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Abstract. We consider the problem of the exact simulation of random variables Z that satisfy the

distributional identity Z
L
= V Y + (1 − V )Z, where V ∈ [0, 1] and Y are independent, and

L
= denotes

equality in distribution. Equivalently, Z is the limit of a Markov chain driven by that map. We give

an algorithm that can be automated under the condition that we have a source capable of generating

independent copies of Y , and that V has a density that can be evaluated in a black box format. The

method uses a doubling trick for inducing coalescence in coupling from the past. Applications include

exact samplers for many Dirichlet means, some two-parameter Poisson–Dirichlet means, and a host of

other distributions related to occupation times of Bessel bridges that can be described by stochastic fixed

point equations.
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Introduction

Consider random variables Z that satisfy the recursive distributional identity

Z
L
= V Y + (1− V )Z, (1)

where V, Y, Z on the right-hand side are independent, and V ∈ [0, 1], and
L
= denotes equality in distri-

bution. Such random variables are of interest to us. If Vt, t ≥ 1 is an i.i.d. sequence distributed as V ,

Yt, t ≥ 1 is an i.i.d. sequence distributed as Y , and

W1 = V1, Wt =
t−1∏

s=1

(1− Vs)× Vt, t ≥ 2,

then expanding (1) over and over again shows that

Z
L
=
∞∑

t=1

WtYt. (2)

The sequence Wt is also called a stick-breaking sequence. Given infinite resources, one could sample Z

using the above infinite sum. But truncating that sum anywhere makes the result inaccurate. So, our

first goal is to provide an exact simulation technique that is as general as possible so that we can deal

with random variables Z as in (1). In the paper, we develop the Double cftp (coupling from the past)

method which is a particular extension of coupling from the past that uses a trick so that one does not

need to know or even compute the distribution of Y . In other words, our method avoids case-by-case

analysis and algorithm design, as the same program works for all Z under a modest condition on V .

It is important to note that in most cases, the density or distribution function of the solution Z

of (1) cannot be written down in a simple form, yet our method permits its simulation. All other methods

we are aware of require at the very least analytic knowledge of the law of Y .

In what follows, we adapt the following notation for random variables: U is uniform [0, 1], Ba,b
is beta (a, b), Ga is gamma (a) (with density xa−1e−x/Γ(a), x > 0), E is exponential, ξp is Bernoulli (p),

ξn,p is binomial (n, p), Pλ is Poisson (λ), C is Cauchy, Sα (α ∈ (0, 1)) is positive stable of parameter α

(its Laplace transform is
� {e−λSα} = e−λ

α
), and N is standard normal. Furthermore, Lα

def
= Sα/S

′
α is

the ratio of two independent positive stable random variables. We use the symbol Lα for this law because

the given ratio has Lamperti’s distribution [Zolotarev [1957], Lamperti [1958]; see also Zolotarev [1986],

Chaumont and Yor [2003, p. 116] and James [2006]]: more specifically,

Lαα
L
=

sin(Uπα)

sin((1− U)πα)
.

Finally, when we write a distributional identity such as (1), it is always understood that all random vari-

ables on the right are independent. Accented random variables are independent copies of their unaccented

cousins. For example, U − U is zero, but U − U ′ has a triangular distribution.

In a few cases, not of interest here, solutions Z of (1) can be explicitly derived. For example,

when Y is symmetric stable Sα (i.e., having characteristic function exp(−|t|α)) and V ≡ v ∈ (0, 1) is
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monoatomic (i.e., it puts all its mass on a point), then, using a sequence of i.i.d. symmetric stable random

variables Sα(t), t ≥ 1, we have

Z
L
=
∞∑

t=0

v(1− v)tSα(t)
L
=

( ∞∑

t=0

vα(1− v)αt

) 1
α

Sα L=
v

(1− (1− v)α)
1
α

Sα.

The Double CFTP algorithm

Doeblin coupling [1937] has been used in simulation in various ways, see, e.g., Devroye [1990],

Thorisson [1986] and Lindvall [1992]. Coupling from the past, or cftp, first suggested by Propp and

Wilson [1996] but also implicit in the work of Asmussen, Glynn and Thorisson [1992], can be used to

generate the unique stationary solution of Markovian maps. We use it for the map Z 7→ V Y + (1− V )Z,

where V has a density on [0, 1]. Note that V Y + (1−V )Z is a convex combination of Y and Z and takes

values between Y and Z. Hence if Y ∈ [0, c], then any solution Z of (1) satisfies Z ∈ [0, c]. Note also that
� {Z} =

� {Y }. Our set-up is the following:

(i) Y and V can be sampled from.

(ii) The density h of V can be computed exactly (in black box format).

(iii) The density of V is bounded from below on [0, 1] by a known constant β > 0. [This condition

will be weakened further on.]

(iv) 0 ≤ Y ≤ c, with c known, and Y is not monoatomic.

An important example occurs for V = 1− U 1/θ L= B1,θ, θ ∈ (0, 1), in which case

h(x) = θ(1− x)θ−1 �
[0,1](x) ≥ θ �

[0,1](x).

Condition (iii) holds with β = θ. Under the conditions above, applying the Markovian map Z 7→
V Y + (1 − V )Z starting with any Z ∈ [0, c] gives a sequence of random variables that converges in

distribution to the unique solution Z of

Z
L
= V Y + (1− V )Z.

However, forward simulation, when stopped at a finite time, yields only approximations. To apply cftp,

one needs to be able to create coupled Markov chains that coalesce in (random) finite time with probability

one.

We stress the fact that the algorithm below can basically be automated, something that differ-

entiates it from most other attempts at applying cftp to absolutely continuous distributions. Closest

in spirit is the work of Murdoch and Green [1998, 1999] who look at the Markov map, and based upon

explicit knowledge of the distribution of the random element, coalescence is forced by coupling using the

minimal common density. However, that approach cannot be automated—the minimizing density needs

to be computed by hand, which, in our case implies tedious computations involving the distributions of

V and Y .
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Automation can be achieved by the doubling trick of this paper: the distribution of Y does not

have to be known or restricted. Coalescence occurs with a given positive probability at every step of our

Markov chain by making use of the fact that if we randomize the transition by introducing an additional

random dichotomy, then the conditional densities in the transition can be shown to have a fixed amount of

overlap regardless of the current state. This is exploited in the method—thus, the doubling, or dichotomy,

has two benefits, automation and coalescence.

We also mention for the sake of completeness other versions of cftp, such as one shot cftp

[Roberts and Rosenthal, 2002, Beskos and Roberts, 2005], read once cftp [Wilson, 2000a], cftp with a

dominating chain [Fill and Huber, 2004; Kendall and Thönnes, 2004], and Fill’s method [Fill, 1997, 1998;

Fill, Machida, Murdoch and Rosenthal, 2000]. More early work can be found in Fismen [1998], Kendall

[1998], Wilson [2000b] and Foss and Tweedie [1998]. Some of these modifications of cftp were created

specifically to deal with unbounded spaces [Murdoch, 2000], and non-uniformly ergodic chains. Our state

space is compact, so we won’t need to consider any of those more advanced methods.

The main contribution of this paper is an algorithm, called Double cftp, that achieves the sought

automation. To grasp the idea of cftp, imagine that the Markov chain Zt runs as follows:

Zt+1 = ϕ(Zt, Rt),

where ϕ is a certain function, and Rt, t = . . . ,−2,−1, 0, 1, 2, . . . are i.i.d. random elements (typically

random vectors). Assume that this vector of Rt’s is stored once and for all, for all t. This would force

a simulation started at Zt = zt for negative integer time t, to assume a value ψ(zt, Rt, Rt+1, . . . , R−1) at

time zero, where ψ is some map. We declare coalescence if all zt yield the same value at time zero. In that

case, as shown by Propp and Wilson [1996], the common value at time zero has the limit distribution. To

detect coalescence, one can try running simulations first starting at t = −1, then from t = −2, until one

is successful, say, starting at T . This necessitates the storage of a finite number of values, R−T , . . . , R−1.

But of course, there are uncountably many possible start values zt, and one can’t possibly run that many

simulations. We develop a new method to deal with this.

If we were to define the Markov chain by

Zt+1 = VtYt + (1− Vt)Zt,
with the Yt’s i.i.d. and distributed as Y , and the Vt’s i.i.d. and distributed as V , we would have our

set-up, with Rt = (Yt, Vt). However, coalescence is difficult to achieve in this manner. The reason is the

following: the density of X = Zt+1 given Yt = y and Zt = z is

f(x) =
1

|y − z| h
(
x− z
y − z

)
.

Note that f is zero unless either z ≤ x ≤ y or y ≤ x ≤ z. Now, for every fixed x,

inf
z∈[0,c]

f(x) = 0.

Thus, there is no minorizing function of nonzero integral that works for all z, and so there is no hope for

coalescence.
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We are allowed to define ϕ and the random element in any equivalent manner, and thus, we can

think about doubling the number of Yt’s. Assume that we have an additional i.i.d. sequence Y ′t , and a

further i.i.d. sequence of Bernoulli (1/2) random variables Bt, and that we set

Zt+1 = Vt
(
YtBt + Y ′t (1−Bt)

)
+ (1− Vt)Zt.

The random element is Rt = (Yt, Y
′
t , Vt, Bt). It is clear that this is an equivalent Markov chain. But we

still cannot hope to get coalescence, as this is a strictly monotone map in Zt. The idea is to represent

the density of Zt+1 in a special manner.

We drop the index t for now. Conditional on Y, Y ′, Z, the density of V
(
Y B + Y ′(1−B)

)
+ (1−

V )Z is the mixture density

f(x) =
1

2

(
h

(
x− Z
Y − Z

)
1

|Y − Z| + h

(
x− Z
Y ′ − Z

)
1

|Y ′ − Z|

)
.

We clearly have

inf
x∈[min(Y,Y ′),max(Y,Y ′)]

inf
Z∈[0,c]

f(x) ≥ β

2c
,

where β is as in (iii) and c as in (iv). Thus, an equivalent decomposition is, using the notation ga,b for

the uniform density on [min(a, b),max(a, b)],

f(x) = f1(x) + f2(x),

with

f1(x) =
|Y − Y ′|β

2c
gY,Y ′(x),

f2(x) =
1

2

(
h

(
x− Z
Y − Z

)
1

|Y − Z| + h

(
x− Z
Y ′ − Z

)
1

|Y ′ − Z|

)
− |Y − Y

′|β
2c

gY,Y ′(x).

This decomposition is useful because f1 does not depend upon Z, and will permit us to create a coalescent

step. The probability of coalescence, given Y, Y ′, is
∫
f1 = |Y − Y ′|β/(2c).

0 1

Fig. 1. The density h of V is shown. It is
bounded away from zero on [0, 1]. This is
the density used in Figure 2.
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0 cY Y’ 0 cY Y’ Z

Fig. 2. On the right, the density f is shown for fixed values of Y, Y ′, Z when V has density h given in Figure 1.
The blacked out box represents the lower bound f1, valid no matter how Z is chosen on the interval. On the
left, ten different densities f are shown for fixed Y and Y ′ but varying Z. Note that all are strictly above f1.

Note that f1 and f2 are nonnegative functions, and that f = f1 + f2 is again a mixture decom-

position. Let us make the Markovian map a bit more complicated by enlarging the random element with

a random uniform [0, 1] random variable U and replace Vt by a yet undescribed additional independent

random element R′t. With subscripts t, we would thus have Rt = (Yt, Y
′
t , Ut, R

′
t). The map that uses

f = f1 + f2, and the fact that
∫
f1 = |Y − Y ′|β/2c would be as follows:

Zt+1 =

{
min(Yt, Y

′
t ) + 2cUt

β if Ut ≤ |Yt−Y
′
t |β

2c ,

ψ(Zt, Yt, Y
′
t , R

′
t) otherwise,

where ψ(Z, Y, Y,R) is a random variable with density proportional to f2. Note that if Ut ≤ |Yt−Y ′t |β
2c ,

then 2cUt/β is uniform on [0, |Yt − Y ′t |], as required. Note that if Zt+1 is generated according to f1 (first

step above), then its value does not depend upon Zt. Thus, coalescence occurs at that time!

Before we even discuss the simple problem of the structure of ψ for f2, it suffices to note that

we can simply determine the first negative time at which coalescence occurs: just keep generating triples

(Yt, Y
′
t , Ut), t = −1,−2, . . . until for the first time

Ut ≤
|Yt − Y ′t |β

2c
.
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That random time will be called T . We have as starting point a random variable uniformly distributed

on [min(YT , Y
′
T ),max(YT , Y

′
T )]:

ZT+1 = min(YT , Y
′
T ) +

2cUT
β

.

We need to apply the transitions from there forward, all according to f2, using the random elements

RT+1, . . . , R−1. Now, fortunately, we do not need to store the full random elements, as Yt, Y
′
t suffice.

Let us describe ψ, or the generator for f2. We are given Y , Y ′ and Z. One can clearly apply

the rejection method with bounding density f . A simple algorithm to generate a random variate X with

density f2 (given Y, Y ′, Z) is as follows:

[Forward phase: Generator for f2 given Y, Y ′, Z.]
Repeat Generate U ′ uniform [0, 1], B Bernoulli (1/2)

Generate V with density h

set X = (1− V )Z + V Y B + V Y ′(1−B)

Until U ′f(X) > β/(2c) [this is U ′f(X) > f1(X)] or X < min(Y, Y ′) or X > max(Y, Y ′)
Return X

We summarize the entire algorithm. A “stack” is a computer science term for a structure that

accepts items, one on top of another, with addition and removal always done from the top (as with a stack

of pancakes). To “pop” a stack means to remove the top element. The popped element is the element

removed in that operation.

Define an empty stack S

[Backward phase until coalescence is detected.]

Repeat

Generate U uniform [0, 1]

and generate i.i.d. random variates Y, Y ′

Put (Y, Y ′) on the stack S

Until U ≤ |Y − Y ′|β/(2c).
Pop S

[Set starting point.]

Set Z = min(Y, Y ′) + 2cU
β (uniform on [min(Y, Y ′),max(Y, Y ′)])

[Forward phase.]

While S is not empty:

Pop S and let the popped element be (Y, Y ′)
Generate X using the generator for f2 for given Y, Y ′, Z
Z ← X

Return Z
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The stack size is proportional to the time taken by the algorithm. The probability of ending the

piling of triples on the stack at each iteration is

p = �
{
U ≤ |Y − Y

′|β
2c

}
=
β

� {|Y − Y ′|
}

2c
.

Therefore, the expected stack size is exactly

2c

β
� {|Y − Y ′|} .

The performance deteriorates with a worsening ratio of the spread of Y over the variability of Y . We

would never use this algorithm if Y were a constant with probability one: in that case, Z ≡ Y , and

nothing is to be done.

It is noteworthy that no computation of the density of Y is required in this procedure.

For the complexity, we count the total number of rejection steps over all iterations. This can be

looked at backwards, from time 0 down. Let Nt be the number of rejection steps in the algorithm for f2

at time t. As noted earlier, the total number of steps, and indeed the total stack size, T , is geometric,

and
� {T} =

2c

β
� {|Y − Y ′|} .

Furthermore, by Wald’s identity,

�

{
T∑

t=1

Nt

}
=

� {T} � {N1}.

Given Y, Y ′, the expected number of steps for the rejection method for f2 is




1

1− |Y−Y
′|β

2c

with probability 1− |Y−Y
′|β

2c ,

1 with probability
|Y−Y ′|β

2c .

Thus,
� {N1} = 1 +

� {|Y − Y ′|}β/(2c). We conclude that

�

{
T∑

i=t

Nt

}
= 1 +

2c

β
� {|Y − Y ′|} .

The rejection algorithm for f2 can be avoided in special cases, provided that one can, for example,

compute the distribution function for f2 explicitly, and apply inversion to generate random variates from

it. When V is uniform [0, 1], say, this is easy to do. It results in small computational savings.
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In some cases, programs may run out of storage when the stack size exceeds available space. The

stack can be avoided altogether at a serious cost in terms of number of Y and U variates. Without a

stack, we must reconstruct the (non-)coalescence decision. At the start of the forward phase, we need to

generate a triple Y, Y ′, U that satisfies

U ≤ |Y − Y ′|β/(2c).
The last triple generated in the backward phase can be employed for that. Using Y, Y ′, a random variate

with density f1 can be used to start up the forward chain. But every other forward step requires a number

of attempts: we must generate triples Y, Y ′, U until for the first time

U > |Y − Y ′|β/(2c).
Then Y and Y ′ can be used as in the stack algorithm.

Double CFTP when the mixing density is not bounded away from zero

Finally, we can relax the boundedness condition on V given in (iii). It suffices that the density

h of V can be bounded from below by a nonincreasing function g, such that g(x) > 0 for all x ∈ (0, 1).

This enlarges the field of application of Double cftp considerably. We replace condition (iii) above by

(iii*) The density of V is bounded from below on [0, 1] by a known function g that is nonincreasing

and strictly positive for all x ∈ (0, 1). Let G(x) =
∫ x

0 g(u) du denote the integral, and let Ginv be

the inverse of G.

In Figure 3, we show a possible density for V , together with the corresponding density f for fixed

values of Z, Y and Y ′ (in the notation of the previous section). By the monotone nature of g, it takes

just a moment to verify that, given Y ′ > Y , and uniformly over all values of Z,

f(x) ≥ f1(x)
def
=

1

2c
min

(
g
( x
Y ′
)
, g

(
c− x
c− Y

))
�

[Y,Y ′](x).

Examples of densities that are relevant to Dirichlet means and their generalizations include that

of Ba,b with a ∈ (0, 1] and b > 0.
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0 1 0 cY Y’ Z

Fig. 3. On the left, the density h of V is given, and we can use g = f because of monotonicity. On the right, the
top curve with the large peak at Z is the density f for fixed values of Y, Y ′, Z. The shaded area represents the
surface under the lower bound f1, valid no matter how Z is chosen on the interval (but with Y and Y ′ fixed).
The two curves hugging the shaded area just above it are the two functions g in the definition of f1.

A few remarks regarding f1 will be helpful here. Define the cut-off point Y ′′ = Y ′c/(c + ∆),

where ∆ = Y ′ − Y . This is the place where the two functions in the definition of the minimum in f1 are

equal. We have

∫ Y ′′

Y
g

(
c− x
c− Y

)
dx = (c− Y )

∫ 1

c
c+∆

g(x) dx = (c− Y )

(
G(1)−G

(
c

c+ ∆

))
,

and ∫ Y ′

Y ′′
g
( x
Y ′
)
dx = Y ′

∫ 1

c
c+∆

g(x) dx = Y ′
(
G(1)−G

(
c

c+ ∆

))
,
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Therefore,

p
def
=

∫
f1(x) dx =

c+ ∆

2c

(
G(1)−G

(
c

c+ ∆

))
.

With probability p, we can cause coalescence, as f1 does not depend upon Z. If g ≡ β, then verify that

p = β∆/(2c), just as in the original Double cftp algorithm.

We also need a method for generating a random variable with density proportional to f1. The

part of f1 corresponding to [Y, Y ′′] has weight (c − Y )/(c + ∆), and the interval [Y ′′, Y ′] has weight

Y ′/(c + ∆). Let Q be a random variable with density proportional to g on [c/(c + ∆), 1]. It can be

generated by inversion as

Ginv
(
G

(
c

c+ ∆

)
+ U

(
G(1)−G

(
c

c+ ∆

)))
,

where U is uniform [0, 1]. Then it is easy to see that a generator for f1 is given by:

[Generator for f1, given Y < Y ′.]
Set ∆ = Y ′ − Y
Generate a pair of i.i.d. uniform [0, 1] random variables U,U ′

Set Q← Ginv
(
G
(

c
c+∆

)
+ U

(
G(1)−G

(
c

c+∆

)))

If U ′ < (c− Y )/(c+ ∆) then X ← c−Q(c− Y )

else X ← QY ′

Return X

The algorithm above suggests that we should be stacking (Y, Y ′) in the backwards phase. Note

that f1 is used to start the forward phase, just when coalescence occurs. In every other forward step, we

need to generate a random variable from f2 = f−f1 using the current value of Z, and the appropriate pair

Y, Y ′. Modifying the earlier algorithm to replace the test U ′f(X) > β/(2c) by the test U ′f(X) > f1(X),

we obtain:

[Forward phase: Generator for f2 given Y, Y ′, Z. Recall Y < Y ′.]
Repeat Generate U ′ uniform [0, 1], B Bernoulli (1/2)

Generate V with density h

Set X = (1− V )Z + V Y B + V Y ′(1−B)

Until U ′f(X) > f1(X) or X < Y or X > Y

Return X

We repeat the Double cftp algorithm with the necessary modifications.
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Define an empty stack S

[Backward phase until coalescence is detected.]

Repeat

Generate an i.i.d. pair Y, Y ′, and swap them if needed to make Y < Y ′. Define ∆ = Y ′ − Y
Generate U uniform [0, 1]

Put (Y, Y ′) on the stack S

Until U ≤ p def
= c+∆

2c

(
G(1)−G

(
c

c+∆

))

Pop S

[Set starting point.]

Generater Z with density proportional to f1, given the last pair Y, Y ′

[Forward phase.]

While S is not empty:

Pop S and let the top element be (Y, Y ′)
Generate X using the generator for f2 for given Y, Y ′, Z
Z ← X

Return Z

The analysis of this algorithm is not different from that of the original Double cftp algorithm.

The expected stack size (length of the backward phase) is 1/
� {p}: if Y, Y ′ are i.i.d., and have the common

distribution required for the recurrence, this is

α
def
=

1
� {p} =

2c
�
{

(c+ |Y ′ − Y |)
(
G(1)−G

(
c

c+|Y ′−Y |
))} .

Each forward step has a hidden second layer of iterations for the rejection generator for f2. Arguing as

earlier, the expected number of inner iterations is precisely 1 +α. Observe also that conditions (iii*) and

(iv) imply α <∞.

In the majority of the cases of interest in this paper, one can take h ≡ g, so that, among other

things, G(1) = 1 in all formulas above.

Dirichlet means

Let θ > 0. The class of random variables Z defined by

Z
L
= V Y + (1− V )Z (3)

where V = 1− U1/θ L= B1,θ are known in the literature as Dirichlet means. We say that Z is generated

by Y , or that Y is the generator of Z. We will write Zθ for such random variables without showing the

dependence upon the law of Y in the notation. Thus, specifically,

Zθ
L
= B1,θY + (1−B1,θ)Zθ

L
= Bθ,1Zθ + (1−Bθ,1)Y. (4)
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Observe that for bounded positive Y , our algorithm can be used to perfectly sample Zθ. In some cases,

Dirichlet means have simple solutions:

(i) It is well known [see, e.g., Ferguson, 1973], that if Y = ξq and V = B1,θ, then Zθ
L
= Bθq,θ(1−q).

(ii) Diaconis and Kemperman [1996] (see also Diaconis and Freedman [1999]) have shown that if

U,U ′ (both uniform [0, 1]) and C (Cauchy) are independent, then

(1− U ′)U + U ′
eC

eC + 1

L
= U.

(iii) The Dirichlet mean with Y ≡ U is trivially sampled from by Double cftp because U is supported

on [0, 1]. When θ = 1, Diaconis and Kemperman [1996] have shown that the density of Z is

e

π
sin(πz)z−z(1− z)−(1−z) �

[0,1](z).

This is the only case in which the density for this Dirichlet subfamily is explicitly known. Sampling

from Z in this example is best achieved by rejection, as the Diaconis-Kemperman density is

supported on [0, 1] and unimodal with mode at 1/2 given by 2e/π. This suggests a simple

rejection algorithm. However, for θ 6= 1, Double cftp seems like the simplest option. In fact, we

do not know any other exact simulation approach.

Guglielmi, Holmes and Walker [2002] considered the same problem we considered. For bounded

Y ∈ [0, c], they also suggest simulating Z by cftp using the Markov chain proposed in this paper.

However, they run a classical monotone chain, with simulations starting at 0 and c, and wait until

approximate coalescence occurs, i.e., until the upper and lower chains are virtually indistinguishable up

to machine precision. They ran simulations, which we will compare with ours further on. However, their

approach is in fact an approximation.

The general study of the distributional properties of these random variables can be traced back to

the work of Cifarelli and Regazzini [1979, 1990]. There are of course examples where the density of Zθ can

either be found by inversion formulae as above or by other means. See for instance Cifarelli and Regazzini

[1979, 1990], Diaconis and Kemperman [1996], Cifarelli and Melilli [2001] and more recently James [2007,

2008], James Lijoi and Prünster [2008] and Bertoin, Fujita, Roynette and Yor [2006]. Some of these

examples along with additional reference are in the survey paper by James, Roynette and Yor [2008].

However in general it is a difficult task to obtain explicit densities for these quantities, especially in the

case where 0 < θ < 1.

Let us take the example V = 1−U1/θ L= B1,θ , Y ≡ U , discussed above, and analyze the expected

time performance with respect to θ. Simulations are reported in a later section. For θ ≤ 1, we can use

the first algorithm with β = θ, c = 1. Note that |Y − Y ′| L= B1,2. The expected stack size, which is

proportional to the overall time taken by the algorithm, is

2c

β
� {|Y − Y ′|} =

6

θ
,
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and deteriorates polynomially as θ ↓ 0. For θ ≥ 1, only the second algorithm will be applicable. Let us

choose g ≡ h, as h is nonincreasing. Noting that

G(x) = 1− (1− x)θ,

we see that the expected stack size is

2

�
{

(1 + |Y ′ − Y |)
((

1− 1
1+|Y ′−Y |

)θ)} =
2

� {
(1 + |Y ′ − Y |)1−θ|Y ′ − Y |θ

} .

The expected value in this expression is
∫ 1

0
2(1− x2)

(
x

1 + x

)θ
dx.

By the dominated convergence theorem, one can show that as θ ↑ ∞, this is asymptotic to (4/3)2−θ.
Thus, the expected stack size grows as

(3/2)2θ.

Our simulation results will confirm this behaviour.

Generalized gamma convolutions

We say that X is a generalized gamma convolution (or ggc) with parameters (θ, Y ) and write

ggc(θ, Y ), with Y being a random variable and θ > 0 if X
L
= GθZθ and Zθ is defined by the recursive

identity

Zθ
L
= Bθ,1Zθ + (1−Bθ,1)Y (5)

[Bondesson [1992]; see also Cifarelli and Regazzini, 1990]. This definition follows along the lines of James,

Roynette and Yor [2008]. The Double cftp method thus permits the exact simulation of all ggc(θ, Y )

whenever Y is of compact support. We believe that no method has ever been published for the exact

simulation of ggc random variables.

We recall that Gθ can be generated in expected time uniformly bounded over the parameter

range, see, e.g., Ahrens and Dieter [1974, 1982], Ahrens, Kohrt and Dieter [1983], Best [1978a, 1978b,

1983], Cheng [1977], Cheng and Feast [1979, 1980], Devroye [1986], LeMinh [1988], Marsaglia [1977], and

Marsaglia and Tsang [2001].

Two parameter Poisson–Dirichlet means

We now deal with some situations in which the Vt’s are no longer i.i.d. Interestingly, we can

say quite a bit for random variables related to mean functionals of the two parameter Poisson–Dirichlet

random probabilty measure, otherwise known as the Pitman-Yor process [Pitman and Yor, 1997a] as

named in Ishwaran and James [2001], and parametrized by 0 ≤ α < 1 and θ > −α. When α = 0 this

model reduces to the Dirichlet process discussed earlier in this paper. Hereafter we assume 0 < α < 1.

The processes arose originally in the work of Perman, Pitman and Yor [1992] and Pitman and

Yor [1997a] in connection with excursions of Bessel processes. Ishwaran and James [2001, 2003] suggested
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these as natural priors for Bayesian applications [see also Pitman [1996]]. Recently, Goldwater, Griffiths

and Johnson [2006] and Teh [2006] have argued that the power law behavior, in terms of numbers of

distinct words, induced by general Pitman-Yor processes is appropriate when applied to various natural

language models. James, Lijoi and Prünster [2008] describe sums in which V is a general beta, in the

context of Poisson-Dirichlet processes.

Similar to the Dirichlet means case, we define a family of random variables, which we shall call

Poisson–Dirichlet means and denote by Zα,θ [James, Lijoi and Prünster, 2008]. This family satisfies the

distributional identity

Zα,θ
L
= Bθ+α,1−αZα,θ+α + (1−Bθ+α,1−α)Y, (6)

where θ > −α, and Y is a random variable said to be the “generator” of Zα,θ. Repeated expansions

yields

Zα,θ
L
=
∞∑

t=1

YtVt

t−1∏

s=1

(1− Vs),

where all variables on the right are independent, the Yt are i.i.d. and distributed as Y , and

Vt = B1−α,θ+tα, t ≥ 1.

There is no known technique to perfectly sample Zα,θ. The difficulty stems from the fact that

the Vt in the infinite sum are not identically distributed. However, Theorem 2.1 of James, Lijoi and

Prünster [2008] shows that for θ > 0, Zα,θ is in fact a Dirichlet mean of order θ generated by Zα,0. In

particular, Theorem 6.1 of that paper shows that

Zα,θ
L
= Bθ,1Zα,θ + (1− Bθ,1)Zα,0. (7)

Thus, we can perfectly sample Zα,θ by Double cftp whenever Zα,0 is of bounded support and can be

perfectly sampled! Note that

Zα,0
L
=
∞∑

t=1

YtVt

t−1∏

s=1

(1− Vs)

where Vt
L
= B1−α,tα are independent. There is no indication that Zα,0 is a Dirichlet mean functional.

However, an explicit expression for its density is given in Theorem 4.1 of James, Lijoi and Prünster [2008],

which in many cases is amenable to rejection sampling.

The distribution of Zα,0 looms large for the simulation of two parameter Poisson–Dirichlet means

generated by some general Y . James, Lijoi and Prünster [2008] have shown some distributional results

that link the law of Y with that of Zα,0. These can be rephrased as follows. Consider the equation
� {(Y − x)α+}
� {(x− Y )α+}

= Lαα
def
=

sin(Uπα)

sin((1− U)πα)
.

This is to be taken as the definition of the Lamperti random variable Lα. Its solution X = x (note that

the left-hand-side is strictly monotonically decreasing in x) is distributed as Zα,0. This is to be interpreted

as some sort of inversion method. If it happens that the distribution of Y has sufficient structure for that

ratio to be explicitly known, then a simple solution of this equation permits random variate generation.

In general, one can apply the series method of Devroye [1986] based on approximations of the expected

values to develop exact generators for Zα,0.
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The expected complexity (stack size) grows as 1/θ times 1/
� {|Zα,0 − Z ′α,0|} as θ ↓ 0, where

Zα,0, Z
′
α,0 are i.i.d.

In the next two sections, we present the details for two simple Poisson-Dirichlet mean families,

one generated by Y ≡ U and one generated by Y ≡ ξ1/2 in (6). For other, more general choices of

generator, we are not aware of any exact simulation methods in the literature.

A first example: Poisson-Dirichlet means generated by uniform random variables

When Y
L
= U , the left-hand-side of the equation defining Zα,0 is ((1− x)/x)α+1, and thus,

Zα,0
L
=

1

1 + L
α
α+1
α

L
=

sin
1

α+1 (Uπα)

sin
1

α+1 (Uπα) + sin
1

α+1 ((1− U)πα)
.

This implies that for the Poisson-Dirichlet mean generated by U , (7) reduces to

Zα,θ
L
= Bθ,1Zα,θ + (1−Bθ,1)

sin
1

α+1 (Uπα)

sin
1

α+1 (Uπα) + sin
1

α+1 ((1− U)πα)
.

The “Y ” variable in this distributional identity takes values on [0, 1]. Therefore, Double cftp can be

used.

A second example: Poisson-Dirichlet means generated by Bernoulli random variables

Consider the Poisson-Dirichlet means with Bernoulli generator:

Zα,θ
L
= Bθ+α,1−αZα,θ+α + (1−Bθ+α,1−α)ξ1/2,

where θ > −α, α ∈ [0, 1]. To distinguish this family from others, we will use the notation Oα,θ. The

Dirichlet mean representation (7) then reads

Oα,θ
L
= Bθ,1Oα,θ + (1−Bθ,1)Oα,0.

Remarkably, Oα,0 has a simple repesentation, as shown by Barlow, Pitman and Yor [1989]:

Oα,0
L
=

Lα
Lα + 1

,

where Lα is Lamperti’s law. As pointed out above, Lα, and thus Oα,0, can be simulated in one line of

code. Since Oα,0 ∈ [0, 1], we have a representation for Oα,θ as a Dirichlet mean with Y variable equal to

Lα/(1 +Lα). The Double cftp method can thus be used to generate Oα,θ . For θ ≤ 1, its expected time

is proportional to
2

θ
� {|Oα,0 −O′α,0|}

,

where Oα,0, O
′
α,0 are i.i.d. One can verify that Lαα

L→ U/(1− U) as α ↓ 0, so that Lα/(1 + Lα)
L→ ξ1/2.

Also, as α ↑ 1, Lα/(1 + Lα) → 1/2 in probability. The crucial parameter range is thus for α near one.

Calculations show that
� {|Oα,0−O′α,0|} = Θ(1−α) as α ↑ 1, and this shows that the expected complexity

of Double cftp is bounded from above by a constant times 1/(θ(1− α)).
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Several special cases stand out.

Occupation time of a Bessel bridge. Let θ = α. Barlow, Pitman and Yor [1989] showed that

the occupation time of a Bessel bridge of fractional dimension 2 − 2α up to time one is given by the

Poisson-Dirichlet mean

Oα,α
L
= (1−B1,α)Oα,α +B1,αOα,0. (8)

The occupation time is the time spent on the positive side, and Bessel bridges generalize the Brownian

bridge (which occurs at α = 1/2). They are important processes in the modeling of volatility models

in financial mathematics [Campolietti and Makarov, 2007]. While they can be simulated exactly by

using randomized gamma laws [Makarov and Glew, 2009], various parameters of these processes, such as

occupation times, offer simulation challenges. Pitman and Yor [1997b] [see also Yano and Yano, 2008]

obtain the generalized Stieltjes transform of Oα,α. For α = 1/2, we have Oα,α
L
= U [Lévy’s theorem,

see, e.g., Ito and McKean, 1974, p. 58]. This transform does not lend itself easily to random variate

generation. Our Double cftp method, applied to (8), runs in expected time bounded from above by a

constant times (α(1−α))−1. Further references on Oα,α include Pitman and Yor [1997a,b] and Watanabe

[1993].

The uniform case. Let θ = 1. We then have the distributional identity

Oα,1
L
= (1− U)Oα,1 + UOα,0.

This is trivially simulated by Double cftp in expected time O(1/(1 − α)). The results of James, Lijoi

and Prünster [2008] show that Oα,1 can also easily be sampled by rejection sampling.

Phylogenetic tree models. The case θ = 1−α is also of interest: Oα,1−α was shown to be a limit law

for a parameter in a phylogenetic tree model by Haas, Miermont, Pitman and Winkel [2008, proposition

20]:

Oα,1−α
L
= (1−B1,1−α)Oα,1−α +B1,1−αOα,0. (9)

Double cftp can be applied and runs in expected time (expected stack size) O((1 − α)−2). Thus, it

becomes inefficient as α ↑ 1. However, there is a small algebra of relations between variables in the Oα,θ
family. For example, we have

Oα,1−α
L
= ξ1/2 +B1,1−αOα,1(1− 2ξ1/2) (10)

[James, Lijoi and Prünster, 2008, corollary 6.1]. Using this, and the previous remark about Oα,1, we see

that Oα,1−α can be generated in expected time O(1/(1−α)), which is better than if (9) was used directly.

There is only one other avenue we are aware of for generating Oα,θ, and it involves the tilted

stable law. Let Sα,θ, θ > −α, denote a polynomially tilted stable, i.e., if fα(x) is the density of Sα, then

the density of Sα,θ is
Γ(1 + θ)

Γ(1 + θ/α)
x−θfα(x), x > 0.

The generalized Lamperti law of James [2007] is Lα,θ = Sα/Sα,θ. Random variates from the tilted stable

law can be generated by the method of Devroye [2009] in uniformly bounded time. Stable variates can be
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generated in one line of code by Kanter’s method [Kanter, 1975; Chambers, Mallows and Stuck, 1976].

Proposition 5.1 of James [2007] establishes the following relationship between densities,

� {0α,θ ∈ dy} = 2θ/α(1− y)θ �
{

Lα,θ
Lα,θ + 1

∈ dy
}

for all θ > −α. This equation shows that rejection can be applied, but it also shows that rejection will

be inefficient for some values of the parameters, e.g., when θ/α is large.

A limited simulation

We wrote computer programs for a benchmark family of distributions, the Dirichlet means with

Y
L
= U and V

L
= 1 − U1/θ, θ > 0. By varying θ, we can clearly illustrate the merits, shortcomings and

pitfalls of our method. It should be noted that except for θ = 1, no explicit distributional expression is

known for Z. At θ = 1, we obtain the Diaconis-Kemperman law which was described in the text.

Four algorithms were compared.

(i) For θ = 1, we implemented a rejection algorithm for the Diaconis-Kemperman law, as suggested

in the text.

(ii) For θ ≤ 1, the original Double cftp method was used with lower bound β = θ. This method is

not valid for θ > 1.

(iii) For θ ≥ 1, the modified Double cftp method was used with lower bound g ≡ h (as h is

nonincreasing). This method cannot be extended to θ < 1.

(iv) We can simulate the infinite sum to machine precision. That is, we compute Z ′t =
∑t
s=1WsYs

(with Ws and Ys as in the introduction), which is a lower bound on Z =
∑∞
s=1WsYs, and

Z ′′t =
∑t
s=1WsYs + cWt+1/Vt+1 (an upper bound on Z), until for the first time Z ′t = Z ′′t where

= means “up to machine precision”.

Clearly, (iv) is an approximate method, and it is also vulnerable to numerical errors because

sums should not be taken starting with the largest terms first.

We gathered satistical information on numbers of uniform random variates needed, number of

Yt’s needed, number of Vt’s needed, and so forth. These are independent of particular implemenations.

Furthermore, we ran a simple check of the means of the random variables returned, which were all in

the acceptable range. Finally, timing experiments were carried out. So as not to have to worry about

compiler implementations, especially since a stack is used, we settled on an interpreted language that

comes closest to machine language, PostScript. In it, we have full control of the details of the stack and

all operations. Our UNIX machine ran FreeBSD 6.1-RELEASE-p7. The interpreter was GhostScript

(GNU Ghostscript 7.07 (2003-05-17) Copyright (C) 2003 artofcode LLC, Benicia, CA).
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Table (i). Timings in Milliseconds per Random Variate Generated, Averaged over 10,000 Runs

θ: 10 5 2 1 0.5 0.2 0.1

Rejection (Diaconis-Kemperman) 0.0047

Double cftp, original 0.0414 0.0891 0.2508 0.5555

Double cftp, extension 4.5390 0.1880 0.0540

Approximation 0.4610 0.2344 0.0766 0.0344 0.0219 0.0156 0.0101

The timings above pinpoint the main problem with both Double cftp algorithms—that the

expected times are not uniformly bounded even over the limited family of Dirichlet means. It is especially

bad for our second algorithm when θ is large—our bounds show that the expected time grows exponentially

quickly as θ ↑ ∞. On the other hand, we know of no exact method for this family besides Double cftp.

For the only explicitly known case, θ = 1, the specially designed rejection method is nine times faster

than Double cftp. On the other hand, approximations by evaluating infinite sums to machine precision,

seem to perform acceptably well. Since our sums are roughly exponentially decreasing, expect the timings

to increase linearly in the number of bits of machine precision. For example, simply doubling the present

precision would make Double cftp outperform the simple approximate algorithm.

All cftp algorithms of a certain sophistication face the stack storage problem. Stack sizes are

geometrically distributed and thus relatively well-behaved. Bounds were given in the text. For the range

θ ∈ [0.1, 1], averaged over a thousand runs, we observed average sizes of 59.436 (θ = 0.1), 29.222 (θ = 0.2),

11.960 (θ = 0.5) and just 5.930 at θ = 1 [recall that the theoretical value was 6/θ = 6]. The maximal

stack sizes, were, respectively, 325, 207, 79 and 43. The growth in stack size is logarithmic in the number

of runs, as the maximum of a geometric collection of random variables grows logarithmically.

At this point, we can compare with a simulation reported for an approximate cftp algorithm by

Guglielmi, Holmes and Walker [2002]. They too took Y ≡ U and considered the same Dirichlet mean.

Their coalescent times (our stack size) was about 20 for θ = 1. Our value, 5.930, compares favorably.

Consumption of random variates per generated random variable is also of interest. Clearly,

they all run in step with the stack size, showing the same growth patterns. At θ = 1, the average

number of uniforms generated, the average number of Y random variables generated, and the average

number of V random variables generated in vector notation, averaged over one thousand runs, was

(15.253, 11.86, 5.969). Note that in all cases, Y and V are just transformation of uniforms, but we do not

double count these, to keep the comparison clean. For the approximation algorithm, the corresponding

vector is (0, 19.737, 19.737). For the rejection method, it is just (3.461, 0, 0).

Conclusions

Universal algorithms like the ones presented here can be used as “black boxes” for plug and play.

The disadvantage, as shown in the simulation and our theoretical analysis, is that the expected time and

expected storage are not uniformly bounded over all input distributions (of Y and V ). In fact, there is no

hope of a finite universal bound on the performance. Nevertheless, it is of interest to look for variations

on the cftp theme that halt quickly.
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One referee mentioned distributional identities of the form

Z
L
= ϕ(Z,Z ′, Y ),

where Z and Z ′ on the right are independent and identically distributed, Y is a general random element,

and ϕ is a given function. Devroye and Neininger [2002] dealt with the simulation of such Z variables

under some conditions on ϕ. Their solution was not elegant, but good enough for the exact simulation of

the limit distribution of Quicksort [Devroye, Fill and Neininger, 2000], for example. However, there is no

Markov chain that corresponds to such distributional identities—it is rather an infinite tree. We do not

know how to generalize the ideas in cftp to such tree-like recurrences, but it is certainly worth pursuing.

Finally, our distributional identity was motivated by Dirichlet means and Poisson-Dirichlet means.

There will be many other distributional identities waiting to be given the same treatment to cause

coalescence in continuous settings.
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