take xn random, independent of
X, and uniformly distributed on [n/(h(O)C),(n + 1)/(h(O)C)], where C > 0 is a con-
stant to be chosen later. Let p be a constant independent of n, and let m = ceil(n/2),

where ceil(.) is the ceiling function (the smallest integer at least equal to ...). Using
the formula E(N) = ~~=o P(N > n), and using the bound of Lemma 1, averaged over

xn, we obtain

~ ~ f In+ ~o P(X > xn) = ~o n P(Ch(O)X > t)dt

= Jo~P(Ch(O)X > t)dt = CE(h(O)X) = C~.

Also, ( 1).21--~ ( l )m. ~ ( l )j P
L 1 --= 1 + 2 L 1 --= 1+ = 2p -1.
n=O P j=1 P !

p

Finally,
1 ~ (fn+l ) 1 ~ 2n + 1
-L tdt p-(n-m.> = -;- L p-(n-m.>
C n=O n .C n=O 2

1
( 1 35 7 ) 2 ~

= --+ -+ _p-1 + _p-1 + ...= -2: (2n + l)p-n
C 2 2 2 2 C; n=O

2
( 1 ~ ) 2 (( 1) -I 2 ( 1) -2 )= --+ 2 L np-n = -1 --+ -1 --

C 1 n=O C p P P1 --
P

2 ( 1
)( 1) -2 =Cl+p 1-p .

A simple addition of the three terms would give us an inequality to work with, were
it not for the fact that with little extra work, we can obtain a slightly better upper
bound: just use E(N) :5 ~ + ~~=I (P(X > Xn) + h(O)xnp-(n-m.> + (1 -l/p)m.), and
average over xn' This gives, with the estimates computed above,

2 (P(P + 1) 1)E(N) :5 1 + C~ -P(X > Xu) + 2(p -1) + C (p-=-lf -4" .
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But since h(O)X is obviously stochastically greater than an exponential random variate,

we have
P(X > xo) = f: P(Ch(O)X > t)dt ~ f: e-tlCdt

r/C= C Jo e-zdz = C(l -e-I/C) ~ 1 -1/(2C).

Thus, we obtain
E(N) $ C.-. + 2(p -1) + ~~ ~

C (p -if'

The optimal choice for C is (2p(p + l)/.-.(p -.1f)1/2, which after substitution gives

{j ( + 1)
) 1/2 E(N) $ 2(p -1) + ~\~

p + 1 2~< 2(p -1) + ~ - 1 = 2(p -1) + - 1 + ~.
p- p-

The right-hand side is minimal for p -1 = (8.-.)1/4, and this choice gives the bound

of Theorem 4.
REMARK: By taking p = 3 in the second-to-last inequality of the proof of Theo-

rem 4, we obtain E(N) $ 4 + ~. This bound is better than .-.for all .-.at least
equal to 35. Bounds with different cross-over points can be obtained by using different

values of p in the proof.

4.4. A Logarithmic Moment Inequality
Theorem 4 cannot be used when IJo is infinite. In fact, we can ask under what

conditions E(N) is finite in general. One sufficient condition seems to be the finiteness

of the logarithmic moment of X,

A = E(log+(h(O)X)),

where u+ = max(u,O). We have

THEOREM 5: Let X have a OHR distribution with h(O) < 00. Then

. ( 2A )E(N) $ fif 4p + 2 + --
1 ( 1)p>2 og P -

2A 2A$ 10 + --+ -'"
10g2(1 + A) ( A/2 )10gl+- -

10g2(1 + A)

REMARK: The upper bound of Theorem 5 increases as 2A/log(A) as A -'1' 00. But

because
A = E(log+(h(O)X)) $ E(log(h(O)X + 1)) $ log(l + 1Jo),
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we see that the bound of Theorem 5 increases at worst as 2 log(~)/log log(~) as
~~ 00. This, of course, is a formidable improvement over the asymptotic behavior
of the bound of Theorem 4. We should also note that A is finite for most useful
distributions.

PROOF OF THEOREM 5: In Lemma 1, replace n by 2j, and sum over j. Set
mZj = j, PZj = P > 2, and h(O)xzj = (p -l)i. Since for any random variable Z,
~j=o P(Z > j) ~ 1 + fo P(Z > t)dt = 1 + E(Z+), we see that

00 00( ( l ) j)E(N) ~ 2 L P(N > 2j) ~ 2 L P(h(O)X > (p -1)1 + 2 1 --

)=0 )=0 P

00

= 2 L P(Y/log(p -1) > j) + 4p
j=O

~ 2E(Y)/log(p -1) + 4p + 2,

where Y = log + (h(O)X).

The first inequality is sharpest for the following choice of p : p is the solution of
(p -1) logZ(p -1) = A/2. Because we want p > 2, and because we want a good

choice of p for large values of A, we can use instead the formula

Ap = 2 + 2 logZ(1 + A)'

obtained by functional iteration. Resubstitution yields the desired result.

REMARK: We can push our technique to the limit, and show that the existence
of E(Y/log(1 + Y» implies the finiteness of E(N): in fact, there exists a universal
constant A such that

E(N) ~ A + E( Y (1 + 6log(1 + log(l + Y»

))log(l + Y) log(l + Y)

( Y )~ A + 7E
log(1 + Y)

where Y = log+(h(O)X) (this will be proved below). The following example shows

that the latter bound can be of some use: choose f(x) with a decreasing hazard rate
such that f(x) is asymptotic to (x logZx log log X)-I as x ~ 00. Then, assuming that
h(O) < 00, we see that Y = log + (h(O)X) has a density that decreases as constant divided
by yZlog y as y ~ 00. Clearly, E(Y) = 00 (so that Theorem 5 is useless), but E(Y/log

(1 + Y» < 00.
For the proof of this inequality, we use Lemma 1 once more, with E(N) ~ ~~=o

P(N > n), and constants Pn = n/log3(n + 1), mn = int(n/log(n + 1» and Xn =

h(O)-1 exp(n log n -4n log log(n + 1». Let no be so large that all three constants
fall in the desired ranges, and note that E(N) ~ no + ~~=.. (Upper bound). The terms
(1 -llpn)m. ~ exp(-mnlpn) ~ exp(-logZ(n + 1) + lln log3(n + 1» sum to a
constant. The terms h(O)xnlp:-m. = exp(n log n -4n log log(n + 1) -(n -mn)
(log n -3 log log(n + 1») ~ exp( -n log log(n + 1) + mnlog n) ~ exp(n -
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n log log(n + I» sum to a constant too. Thus, we are done if for all n at least equal
to no,

Yn Ynlog(1 + log(1 + Yn»
1 (I ) + 6 1 2(1 ) (Yn = log+(h(O)xn» > n.
og + Yn og + Yn

(This follows from the fact that this expression is an increasing function of Yn for
Yn > 0.) It is a straightforward but tedious exercise to verify that as n ~ 00, the given

}function ofYn minus n varies asn log log n/log n as n ~ 00. This concludes the proof, "

since we can take no large enough, and independent of the distribution of X.
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